Solutions of Exercises Sheet #5

SOLUTION 1:

$$F(x) = \int_0^x \frac{2}{\beta^2} x e^{\left(-\left(\frac{x}{\beta}\right)^2\right)} dx$$

$$u = -\left(\frac{x}{\beta}\right)^2, du = \frac{-2}{\beta^2} x dx$$

$$F(u) = -\int e^u du = -e^u \Rightarrow F(x) = -e^{-\frac{x^2}{\beta^2}} \Big|_0^x = -e^{-\frac{x^2}{\beta^2}} + 1$$

The inverse of the CDF is:

$$F(x) = -e^{-x^2/\beta^2} + 1$$

$$U = -e^{-x^2/\beta^2} + 1$$

$$\ln(1 - U) = \frac{-x^2}{\beta^2} \Rightarrow -x^2 = \beta^2 \ln(1 - U) \Rightarrow x = \sqrt{-\beta^2 \ln(1 - U)}$$

Using the inverse CDF from above, with β = 2.0, and the uniform numbers given it is yields:

u =		0.943	0.398	0.372	0.943	0.204	0.794
$F^{-1}(u)$	= 3	3.385087302	1.424777644	1.36413359	3.385087302	0.955313756	2.513864841

	Α	В	С	D	E	F	G
1	beta =	2					
2	u =	0.0509933	0.40752994	0.0652326	0.33930042	0.48971631	0.18430718
3	Finv(u) =	0.45755619	1.44700372	0.51945184	1.2875652	1.64047365	0.90270136
Α							

	Α	В	С	D
1	beta =	2		
2	u =	=RAND()	=RAND()	=RAND()
3	Finv(u) =	=SQRT(-1*(\$B\$1^2)*LN(1-B2))	=SQRT(-1*(\$B\$1^2)*LN(1-C2))	=SQRT(-1*(\$B\$1^2)*LN(1-D2))
А				

SOLUTION 2:

Negative Binomial = $\sum iid$ Geometric variables

Geometric

Definition of k	k: the number of trials until get the first success	k: the number of failures before the first success
Parameters	$0 success probability (real)$	$0 success probability (real)$
Support	k trials where $k \in \{1,2,3,\ldots\}$	k failures where $k \in \{0,1,2,3,\ldots\}$
Probability mass function (pmf)	$(1-p)^{k-1}p$	$(1-p)^k p$
CDF	$1-(1-p)^k$	$1-(1-p)^{k+1}$
Mean	$\frac{1}{p}$	$\frac{1-p}{p}$
Variance	$\frac{1-p}{p^2}$	$rac{1-p}{p^2}$

Inverse cdf	k=floor(ln(l-u)/ln(l-p)),	k=floor(ln(l-u)/ln(l-p))-l,
	0 < u < 1	0 < u < 1

Negative Binomial

Definition of k	x: the number of trials until get the r successes	x: the number of failures before the r successes
amf	$ \begin{pmatrix} x-1 \\ r-1 \end{pmatrix} p^r (1-p)^{x-r}, $ $ x = r, r+1, r+2, \dots$	$\binom{x+r-1}{x}p^r(1-p)^x$
	x = r, r + 1, r + 2,	$Range(X) = \{0, 1, 2, 3, \ldots\}$
mean	$E(X) = \frac{r}{p}$	$\frac{r(1-p)}{p}$
variance	$Var(X) = \frac{r(1-p)}{p^2}$	$\frac{r(1-p)}{p^2}$

Convolution method: The negative binomial distribution (r = 4, p = 0.4) is the sum of 4 geometric random variables with (p = 0.4).

U	GEOM(p=0.4) = floor(ln(1-u)/ln(1-p))
0.943	5
0.498	1
0.102	0
0.398	0

Answer: 6 trials

	A	В	C
1	p =	0.4	
2	1	5	
3 4	2	1	
	3	6	
5	4	1	
6	Sum =	13	
7			
8		13	
9	1	5	
10	2	18	
11	3	11	
12	4	11	
13	5	12	

	Α	В
1	p =	0.4
2	1	= INT(LN(1-RAND())/LN(1-\$B\$1))
3	2	= INT(LN(1-RAND())/LN(1-\$B\$1))
4	3	= INT(LN(1-RAND())/LN(1-\$B\$1))
5	4	= INT(LN(1-RAND())/LN(1-\$B\$1))
6	Sum =	=SUM(B2:B5)
7		
8		=B6
9	1	=TABLE(,A8)
10	2	=TABLE(,A8)
11	3	=TABLE(,A8)
12	4	=TABLE(,A8)
13	5	=TABLE(,A8)

b)

Bernoulli (p)

$$X \sim Bernoulli(p)$$

 $Pr\{X=1\} = p$ and $Pr\{X=0\} = 1-p$

For $u \sim U[0,1]$

$$F(u)^{-1} = \begin{cases} 1 & ; \ 0 \le u \le p \\ 0 & ; \ p < u \le 1 \end{cases}$$

Bernoulli trials: Generate Bernoulli trials (p = 0.4)until you get 4 successes

	U	Bernoulli trial
1	0.943	0
2	0.498	0
3	0.102	1
4	0.398	1
5	0.528	0
6	0.057	1
7	0.372	1

Answer: 7 trials

	Α	В	С	D
1		p =	0.4	
2				
3	1	0.94830888	0	
4	2	0.27166852	1	
5	3	0.49000916	0	
6	4	0.03448615	1	
7	5	0.03467214	1	
8	6	0.63954252	0	
9	7	0.2122916	1	
10	8	0.68014207	0	
11	9	0.58458677	0	
12	10	0.722571	0	

SOLUTION 3:

This is a mixture distribution. Let F_1 represent the lognormal distribution with $\omega_1 = 0.3$. Let F_2 represent the uniform distribution with $\omega_2 = 0.7$.

```
Generate u \sim U(0,1)

Generate v \sim U(0,1)

If u <= 0.3 then x = a + (b-a)u

Else x = e^{(NORM.INV(v, \mu, \sigma^2))}

End if Return x
```

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 is a normal distribution, then $\exp(X) \sim \operatorname{Lognormal}(\mu, \sigma^2)$

By Excel:

Generate $Y \sim N(\mu, \sigma^2)$ via NORM.INV(v, μ , σ), then X = EXP(Y) will be lognormal, where v will be the U(0,1) and by let

$$m = E[X]$$
$$v = V[X]$$

Then,

$$\mu = \ln\left(\frac{m}{\sqrt{1 + \frac{v}{m^2}}}\right)$$

$$\sigma^2 = \ln\left(1 + \frac{v}{m^2}\right)$$

Using U1 = 0.943 to pick the distribution implies, $X \sim U(10,20)$ because 0.943 > 0.3

$$X = a + (b-a)U2 = 10 + 10*0.398 = 13.98$$

Using U3 = 0.372 to pick the distribution implies, $X \sim U(10,20)$ because 0.372 > 0.3

$$X = a + (b-a)U4 = 10 + 10*0.943 = 19.43$$

We "got lucky" and did not have to generate from the lognormal distribution.

SOLUTION 4:

This is a mixture distribution. Let F_1 represent the U(20,25) distribution with $\omega_1 = 0.25$. Let F_2 represent the Weibull distribution($\alpha = 2$, $\beta = 4.5$) with $\omega_2 = 0.75$.

Generate
$$u \sim U(0,1)$$

Generate $v \sim U(0,1)$
If $u \le 0.25$ then $x = a + (b-a)u$
Else $x = \beta [-ln(1-v)]^{\frac{1}{\alpha}}$
End if Return x

0.943	0.398	0.372	0.943	0.204	0.794
0.498	0.528	0.272	0.899	0.294	0.156
0.102	0.057	0.409	0.398	0.400	0.997

Using U1 = 0.943 to pick the distribution implies, $X \sim \text{Weibull because } 0.943 > 0.25$

Using
$$U2 = 0.398$$

$$X = 4.5[-ln(1-0.398)]^{(1/2)} = 3.2057$$

Using U3 = 0.372 to pick the distribution implies, X ~ Weibull because 0.372 > 0.25

Using
$$U4 = 0.943$$

$$X = 4.5[-\ln(1-0.943)]^{(1/2)} = 7.616$$

SOLUTION 5:

Chi-squared Variable = $\sum iid$ Squared normal variables.

i.e.

If $X_1, X_2, ..., X_n$ are independent standard normal random variables, then the sum of their squares has the chi-squared distribution with n degrees of freedom

$$X_1^2+\cdots+X_n^2 \sim \chi_n^2$$

Use Z = NORM.S.INV(U) where U is read from the table. Do this for 5 PRN's and, square and sum the values. Students could also use the z-table or by Excel.

	U	Z~N(0,1)	Z^2	
1	0.943	1.580466818	2.497875364	
2	0.398	-0.258527277	0.066836353	
3	0.372	-0.326560927	0.106642039	
4	0.943	1.580466818	2.497875364	
5	0.204	-0.827418321	0.684621077	
		sum =	5.853850198	Y1
1	0.794	0.820379146	0.673021943	
2	0.498	-0.005013278	2.5133E-05	
3	0.528	0.070243314	0.004934123	
4	0.272	-0.606775364	0.368176342	
5	0.899	1.275874179	1.627854921	
		sum =	2.674012462	Y2

	Α	В	С	D
1		U	Z~N(0,1)	Z^2
2	1	0.821	0.917854277	0.842456473
3	2	0.686	0.483418274	0.233693228
4	3	0.04	-1.744995512	3.045009337
5	4	0.567	0.169545728	0.028745754
6	5	0.112	-1.215368342	1.477120208
7			sum =	5.627024999
8				
9			5.627024999	
10		1	6.816904869	
11		2	9.866906372	
12		3	2.367665346	
13		4	6.145432952	
14		5	4.99349963	
4 -				

	Α	В	С	D
1		U	Z~N(0,1)	Z^2
2	1	=RAND()	=NORM.S.INV(B2)	=C2^2
3	2	=RAND()	=NORM.S.INV(B3)	=C3^2
4	3	=RAND()	=NORM.S.INV(B4)	=C4^2
5	4	=RAND()	=NORM.S.INV(B5)	=C5^2
6	5	=RAND()	=NORM.S.INV(B6)	=C6^2
7			sum =	=SUM(D2:D6)
8				
9			=D7	
10		1	=TABLE(,B9)	
11		2	=TABLE(,B9)	
12		3	=TABLE(,B9)	
13		4	=TABLE(,B9)	
14		5	=TABLE(,B9)	
4.00				

SOLUTION 6:

- (a) acceptance/rejection
- (b) majorizing
- c) acceptance probability

SOLUTION 7:

Choose g(x) = 3/2. Integrating over [-1, 1] yields c = 3. Thus, $w(x) = \frac{1}{2}$ over [-1,1]

where $f(x)/g(x) = x^2$

$$u = 0.943 \rightarrow x = 2*0.943 - 1 = 0.886$$

 $v = 0.398$
as $f(0.886)/g(0.886) = .785 > v$, therefore accept $x = 0.886$
 $u = 0.372 \rightarrow x = 2*0.372 - 1 = -0.256$
 $v = 0.943$
as $f(-0.256)/g(-0.256) = .066 < v$, therefore reject $x = 0.886$

Continue in this manner until you get the 2nd acceptance.

SOLUTION 8:

$$w(x) = h(x) = ab \frac{x^{a-1}}{(b+x^a)^2}$$
 for $x > 0$

$$\rightarrow \operatorname{cdf} = \frac{x^{a}}{\left(b + x^{a}\right)} \quad for \ x > 0$$

$$\rightarrow$$
 inverce of cdf = $x = \left(\frac{bu}{1-u}\right)^{\frac{1}{a}}$

SOLUTION 9:

This question demonstrates the splitting property of a Poisson distribution. Each machine experience a Poisson process with mean $\lambda \times p_i$. Thus, the distribution of the inter-arrival times to each drill press will be exponential with mean $1/(\lambda \times p_i)$

Because of the splitting rule for Poisson processes, the drill presses each see arrivals according to the following three Poisson processes:

$$\lambda_1 = \lambda p_1 = 12 * 0.25 = 3$$

$$\lambda_2 = \lambda p_2 = 12 * 0.45 = 5.4$$

$$\lambda_3 = \lambda p_3 = 12 * 0.3 = 3.6$$

Since the time between arrivals will be exponential, we have the following first arrival time to each drill press:

$$X1 = -(1/3)\ln(1-0.943) = 0.9549$$

 $X2 = -(1/5.4)\ln(1-0.398) = 0.09398$
 $X3 = -(1/3.6)\ln(1-0.372) = 0.12923$

Generate from 3 different exponential distributions using these rates.

	Α	В	С	D	
1	lambda =	12			
2	i=	1	2	3	
3	p(i) =	0.25	0.45	0.3	
4	lambda(i)	3	5.4	3.6	
5					
6	TBA	1	2	3	
7	1	0.0282274	0.019113	1.1029119	
8	2	0.1400122	0.7207481	0.113414	
9	3	0.1387528	0.0100121	0.1616798	
10					
11	Arrivals				
12	1	0.0282274	0.019113	1.1029119	
13	2	0.1682396	0.7398611	1.2163259	
14	3	0.3069924	0.7498732	1.3780057	

	Α	В	С	D
1	lambda =	12		
2	i=	1	2	3
3	p(i) =	0.25	0.45	0.3
4	lambda(i)	=B3*\$B\$1	=C3*\$B\$1	=D3*\$B\$1
5				
6	TBA	1	2	3
7	1	=(-1/B\$4)*LN(1-RAND())	=(-1/C\$4)*LN(1-RAND())	=(-1/D\$4)*LN(1-RAND())
8	2	=(-1/B\$4)*LN(1-RAND())	=(-1/C\$4)*LN(1-RAND())	=(-1/D\$4)*LN(1-RAND())
9	3	=(-1/B\$4)*LN(1-RAND())	=(-1/C\$4)*LN(1-RAND())	=(-1/D\$4)*LN(1-RAND())
10				
11	Arrivals			
12	1	=B7	=C7	=D7
13	2	=B12+B8	=C12+C8	=D12+D8
14	3	=B13+B9	=C13+C9	=D13+D9

Alternative solution procedure:

Generate inter-arrival times by using λ =12. At each arrival, determine which drill press sees the arrival by using the PMF (0.25, 0.45, 0.3) to pick the drill press. Continue generating until you get the first arrival at each drill press.