King Saud University
College of Engineering
Department of Civil Engineering

GE 201 Statics
First Semester 1433-34 H
Monday: 26-01-1434
Time: 90 Min

SECOND MID TERM EXAM

Name (in Arabic): \qquad
Student No.: \qquad
Section / Instructor: \qquad

Question \# 1(a) (5 Marks)

For the beam shown in the figure, calculate the reactions at the fixed support \boldsymbol{A}.

Q. No.	Max. Marks	Marks Obtained
1	10	
2	10	
3	10	
Total	30	

Solution

As the support A is a fixed support, it will offer three reactions as shown in the free body diagram. Let us assume that these three reactions are $A x, A_{y}$ and M_{A} respectively. We will find these three reactions with the help of three equilibrium equations as follows:
$\rightarrow \Sigma F_{x}=0 \Rightarrow-A_{x}+100 \cos 30^{\circ}=0$
$\Rightarrow \underline{\underline{A_{x}}=86.6 \mathrm{~N}}$ Ans.

$\uparrow \Sigma F_{y}=0 \Rightarrow A_{y}+100 \sin 30^{\circ}-200=0$
$\Rightarrow \underline{A_{y}=150 \mathrm{~N}} \quad$ Ans. $\quad 1$ mark
$C C W(+) \Sigma M_{A}=0 \Rightarrow M_{A}+300+\left(100 \sin 30^{\circ}\right) \times 4$

$-\left(100 \cos 30^{\circ}\right) \times 2-200 \times 6=0$			
	$\begin{array}{ll}M_{A}=873.2 \mathrm{~N} . \mathrm{m} & \text { Ans. }\end{array} \quad 3$ marks		

Free Body Diagram

Solution

The forces F can be obtained by applying $\Sigma M_{A}=0$ (as the unknowns A_{x} and A_{y} can be eliminated by taking the moments about point A), that is:
$C C W(+) \Sigma M_{A}=0 \Rightarrow F \times 6+F \times 4+F \times 2-3 \cos 45^{\circ} \times 2=0 \Rightarrow F=0.354 \mathrm{kN}$
\Rightarrow F $\overline{\underline{F=354 \mathrm{~N}} \text { Ans. }} \quad 3$ marks

Solution:

a) Reactions:
$\rightarrow \Sigma F_{x}=0 \Rightarrow H_{x}=0$ Ans.
$C C W(+) \Sigma M_{H}=0 \Rightarrow 48 \times 16-4 \times G_{y}=0 \quad 1$ mark
$\Rightarrow G_{y}=192 \mathrm{kN} \uparrow$ Ans.
$\stackrel{\uparrow}{\uparrow} \Sigma F_{y}=0 \Rightarrow-48+192+H_{y}=0 \Rightarrow \underline{\underline{H_{y}}=-144 \mathrm{kN}} \downarrow$ Ans. 1 mark
b) Zero force members: $B C ; B E ; D E ; D G$ and $F G$

c) Forces in the members $A B$ and $A C$ using method of joints:
$\tan \theta=\frac{4.5}{12} \Rightarrow \theta=20.556^{\circ} ; \sin \theta=0.3511$ and $\cos \theta=0.9363$
$\stackrel{\star}{\uparrow} \Sigma F_{y}=0 \Rightarrow-48-F_{A C} \sin \theta=0 \Rightarrow-48-F_{A C} \times 0.3511=0 \Rightarrow \underline{\underline{F_{A C}}=-136.7 \mathrm{kN}(\mathrm{C})}$
$\rightarrow \Sigma F_{x}=0 \Rightarrow F_{A B}+F_{A C} \cos \theta=0 \Rightarrow F_{A B}+(-136.7) \times 0.9363=0 \Rightarrow \underline{\underline{F_{A B}=128 \mathrm{kN}(\mathrm{T})}}$
d) Forces in the members $D F, D G$ and $E G$ using method of sections:

Cut the truss into the two parts through the section $a-a$ as shown above, and then on the left side of the free body diagram (FBD) move the member forces $F_{D F}$ and $F_{D G}$ to the point D and $F_{E G}$ to the point E.

$\tan \theta=\frac{4.5}{12} \Rightarrow \theta=20.556^{\circ} ; \sin \theta=0.3511$ and $\cos \theta=0.9363$
$C C W(+) \Sigma M_{A}=0 \Rightarrow F_{D G} \sin \alpha \times 8=0 \Rightarrow \underline{F_{D G}=0}$ Ans. 1 mark

(c) Horizontal and vertical component of forces at C

From Pulley D
$C C W(+) \Sigma M_{D}=0 \Rightarrow T \times 0.5-1400 \times 0.5=0 \Rightarrow T=1400 \mathrm{~N}$
From vertical member $C E F$
$C C W(+) \Sigma M_{E}=0 \Rightarrow C_{x} \times(1.5+0.5)-T \times 0.5=0 \Rightarrow C_{x} \times 2.0-1400 \times 0.5=0 \Rightarrow C_{x}=350 \mathrm{~N}$ Ans.
From inclined member $A B C$

$$
\begin{aligned}
C C W(+) \Sigma M_{B}=0 & \Rightarrow-A_{x} \times 2.0+A_{y} \times 1.5-C_{x} \times 2+C_{y} \times 1.5=0 \\
& \Rightarrow 0 \times 2.0+933.3 \times 1.5-350 \times 2+C_{y} \times 1.5=0 \Rightarrow \underline{\underline{C_{y}}=-466.6 \mathrm{~N}} \text { Ans. }
\end{aligned}
$$

