King Saud University
College of Engineering
Department of Civil Engineering

GE 201 Statics
First Semester 1434-35 H
Monday: 29-1-1435
Time: $\mathbf{9 0}$ Min

Question \# 1(b) (3 Marks)

A uniform 10.0 kg beam 3.0 m long is hinged to a wall and supported by a horizontal rope to make a 40° angle with the wall. A 15 kg mass hangs from the end of the beam.
i. Draw Free Body Diagram (FBD) of the beam.
ii. Determine the tension in the rope.

Solution

$$
C C W(+) \Sigma M_{A}=0 \Rightarrow T \times 2 \cos 40^{\circ}-15 \times 9.81 \times 3 \cos 50^{\circ}-10 \times 9.81 \times 1.5 \cos 50^{\circ}=0 \Rightarrow T=246.95 \mathrm{~N} \quad \text { Ans. }
$$

Student name		Marks obtained for Q.1	page 2/5
Student number			

Question \#1c (4 Marks)

For the equilibrium of the $15-\mathrm{kg}$ cylinder E and the $30-\mathrm{kg}$ cylinder F
(i) Draw the Free Body Diagram (FBD) of joints C and B.
(ii) Determine the tensions developed in wires $C D$ and $B A$.

Solution

i) Free body diagram of joints C and B

ii)

Consider the equilibrium of joint C, we have
$\rightarrow \Sigma F_{x}=0 \Rightarrow F_{B C} \cos \theta-F_{C D} \cos 30^{\circ}=0$
$\uparrow \stackrel{{ }^{\dagger}}{\dagger}=0 \Rightarrow-F_{B C} \sin \theta+F_{C D} \sin 30^{\circ}-15 \times 9.81=0$
Consider the equilibrium of joint B, we have
$\xrightarrow{+} \Sigma F_{x}=0 \Rightarrow F_{B A} \cos 45^{\circ}-F_{B C} \cos \theta=0$
$\uparrow \Sigma F_{y}=0 \Rightarrow-F_{B A} \sin 45^{0}+F_{B C} \sin \theta-30 \times 9.81=0$
Solving Equations (1) through (4), yields

Alternative solution

The truss is symmetric with respect to its loading and geometry, and members $B C$ and $C D$ are zero force members.

$$
\int_{0}^{32 \mathrm{kN}} \theta=\tan ^{-1}(2 / 2)=45^{0}
$$

$\therefore F_{B C}=F_{C D}=0$; and $F_{B A}=F_{D E}=-10 \mathrm{kN}(\mathrm{C})$ Ans.
Consider the equilibrium of joint C.

Solution

i. Zero force members: $B C, B A$ and $I D$.

ii. Reactions:

$\rightarrow \Sigma F_{x}=0 \Rightarrow A_{x}-8=0 \Rightarrow \underline{\underline{A_{x}=8 \mathrm{kN}}}$

$C C W(+) \Sigma M_{A}=0 \Rightarrow G_{y} \times 8+8 \times 2-12 \times 8-10 \times 4=0$
$\Rightarrow G_{y} \times 8+16-96-40=0 \Rightarrow \underline{\underline{G_{y}}=15 \mathrm{kN} \uparrow \text { Ans. }}$
$\uparrow \Sigma F_{y}=0 \Rightarrow A_{y}+G_{y}-18-10-12=0 \Rightarrow A_{y}+15-40=0$
$\Rightarrow A_{y}=25 \mathrm{kN} \uparrow$ Ans.
iii.
$C C W(+) \Sigma M_{D}=0 \Rightarrow-F_{I H} \times 2+15 \times 4-8 \times 2-12 \times 4=0$
$\Rightarrow F_{I H}=-2 \mathrm{kN}(\mathrm{C}) \quad$ Ans.
${ }^{\dagger} \Sigma F_{y}=0 \Rightarrow 15-12+F_{D H} \sin 45^{\circ}=0$
$\Rightarrow F_{D H}=-4.24 \mathrm{kN}(\mathrm{C}) \quad$ Ans.
$\rightarrow \Sigma F_{x}=0 \Rightarrow-8-F_{I H}-F_{D E}-F_{D H} \cos 45^{\circ}=0$
$\Rightarrow-8-(-2)-F_{D E}-(-4.24) \cos 45^{\circ}=0$
$\Rightarrow F_{F D}=-3.0 \mathrm{kN}(\mathrm{C})$ Ans.

Marks obtained for Q. 3
page $5 / 5$

Question \#3 (10 Marks)

The frame, with a vertical member $A B C D$, a horizontal member $C E F$ and an inclined member $B E$, is supported by a cable at D. The pin connections are A, B, C and E. A moment of $24 \mathrm{kN} . \mathrm{m}$ is applied at the point F.
(a) Calculate the reaction forces at A, and the tension T in the cable.
(b) Draw the free body diagrams ($F B D$) for each member.
(c) Determine the horizontal and vertical components of force at B and C.

Solution

a) Reaction forces at A, and the fension T in the cable. $\cos \theta=\frac{4}{5}, \quad \sin \theta=\frac{3}{5}$
Equilibrium equations for the whole frame

$$
\begin{array}{cc}
\rightarrow \sum F_{x}=0 & -T \cos \theta+A_{x}=0 \\
\uparrow \sum F_{y}=0 & T \sin \theta-A_{y}=0 \tag{2}
\end{array}
$$

$(c c w+) \sum M_{D}=0$
(6) $-24=0$
from (3) $A_{x}=4 \mathrm{kN}$, then from (1) $T=5 \mathrm{kN}$, then from

$$
\text { (2) } A_{y}=3 \mathrm{kN}
$$

b) Free Body Diagrams of each member
c) Equilibrium equations for members 1 and 3

Member 1:

$\rightarrow \sum F_{x}=0 \quad 4+B_{x}+C_{x}-5 \cos \theta=0$
$\uparrow \sum F_{y}=0 \quad-3-B_{y}-C_{y}+5 \sin \theta=0$

$(c c w+) \sum M_{C}=0 \quad 4(5)+B_{x}(2)+5 \cos \theta(1)=0$
From equation (6), $B_{x}=-12 \mathrm{kN}$
Substituting (7) into (4) yields $C_{x}=12 \mathrm{kN}$

Member 3:

$(c c w+) \sum M_{E}=0 \quad-B_{x}(2)-B_{y}(3)=0$
Substituting (7) into (9) yields $B_{y}=8 \mathrm{kN}$
Substituting (10) into (5) yields $C_{y}=-8 \mathrm{kN}$

