
Sketch the root locus for the system shown in Figure

K
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(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)

Exercise 1 (Root Locus)

1. Locate the open-loop poles and zeros on the complex plane

2. Find the asymptotes.

3. Determine the intersection with the 𝑗𝜔 axis,

4. Determine the breakaway and break-in points 



1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative real axis between -1 and between    

-2 and -3. 
2. The number of open-loop poles is 3 and the number of finite zeros is 0. This means that we have three branches ending at 

infinity and there are three asymptotes in the complex region of the s plane (three infinite zeros). 

1 +
K

(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)
= 0 → 𝐾 = − 𝑠 + 1 𝑠 + 2 𝑠 + 3 = − 𝑆3 + 6𝑆2 + 11 𝑆 + 6 →

𝑑𝐾

𝑑𝑠
= −[3𝑆2 + 12𝑠 + 11] = 0

we have two roots for this equation: -1.4226 and -2.5773 the second root is not valid (not on the root locus branch)

Solution 11 (Root Locus)

3. Determine the breakaway and break-in points. The characteristic equation for the system is:

The angles of asymptotes: 𝜑𝐴 = ±
2𝑞 + 1 𝜋

𝑛𝑏(𝑝𝑜𝑙𝑒𝑠) − 𝑛𝑏(𝑧𝑒𝑟𝑜𝑠)
𝑓𝑜𝑟 𝑞 = 0,1,2 → 𝜑𝐴 = 60𝑜, 180𝑜, 300𝑜

Point of joint of asymptotes: 𝜎𝐴 =
𝑝𝑜𝑙𝑒𝑠 − (𝑧𝑒𝑟𝑜𝑠)

𝑛𝑏(𝑝𝑜𝑙𝑒𝑠) − 𝑛𝑏(𝑧𝑒𝑟𝑜𝑠)
=
(−3 − 2 − 1) − (0)

3 − (0)
= −2



• For K>60 the system will be unstable.

4. Determine the intersection with the 𝑗𝜔 axis, 

we use  Routh-Hurwitz stability criterion, we have:

1 + G s H s = 0 → 𝑆3 + 6𝑆2 + 11 𝑆 + (6 + 𝐾) = 0

𝑠3 1 11 0

𝑠2 6 6+K 0

𝑠1 66 − 6 − 𝐾

6

0 0

𝑠0 6+K 0 0The line with odd power and find k to have complete zeros row

66 − 6 − 𝐾

6
= 0 → K = 60 → 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑟𝑜𝑤 𝑖𝑠 𝑎𝑢𝑥𝑖𝑙𝑎𝑟𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:

6𝑠2 + 66 = 0 → 𝑠 = ±𝑗 11 → 𝜔1,2 = ± 11

-1-2-3

11

− 11

Solution 12 (Root Locus)



clear all;clc;

s=tf('s');

sys=1/((s+1)*(s+2)*(s+3)); sgrid;

rlocus(sys);grid on;

axis([-8 2 -8 8]);

Solution 13 (Root Locus Using MATLAB)



Exercise 2 (Lag Compensator)
A unity feedback system with the forward transfer function G(s) is operating with a closed-loop step response that has 15%

overshoot. Do the following:

a. Evaluate the steady-state error for a unit ramp input.

b. Design a lag compensator to improve the steady-state error by a factor of 20.

c. Evaluate the steady-state error for a unit ramp input to your compensated system.

d. Evaluate how much improvement in steady-state error was realized.



a. Uncompensated system analysis: The uncompensated system error. The root locus for the uncompensated system is shown in 

Figure. A damping ratio of 0.517 is represented by a radial line drawn on the s-plane at 121.1°. 

15%𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 → 𝜉 = 0.517 → 𝑝𝑜𝑙𝑒𝑠 = −3.5 ± 𝑗5.82 𝑤𝑖𝑡ℎ 𝐾 = 45.8

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) =
𝐾

7
= 6.54 → 𝑒 ∞ =

1

𝐾𝑣
= 0.1527

b. Lag compensator design

The improvement in 𝐾𝑣 from the uncompensated system to the 

compensated system is the required ratio of the compensator 

zero to the compensator pole:

𝑧𝑐

𝑝𝑐
=

𝐾𝑣𝑁

𝐾𝑣
=

130.98

6.54
= 20.03

The uncompensated system error was 0.1527 with K=46.1, a factor 

improvement of  20: 

𝑒 ∞ =
0.1527

20
= 0.007635, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∞ =

1

𝐾𝑣
⇒ 𝐾𝑣𝑁 = 130.98

Arbitrarily selecting 𝑝𝑐 = 0.01

𝑧𝑐 = 20.03 𝑝𝑐 ≈ 0.2 𝐺𝐿𝑎𝑔(𝑠) =
𝑠 + 0.2

𝑠 + 0.01

Solution 21 (Lag Compensator)



c. Error evaluation for the compensated system

15%𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 → 𝜉 = 0.517 → 𝑝𝑜𝑙𝑒𝑠 = −3.4 ± 𝑗5.65 𝑤𝑖𝑡ℎ 𝐾 = 44.8

𝐾𝑣 = lim
𝑠→0

𝑠𝐺𝑁(𝑠) =
𝐾 0.2

(7)(0.01)
= 128 → 𝑒𝑁 ∞ =

1

𝐾𝑣
= 0.0078

𝐺𝑁(𝑠) =
𝐾 (𝑠 + 0.2)

𝑠(𝑠 + 0.01)(𝑠 + 7)

d. Realized improvement in steady-state error

𝑒𝑁 ∞ =
1

𝐾𝑣
= 0.0078

𝑒(∞)

𝑒𝑁(∞)
=
0.1527

0.0078
= 19.58

Solution 22 (Lag Compensator)



Exercise 3 (Lead Compensator)

A unity feedback system with the forward transfer function

is operating with a closed-loop step response that has 15% overshoot. Do the following:

a. Evaluate the settling time.

b. Design a lead compensator to decrease the settling time by three times.

Choose the compensator's zero to be at -10.



• Characteristics of the uncompensated system

System operating at 15% overshoot

15% 

Overshoot

ζ = 0.517

∝= 121.13𝑜,
along damping ratio line

Dominant second-order 
pair of poles

−3.5 ± 𝑗5.82.
damping ratio 

From pole's real part

𝑇𝑠 =  4 3.5 = 1.143 𝑠𝑒𝑐
settling time

• Design point

Threefold reduction
in settling time

𝑇𝑠𝑁 =  1.143
3 = 0.381 𝑠𝑒𝑐 −ζ𝜔𝑛=  −4

𝑇𝑠𝑁
= −10.499

real part of the desired 
pole location

Imaginary part of the 
desired pole location

𝜔𝑑 = −10.499 tan 121.130 = 17.38

Solution 31 (Lead Compensator)



• Lead compensator Design.

Place the zero on real axis at -10 (arbitrarily as possible solution). 

sum the angles (this zero and uncompensated system's poles and zeros),

𝜃𝑝𝑐 = −1800 + 130.860 = 49.140

the angular contribution required
from the compensator pole

resulting angle

𝜃 = −130.860

location of the
compensator pole

From geometry
in fig(a)

17.38

𝑝𝑐 − 10.499
= tan(49.140)

compensator pole

𝑝𝑐 = −25.54

𝐺𝐿𝑒𝑑(𝑠) =
𝑠 + 10

𝑠 + 25.54

477(𝑠 + 10)

𝑠 + 25.54

1

𝑠(𝑠 + 7)
With gain K = 477

Solution 32 (Lead Compensator)



Exercise 4 (Implementation)

Implement the compensator 𝐺𝑐(𝑠)

Choose a passive realization if possible.



Solution 4 (Implementation)

Gc(s) is a PID controller and thus requires active realization. From table

The transfer function of the controller

𝐺𝑐 𝑠 =
𝑠2 + 5.1𝑠 + 0.5

𝑠
= 5.1 + 𝑠 +

0.5

𝑠

Matching the coefficients:

𝑅2
𝑅1

+
𝐶1
𝐶2

= 5.1

𝑅2𝐶1 = 1

1

𝑅1𝐶2
= 0.5

If we choose 𝐶1 = 10μ𝐹 and 𝐶2 = 100 μ𝐹 → 𝑅2= 100𝑘Ω and 𝑅1 = 20𝑘Ω


