King Saud University
College of Engineering
Department of Civil Engineering

GE 201 Statics
Second Semester 1436-37 H
Thursday, 23-5-1437
Time: $\mathbf{9 0}$ Min

FIRST MID TERM EXAM			
Name (in Arabic):			
Student No.: ...	Q. No.	Max. Marks	Marks Obtained
	1	25	
Section / Instructor:	2	20	(1)
	Total	45	
Question \# 1(a) (5 points) The resultant R of the forces F_{1} and F_{2} is 900 N and its line of action has an angle of 30° with x-axis as shown in the figure. Determine the magnitude of F_{1} and F_{2} forces.			$\underset{v^{2}}{30^{\circ}} x=900 \mathrm{~N}$

Solution

Applying law of sines:
$\frac{F_{1}}{\sin 75^{\circ}}=\frac{R}{\sin 75^{\circ}} \Rightarrow F_{1}=R=900 \mathrm{~N}$ Ans. 1.5 marks
$\frac{F_{2}}{\sin 30^{\circ}}=\frac{R}{\sin 75^{\circ}} \Rightarrow F_{2}=R \times \frac{\sin 30^{\circ}}{\sin 75^{\circ}}=465.9 \mathrm{~N}$ Ans .

Alternative Solution

$\rightarrow R_{1}=F_{1} \cos 60^{\circ}+F_{2} \cos 45^{\circ}=900 \times \cos 30^{\circ}$
$\Rightarrow 0.5 F_{1}+0.71 F_{2}=779.4$ \square
1.5 marks
$\uparrow R_{y}=F_{1} \cos 30^{\circ}-F_{2} \cos 45^{\circ}=900 \times \sin 30^{\circ}$
$\Rightarrow 0.87 F_{1}-0.71 F_{2}=450.0$

Solving Eqs. (1) and (2) simultaneously, we have
$F_{1}=900 \mathrm{~N}$ Ans.

$$
2 \text { marks }
$$

$F_{2}=465.9$ Ans.

| Student name | | Marks obtained
 for Q.2 | page $3 / 4$ |
| :--- | :--- | :--- | :--- | :--- |
| Student number | | | |
| Question \# 2(b) (15 points) | | | |
| For the given force of 2 kN , determine in a | | | |
| vector form | | | |
| (i) Moment about the point $O\left(\mathbf{M}_{O}\right)$ | | | |
| (ii) Moment about the point $A\left(\mathbf{M}_{A}\right)$ | | | |

Solution

Coordinates: $O(0,0,0) ; A(0.4,0.25,0.3) ; B(0.2,0.45,0.5) ; C(0.2,0,0) ; D(0.2,0.25,0)$
(i) Moment about the point O
$\mathbf{F}=2 \mathbf{n}_{A B}=2 \times\left[\frac{(0.2-0.4) \mathbf{i}+(0.45-0.25) \mathbf{j}+(0.5-0.3) \mathbf{k}}{\sqrt{(0.2-0.4)^{2}+(0.45-0.25)^{2}+(0.5-0.3)^{2}}}\right]=-1.16 \mathbf{i}+1.16 \mathbf{j}+1.16 \mathbf{k} \mathrm{kN}$
$\mathbf{r}_{O A}=0.4 \mathbf{i}+0.25 \mathbf{j}+0.3 \mathbf{k} \mathrm{~m} ;$
$\mathbf{M}_{O}=\mathbf{r}_{O A} \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.4 & 0.25 & 0.3 \\ -1.16 & 1.16 & 1.16\end{array}\right|=-0.058 \mathbf{i}-0.812 \mathbf{j}+0.754 \mathbf{k} \quad \mathrm{kN} . \mathrm{m} \quad$ Ans.

3 marks
(ii) Moment about the point A
$\mathbf{M}_{A}=0$ (Line of action of the given force is passing through point A)

$$
1 \text { mark }
$$

(iii) Moment about the line $O D$
$\mathbf{n}_{O D}=\left[\frac{(0.2-0) \mathbf{i}+(0.25-0) \mathbf{j}+(0-0) \mathbf{k}}{\sqrt{(0.2-0)^{2}+(0.25-0)^{2}+(0-0)^{2}}}\right]=0.625 \mathbf{i}+0.781 \mathbf{j}+0 \mathbf{k}$
2 marks

In scalar form:
$M_{O D}=\mathbf{M}_{O} \cdot \mathbf{n}_{O D}=(-0.058 \mathbf{i}-0.812 \mathbf{j}+0.754 \mathbf{k}) \cdot(0.625 \mathbf{i}+0.781 \mathbf{j})=-0.67 \mathrm{kN} . \mathrm{m}$
2 marks
In vector form:
$\mathbf{M}_{O D}=\left(\mathbf{M}_{O} \cdot \mathbf{n}_{O D}\right) \cdot \mathbf{n}_{O D}=-0.67(0.625 \mathbf{i}+0.781 \mathbf{j})=-0.42 \mathbf{i}-0.52 \mathbf{j} \mathrm{kN} . \mathrm{m} \quad$ Ans. $\quad 2$ marks

