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Math 113: Complex Analysis, Fall 2002

1. (a) Let g(z) be a holomorphic function in a neighbourhood of z = a. Suppose that g(a) = 0.
Prove that g(z)/(z − a) extends to a holomorphic function at z = a.

Solution. Define the function

f(z) =

{
g(z)/(z − a) z 6= a,

g′(a) z = a.

Clearly f is holomorphic in a neighborhood of a, though not necessarily at a. By the
Riemann Removable Singularity Theorem, f is analytic at a if it is continuous at that
point. We can then verify that

lim
z→a

f(z) = lim
z→a

g(z)
z − a

=
g(z)− g(a)

z − a
= g′(a) = f(a).

Hence f is a holomorphic extension of g(z)/(z − a) at z = a.

(b) Let f(z) be a holomorphic function in the neighborhood of z = a, except for a singularity
at z = a. Suppose that the limit

lim
z→a

(z − a)nf(z)

exists for some integer n. Using part (a) show there exists an integer n′ ≤ n such that

lim
z→a

(z − a)n′
f(z)

exists and is non-zero.

Solution. Many people had lots of trouble with this question. Please read this solution
carefully. I will point out the most common mistakes as we go along.
If the above limit exists and is non-zero we are done (take n′ = n). So suppose that
the above limit is zero. Let g(z) = (z − a)nf(z). Since limz→a g(z) exists, the Rie-
mann Removable Singularity theorem tells us that g(z) can be extended to a function
holomorphic at a. In fact, using part (a), the extension is given by

h1(z) =

{
g(z)/(z − a) z 6= a,

g′(a) z = a.
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Note that
lim
z→a

(z − a)n−1f(z) = lim
z→a

h1(z) = g′(a),

so if g′(a) is non-zero we are done (take n′ = n − 1). In case g′(a) = 0, we may apply
the above argument again to obtain a holomorphic function h2(z) given by

h2(z) =

{
h1(z)/(z − a) z 6= a,

h′1(a) z = a.

As before,
lim
z→a

(z − a)n−2f(z) = lim
z→a

h2(z) = h′1(a),

so if h′1(a) is non-zero we are done (take n′ = n − 2). Clearly we may keep repeating
this process as necessary. The question is whether it terminates after a finite number of
steps or not. This is the point where most proofs went awry.
Many of you said something like “the process will terminate after at most n − 1 steps.
Otherwise at the nth step you will consider

lim
z→a

f(z) = lim
z→a

h(z) = h′n−1(a),

but limz→a f(z) does not exist because f has a singularity at a”. This is INCORRECT.
Here’s a counterexample to that claim. Consider the function

f(z) =
sin z − z

z3
.

This function has a singularity at 0. It cannot be evaluated there. It is clear, however,
that

lim
z→a

z3f(z) = 0.

Moreover, using the power series expansion for sin z we easily see that

lim
z→a

z2f(z) = lim
z→a

z2 (z − z3/3! + z5/5!− · · · )− z

z3
= lim

z→a
−z2/3! + z4/5!− · · · = 0

lim
z→a

zf(z) = lim
z→a

z
(z − z3/3! + z5/5!− · · · )− z

z3
= lim

z→a
−z/3! + z3/5!− · · · = 0

lim
z→a

f(z) = lim
z→a

(z − z3/3! + z5/5!− · · · )− z

z3
= lim

z→a
−1/3! + z2/5!− · · · = −1/6

So in this case n = 3 and n′ = 0. The process terminates after 3 steps, and contrary to
popular belief, limz→a f(z) does exist.
So then why on Earth does the process above terminate? Suppose it does not. Then
what happens? We are claiming that

lim
z→a

(z − a)Nf(z) for all N ≤ n,

equivalently, in our notation,

h1(a)(= g′(a)) = h′1(a) = h′2(a) = · · · = h′m(a) = · · · = 0.
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Now note that

0 = h′N (a) = lim
z→a

hN (z)− h1(a)
z − a

=
h1(z)− h1(a)

(z − a)N
,

using L’Hopital’s rule we compute this last quantity to be

h
(N)
1 (a)
N !

.

Hence 0 = h1(a) = h′1(a) = h′′1(a) = · · · . But h1 is a holomorphic function by con-
struction, therefore has a Taylor expansion that agrees with it at all points. We have
consequently show that h1(z) is identically zero. This in turn means g and f are identi-
cally zero. But this is a contradiction because f has a singularity at a. Thus the above
process must terminate finitely as claimed.

(c) Let f(z) be a holomorphic function in the neighborhood of z = a, except for a singularity
at z = a. Show that either f(z) has a pole of order n at a for some integer n or

lim
z→a

(z − a)nf(z)

does not exist for any n.

Solution. This is trivial after part (b). Either the said limit doesn’t exist for any n, or
if it exists for some N then from part (b) we know the limit exists and is non zero for
some integer n ≤ N . In this case f has a pole of order n at a. (Note that n ≤ 0 because
f has a singularity at a; if n = 0 the singularity is removable, as in the example we gave
in part(b) ).

2. (a) If f(z) is holomorphic inside and on the simple closed curve C containing z = a, prove
that

f (n)(a) =
1

2πi

∮
C

f(z)n

(z − a)
dz.

Solution. Since f is analytic and products of analytic functions are analytic, fn is also
analytic and the above equality is a direct application of the general Cauchy Integral
Formula.

(b) Use (a) to prove that |f(a)|n ≤ LMn/2πD, where is the minimum distance from a to
the curve C, L is the length of C and M is the maximum value of |f(z)| on C.

Solution.

|f(a)|n =
∣∣∣∣ 1
2πi

∮
C

f(z)n

(z − a)
dz

∣∣∣∣ ≤ 1
2π

max
z∈C

∣∣∣∣ f(z)n

(z − a)

∣∣∣∣ · L
=

L

2π
· maxz∈C |f(z)|n

minz∈C |z − a|
=

LMn

2πD
.
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(c) Use (b) to prove that |f(a)| ≤ M . In other words, the maximum value of |f(z)| is
obtained on its boundary (Maximum Modulus Principle).

Solution. Taking nth roots we see that

|f(a)| ≤ n

√
L

2πD
·M for all n.

Note that L/2πD is a constant. Taking limits as n → ∞ and using a standard result
from real analysis,

|f(a)| = lim
n→∞

|f(a)| ≤ lim
n→∞

n

√
L

2πD
·M = M.

(d) The maximal value of 1/z on the unit circle is 1, yet |f(1/2)| = 2. Explain why this
does not contradict (c).

Solution. The function 1/z is not holomorphic on the unit disc (it has a simple pole
at the origin). Hence it does not satisfy the hypothesis of (a) and consequently this
phenomenon does not contradict (c).

(e) (Fundamental Theorem of Algebra) Using the Maximum Modulus Principle prove
the Fundamental Theorem of Algebra.

Solution. Let P be a polynomial of degree at least 1. If P (z) 6= 0, then 1/P (z) is analytic
and its maximum modulus in the circle |z| ≤ R would have to occur on its boundary.
We have seen, however that P (z) → ∞ as z → ∞, so we could choose an R so that
|1/P (z)| < |1/P (0)| for all |z| = R, and this is a contradiction.

(f) Let f be holomorphic on and inside C. Let M be the maximal value of f on C. Suppose
that |f(a)| = M for some a inside C. Prove that f(z) is constant.

Solution. By the Open Mapping Theorem, if f is not constant, then it takes a small
neighborhood of a (which we can assume without loss of generality is contained in the
region inside C) onto a neighborhood of f(a) and this map is 1-1. This neighborhood of
f(a) must contain a point P such that |P | > f(a), otherwise the open set would not be
a neighborhood of a. But this point P is the image of some point b in the neighborhood
of a under f . Hence |f(b)| > |f(a)| = M , and this is a contradiction. Therefore f is
constant.

Remark. Some people showed, using the maximum modulus principle that |f(a)| = M
for infinitely many a inside the region. This is not enough to show that f(z) ≡ M . For
that you wouuld have needed to show f(a) = M (no absolute value) for infinitely many
a inside the region.
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3. Let

f(z) =
z

ez − 1
+

z

2
= 1 +

z2

12
− z4

720
+

z6

30240
− · · · =

∞∑
n=0

znBn

n!
.

(a) Prove that f(−z) = f(z).

Solution.

f(−z) =
−z

e−z − 1
− z

2
=
−zez

1− ez
− z

2

=
zez

ez − 1
− z

2
=

2zez − zez + z

2(ez − 1)

=
zez − z + 2z

2(ez − 1)
=

z(ez − 1)
ez − 1

+
2z

2(ez − 1)

=
z

2
+

z

ez − 1
= f(z).

(b) Show that Bn = if n is odd.

Solution. Note that f(z) extends to a holomorphic functions since the singularity at 0
is removable. It therefore agrees with the power expansion involving the Bn’s. By part
(a)

∞∑
n=0

(−z)nBn

n!
=

∞∑
n=0

znBn

n!

=⇒
∑

n odd

znBn

n!
≡ 0.

This shows Bn = 0 for odd n.

(c) Write tan z in terms of eiz and use this to find the Taylor series of tan z around z = 0
in terms of the Bernoulli numbers Bn.

Solution.

tan z = −i
eiz − e−iz

eiz + e−iz
= −i

e2iz − 1
e2iz + 1

= −i + i
2

e2iz + 1
.

From the definition of f(z) we see that

e2iz =
2iz

f(2iz)− iz
+ 1.

Hence
tan z = −i +

2
e2iz + 1

= −i + i
f(2iz)− iz

f(2iz)
=

z

f(2iz)
.
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We compute the first few terms of this series by inverting f(2iz). The result is

tan z = z +
z3

3
+

2z5

15
+ · · · .

Some of you successfully went through subtle manipulations to obtain the general ex-
pression

tan z =
∞∑

n=1

(−1)n−1 2(22n − 1)B2n(2z)2n−1

(2n)!
.

(d) What is the radius of convergence of tan z around z = 0?

Solution. A Taylor expansion for a holomorphic function around a point agrees with the
function until you hit a singularity. So the Radius of Convergence is π/2.
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