SOLUTION TO M-107 FINAL EXAMINATION, DECEMBER 24, 2020

Solution to Q1. [Marks: $4+3=7$]
(a)

$$
\begin{aligned}
\left(\begin{array}{cccc}
2 & 3 & \lambda+2 & 5 \\
1 & 1 & 1 & 2 \\
4 \lambda & 3 \lambda & 3 & 8 \lambda-3
\end{array}\right) & \stackrel{R_{1}}{\longrightarrow} R^{R_{2}}\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 3 & \lambda+2 & 5 \\
4 \lambda & 3 \lambda & 3 & 8 \lambda-3
\end{array}\right)-2 R_{1}+R_{2} \longrightarrow_{\longrightarrow}^{-4 \lambda R_{1}+R_{3}} \\
& \left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & 1 & \lambda & 1 \\
0 & 0 & \lambda^{2}-4 \lambda+3 & \lambda-3
\end{array}\right)
\end{aligned}
$$

From the bottom line of the matrix we have: $\left(\lambda^{2}-4 \lambda+3\right) z=(\lambda-3)$.
But $\lambda^{2}-4 \lambda+3=(\lambda-3)(\lambda-1)$.
Case I: If $\lambda=3$, then the system has infinitely many solution;
Case II: If $\lambda=1$, then the system has no solution;
Case II: If $\lambda \neq 3$ and $\lambda \neq 1$, then the system has unique solution.
(b) Given

$$
A=\left(\begin{array}{ccc}
1 & 3 & 5 \\
2 & 1 & 4 \\
-1 & 6 & 2
\end{array}\right)
$$

Then $\operatorname{det}(A)=19$ and the matrix of the cofactors is

$$
\left(\begin{array}{ccc}
-22 & -8 & 13 \\
24 & 7 & -9 \\
7 & 6 & -5
\end{array}\right)
$$

and

$$
\operatorname{adj}(A)=\left(\begin{array}{ccc}
-22 & 24 & 7 \\
-8 & 7 & 6 \\
13 & -9 & -5
\end{array}\right)
$$

Therefore,

$$
A^{-1}=\frac{1}{19}\left(\begin{array}{ccc}
-22 & 24 & 7 \\
-8 & 7 & 6 \\
13 & -9 & -5
\end{array}\right)
$$

Solution to Q2. [Marks: $2+3+3=8$]
(a) $\operatorname{Comp}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|}=\frac{\langle-2,1,2\rangle \cdot\langle 1,-2,2\rangle}{\sqrt{1+4+4}}=\frac{-2-2+4}{3}=0$. Similarly, $\operatorname{Comp}_{\vec{c}} \vec{b}=0$ and $\operatorname{Comp}_{\vec{a}} \vec{c}=0$.
(b) Consider the augmented matrix and apply Gaussian elimination:

$$
\left(\begin{array}{cccc}
2 & 1 & 4 & 8 \\
1 & 3 & -1 & -1
\end{array}\right) \stackrel{R_{1} \longleftrightarrow R_{2}}{\longrightarrow}\left(\begin{array}{cccc}
1 & 3 & -1 & -1 \\
2 & 1 & 4 & 8
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{cccc}
1 & 3 & -1 & -1 \\
0 & 1 & -\frac{6}{5} & -2
\end{array}\right)
$$

From the bottom line of the matrix, we have:

$$
y-\frac{6}{5} z=-2 \Rightarrow y=-2+\frac{6}{5} z \Rightarrow y=-2+6 t ; z=5 t
$$

Therefore, the parametric equations for the line of intersection of the planes P_{1} and P_{2} are given by

$$
x=5-13 t ; \quad y=-2+6 t ; \quad z=5 t
$$

[PS. Please note that if any student solve this question correctly but in another way, please give him full marks.]
(c) The given quadratic surface: $2 x^{2}+3 y^{2}-6 z=0$ is equivalent to $z=\frac{x^{2}}{3}+\frac{y^{2}}{2}$, which is a paraboloid.

- $x y$-trace: $(0,0,0)$ origin
- $y z$-trace: $z=\frac{y^{2}}{2}$, parabola
- $z x$-trace: $z=\frac{x^{2}}{3}$, parabola.
[PS: Sorry, I do not have appropriate software to sketch the surface, that is why I could not give the picture]

Solution to Q3. [Marks: $3+3+3=9$]
(a) Given $C: x=a \cos t, y=a \sin t$. Let $f(t)=a \cos t$ and $g(t)=a \sin t$. then we have the curvature

$$
\begin{gathered}
\kappa=\frac{\left|f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)\right|}{\left|\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}\right|^{\frac{3}{2}}} \Rightarrow \\
\kappa=\frac{|(-a \sin t)(-a \sin t)-(a \cos t)(-a \cos t)|}{\left|a^{2} \sin ^{2} t+a^{2} \cos ^{2} t\right|^{\frac{3}{2}}}=\frac{a^{2}}{\left(a^{2}\right)^{\frac{3}{2}}}=\frac{1}{a}
\end{gathered}
$$

(b)

$$
\vec{T}^{\prime}(t)=\frac{\vec{r}(t)}{\left\|r^{\prime}(\vec{t})\right\|}=\frac{2 t \vec{i}+4 \vec{j}+(4 t-6) \vec{k}}{\sqrt{4 t^{2}+16+(4 t-6)^{2}}}=\frac{t \vec{i}+2 \vec{j}+(2 t-3) \vec{k}}{\sqrt{5 t^{2}-12 t+13}}
$$

Therefore, at $t=2, \vec{T}(2)=\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle$.
(c) Given

$$
\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, \quad 1 \leq t \leq 4
$$

We have

$$
\begin{gathered}
\vec{r}(t)=\vec{i}+2 t \vec{j}+3 t^{2} \vec{k}, \\
\vec{r}^{\prime \prime}(t)=2 \vec{j}+6 t \vec{k},
\end{gathered}
$$

and

$$
\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{1+4 t^{2}+9 t^{4}}
$$

Thus,

$$
\begin{aligned}
& \vec{a}_{T}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|} \\
& =\frac{4 t+18 t^{3}}{\sqrt{1+4 t^{2}+9 t^{4}}}
\end{aligned}
$$

Now

$$
\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)=6 t^{2} \vec{i}-6 t \vec{j}+2 \vec{k}
$$

Therefore,

$$
\vec{a}_{N}=\frac{\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{\sqrt{36 t^{4}+36 t^{2}+4}}{\sqrt{1+4 t^{2}+9 t^{4}}}=2 \sqrt{\frac{9 t^{4}+9 t^{2}+1}{9 t^{4}+4 t^{2}+1}}
$$

Solution to Q4. [Marks: $2+2+4=8$]
(a) Given $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6} y+x^{2} y^{3}}{\left(x^{4}+y^{2}\right)^{2}}$

- Along the path $y=x^{2}$, we have: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{8}+x^{8}}{4 x^{8}}=\frac{1}{2}$
- Along the path $y=2 x^{2}$, we have: $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{8}+8 x^{8}}{25 x^{8}}=\frac{10}{25}=\frac{2}{5}$

Thus, limit does not exist.
(b) Given

$$
w=\ln (u+v), \quad u=e^{-3 t}, v=t^{5}-t^{2} .
$$

We have:

$$
\begin{gathered}
\frac{d w}{d t}=\frac{\partial w}{\partial u} \cdot \frac{d u}{d t}+\frac{\partial w}{\partial v} \cdot \frac{d v}{d t} \\
=\left(\frac{1}{u+v}\right)\left(-3 e^{-3 t}\right)+\left(\frac{1}{u+v}\right)\left(5 t^{4}-2 t\right) \\
=\frac{5 t^{4}-2 t-3 e^{-3 t}}{e^{-3 t}+t^{5}-t^{2}}
\end{gathered}
$$

(c) Given $f(x, y)=\frac{x-y}{x y+2}, P(1,1)$ and $\vec{a}=12 \vec{i}+5 \vec{j}$.

We have the unit vector:

$$
\vec{u}=\frac{\vec{a}}{\|\vec{a}\|}=\frac{12 \vec{i}+5 \vec{j}}{\sqrt{144+25}}=\frac{12 \vec{i}+5 \vec{j}}{\sqrt{169}} \Rightarrow \vec{u}=\left\langle\frac{12}{13}, \frac{5}{13}\right\rangle
$$

Now

$$
\begin{aligned}
& \nabla f(x, y)=\frac{2+y^{2}}{(x y+2)^{2}} \vec{i}-\frac{2+x^{2}}{(x y+2)^{2}} \vec{j} \\
& \Rightarrow \nabla f(1,1)=\frac{1}{3} \vec{i}-\frac{1}{3} \vec{j}=\left\langle\frac{1}{3},-\frac{1}{3}\right\rangle
\end{aligned}
$$

Thus,

$$
D_{\vec{u}} f(1,1)=\nabla f(1,1) \cdot \vec{u}=\frac{12}{39}-\frac{5}{39}=\frac{7}{39}
$$

Finally, maximum rate of change is $\|\nabla f(1,1)\|=\sqrt{\frac{1}{9}+\frac{1}{9}}=\sqrt{\frac{2}{9}}=\frac{\sqrt{2}}{3}$.
Solution to Q5. Marks: $3+3+2=8$]
Let $F(x, y, z)=x^{3}-12 x y+8 y^{3}-z=0$. Then

$$
\nabla F(x, y, z)=\left(3 x^{2}-12 y\right) \vec{i}+\left(-12 x+24 y^{2}\right) \vec{j}-\vec{k} \Rightarrow \nabla F(2,-1,24)=24 \vec{i}-\vec{k}=\langle 24,0,-1\rangle
$$

Thus, the equation of the tangent plane at $P(2,-1,24)$ is given by

$$
24(x-2)+0(y+1)-1(z-24)=0 \Rightarrow 24 x-z=24 .
$$

(b) Given $f(x, y)=x^{3}-12 x y+8 y^{3}$. Then we have

$$
\frac{\partial f}{\partial x}=3 x^{2}-12 y ; \quad \frac{\partial f}{\partial y}=-12 x+24 y^{2} ; \quad \frac{\partial^{2} f}{\partial x^{2}}=6 x ; \quad \frac{\partial^{2} f}{\partial y^{2}}=48 y ; \quad \frac{\partial^{2} f}{\partial x \partial y}=-12
$$

By setting $3 x^{2}-12 y=0$ and $-12 x+24 y^{2}=0$, we get the critical points: $(0,0)$ and $(2,1)$.
Since

$$
D(x, y)=\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}=288 x y-144
$$

we get at $(0,0), D(0,0)=-144<0$ gives saddle point, while at $(2,1)$, we get

$$
D(2,1)=288(2)(1)-144=576-144=432>0
$$

and

$$
\frac{\partial^{2} f}{\partial x^{2}}(2,1)=6(2)=12>0
$$

yield that f has local minimum at $(2,1)$.
(c) Given $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Let $g(x, y, z)=x+y+z-36=0$.

By Lagrange multiplier we get $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ which gives:
$2 x=\lambda, 2 y=\lambda, 2 z=\lambda \Rightarrow x=y=z$. Putting all these in $x+y+z=36$, we obtain: $x=12$.
Hence $f(12,12,12)=432$, a local minimum.

