PHYS 454
 FINAL EXAM
 Monday $7^{\text {th }}$ January 2013

Instructor: Dr. V. Lempesis

Student Name:
Student ID Number
Student Grade: \qquad /40

Please answer all questions

1. A quantum SHO at $t=0$ is at the

$$
\Psi(0)=A\left(6 \psi_{0}+8 \psi_{1}\right)
$$

a) Calculate A ?
b) What is the average energy?
c) What is the uncertainty in energy?
d) What is the state of the SHO at time $t=\frac{\pi}{\omega}$?
e) If at $t=0$ we do a measurement and we find that the SHO is at state ψ_{1}, what will be the energy of a particle at time $t=\frac{\pi}{3 \omega}$?

Solution: a) From normalization condition we calculate the constant A.

$$
\begin{aligned}
& \int_{0}^{a}|\psi(x)|^{2} d x=1 \Rightarrow 36 A^{2} \underbrace{\int_{0}^{a}\left|\psi_{0}(x)\right|^{2} d x}_{=1}+64 A^{2} \underbrace{\int_{0}^{a}\left|\psi_{1}(x)\right|^{2} d x}_{=1}+96 A^{2} \underbrace{\int_{0}^{a} \psi_{0}(x) \psi_{1}(x) d x}_{=0}=1 \\
& \Rightarrow 100 A^{2}=1 \Rightarrow A=0.1
\end{aligned}
$$

The probabilities for the particle to be in states 0 and 1 are:

$$
P_{0}=(6 A)^{2}=0.36 \text { and } P_{1}=(8 A)^{2}=0.64
$$

b) Thus the average energy is given by

$$
\langle E\rangle=P_{0} E_{0}+P_{1} E_{1}=0.36 E_{0}+0.64 E_{1}
$$

but in a quantum SHO $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$ thus $E_{0}=\frac{\hbar \omega}{2}$ and $E_{1}=\frac{3 \hbar \omega}{2}$. So

$$
\langle E\rangle=1.14 \hbar \omega
$$

c) Similarly

$$
\left\langle E^{2}\right\rangle=P_{0} E_{0}^{2}+P_{1} E_{1}^{2}=0.36 E_{0}^{2}+0.64 E_{1}^{2}=1.53(\hbar \omega)^{2}
$$

Then

$$
\Delta E=\sqrt{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}}=0.48 \hbar \omega
$$

d) The wavefunction after some time t is given by
$\Psi(x, t)=0.6 \psi_{0}(x) e^{-i E_{0} t / \hbar}+0.8 \psi_{1}(x) e^{-i E_{1} t / \hbar}=0.6 \psi_{0}(x) e^{-i \omega t / 2}+0.8 \psi_{1}(x) e^{-i 30 t / 2} \stackrel{t=\pi / \omega}{=}$
$0.6 \psi_{0}(x) e^{-i \pi / 2}+0.8 \psi_{1}(x) e^{-i 3 \pi / 2}=-0.6 i \psi_{0}(x) e^{-i \pi / 2}+0.8 i \psi_{1}(x)$
e) After the measurement the system collapses to the state ψ_{1} so any repeated measurement of the energy will give us the value E_{1}
2. An electron is confined in an infinite potential well. When this electron makes a transition from the state $n=2$ to the state $n=1$ it emits a photon with a wavelength $\lambda=700 \mathrm{~nm}$.
a) Calculate the width a of the well.

If the electron is prepared, at $t=0$, at the state $\Psi=A\left(3 \psi_{1}+4 \psi_{2}\right)$:
b) Calculate A .
c) Calculate the average energy of the electron at this state.
(2 points)
d) What is the probability of finding the particle in the region ($0, a / 6$)?

Solution: a) The energy of the photon is equal to the difference of the energies of the two levels:

$$
\begin{aligned}
& E_{2}-E_{1}=h f \Rightarrow E_{2}-E_{1}=\frac{h c}{\lambda} \Rightarrow \lambda=\frac{h c}{E_{2}-E_{1}} \Rightarrow \lambda=\frac{h c}{\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\left(2^{2}-1^{2}\right)} \Rightarrow \\
& a^{2}=\frac{3 \lambda \hbar^{2} \pi^{2}}{2 m h c} \Rightarrow a=\sqrt{\frac{3 h \lambda}{8 c m}}=\sqrt{\frac{3 \times 6.64 \times 10^{-34} \times 700 \times 10^{-9}}{8 \times 3 \times 10^{8} \times 9.1 \times 10^{-31}}}=0.8 \times 10^{-9} \mathrm{~m}=0.8 \mathrm{~nm}
\end{aligned}
$$

b) From normalization condition we calculate the constant A.

$$
\begin{aligned}
& \int_{0}^{a}|\psi(x)|^{2} d x=1 \Rightarrow 9 A^{2} \underbrace{\int_{0}^{a}\left|\psi_{1}(x)\right|^{2} d x}_{=1}+16 A^{2} \underbrace{\int_{0}^{a}\left|\psi_{2}(x)\right|^{2} d x}_{=1}+24 A^{2} \underbrace{\int_{0}^{a} \psi_{1}(x) \psi_{2}(x) d x}_{=0}=1 \\
& \Rightarrow 25 A^{2}=1 \Rightarrow A=0.2
\end{aligned}
$$

The probabilities for the particle to be in states 1 and 2 are:

$$
P_{1}=(3 A)^{2}=0.36 \text { and } P_{1}=(16 A)^{2}=0.64
$$

c) Thus the average energy is given by

$$
\langle E\rangle=P_{1} E_{1}+P_{2} E_{2}=0.36 E_{0}+0.64 E_{1}
$$

but in an infinite well $E_{n}=E_{1} n^{2}$ thus $E_{2}=4 E_{1}$. So

$$
\begin{aligned}
& \langle E\rangle=0.36 E_{1}+0.64 E_{2}=0.36 E_{1}+0.64 \times 4 E_{1}=2.92 E_{1}=2.92 \frac{\hbar^{2} \pi^{2}}{2 m a^{2}}= \\
& 2.92 \frac{\left(1.055 \times 10^{-34}\right)^{2} \times 3.14^{2}}{2 \times 9.1 \times 10^{-31} \times\left(0.8 \times 10^{-9}\right)^{2}}=2.75 \times 10^{-19} \mathrm{~J}=1.72 \mathrm{eV}
\end{aligned}
$$

d) The probability is given by
$P(0<x<a / 6)=9 A^{2} \int_{0}^{a / 6}\left|\psi_{1}(x)\right|^{2} d x+16 A^{2} \int_{0}^{a / 6}\left|\psi_{2}(x)\right|^{2} d x+24 A^{2} \int_{0}^{a / 6} \psi_{1}(x) \psi_{2}(x) d x$
$=\frac{9}{25}\left(\frac{2}{a}\right)^{a / 6} \sin \left(\frac{\pi x}{a}\right)^{2} d x+\frac{16}{25}\left(\frac{2}{a}\right) \int_{0}^{a / 6} \sin \left(\frac{2 \pi x}{a}\right)^{2} d x+\frac{24}{25}\left(\frac{2}{a}\right) \int_{0}^{a / 6} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) d x$
$=0.124$
3. For a quantum SHO show the following:
a) $\left[N, a^{2}\right]=-2 a^{2}$.
b) $\left[N, a a^{\dagger} a\right]=-a a^{\dagger} a$.
(2 marks)
c) Assume that the SHO is at the state $|n\rangle$. Using algebraic techniques show that $\langle n| p x|n\rangle=\frac{i h}{2}$
(4 marks)

Solution:

a) $\left[N, a^{2}\right]=[N, a a]=[N, a] a+a[N, a]$

But $[N, a]=-a$, so

$$
[N, a]=-a a-a a=-2 a^{2} .
$$

b)

$$
\left[N, a a^{\dagger} a\right]=\left[N, a\left(a^{\dagger} a\right)\right]=a\left[N,\left(a^{\dagger} a\right)\right]+[N, a]\left(a^{\dagger} a\right)=0-a\left(a^{\dagger} a\right)=-a a^{\dagger} a
$$

c) From the relations

$$
a=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right), \quad a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)
$$

we solve for x and p and we get
$x=\frac{1}{2} \sqrt{\frac{2 \hbar}{m \omega}}\left(a+a^{\dagger}\right), \quad p=\frac{1}{i} \sqrt{\frac{\hbar m \omega}{2}}\left(a-a^{\dagger}\right)$
so we have

$$
\begin{aligned}
& p x=\frac{\hbar}{2 i}\left(a+a^{\dagger}\right)\left(a-a^{\dagger}\right)=\frac{\hbar}{2 i}\left(a^{2}+a^{\dagger 2}-a a^{\dagger}+a^{\dagger} a\right) \\
& \langle n| p x|n\rangle=\frac{\hbar}{2 i}\langle n|\left(a^{2}+a^{\dagger 2}-a a^{\dagger}+a^{\dagger} a\right)|n\rangle= \\
& \frac{\hbar}{2 i}\{\underbrace{\langle n| a^{2}|n\rangle}_{=0}+\underbrace{\langle n| a^{\dagger 2}|n\rangle}_{=0}-\underbrace{\langle n| a a^{\dagger}|n\rangle}_{1+n}+\underbrace{\langle n| a^{\dagger} a|n\rangle}_{=n}\}= \\
& -\frac{\hbar}{2 i}=\frac{\hbar}{2} i
\end{aligned}
$$

4. (a) An electron with kinetic energy $E=16.0 \mathrm{eV}$ is incident on a "step" of positive potential and is reflected with a probability equal to $R=1 / 9$. What is the "height" V_{0} of the potential barrier?
(b) An electron is trapped in a one-dimensional finite potential well of depth $V_{0}=6 \mathrm{eV}$ and of width $a=10 \mathrm{~A}$. Calculate the number of bound states.
(c) A particle of mass m is moving in the potential $V=A x^{2} e^{-a x^{2}}$. Use the parabolic approximation to calculate the first two energy levels of this potential.

Solution:

(a) Solution: The reflection probability is
$R=\left(\frac{\sqrt{E}-\sqrt{E-V_{0}}}{\sqrt{E}+\sqrt{E-V_{0}}}\right)^{2} \Rightarrow \frac{1}{9}=\left(\frac{\sqrt{16}-\sqrt{16-V_{0}}}{\sqrt{16}+\sqrt{16-V_{0}}}\right)^{2} \Rightarrow \frac{1}{9}=\left(\frac{4-\sqrt{16-V_{0}}}{4+\sqrt{16-V_{0}}}\right)^{2}$
Put $x=\sqrt{16-V_{0}}$ and remember that $x>0$.
$\frac{1}{9}=\left(\frac{4-x}{4+x}\right)^{2} \Rightarrow(4+x)^{2}=9(4-x)^{2} \Rightarrow\left(x^{2}+8 x+16\right)=9\left(x^{2}-8 x+16\right)$
$\Rightarrow 8 x^{2}-80 x+128=0 \Rightarrow x^{2}-10 x+16=0$
Solving this you get
$x_{1}=8, \quad x_{2}=2$
Thus

$$
\begin{aligned}
& 8=\sqrt{16-V_{0}} \Rightarrow 16-V_{0}=64 \Rightarrow V_{0}=-48 \mathrm{eV} \text { impossible } \\
& 2=\sqrt{16-V_{0}} \Rightarrow 16-V_{0}=4 \Rightarrow V_{0}=12 \mathrm{eV}
\end{aligned}
$$

(b) Solution: The number of bound states in a finite well is given by

$$
\begin{aligned}
& N=\left[\frac{\lambda}{\pi / 2}\right]+1 \quad U_{0}=\frac{2 m V_{0}}{\hbar^{2}} \quad \lambda=a \sqrt{U_{0}} \\
& \lambda=\frac{a \sqrt{2 m V_{0}}}{\hbar}=\frac{10 \times 10^{-10} \sqrt{2 \times 9.1 \times 10^{-31} \times 6 \times 1.6 \times 10^{-19}}}{1.055 \times 10^{-34}}=12.5 \\
& N=\left[\frac{\lambda}{\pi / 2}\right]+1=\left[\frac{12.5}{1.57}\right]+1=[7.96]+1=8
\end{aligned}
$$

c) Solution: The parabolic approximation for any potential is given by

$$
V(x)=V(0)+V^{\prime}(0) x+\frac{1}{2} V^{\prime \prime}(0) x^{2}+\ldots
$$

For the given potential we have

$$
\begin{gathered}
V(0)=0 \\
V^{\prime}(0)=\left.2 a x\left(1-a x^{2}\right) \exp \left(-a x^{2}\right)\right|_{x=0}=0 \\
V^{\prime \prime}(0)=\left.2 A \exp \left(-a x^{2}\right)\left(1-5 x^{2} a+2 a^{2} x^{4}\right)\right|_{x=0}=2 A
\end{gathered}
$$

Thus

$$
V(x)=\frac{1}{2}(2 A) x^{2}
$$

As we see this a SHO potential with $k=2 A \Rightarrow m \omega^{2}=2 A \Rightarrow \omega=\sqrt{\frac{2 A}{m}}$
Thus the energies of the first two states are

$$
E_{0}=\hbar \omega / 2=\frac{\hbar}{2} \sqrt{\frac{2 A}{m}}, \quad E_{1}=3 \hbar \omega / 2=\frac{3 \hbar}{2} \sqrt{\frac{2 A}{m}}
$$

Multiple Choice Section

Each question gets 1 mark for correct answer

5. Which of the following functions could represent the wave function of a free particle?
a. $A e^{i k x^{2}}$
b. $A e^{i k x}$
c. $A e^{-x^{2}}$
d. $A \sin (k x)$
6. Particles have a total energy that is greater than the "potential step." What is the probability that the particles will be reflected?
a. more information is needed
b. zero
c. 100%
d. greater than zero
7. Particles have a total energy that is less than that of a potential barrier. When a particle penetrates a barrier, its wave function is
a. exponentially increasing
b. oscillatory
c. exponentially decreasing
d. none of the above
8. The ground state energy of a harmonic oscillator is
a. $E=\hbar \omega$
b. $E=\hbar \omega / 2$
c. $E=(2 / 3) \hbar \omega$
d. $E=0$
e. $E=\hbar \omega / 4$
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}, \hbar=h / 2 \pi=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}, 1 \stackrel{o}{A}=10^{-10} \mathrm{~m}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$, $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

For an infinite square well:

$\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}, \quad n=1,2, \ldots, \infty$
For a particle wave:
$\lambda=h / p$ and $k=2 \pi / \lambda$.
For an finite square well:

$$
N=\left[\frac{\lambda}{\pi / 2}\right]+1 \quad U_{0}=\frac{2 m V_{0}}{\hbar^{2}} \quad \lambda=a \sqrt{U_{0}}
$$

For a potential step: $E>V_{0}$

$$
R=\left(\frac{k-k^{\prime}}{k+k^{\prime}}\right)^{2}=\left(\frac{\sqrt{E}-\sqrt{E-V_{0}}}{\sqrt{E}+\sqrt{E-V_{0}}}\right)^{2}, \quad T=\frac{4 k k^{\prime}}{\left(k+k^{\prime}\right)^{2}}=\frac{4 \sqrt{E\left(E-V_{0}\right)}}{\left(\sqrt{E}+\sqrt{E-V_{0}}\right)^{2}}
$$

For a potential barrier of finite width: $E>V_{0}$

$$
T=\frac{4 E\left(E-V_{0}\right)}{V_{0}^{2} \sin ^{2}\left(L\left(2 m / \hbar^{2}\right)^{0.5} \sqrt{E-V_{0}}\right)+4 E\left(E-V_{0}\right)}
$$

For a potential barrier of finite width: $E<V_{0}$
$T=\frac{4\left(V_{0}-E\right) E}{V_{0}^{2} \sinh ^{2}\left(L\left(2 m / \hbar^{2}\right)^{0.5} \sqrt{V_{0}-E}\right)+4\left(V_{0}-E\right) E}$
$\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

For the SHO:
$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad \psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}(\xi) e^{-\xi^{2} / 2}, \quad \xi \equiv \sqrt{\frac{m \omega}{\hbar}} x$
$H_{0}=1$
$H_{1}=2 \xi$
$H_{2}=4 \xi^{2}-2$
$H_{3}=8 \xi^{3}-12 \xi$
$H_{4}=16 \xi^{4}-48 \xi^{2}+12$
$H_{5}=32 \xi^{5}-160 \xi^{3}+120 \xi$
$a=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right), \quad a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)$
$a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$
$N=a^{\dagger} a, \quad\left[a, a^{\dagger}\right]=1$

Useful mathematics:

$\int_{-\infty}^{+\infty} x^{n} e^{-\lambda x} d x=\frac{n!}{\lambda^{n+1}}, \quad \quad \int_{-\infty}^{+\infty} e^{-\lambda x^{2}} d x=\sqrt{\frac{\pi}{\lambda}}, \quad \int_{-\infty}^{+\infty} x^{2} e^{-\lambda x^{2}} d x=\frac{1}{2 \lambda} \sqrt{\frac{\pi}{\lambda}}$,
$\int_{-\infty}^{+\infty} x^{2 v} e^{-\lambda x^{2}} d x=\frac{(2 n)!}{n!(4 \lambda)^{n}} \sqrt{\frac{\pi}{\lambda}}$
$\int \sin ^{2}(k x) d x=\frac{x}{2}-\frac{1}{4 k} \sin (2 k x)$
$\int \sin (k x) \sin (2 k x) d x=\frac{1}{6 k}(3 \sin (k x)-\sin (3 k x))$
$V(x)=V(0)+V^{\prime}(0) x+\frac{1}{2} V^{\prime \prime}(0) x^{2}+\ldots$.
$(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x$
$[A, B]=A B-B A, \quad[A, B]=-[B, A], \quad[A, B+C]=[A, B]+[A, C]$,
$[A, B C]=B[A, C]+[A, B] C$

