Exercise 1 (Root Locus)

Sketch the root locus for the system shown in Figure

1. Locate the open-loop poles and zeros on the complex plane

2. Find the asymptotes.
3. Determine the intersection with the $j \omega$ axis,
4. Determine the breakaway and break-in points

Solution 1_{1} (Root Locus)

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative real axis between -1 and between -2 and -3 .
2. The number of open-loop poles is 3 and the number of finite zeros is 0 . This means that we have three branches ending at infinity and there are three asymptotes in the complex region of the splane (three infinite zeros).
The angles of asymptotes: $\quad \varphi_{A}= \pm \frac{(2 q+1) \pi}{n b(\text { poles })-n b(\text { zeros })}$ for $q=0,1,2 \rightarrow \varphi_{A}=60^{\circ}, 180^{\circ}, 300^{\circ}$
Point of joint of asymptotes: $\quad \sigma_{A}=\frac{(\text { poles })-(\text { zeros })}{n b(\text { poles })-n b(\text { zeros })}=\frac{(-3-2-1)-(0)}{(3)-(0)}=-2$
3. Determine the breakaway and break-in points. The characteristic equation for the system is:
$1+\frac{K}{(s+1)(s+2)(s+3)}=0 \rightarrow K=-(s+1)(s+2)(s+3)=-\left[S^{3}+6 S^{2}+11 S+6\right] \rightarrow \frac{d K}{d s}=-\left[3 S^{2}+12 s+11\right]=0$
we have two roots for this equation: - $\mathbf{- 1 . 4 2 2 6}$ and -2.5773 the second root is not valid (not on the root locus branch)

Solution 1_{2} (Root Locus)

4. Determine the intersection with the $j \omega$ axis, we use Routh-Hurwitz stability criterion, we have:

$$
1+\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=0 \rightarrow S^{3}+6 S^{2}+11 S+(6+K)=0
$$

The line with odd power and find k to have complete zeros row

s^{3}	1	11	0
s^{2}	6	$6+\mathrm{K}$	0
s^{1}	$\frac{66-6-K}{6}$	0	0
s^{0}	$6+\mathrm{K}$	0	0

$\frac{66-6-K}{6}=0 \rightarrow \mathrm{~K}=60 \rightarrow$ the above row is auxilary equation:

$$
6 s^{2}+66=0 \rightarrow s= \pm j \sqrt{11} \rightarrow \omega_{1,2}= \pm \sqrt{11}
$$

- For $\mathrm{K}>60$ the system will be unstable.

Solution 1_{3} (Root Locus Using MATLAB)

```
clear all;clc;
s=tf('s');
sys=1/((s+1)* (s+2)*(s+3)); sgrid;
rlocus(sys);grid on;
axis([[-8 2 - 8 8]);
```


Exercise 2 (Lag Compensator)

A unity feedback system with the forward transfer function $\mathrm{G}(\mathrm{s})$ is operating with a closed-loop step response that has 15% overshoot. Do the following:

$$
G(s)=\frac{K}{s(s+7)}
$$

a. Evaluate the steady-state error for a unit ramp input.
b. Design a lag compensator to improve the steady-state error by a factor of 20 .
c. Evaluate the steady-state error for a unit ramp input to your compensated system.
d. Evaluate how much improvement in steady-state error was realized.

Solution 21 (Lag Compensator)

a. Uncompensated system analysis: The uncompensated system error. The root locus for the uncompensated system is shown in Figure. A damping ratio of 0.517 is represented by a radial line drawn on the s-plane at 121.1°.
15% overshoot $\rightarrow \xi=0.517 \rightarrow$ poles $=-3.5 \pm j 5.82$ with $K=45.8$
$K_{v}=\lim _{s \rightarrow 0} s G(s)=\frac{K}{7}=6.54 \rightarrow e(\infty)=\frac{1}{K_{v}}=0.1527$
b. Lag compensator design

The uncompensated system error was 0.1527 with $\mathrm{K}=46.1$, a factor improvement of 20 :
$e(\infty)=\frac{0.1527}{20}=0.007635$, since $e(\infty)=\frac{1}{K_{v}} \Rightarrow K_{v N}=130.98$

The improvement in K_{v} from the uncompensated system to the compensated system is the required ratio of the compensator zero to the compensator pole:

$$
\begin{aligned}
& \frac{z_{c}}{p_{c}}=\frac{K_{v N}}{K_{v}}=\frac{130.98}{6.54}=20.03 \quad \text { Arbitrarily selecting } p_{c}=0.01 \\
& \\
& \Longrightarrow z_{c}=20.03 p_{c} \approx 0.2 \quad G_{\text {Lag }}(s)=\frac{s+0.2}{s+0.01}
\end{aligned}
$$

Solution 22 (Lag Compensator)

c. Error evaluation for the compensated system

$$
G_{N}(s)=\frac{K(s+0.2)}{s(s+0.01)(s+7)}
$$

15% overshoot $\rightarrow \xi=0.517 \rightarrow$ poles $=-3.4 \pm j 5.65$ with $K=44.8$
$K_{v}=\lim _{s \rightarrow 0} s G_{N}(s)=\frac{K 0.2}{(7)(0.01)}=128 \rightarrow e_{N}(\infty)=\frac{1}{K_{v}}=0.0078$

$$
e_{N}(\infty)=\frac{1}{K_{v}}=0.0078
$$

d. Realized improvement in steady-state error

$$
\frac{e(\infty)}{e_{N}(\infty)}=\frac{0.1527}{0.0078}=19.58
$$

Exercise 3 (Lead Compensator)

A unity feedback system with the forward transfer function

$$
G(s)=\frac{K}{s(s+7)}
$$

is operating with a closed-loop step response that has 15% overshoot. Do the following:
a. Evaluate the settling time.
b. Design a lead compensator to decrease the settling time by three times.

Choose the compensator's zero to be at -10 .

Solution 3_{1} (Lead Compensator)

- Characteristics of the uncompensated system

 System operating at 15% overshoot$$
\left.\begin{array}{ll}
15 \% \\
\text { vershoot }
\end{array} \stackrel{\text { damping ratio }}{ } \stackrel{y}{\zeta}=0.517 \quad \begin{array}{c}
\text { Dominant second-order } \\
\text { pair of poles }
\end{array}\right) ~-3.5 \pm j 5.82 .
$$

$$
\xrightarrow{\text { settling time }} T_{S}=4 / 3.5=1.143 \mathrm{sec}
$$

From pole's real part

- Design point
real part of the desired

$$
T_{S N}=1.143 / 3=0.381 \mathrm{sec} \stackrel{\text { pole location }}{ }-\zeta \omega_{n}=-4 / T_{S N}=-10.499
$$

Imaginary part of the
desired pole location

$$
\omega_{d}=-10.499 \tan \left(121.13^{0}\right)=17.38
$$

Solution 3_{2} (Lead Compensator)

- Lead compensator Design.

Place the zero on real axis at -10 (arbitrarily as possible solution).
sum the angles (this zero and uncompensated system's poles and zeros), resulting angle

$$
\theta=-130.86^{0}
$$

the angular contribution required
from the compensator pole

$$
\theta_{p c}=-180^{0}+130.86^{0}=49.14^{0}
$$

location of the

$$
\underset{\text { From geometry }}{\text { compensator pole }} \frac{17.38}{p_{c}-10.499}=\tan \left(49.14^{0}\right)
$$

in fig(a)
compensator pole

$$
p_{c}=-25.54
$$

$$
G_{\text {Led }}(s)=\frac{s+10}{s+25.54}
$$

Exercise 4 (Implementation)

Implement the compensator $G_{c}(s)$

$$
G_{c}(s)=\frac{(s+0.1)(s+5)}{s}
$$

Choose a passive realization if possible.

Solution 4 (Implementation)

Matching the coefficients:

$$
\frac{R_{2}}{R_{1}}+\frac{C_{1}}{C_{2}}=5.1
$$

$$
R_{2} C_{1}=1
$$

$$
\frac{1}{R_{1} C_{2}}=0.5
$$

