King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2016-2017
Academic Year (H) 1437-1438
Bachelor AFM: M. Eddahbi

Solution of the First Midterm exam: Stochastic Processes: Math. 380 (25\%)
Sunday, March 19, 2017 (1-3) PM

Problem 1. (5 marks)

Let the random variable X have the p.m.f. $f(k)=\frac{1}{3}, k \in S_{X}=\{-1,0,1\}$. Let $Y=X^{2}$,

1. (1 mark) Find the distribution of Y,

Solution: $\left.S_{Y} \xlongequal[=]{ } 0,1\right\}$, and the p.m.f. is given by

$$
f(0)=P(Y=0)=P(X=0)=\frac{1}{3}
$$

and

$$
\begin{aligned}
f(1) & =P(Y=1)=P\left(X^{2}=1\right)=P(X=-1 \text { or } X=1) \\
& =P(X=-1)+P(X=1)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

2. (1 mark) Calculate the expectation of X and Y.

Solution:

$$
E[X]=\sum_{k=-1}^{1} k \frac{1}{3}=\frac{1}{3}(-1+0+1)=0 \text { and } E[Y]=\sum_{k=0}^{1} k f(k)=\frac{1}{3} \times 0+\frac{2}{3} \times 1=\frac{2}{3}
$$

3. (1 mark) Deduce the variance of X.

Solution:

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=E[Y]=\frac{2}{3}
$$

4. (1 mark) Find the covariance of X and Y.

Solution:

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=E\left[X^{3}\right]=\frac{1}{3}(-1+0+1)=0
$$

5. (1 mark) Are X and Y independent ? Explain your answer.

Solution: X and Y are dependent because $Y=X^{2}$.

Problem 2. (5 marks)

1. Let the joint p.m.f. of X and Y be defined by $f(i, j)=\frac{i+j}{32}, i=1,2$, and $j=1,2,3,4$.
(a) ($\mathbf{1}$ mark) Find $f_{X}(i)$ the marginal p.m.f. of X.

$$
f_{X}(i)=\sum_{j=1}^{4} f(i, j)=\sum_{j=1}^{4} \frac{i+j}{32}=\frac{5+2 i}{16}
$$

(b) ($\mathbf{1}$ mark) Find $f_{Y}(j)$ the marginal p.m.f. of Y.

$$
f_{Y}(j)=\sum_{i=1}^{2} f(i, j)=\sum_{i=1}^{2} \frac{i+j}{32}=\frac{3+2 j}{32}
$$

(c) (1 mark) Find $P(Y=2 X)$. Let us first remark that

$$
\begin{aligned}
\{Y=2 X\} & =\{Y=2 X\} \cap(\{X=1\} \cup\{X=1\}) \\
& =(\{Y=2 X\} \cap\{X=1\}) \cup(\{Y=2 X\} \cap\{X=2\})
\end{aligned}
$$

hence

$$
\begin{aligned}
P(Y=2 X) & =P(\{Y=2 X\} \cap\{X=1\})+P(\{Y=2 X\} \cap\{X=2\}) \\
& =P(Y=2 ; X=1)+P(Y=4 ; X=2) \\
& =\frac{1+2}{32}+\frac{2+4}{32}=\frac{9}{32} .
\end{aligned}
$$

(d) (1 mark) Find $P(X \leq 3-Y)$.

$$
\begin{aligned}
P(X \leq 3-Y) & =P(X \leq 3-Y ; X=1)+P(X \leq 3-Y ; X=2) \\
& =P(1 \leq 3-Y ; X=1)+P(2 \leq 3-Y ; X=2) \\
& =P(Y \leq 2 ; X=1)+P(Y \leq 1 ; X=2) \\
& =P(Y=1 ; X=1)+P(Y=2 ; X=1)+P(Y=1 ; X=2) \\
& =\frac{1+1}{32}+\frac{1+2}{32}+\frac{2+1}{32}=\frac{8}{32} .
\end{aligned}
$$

2. There are eight similar chips in a bowl: three marked $(0,0)$, two marked $(1,0)$, two marked $(0,1)$, and one marked $(1,1)$. A player selects a chip at random and is given the sum of the two coordinates in dollars. If X and Y represent those two coordinates, respectively, their joint p.m.f. is $f(i, j)=\frac{3-i-j}{8}, i=0,1$ and $j=0,1$.
(a) (1 mark) Calculate the expected given sum in dollars.

$$
E[X+Y]=\sum_{i=0}^{1} \sum_{j=0}^{1}(i+j) \frac{3-i-j}{8}=\frac{3}{4}
$$

Problem 3. (5 marks)

A discrete is a random variable whose range is either finite or countably in finite. A continuous random variable is a random variable whose range is an interval in \mathbb{R} : A mixed random variable is partially discrete and partially continuous.

State whether the random variables are discrete, continuous or mixed.

1. ($\mathbf{1}$ mark) A coin is tossed ten times. The random variable X is the number of tails that are noted. Explain your answer.
Solution: The r.v. X follows a binomial with parameter 10 and $\frac{1}{2}$ since its has two alternative outcomes and can take the values $\{0,1, \ldots, 10\}$.
2. ($\mathbf{1}$ mark) A light bulb is burned until it burns out. The random variable Y is its lifetime in hours. Explain your answer.
Solution: The life time a light bulb is a continuous random varibale since it can take any positive value.
3. (1 mark) $Z:] 0 ; 1[\longrightarrow \mathbb{R}$ where

$$
Z(s)=\left\{\begin{array}{c}
1-s \text { if } 0<s<\frac{1}{2} \\
\frac{1}{2} \text { if } \frac{1}{2} \leq s<1
\end{array} \quad\right. \text { Explain your answer. }
$$

Solution: The r.v. Z is a mixed distribution since it takes a continuous value between $0<s \leq \frac{1}{2}$ and takes one single value on the internal $\frac{1}{2} \leq s<1$.
4. (1 mark) Find the expectation of X and Z;

Solution: We know that $X \hookrightarrow \mathcal{B}\left(10, \frac{1}{2}\right)$ the, $E[X]=10 \frac{1}{2}=5$. and

$$
E[Z]=\int_{0}^{1} z(s) d s=\int_{0}^{\frac{1}{2}}(1-s) d s+\int_{\frac{1}{2}}^{1} \frac{1}{2} d s=\frac{5}{8}
$$

5. (1 mark) Find the variance of X and Z canceled.

Problem 4. (6 marks)

Let X and Y be two random variables with the joint density

$$
f(x, y)=\left\{\begin{array}{lcc}
a\left(e^{-2 x-3 y}\right) & \text { if } & 0<x \text { and } 0<y \\
0 & \text { elsewhere }
\end{array}\right.
$$

1. (1 mark) Find the value of a.

Solution: We have

$$
\int_{0}^{\infty} \int_{0}^{\infty} a\left(e^{-2 x-3 y}\right) d x d y=1 \Longleftrightarrow a=6
$$

2. (1 mark) Calculate the marginal densities of X and Y.

Solution: We know

$$
f_{X}(x)=\int f(x, y) d y=\int_{0}^{\infty} 6\left(e^{-2 x-3 y}\right) d y=2 e^{-2 x}
$$

and

$$
f_{Y}(y)=\int f(x, y) d x=\int_{0}^{\infty} 6\left(e^{-2 x-3 y}\right) d x=3 e^{-3 y}
$$

3. (1 mark) Are X and Y independent?

Solution: We have $f_{X}(x) f_{Y}(y)=f(x, y)=f_{(X, Y)}(x, y)$ then X and Y are independent.
4. (1 mark) Find $\operatorname{Cov}(X, Y)$.

Solution: By definition

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0 \text { since } X \text { and } Y \text { are independent. }
$$

5. (1 mark) Set $Z=X+Y$, Calculate the c.d.f. $F_{Z}(z)$ of Z.

Solution: By definition

$$
\begin{aligned}
F_{Z}(z) & =P(Z \leq z)=P(X+Y \leq z)=\iint_{\{x+y \leq z\}} f(x, y) d x d y \\
& =\int_{0}^{z}\left(\int_{0}^{z-x} f(x, y) d y\right) d x=\int_{0}^{z} 2 e^{-2 x}\left(\int_{0}^{z-x} 3 e^{-3 y} d y\right) d x \\
& =1+2 e^{-3 z}-3 e^{-2 z}
\end{aligned}
$$

6. (1 mark) Find the p.d.f. $f_{Z}(z)$ of Z.

Solution: We know that $f_{Z}(z)=F_{Z}^{\prime}(z)=6\left(e^{-2 z}-e^{-3 z}\right)$.

Problem 5. (6 mark)

1. An insurance policy is written to cover a loss, X, where X has a uniform distribution on $[0,1000]$. The policy has a deductible, d, and the expected payment under the policy is 25% of what it would be with no deductible.
(a) (2 mark) Calculate d.

Solution: Let Y be the payment under the deductible policy and X be the payment under policy with no deductible. So

$$
\begin{equation*}
E[Y]=E[\max (X-d, 0)]=\frac{25}{100} E[X] \tag{1}
\end{equation*}
$$

but we know that

$$
E[\max (X-d, 0)]=\int_{d}^{1000}(x-d) \frac{1}{1000} d x=\frac{1}{2000}(d-1000)^{2}
$$

and

$$
E[X]=\int_{0}^{1000} x \frac{1}{1000} d x=500
$$

Now substituting in the equation (??) we get

$$
\begin{aligned}
\frac{1}{2000}(d-1000)^{2} & =\frac{25}{100} \times 500=125 \\
& \Longleftrightarrow(d-1000)^{2}=250000 \\
& \Longleftrightarrow|d-1000|=\sqrt{250000}=500
\end{aligned}
$$

Then the possible solution are $d=500$ and $d=1500$. But since d shoul be less than the maximum value of X we finaly get as the unique solution $d=500$.
2. A group insurance policy covers the medical claims of the employees of a small company. The value, V, of the claims made in one year is described by $V=100,000 Y$ where Y is a random variable with density function

$$
f(y)=\left\{\begin{array}{llr}
c(1-y)^{4} & \text { if } & 0<y<1 \\
0 & & \text { elsewhere }
\end{array}\right.
$$

where c is a constant.
(a) ($\mathbf{2}$ mark) Calculate the conditional probability that V exceeds 40,000 , given that V exceeds 10, 000 .
Solution: First we have $\int_{0}^{1} c(1-y)^{4} d y=1$ implies that $\frac{1}{5} c=1$, then $c=5$. And

$$
\begin{aligned}
P(V>40,000 \mid V>10,000) & =\frac{P(V>40,000, V>10,000)}{P(V>10,000)} \\
& =\frac{P(V>40,000, V>10,000)}{P(V>10,000)} \\
& =\frac{P(V>40,000)}{P(V>10,000)}=\frac{P\left(Y>\frac{4}{10}\right)}{P\left(V>\frac{1}{10}\right)} \\
& =\frac{\int_{\frac{2}{5}}^{1} 5(1-y)^{4} d y}{\int_{\frac{1}{10}}^{1} 5(1-y)^{4} d y}=\frac{\frac{243}{3125}}{\frac{59049}{100000}}=\frac{32}{243} \simeq 0.132
\end{aligned}
$$

3. The stock prices of two companies at the end of any given year are modeled with random variables X and Y that follow a distribution with joint density function

$$
f(x, y)=\left\{\begin{array}{c}
2 x, \text { if } 0<x<1 \text { and } x<y<x+1, \\
0, \text { otherwise } .
\end{array}\right.
$$

Recall that

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \text { and } f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

where $f_{X}(x)=\int f(x, y) d y$ and $f_{Y}(y)=\int f(x, y) d x$. The condtional expectation of Y given $X=x$ is defined by

$$
E[Y \mid X=x]=\int y f_{Y \mid X}(y \mid x) d y=h(x) \text { and } E[X \mid Y=y]=\int x f_{X \mid Y}(x \mid y) d x=g(y)
$$

and

$$
\operatorname{Var}(Y \mid X=x)=E\left[(Y-E[Y \mid X=x])^{2} \mid X=x\right]=E\left[Y^{2} \mid X=x\right]-(E[Y \mid X=x])^{2}
$$

(a) (2 mark) Determine the conditional variance of Y given that $X=x$.

Solution: We have
$\operatorname{Var}(Y \mid X=x)=E\left[(Y-E[Y \mid X=x])^{2} \mid X=x\right]=E\left[Y^{2} \mid X=x\right]-(E[Y \mid X=x])^{2}$.
So we need first to calculate $f_{Y \mid X}(y \mid x)$. By definition we have

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \text { and } f_{X}(x)=\int_{x}^{x+1} 2 x d y=2 x
$$

hence

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{ll}
1, & \text { if } 0<x<1 \\
0, & \text { otherwise }
\end{array} \text { and } x<y<x+1,\right.
$$

Then

$$
\begin{aligned}
E[Y \mid X=x] & =\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y=\int_{x}^{x+1} y d y \\
& =\left[\frac{y^{2}}{2}\right]_{x}^{x+1}=\frac{1}{2}\left[(x+1)^{2}-x^{2}\right] \\
& =\frac{1}{2}[2 x+1]=x+\frac{1}{2} .
\end{aligned}
$$

and

$$
\begin{aligned}
E\left[Y^{2} \mid X=x\right] & =\int_{-\infty}^{\infty} y^{2} f_{Y \mid X}(y \mid x) d y=\int_{x}^{x+1} y^{2} d y \\
& =\left[\frac{y 3}{3}\right]_{x}^{x+1}=\frac{1}{3}\left[(x+1)^{3}-x^{3}\right]=x^{2}+x+\frac{1}{3}
\end{aligned}
$$

Therefore

$$
\operatorname{Var}(Y \mid X=x)=x^{2}+x+\frac{1}{3}-\left(x+\frac{1}{2}\right)^{2}=\frac{1}{12}
$$

Optional : Get marks as much as you can (bonus)

1. (1 mark) Let X, Y, Z be independent Poisson random variables with $E[X]=3 ; E[Y]=1$; and $E[Z]=4$: Find $P(X+Y+Z \leq 1)$?
Solution: We have

$$
P(X+Y+Z \leq 1)=P(X+Y+Z=0)+P(X+Y+Z=1)
$$

But we know that

$$
\begin{aligned}
P(X+Y+Z=0) & =P(X=0, Y=0, Z=0) \\
& =P(X=0) P(Y=0) P(Z=0) \quad \text { since } X, Y, Z \text { and independent } \\
& =e^{-3} e^{-1} e^{-4}=e^{-8}
\end{aligned}
$$

and

$$
\begin{aligned}
P(X+Y+Z=1)= & P(X=0, Y=0, Z=1) \\
& +P(X=0, Y=1, Z=0) \\
& +P(X=1, Y=0, Z=0) \\
= & P(X=0) P(Y=0) P(Z=1) \\
& +P(X=0) P(Y=1) P(Z=0) \\
& +P(X=1) P(Y=0) P(Z=0) \\
= & e^{-3} e^{-1} e^{-4} 4+e^{-3} e^{-1} e^{-4}+3 e^{-3} e^{-1} e^{-4} \\
= & 8 e^{-8} .
\end{aligned}
$$

where we have used that fact that X, Y, Z are independent. Finally we get

$$
P(X+Y+Z \leq 1)=e^{-8}+8 e^{-8}=9 e^{-8} .
$$

2. Assume X_{1}, \ldots, X_{n} are independent and identically distributed random variables with a common c.d.f. $F(x)$: Define U and L as follows $U=\max \left(X_{1}, \ldots, X_{n}\right)$ and $L=\min \left(X_{1}, \ldots, X_{n}\right)$.
(a) (1 mark) Write in terms of the events $\left\{X_{i} \leq u\right\}$ the event $\{U \leq u\}$ for any $u \in \mathbb{R}$, Solution:
(b) (1 mark) Deduce c.d.f. of U.

Solution:

(c) (1 mark) Find $P(L>\ell)$, for any $\ell \in \mathbb{R}$.

Solution:

(d) ($\mathbf{1}$ mark) and Deduce c.d.f. of L.

Solution:
(e) (1 mark) Are U and L independent?

Solution:

