King Saud University
Academic Year (G) 2016-2017
College of Sciences
Mathematics Department

Solution of the second midterm exam QMF: ACTU. 468 (25\%) (two pages)

Thursday, May 4, 2017 / Sha'ban 8, 1438 (two hours 9-11 AM)

Problem 1. (9 marks)

1. For $0 \leq t \leq T$ we set

$$
d_{1}\left(S_{t}, K, r, T-t, \delta\right)=\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\delta+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

and

$$
d_{2}\left(S_{t}, K, r, T-t, \delta\right)=\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\delta-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

(1 mark) Find in terms of $d_{1}\left(S_{t}, K, r, T-t, \delta\right)$ and $d_{2}\left(S_{t}, K, r, T-t, \delta\right)$ the pricing Black-Scholes formula for a European call option on stock paying a dividend yield δ at any time t between 0 and maturity T.
2. (1 mark) Find the relation between $d_{1}\left(S_{t}, K, r, T-t, \delta\right)$ and $d_{2}\left(K, S_{t}, \delta, T-t, r\right)$ and the relation between $d_{1}\left(K, S_{t}, \delta, T-t, r\right)$ and $d_{2}\left(S_{t}, K, r, T-t, \delta\right)$.
3. (1 mark) Use the formula $1-\mathbf{N}(x)=\mathbf{N}(-x)$ to find the relation between $C\left(S_{t}, K, \sigma, r, T-t, \delta\right)$ and $C\left(K, S_{t}, \sigma, \delta, T-t, r\right)$.
4. (1 mark) Let $S=\$ 100, K=\$ 90, \sigma=30 \%, r=8 \%, \delta=5 \%$, and $T=1$. What is the Black-Scholes European call price?
5. (1 mark) Find the price of a European put where $S=\$ 90, K=\$ 100, \sigma=30 \%, r=5 \%$, $\delta=8 \%$, and $T=1$.
6. (1 mark) What is the link between your answers to 4. and 5. ? Explain your answer ?
7. Consider a stock whose price is given by the Black-Scholes model, with volatility $\sigma=30 \%$ per annum and initial price $S_{0}=100$ euros. Such a stock pays a dividend of one euro in 3 months and of one euro in 9 months. The continuously compounded risk-free rate available on the market is of 4% per annum.
(1 mark) Compute the initial price of a European call option set at the money with maturity of one year.
8. (1 mark) Give the call-put parity corresponding to this stock.
9. (1 mark) Find the price of the corresponding put option?

Solution.

1. The Black-Scholes price of a European call option on a dividend-paying-stock with yield δ, at time t is give by

$$
C_{t}=S_{t} e^{-\delta(T-t)} \mathbf{N}\left(d_{1}\left(S_{t}, K, r, T-t, \delta\right)\right)-K e^{-r(T-t)} \mathbf{N}\left(d_{2}\left(K, S_{t}, \delta, T-t, r\right)\right)
$$

2. By definition of $d_{2}\left(K, S_{t}, \delta, T-t, r\right)$ we have

$$
\begin{aligned}
d_{2}\left(K, S_{t}, \delta, T-t, r\right) & =\frac{\ln \left(\frac{K}{S_{t}}\right)+\left(\delta-r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& =-\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\delta+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& =-d_{1}\left(S_{t}, K, r, T-t, \delta\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& d_{1}\left(K, S_{t}, \delta, T-t, r\right)=\frac{\ln \left(\frac{K}{S_{t}}\right)+\left(\delta-r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
&=\underbrace{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\delta-\frac{\sigma^{2}}{2}\right)(T-t)} \\
& \sigma \sqrt{T-t}
\end{aligned}
$$

3. We know that

$$
\begin{aligned}
& C\left(K, S_{t}, \sigma, \delta, T-t, r\right)=K e^{-r(T-t)} \mathbf{N}\left(d_{1}\left(K, S_{t}, \delta, T-t, r\right)\right)-S_{t} e^{-\delta(T-t)} \mathbf{N}\left(d_{2}\left(K, S_{t}, \delta, T-t, r\right)\right) \\
& =K e^{-r(T-t)} \mathbf{N}\left(-d_{2}\left(S_{t}, K, r, T-t, \delta\right)-S_{t} e^{-\delta(T-t)} \mathbf{N}\left(-d_{1}\left(S_{t}, K, \sigma, r, T-t, \delta\right)\right)\right. \\
& =K e^{-r(T-t)}\left(1-\mathbf{N}\left(d_{2}\left(S_{t}, K, r, T-t, \delta\right)\right)-S_{t} e^{-\delta(T-t)}\left(1-\mathbf{N}\left(d_{1}\left(S_{t}, K, r, T-t, \delta\right)\right)\right)\right. \\
& \quad=K e^{-r(T-t)}-S_{t} e^{-\delta(T-t)}+S_{t} e^{-\delta(T-t)} \mathbf{N}\left(d_{1}\left(S_{t}, K, r, T-t, \delta\right)\right)-K e^{-r(T-t)} \mathbf{N}\left(d_{2}\left(S_{t}, K, r, T-t, \delta\right)\right. \\
& =K e^{-r(T-t)}-S_{t} e^{-\delta(T-t)}+C\left(S_{t}, K, \sigma, r, T-t, \delta\right)
\end{aligned}
$$

4. Call option: For $S=\$ 100, K=\$ 90, \sigma=30 \%, r=8 \%, \delta=5 \%$, and $T=1$, we first compute d_{1} and d_{2}.

$$
d_{1}=\frac{\ln \left(\frac{100}{90}\right)+\left(0.08-0.05+\frac{0.3^{2}}{2}\right)}{0.3}=0.6012=0.4345 \text { and } d_{2}=0.6012-0.3=0.3012
$$

Then

$$
\begin{aligned}
C_{0} & =C(100,90,0.3,0.08,1,0.05) \\
& =100 e^{-0.05} \mathbf{N}(0.6012)-90 e^{-0.08} \mathbf{N}(0.3012) \\
& =100 e^{-0.05} \times 0.7261-90 e^{-0.08} \times 0.6184=17.692
\end{aligned}
$$

5. Put option: For $S=\$ 90, K=\$ 100, \sigma=30 \%, r=5 \%, \delta=8 \%$, and $T=1$, we first compute d_{1} and d_{2}.

$$
d_{1}=\frac{\ln \left(\frac{90}{100}\right)+\left(0.05-0.08+\frac{0.3^{2}}{2}\right)}{0.3}=-0.3012 \text { and } d_{2}=-0.3012-0.3=-0.6012
$$

Then

$$
\begin{aligned}
P_{0} & =P(90,100,0.3,0.05,1,0.08) \\
& =100 e^{-0.05} \mathbf{N}(-(-0.6012))-90 e^{-0.08} \mathbf{N}(-(-0.3012)) \\
& =100 e^{-0.05} \times 0.7261-90 e^{-0.08} \times 0.6184=17.692
\end{aligned}
$$

6. We remark

$$
P(90,100,0.3,0.05,1,0.08)=C(100,90,0.3,0.08,1,0.05)
$$

This true thanks to the duality between $d_{1}\left(S_{t}, K, r, T-t, \delta\right)$ and $d_{2}\left(K, S_{t}, \delta, T-t, r\right)$.
7. The initial price at time zero of a European call option set at the money with maturity of one year on a stock paying discrete dividend is given by that For the put option

$$
\begin{aligned}
C_{0} & =C\left(F_{0, T}^{p}(S), F_{0, T}^{p}(K), \sigma, 0, T, 0\right) \\
& =F_{0, T}^{p}(S) \mathbf{N}\left(d_{1}\right)-F_{0, T}^{p}(K) \mathbf{N}\left(d_{2}\right),
\end{aligned}
$$

where

$$
d_{1}=\frac{\ln \left(\frac{F_{0, T}^{p}(S)}{F_{0, T}^{p}(K)}\right)+\frac{\sigma^{2}}{2}}{\sigma}=\frac{1}{\sigma} \ln \left(\frac{F_{0, T}^{p}(S)}{F_{0, T}^{p}(K)}\right)+\frac{\sigma}{2}
$$

and

$$
d_{2}=\frac{\ln \left(\frac{F_{0, T}^{p}(S)}{F_{0, T}^{p}(K)}\right)-\frac{\sigma^{2}}{2}}{\sigma}=\frac{1}{\sigma} \ln \left(\frac{F_{0, T}^{p}(S)}{F_{0, T}^{p}(K)}\right)-\frac{\sigma}{2}
$$

Now,

$$
F_{0, T}^{p}(S)=100-e^{-0.04 \times \frac{3}{12}}-e^{-0.04 \times \frac{9}{12}}=98.040
$$

and

$$
F_{0, T}^{p}(K)=100 e^{-0.04}=96.079
$$

Therefore

$$
d_{1}=\frac{1}{0.3} \ln \left(\frac{98.040}{96.079}\right)+\frac{0.3}{2}=0.2173
$$

and

$$
d_{2}=\frac{1}{0.3} \ln \left(\frac{98.040}{96.079}\right)-\frac{0.3}{2}=-0.0826
$$

then

$$
\begin{aligned}
C_{0} & =98.040 \times \mathbf{N}(0.2173)-96.079 \times \mathbf{N}(-0.0826) \\
& =98.040 \times 0.5860-96.079 \times 0.4670=12.583
\end{aligned}
$$

8. The call-put parity corresponding to an asset paying discrete dividends D_{1} at time t_{1} and D_{2} at time t_{2} before maturity is given as follows

$$
\begin{aligned}
C_{0}-P_{0} & =F_{0, T}^{p}(S)-F_{0, T}^{p}(K)=S_{0}-D_{1} e^{-r t_{1}}-D_{2} e^{-r t_{2}}-K e^{-r T} \\
& \Longleftrightarrow P_{0}=C_{0}-S_{0}+D_{1} e^{-r t_{1}}+D_{2} e^{-r t_{2}}+K e^{-r T} .
\end{aligned}
$$

9. The price of the corresponding put option is then

$$
P_{0}=12.583-100+e^{-0.04 \times \frac{3}{12}}+e^{-0.04 \times \frac{9}{12}}+96.079=10.622 .
$$

Problem 2. (8 marks)

1. (1 mark) Recall first the Black-Scholes pricing formula of a European call option involving two currencies.
2. (1 mark) Recall the corresponding call-put parity.
3. One euro is currently trading for $\$ 1.0896$. The dollar-denominated continuously compounded interest rate is 2% and the euro-denominated continuously compounded interest rate is 0.5%. Volatility is 10%.
(1 mark) Find the Black-Scholes price of a 1-year dollar-denominated euro call with strike price of $\$ 1.1000 / €$.
4. (1 mark) Find the Black-Scholes price of a 1-year dollar-denominated euro put with strike price of $\$ 1.1000 / €$.
5. (1 mark) What is the price of a 1 -year euro-denominated dollar call with strike price of $€ \frac{1}{1.1000} / \$$
6. ($\mathbf{1}$ mark) What is the price of a 1 -year euro-denominated dollar put with strike price of $€ \frac{1}{1.1000} / \$$
7. (1 mark) What is the link between your answers to 3 . and to 5 . converted to dollar ?
8. (1 mark) What is the link between your answers to 4 . and to 6 . converted to euro ?

Solution:

1. The Black-Scholes pricing formula for a call on a currency is given by

$$
d_{1}=\frac{C_{0}=S_{0} e^{-r_{f} T} \mathbf{N}\left(d_{1}\right)-K e^{-r T} \mathbf{N}\left(d_{2}\right)}{\sigma \sqrt{T}}+\left(r-r_{f}+\frac{\sigma^{2}}{2}\right) T \text { you can also use } d_{2}=d_{1}-\sigma \sqrt{T}
$$

2. The call-put parity is $C_{0}-P_{0}=S_{0} e^{-r_{f} T}-K e^{-r T}$.
3. Our input parameters are: $S_{0}=\$ 1.0896, K=\$ 1.1000 / €, r=0.02, r_{f}=0.005$ and $\sigma=0.1$ and $T=1$. Therefore substituting theses parameters in the Black-Scholes formula we get

$$
d_{1}^{\S}=\frac{\ln \left(\frac{1.0896}{1.1000}\right)+\left(0.02-0.005+\frac{0.1^{2}}{2}\right)}{0.1} \rightleftharpoons 0.105 \text { and } d_{2}^{\S}=0.105-0.1=0.005
$$

Denote by C_{0}^{\S} the call price of a 1-year dollar-denominated euro call with strike price of $\$ 1.1000 / €$

$$
\begin{aligned}
C_{0}^{\S} & =\$ S_{0} e^{-r_{€} T} \mathbf{N}\left(d_{1}^{\S}\right)-\$ K e^{-r_{\S} T} \mathbf{N}\left(d_{2}^{\$}\right) \\
& =1.0896 e^{-0.005} \mathbf{N}(0.105)-1.1 e^{-0.02} \mathbf{N}(0.005) \\
& =1.0896 e^{-0.005} \times 0.5418-1.1 e^{-0.02} \times 0.5012=0.04610
\end{aligned}
$$

4. Denote by $P_{0}^{\$}$ the put price of a 1-year dollar-denominated euro put with strike price of $\$ 1.1000 / €$, then Black-Scholes pricing formula for a put on a currency is given by

$$
\begin{aligned}
P_{0}^{\$} & =C_{0}^{\$}=\$ K e^{-r_{\$} T} \mathbf{N}\left(-d_{1}^{\S}\right)-\$ S_{0} e^{-r_{€} T} \mathbf{N}\left(-d_{2}^{\$}\right) \\
& =1.1 e^{-0.02} \mathbf{N}(-0.005)-1.0896 e^{-0.005} \mathbf{N}(-0.105) \\
& =1.1 e^{-0.02} \times 0.4980-1.0896 e^{-0.005} \times 0.4582=0.04019
\end{aligned}
$$

5. Now, with similar notation the price of a 1-year euro-denominated dollar call with strike price of $€ \frac{1}{1.1000} / \$$ is given by $C_{0}^{€}=C\left(€ \frac{1}{1.0896} / \$, € \frac{1}{1.1000} / \$, \sigma, r_{€}, T, r_{\$}\right)$. Now our input parameters are: $S_{0}=€ \frac{1}{1.0896} / \$, K=€ \frac{1}{1.1000} / \$, r_{\$}=0.02, r_{€}=0.005$ and $\sigma=0.1$ and $T=1$. Therefore substituting theses parameters in the Black-Scholes formula we get

$$
d_{1}^{\epsilon}=\frac{\ln \left(\frac{1.1000}{1.0896}\right)+\left(0.005-0.02+\frac{0.1^{2}}{2}\right)}{0.1}=-0.005 \text { and } d_{2}^{€}=-0.005-0.1=-0.105
$$

Denote by $C_{0}^{€}$ the call price of a 1-year dollar-denominated euro call with strike price of $\$ 1.1000 / €$

$$
\begin{aligned}
C_{0}^{€} & =\frac{1}{S_{0}} e^{-r_{8} T} \mathbf{N}\left(d_{1}^{€}\right)-€ \frac{1}{K} e^{-r_{€} T} \mathbf{N}\left(d_{2}^{€}\right) \\
& =\frac{1}{1.0896} e^{-0.02} \mathbf{N}(-0.005)-\frac{1}{1.100} e^{-0.005} \mathbf{N}(-0.105) \\
& =\frac{1}{1.0896} e^{-0.02} \times 0.5418-\frac{1}{1.100} e^{-0.005} \times 0.5012=0.0340
\end{aligned}
$$

6. Denate by $P_{0}^{€}$ the put price of a 1 -year dollar-denominated euro put with strike price of $€ \frac{1}{1.1000} / \$$, then Black-Scholes pricing formula for a put on a currency is given by

$$
\begin{aligned}
P_{0}^{€} & =€ \frac{1}{K} e^{-r_{€} T} \mathbf{N}\left(-d_{2}^{€}\right)-€ \frac{1}{S_{0}} e^{-r_{s} T} \mathbf{N}\left(-d_{1}^{€}\right) \\
& =\frac{1}{1.100} e^{-0.005} \mathbf{N}(0.105)-\frac{1}{1.0896} e^{-0.02} \mathbf{N}(0.005) \\
& =\frac{1}{1.100} e^{-0.005} \times 0.5418-\frac{1}{1.0896} e^{-0.02} \times 0.5012=0.0392
\end{aligned}
$$

7. We have from Q3 and Q5

$$
C_{0}^{\S}=\$ S_{0} e^{-r \in T} \mathbf{N}\left(d_{1}^{\$}\right)-\$ K e^{-r_{\S} T} \mathbf{N}\left(d_{2}^{\$}\right) \text { and } C_{0}^{€}=€ \frac{1}{S_{0}} e^{-r_{s} T} \mathbf{N}\left(d_{1}^{\epsilon}\right)-€ \frac{1}{K} e^{-r_{\epsilon} T} \mathbf{N}\left(d_{2}^{\epsilon}\right)
$$

Remark first that

$$
d_{1}^{€}=\frac{\ln \left(\frac{K}{S_{0}}\right)+\left(r_{€}-r_{\$}+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}=-\frac{\ln \left(\frac{S_{0}}{K}\right)+\left(r_{\$}-r_{€}-\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}=-d_{2}^{\$}
$$

and also

$$
d_{2}^{€}=\frac{\ln \left(\frac{K}{S_{0}}\right)+\left(r_{€}-r_{\$}-\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}=-\frac{\ln \left(\frac{S_{0}}{K}\right)+\left(r_{\$}-r_{€}+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}=-d_{1}^{\$}
$$

Therefore

$$
C_{0}^{€}=€ \frac{1}{S_{0}} e^{-r_{s} T} \mathbf{N}\left(d_{1}^{€}\right)-€ \frac{1}{K} e^{-r_{€} T} \mathbf{N}\left(d_{2}^{€}\right)=€ \frac{1}{S_{0}} e^{-r_{\S} T} \mathbf{N}\left(-d_{2}^{\S}\right)-€ \frac{1}{K} e^{-r_{€} T} \mathbf{N}\left(-d_{1}^{\S}\right)
$$

Hence

$$
\begin{aligned}
& S_{0} K C_{0}^{€}=K e^{-r_{s} T} \mathbf{N}\left(-d_{2}^{\S}\right)-S_{0} e^{-r_{\epsilon} T} \mathbf{N}\left(-d_{1}^{\$}\right)=K e^{-r_{s} T}\left(1-\mathbf{N}\left(d_{2}^{\$}\right)\right)-S_{0} e^{-r_{\epsilon} T}\left(1-\mathbf{N}\left(d_{1}^{\$}\right)\right) \\
& =K e^{-r_{\S} T}-S_{0} e^{-r_{€} T}+S_{0} e^{-r_{€} T} \mathbf{N}\left(d_{1}^{\S}\right)-K e^{-r_{\S} T} \mathbf{N}\left(d_{2}^{\S}\right)=K e^{-r_{\S} T}-S_{0} e^{-r_{€} T}+C_{0}^{\Phi} .
\end{aligned}
$$

Conclusion

$$
S_{0} K C_{0}^{€}=K e^{-r_{\$} T}-S_{0} e^{-r € T}+C_{0}^{\S}
$$

8. We have from Q4 and Q6

$$
P_{0}^{€}=€ \frac{1}{K} e^{-r_{\epsilon} T} \mathbf{N}\left(-d_{2}^{€}\right)-€ \frac{1}{S_{0}} e^{-r_{\S} T} \mathbf{N}\left(-d_{1}^{€}\right)=€ \frac{1}{K} e^{-r_{€} T} \mathbf{N}\left(d_{1}^{\S}\right)-€ \frac{1}{S_{0}} e^{-r_{\Phi} T} \mathbf{N}\left(d_{2}^{\S}\right)
$$

Hence

$$
\begin{aligned}
S_{0} K P_{0}^{€} & =S_{0} e^{-r_{€} T} \mathbf{N}\left(d_{1}^{\S}\right)-K e^{-r_{\S} T} \mathbf{N}\left(d_{2}^{\S}\right)=S_{0} e^{-r_{€} T} \mathbf{N}\left(-d_{2}^{€}\right)-K e^{-r_{\S} T} \mathbf{N}\left(-d_{1}^{€}\right) \\
& =S_{0} e^{-r_{€} T}\left(1-\mathbf{N}\left(d_{2}^{€}\right)\right)-K e^{-r_{s} T}\left(1-\mathbf{N}\left(d_{1}^{€}\right)\right) \\
& =S_{0} e^{-r_{€} T}-K e^{-r_{\S} T}+K e^{-r_{\S} T} \mathbf{N}\left(d_{1}^{€}\right)-S_{0} e^{-r_{€} T} \mathbf{N}\left(d_{2}^{€}\right) \\
& =S_{0} e^{-r_{€} T}-K e^{-r_{\S} T}+K e^{-r_{\S} T} \mathbf{N}\left(-d_{2}^{\S}\right)-S_{0} e^{-r_{€} T} \mathbf{N}\left(-d_{1}^{\S}\right) .
\end{aligned}
$$

Conclusion

$$
S_{0} K P_{0}^{€}=S_{0} e^{-r_{\epsilon} T}-K e^{-r_{\Phi} T}+P_{0}^{\$}
$$

$$
-\frac{113}{250}=0.452 \neq 0.332=0.06
$$

Problem 3. (8 marks)

1. (1 mark) Give the formula under the objective probability (P) of a stock whose price at time T is given by the Black-Scholes model.
2. (1 mark) Give the formula of the continuous compounding rate of return R of a stock whose price at time T is given by the Black-Scholes model.
3. (1 mark) What is the distribution of R, specify the mean and the variance..
4. A stock price is currently 120 . Assume that the expected return from the stock is 8% and its volatility is 20%.
(1 mark) What is the probability distribution for the rate of return (with continuous compounding) earned over a one-year period?
5. (1 mark) Find the confidence interval of R at 95%.
6. (1 mark) Deduce the confidence interval of the stock price in one year.
7. (1 mark) What is the probability that a European call option on the stock with an exercise price of $\$ 110$ and a maturity date in one year will be exercised?
8. (1 mark) What is the probability that a European put option on the stock with the same exercise price and maturity will be exercised?

Solution:

1. Under the historical probability measure or the objective probability P (real world) is given by

$$
S_{t}=S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}} \text { for all } 0 \leq t \leq T
$$

where μ is the expected return on stock per year, σ is the volatility of the stock price per year and $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion under P
2. Let R denotes the continuously compounded rate of return per annum realized by the stock between times 0 and T, then $S_{T}=S_{0} e^{R T}$.
3. The rate of return R can be written as

$$
R=\frac{1}{T} \ln \left(\frac{S_{T}}{S_{0}}\right)=\left(\mu-\frac{\sigma^{2}}{2}\right)+\frac{\sigma}{T} B_{T}
$$

hence

$$
R \hookrightarrow \mathcal{N}\left(\mu-\frac{\sigma^{2}}{2} ; \frac{\sigma^{2}}{T}\right)
$$

This means that the continuously compounded rate of return per annum is normally distributed with mean $\mu-\frac{\sigma^{2}}{2}$ and standard deviation $\frac{\sigma}{\sqrt{T}}$.
4. We have $T=1, \mu=0.08$ and $\sigma=0.2$, therefore

$$
\mathcal{N}\left(\mu-\frac{\sigma^{2}}{2} ; \sigma^{2}\right)=\mathcal{N}\left(0.08-\frac{0.2^{2}}{2} ; 0.2^{2}\right)=\mathcal{N}(0.06 ; 0.04)
$$

5. the confidence interval of R at 95% is

$$
] 0.06-1.96 \times 0.2 ; 0.06+1.96 \times 0.2[=]-0.332 ; 0.452[
$$

6. Remember that $S_{T}=S_{0} e^{R T}$, hence the confidence interval of S_{T} at 95% for $T=1$ is of the form

$$
] 120 e^{-0.332} ; 120 e^{0.452}[=] 86.098 ; 188.57[
$$

7. The probability that a European 110 call option will be exercised in one year is

$$
P\left(S_{1}>110\right)=P\left(\ln \left(S_{1}\right)>\ln (110)\right)
$$

But

$$
\ln \left(S_{1}\right)=\ln (120)+\left(0.08-\frac{0.2^{2}}{2}\right)+0.2 B_{1}=4.8475+0.2 B_{1}
$$

where $B_{1} \hookrightarrow \mathcal{N}(0,1)$. Therefore

$$
\begin{aligned}
P\left(S_{1}>110\right) & =P\left(\ln \left(S_{1}\right)>\ln (110)\right) \\
& =P\left(4.8475+0.2 B_{1}>4.7005\right) \\
& =P\left(B_{1}>\frac{4.7005-4.8475}{0.2}\right) \\
& =P\left(B_{1}>-0.735\right) \\
& =1-P\left(B_{1} \leq-0.735\right) \\
& =1-F_{\mathcal{N}(0,1)}(-0.735)=F_{\mathcal{N}(0,1)}(0.735)=0.7688
\end{aligned}
$$

8. The probability that a European 110 -put option will be exercised in one year is

$$
P\left(S_{1}<110\right)=1-P\left(S_{1}>110\right)=0.2312
$$

