King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2017-2018
Academic Year (H) 1438-1439
Bachelor AFM: M. Eddahbi

Solution of the final exam ACTU 362 May 13, 2018

Problem 1. (8 marks) You are given the following information:

$$
\ell_{1}=9700, \quad q_{1}=q_{2}=0.020, \quad q_{4}=0.026 \text { and } d_{3},=232
$$

1. (2 marks) Determine the expected number of survivors to age 5 .

Given the following portion of a life table:

x	ℓ_{x}	d_{x}	p_{x}	q_{x}
0	1000		0.875	
1				
2	750			0.25
3				
4				
5	200	120		
6				
7		20		1

2. (2 marks +1 bonus) Determine the value of the product $p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5} \cdot q_{6}$

You are given the following life table function

x	40	41	42	43	44	45
ℓ_{x}	10000	9900	9700	9400	9000	8500

3. (2 marks) Calculate (a) $2.6 q_{41}$ (b) $1.6 q_{40.9}$ assuming uniform distribution of deaths between integral ages.
4. (2 marks) Calculate (a) $2.6 q_{41}(\mathrm{~b})_{1.6} q_{40.9}$ assuming constant force of mortality between integral ages.

Solution of problem 1.

1. We recursively compute ℓ_{x} through $x=5$. We

$$
q_{x}=1-\frac{\ell_{x+1}}{\ell_{x}} \Longleftrightarrow \ell_{x+1}=\ell_{x}\left(1-q_{x}\right)
$$

then we have

$$
\begin{aligned}
\ell_{2} & =\ell_{1}\left(1-q_{1}\right)=9700(1-0.020)=9506 \\
\ell_{3} & =\ell_{2}\left(1-q_{2}\right)=9506(1-0.020)=9315.88 \\
\ell_{4} & =\ell_{3}-d_{3}=9315.88-232=9083.88 \\
\ell_{5} & =\ell_{4}\left(1-q_{4}\right)=9083.88(1-0.026)=8847.70
\end{aligned}
$$

2. We are asked to compute

$$
p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5} \cdot q_{6}={ }_{5} p_{1} q_{1+5}={ }_{5 \mid} q_{1}
$$

so we have

$$
{ }_{5 \mid} q_{1}=\frac{\ell_{6}-\ell_{7}}{\ell_{1}}
$$

We knonw $\ell_{7}=20$, since everyone dies that year. We calculate

$$
\ell_{6}=\ell_{5}-d_{5}=80 \text { and } \ell_{1}=1000(0.875)=875
$$

Therefore

$$
{ }_{5 \mid} q_{1}=\frac{80-20}{875}=\frac{12}{175}=0.0685
$$

3. Under UDD: We have by definition
(a)

$$
\begin{aligned}
{ }_{2.6} q_{41} & =1-{ }_{2.6} p_{41}=1-{ }_{2} p_{41} \times{ }_{0.6} p_{43}=1-{ }_{2} p_{41}\left(1-0.6 q_{43}\right) \\
& =1-\frac{\ell_{43}}{\ell_{41}}\left(1-0.6\left(1-\frac{\ell_{44}}{\ell_{43}}\right)\right)=1-\frac{9400}{9900}\left(1-0.6\left(1-\frac{9000}{9400}\right)\right)=0.074747
\end{aligned}
$$

(b) We have ${ }_{1.6} q_{40.9}=1-1.6 p_{40.9}$ and

$$
\begin{aligned}
{ }_{1.6} p_{40.9} & =\frac{2.5 p_{40}}{0.9 p_{40}}=\frac{2 p_{40} \times 0.5 p_{42}}{0.9 p_{40}}=\frac{2 p_{40} \times 0.5 p_{42}}{0.9 p_{40}} \\
& =\frac{{ }_{2} p_{40}\left(1-0.5 q_{42}\right)}{1-0.9 q_{40}} \text { under UDD } \\
& =\frac{{ }_{2} p_{40}\left(1-0.5 q_{42}\right)}{1-0.9 q_{40}}=\frac{{ }_{2} p_{40}\left(1-0.5\left(1-p_{42}\right)\right)}{1-0.9\left(1-p_{40}\right)} \\
& =\frac{\frac{\ell_{42}}{\ell_{40}}\left(1-0.5\left(1-\frac{\ell_{43}}{\ell_{42}}\right)\right)}{1-0.9\left(1-\frac{\ell_{41}}{\ell_{40}}\right)}=\frac{\frac{9700}{10000}\left(1-0.5\left(1-\frac{9400}{9700}\right)\right)}{1-0.9\left(1-\frac{9900}{10000}\right)}=0.96367
\end{aligned}
$$

then ${ }_{1.6} q_{40.9}=1-0.96367=0.03633$.
4. Under CFM
(a) We can write

$$
\begin{aligned}
{ }_{2.6} q_{41} & =1-{ }_{2.6} p_{41}=1-{ }_{2} p_{41} \times{ }_{0.6} p_{43}=1-{ }_{2} p_{41} \times\left(p_{43}\right)^{0.6} \\
& =1-\frac{\ell_{43}}{\ell_{41}} \times\left(\frac{\ell_{44}}{\ell_{43}}\right)^{0.6}=1-\frac{9400}{9900} \times\left(\frac{9000}{9400}\right)^{0.6}=0.074958
\end{aligned}
$$

(b) Now, from 3. b. we have

$$
{ }_{1.6} p_{40.9}=\frac{2 p_{40} \times{ }_{0.5} p_{42}}{0.9 p_{40}}=\frac{\frac{\ell_{42}}{\ell_{40}}\left(\frac{\ell_{43}}{\ell_{42}}\right)^{0.5}}{\left(\frac{\ell_{41}}{\ell_{40}}\right)^{0.9}}=\frac{\frac{9700}{1000}\left(\frac{9400}{9700}\right)^{0.5}}{\left(\left(\frac{9900}{10000}\right)^{0.9}\right.}=0.96356
$$

then ${ }_{1.6} q_{40.9}=1-0.96356=0.03644$.

Problem 2. (8 marks)

Given

$$
S_{0}(x)=\left(1-\frac{x}{100}\right)^{\frac{1}{2}} \text { for } 0 \leq x \leq 100
$$

1. (2 marks) Calculate the probability that a life age 36 will die between ages 51 and 64 .
2. (3 marks) Calculate the probability that a 40 -year-old will survive to age 42 if the force of mortality is $\mu_{x}=k x^{n}$ with $k=1 / 100$ and $n=1$
3. (3 marks) The benefit under an n-year deferred whole life policy, with benefit payable at the moment of death, is twice that of a similar non-deferred whole life insurance. The expected present value for these insurances are equal and $\mu=0.08$ and $\delta=0.06$. Determine n

Solution of problem 2.

1. The probability that a life age 36 will die between ages 51 and 64 is given by

$$
{ }_{15 \mid 13} q_{36}={ }_{15} p_{36}-{ }_{15+13} p_{36}=S_{36}(15)-S_{36}(28)=\frac{S_{0}(51)-S_{0}(64)}{S_{0}(36)} .
$$

So we need to calculate the values of $S_{0}(36), S_{0}(51)$ and $S_{0}(64)$.

$$
S_{0}(36)=\sqrt{0.64}=0.8, \quad S_{0}(51)=\sqrt{0.49}=0.7 \text { and } S_{0}(64)=\sqrt{0.36}=0.6,
$$

then

$$
{ }_{15 \mid 13} q_{36}=\frac{0.7-0.6}{0.8}=\frac{1}{8}=0.125 .
$$

2. We are asked to calculate

$$
\begin{aligned}
& =\exp \left(-\int_{40}^{42} \frac{x}{100} d x\right)=\exp \left(-\int_{0}^{2} \frac{40+x}{100} d x\right) \\
& =\exp \left(-\frac{1}{100}\left[\frac{x^{2}}{2}\right]_{40}^{42}\right)=\exp \left(-\frac{1}{100}\left(\frac{42^{2}}{2}-\frac{40^{2}}{2}\right)\right) \\
& =e^{-\frac{41}{50}}=e^{-0.82}=0.44043
\end{aligned}
$$

3. Let the benefit under the deferred whole life policy be b_{d} and the benefit under the non-deferred policy b. Then $b_{d}=2 b$,, and $b_{d n \mid} \bar{A}_{x}=b \bar{A}_{x}$. It follows that ${ }_{n \mid} \bar{A}_{x}=0.5 \bar{A}_{x}$. Therefore

$$
\begin{aligned}
e^{-(\mu+\delta) n} \bar{A}_{x} & =0.5 \hat{A}_{x} \quad \text { that is } \quad e^{-(\mu+\delta) n}=\frac{1}{2} \\
n & =\frac{\ln (2)}{\mu+\delta}=\frac{\ln (2)}{0.14}=4.951 \simeq 5 \text { years }
\end{aligned}
$$

Problem 3. (8 marks)

1. (2 marks) The force of mortality is $\mu_{x}=\frac{1}{120-x}$ for $x<120$. Calculate ${ }_{4 \mid 5} q_{30}$.
2. (2 marks) Age at death is uniformly distributed on $(0, \omega]$. You are given that $q_{10}=\frac{1}{45}$. Determine μ_{10}.
3. (2 marks) The force of mortality is given by

$$
\mu_{x}=\frac{1}{120-x}+\frac{1}{160-x} \text { for } 0<x<120
$$

Calculate the probability that (60) will die within the next 10 years.
4. (2 marks) A continuous whole life insurance provides a death benefit of 1 plus a return of the net single premium with interest at $\delta=0.04$. The net single premium for this insurance is calculated using $\mu=0.04$ and force of interest 2δ. Calculate the net single premium.

Solution of problem 3.

1. We know that for $\mu_{x}=\frac{1}{\omega-x}, S_{x}(t)={ }_{t} p_{x}=1-\frac{t}{\omega-x}$. In our case $\omega=120$, then

$$
{ }_{4 \mid 5} q_{30}={ }_{4} p_{30}-{ }_{9} p_{30}=\left(1-\frac{4}{120-30}\right)-\left(1-\frac{9}{120-30}\right)=\frac{5}{90}=\frac{1}{18}=0.05556 .
$$

2. We have

$$
q_{10}=\frac{1}{\omega-10}=\frac{1}{45} \text { so } \omega=55 \text { and then } \mu_{10}=\frac{1}{\omega-10}=\frac{1}{55-10}=\frac{1}{45}=0.02222 .
$$

3. Since the force of mortality is the sum of two uniform forces, the survival probability is the product of the corresponding uniform probabilities,

$$
{ }_{10} p_{60}=\frac{50}{60} \times \frac{90}{100}=\frac{3}{4}=0.75
$$

so the answer is

$$
{ }_{10} q_{60}=1-0.75=0.25
$$

Or in details: we have

$$
\begin{aligned}
{ }_{10} p_{60} & =\exp \left(-\int_{0}^{10} \mu_{60+u} d u\right)=\exp \left(-\int_{0}^{10}\left(\frac{1}{120-60-u}+\frac{1}{160-60-u}\right) d u\right) \\
& =\exp \left(-\int_{0}^{10} \frac{1}{60-u} d u\right) \exp \left(-\int_{0}^{10} \frac{1}{100-u} d u\right) \\
& =\exp \left([\ln (60-u)]_{0}^{10}\right) \exp \left([\ln (100-u)]_{0}^{10}\right) \\
& =\exp \left(\ln \left(\frac{50}{60}\right)\right) \exp \left(\ln \left(\frac{90}{100}\right)\right)=\frac{50}{60} \frac{90}{100}=\frac{3}{4}=0.75
\end{aligned}
$$

4. Let A be the net single premium. Then

$$
\begin{aligned}
A & =\int_{0}^{\infty}\left(1+A e^{0.04 t}\right) e^{-0.12 t} 0.04 d t \\
& =\int_{0}^{\infty} 0.04 e^{-0.12 t} d t+\int_{0}^{\infty} 0.04 A e^{-0.08 t} d t \\
& =\frac{4}{12} \int_{0}^{\infty} 0.12 e^{-0.12 t} d t+\frac{4}{8} A \int_{0}^{\infty} 0.08 e^{-0.08 t} d t=\frac{1}{3}+\frac{1}{2} A
\end{aligned}
$$

solving we get $A=\frac{2}{3}=0.6667$.
Problem 4. (8 marks) You are given:
(i) $\ddot{a}_{x}=5.6, e_{x}=8.83$ and $e_{x+1}=8.29$
(ii) The expected present value of a 2 -year certain-and-life annuity-due of 1 on (x) is $\ddot{a}_{\overline{x: \overline{2}}}=5.6459$.

1. (2 marks) Calculate the effective interest rate i.
2. ($\mathbf{3}$ marks $+\mathbf{1}$ bonus) For a 2 -year certain-and-life annuity immediate on (65), payments are $(1+0.05)^{k}$ at time $k, i=0.05$ and the survival time is uniformly distributed with limiting age 115. Calculate the expected present value of this annuity.
3. ($\mathbf{3}$ marks $+\mathbf{1}$ bonus) A special temporary 3 -year life annuity-due on (30) pays k at the beginning of year $k, k=1,2,3$. You are given: $i=0.04, q_{30}=0.10, q_{31}=0.15$ and $q_{32}=0.20$. Compute the expected present value of this annuity.

Solution of problem 4.

1. For a 2-year certain-and-life annuity, we can write

$$
\ddot{a} \overline{x: \overline{2} \mid}=\ddot{a}_{\overline{2} \mid}+{ }_{2 \mid} \ddot{a}_{x}=1+v+\sum_{k=2}^{\infty} v^{k}{ }_{k} p_{x}
$$

For the whole life annuity we have

$$
\ddot{a}_{x}=1+v p_{x}+\sum_{k=2}^{\infty} v^{k}{ }_{k} p_{x} .
$$

The difference $\ddot{a}_{x: \overline{2} \mid}-\ddot{a}_{x}$ is equal to $v\left(1-p_{x}\right)=\frac{1}{1+i}\left(1-p_{x}\right)=5.6459-5.6=0.0459$. The unknown parameters are p_{x} and v or i. And p_{x} can be calculated from using the recursive equation for e_{x} we can write

$$
e_{x}=p_{x}\left(1+e_{x+1}\right) \quad \Longleftrightarrow \quad p_{x}=\frac{e_{x}}{1+e_{x+1}}=\frac{883}{929}=0.95048
$$

Then we have $1+i=\frac{1-p_{x}}{0.0459}=\frac{1-0.950}{0.0459}=1.089325$ that is $i=0.089325$.
2. We have $\ddot{a}_{\overline{65: \overline{2}}}=\ddot{a}_{2 \mid}+{ }_{2 \mid} \ddot{a}_{65}$, but $\ddot{a}_{2 \mid}=1+(1+i) v=2$ and since $(1+i) v=1$, we have

$$
{ }_{21} \ddot{a}_{65}=\sum_{k=3}^{115-65-1}(1+i)^{k} v^{k} \times{ }_{k} p_{65}=\sum_{k=3}^{49}\left(1-\frac{k}{50}\right)=\frac{564}{25}=22.56
$$

therefore $\ddot{a}_{\overline{65: 2} \mid}=2+22.56=24.56$
3. The APV of the annuity is given by

$$
\sum_{k=0}^{2}(k+1) v_{k}^{k} p_{30}=1+\frac{0.90}{1.04} 2+\frac{0.85 \times 0.90}{1.04^{2}} 3=2.7308+2.1219=4.8527
$$

Problem 5. (8 marks). For a whole life insurance of 1 on (x) with benefits payable at the moment of death, you are given:
i) the force of interest at time t is $\delta_{t}= \begin{cases}0.02 & \text { if } t<12 \\ 0.03 & \text { if } t \geq 12\end{cases}$
ii) the force of mortality at age $x+t$ is $\mu_{x+t}= \begin{cases}0.04 & \text { if } t<5 \\ 0.05 & \text { if } t \geq 5\end{cases}$

1. (4 marks +1 bonus) Calculate the actuarial present value of this insurance.

A special whole life insurance on (35) pays a benefit at the moment of death. You are given:
(i) The benefit for death in year k is $9000+1000 k$, but never more than 20,000 .
(ii) For $i=0.06$ we are given $1000 A_{35}=128.72,1000_{10} E_{35}=543.18$ and $1000 A_{45}=201.20$
(iii) $1000(I A)_{35: 10 \mid}^{1}=107.98$
(iv) Premiums are payable annually in advance.
2. (2 marks) Decompose this special whole life insurance into a level whole life insurance of x, plus a n-year increasing term insurance of y, plus a m-year deferred insurance of z. (You are asked to find x, y, z, n and m)
3. (2 marks) Calculate the net single premium for the policy

Solution of problem 5.

1. \bar{A}_{x} denotes the actuarial present value of the insurance. This insurance can be decomposed into three time intervals: $(0,5),(5,12)$ and $(12,+\infty)$.

$$
\begin{aligned}
\bar{A}_{x} & =\bar{A}_{x: 51}^{1}+{ }_{5 \mid 7} \bar{A}_{x}+{ }_{12} \bar{A}_{x} \\
& =\frac{0.04}{0.04+0.02}\left(1-e^{-0.06 \times 5}\right)+e^{-0.06 \times 5} \frac{0.05}{0.05+0.02}\left(1-e^{-0.07 \times 7}\right)+e^{-0.79} \overline{0.05} \\
& =\frac{4}{6}\left(1-e^{-0.3}\right)+\frac{5}{7}\left(e^{-0.3}-e^{-0.79}\right)+\frac{5}{8} e^{-0.79}=0.66142
\end{aligned}
$$

Or in details using integration

$$
\begin{aligned}
\bar{A}_{x} & =\int_{0}^{\infty} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} p_{x} d t=\int_{0}^{\infty} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} e^{-\int_{0}^{t} \mu_{x+u} d u} d t \\
& =\int_{0}^{5} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} e^{-\int_{0}^{t} \mu_{x+u} d u} d t+\int_{5}^{12} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} e^{-\int_{0}^{t} \mu_{x+u} d u} d t+\int_{12}^{\infty} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} e^{-\int_{0}^{t} \mu_{x+u} d u} d t \\
& =: I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

For I_{1} we have

$$
\begin{gathered}
\delta_{t}=\left\{\begin{array}{ll}
0.02 & \text { if } t<12 \\
0.03 & \text { if } t \geq 12
\end{array} \quad \mu_{x+t}= \begin{cases}0.04 & \text { if } t<5 \\
0.05 & \text { if } t \geq 5\end{cases} \right. \\
I_{1}=\int_{0}^{5} e^{-0.02 t} 0.04 e^{-0.04 t} d t=\int_{0}^{5} e^{-0.06 t} 0.04 d t=\frac{4}{6}\left(1-e^{-0.06 \times 5}\right)=0.17279 .
\end{gathered}
$$

For I_{2} we have

$$
\begin{aligned}
I_{2} & =\int_{5}^{12} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} e^{-\int_{0}^{t} \mu_{x+u} d u} d t=\int_{5}^{12} e^{-0.02 t} 0.05 e^{-\int_{0}^{5} \mu_{x+u} d u} e^{-\int_{5}^{t} \mu_{x+u} d u} d t \\
& =\int_{5}^{12} e^{-0.02 t} 0.05 e^{-0.04 \times 5} e^{-0.05(t-5)} d t=\int_{5}^{12} e^{-0.02 t} 0.05 e^{-0.04 \times 5} e^{-0.05(t-5)} d t \\
& =0.05 e^{0.05} \int_{5}^{12} e^{-0.07 t} d t=\frac{5}{7} e^{0.05}\left(e^{-0.07 \times 5}-e^{-0.07 \times 12}\right)=0.20498
\end{aligned}
$$

And for I_{3}, we have

$$
\begin{aligned}
I_{3} & =\int_{12}^{\infty} e^{-\int_{0}^{t} \delta_{u} d u} \mu_{x+t} e^{-\int_{0}^{t} \mu_{x+\hat{u}} d u} d t=\int_{12}^{\infty} e^{-\int_{0}^{12} \delta_{u} d u} e^{-\int_{12}^{t} \delta_{u} d u} 0.05 e^{-\int_{0}^{5} \mu_{x+u} d u} e^{-\int_{5}^{t} \mu_{x+u} d u} d t \\
& =\int_{12}^{\infty} e^{-0.02 \times 12} e^{-0.03(t-12)} 0.05 e^{-0.04 \times 5} e^{-0.05(t-5)} d t=0.05 e^{-0.79} \int_{12}^{\infty} e^{-0.08(t-12)} d t \\
& =e^{-0.79} \int_{0}^{\infty} 0.05 e^{-0.08 t} d t=0.27728
\end{aligned}
$$

Finnally

$$
\bar{A}_{x}=: I_{1}+I_{2}+I_{3}=0.17279+0.20498+0.28365=0.66142 .
$$

2. The insurance can be expressed as a level whole life insurance of 9000 on (35) plus a 10 -year increasing term insurance of 1000 , plus a 10 -year deferred insurance of 11000 . So $x=9000, n=10, y=1000$, $m=10$ and $z=11000$)
3. Let S_{Pr} be the net single premium for the insurance payable at the end of the year of death.

$$
\begin{aligned}
S_{\operatorname{Pr}} & =9000 A_{35}+1000(\Psi A)_{35: 10}^{10}+11000_{10} E_{35} A_{45} \\
& =9(128.72)+107.98+11(0.54318)(201.20)=2468.63 .
\end{aligned}
$$

