Solutions of Exercises Sheet \#5

SOLUTION 1:

a)
$F(x)=\int_{0}^{x} \frac{2}{\beta^{2}} x e^{\left(-(x / \beta)^{2}\right)} d x$
$u=-(x / \beta)^{2}, d u=\frac{-2}{\beta^{2}} x d x$
$F(u)=-\int e^{u} d u=-e^{u} \Rightarrow F(x)=-\left.e^{-x^{2} / \beta^{2}}\right|_{0} ^{x}=-e^{-x^{2} / \beta^{2}}+1$
The inverse of the CDF is:
$F(x)=-e^{-x^{2} / \beta^{2}}+1$
$U=-e^{-x^{2} / \beta^{2}}+1$
$\ln (1-U)=\frac{-x^{2}}{\beta^{2}} \Rightarrow-x^{2}=\beta^{2} \ln (1-U) \Rightarrow x=\sqrt{-\beta^{2} \ln (1-U)}$

b)

Using the inverse CDF from above, with $\beta=2.0$, and the uniform numbers given it is yields:

$\mathrm{u}=$	0.943	0.398	0.372	0.943	0.204	0.794
$F^{-1}(u)=$	3.385087302	1.424777644	1.36413359	3.385087302	0.955313756	2.513864841

,	A	B	C	D	E	F	G
1	beta $=$	2					
2	$\mathrm{u}=$	0.0509933	0.40752994	4 0.0652326	0.33930042	0.48971631	0.18430718
3	$\operatorname{Finv}(\mathrm{u})=$	0.45755619	1.44700372	20.51945184	1.2875652	1.64047365	0.90270136
]	A	B		C			D
1	beta $=$	2					
2	$\mathrm{u}=$	=RAND()		=RAND()		=RAND()	
3	$\operatorname{Finv}(\mathrm{u})=$	=SQRT(-1*(\$B\$1^2)	*LN(1-B2)) $=$	=SQRT(-1* ${ }^{*}$ \$ ${ }^{1 \wedge}$	2)*LN(1-C2))	$=$ SQRT $-1 *$ (\$B\$	$\left.1^{\wedge} 2\right)^{*}$ LN(1-D2))

SOLUTION 2:

a)

Negative Binomial $=\sum$ iid Geometric variables

Geometric

Definition of k	k: the number of trials until get the first success	k : the number of failures before the first success

Parameters	$0<p<1$ success probability (real)	$0<p \leq 1$ success probability (real)
Support	k trials where $k \in\{1,2,3, \ldots\}$	k failures where $k \in\{0,1,2,3, \ldots\}$
Probability mass function (pmf)	$(1-p)^{k-1} p$	$(1-p)^{k} p$
CDF	$1-(1-p)^{k}$	$\frac{1-(1-p)^{k+1}}{}$Mean $\frac{1}{p}$ Variance $\frac{1-p}{p^{2}}$

Inverse cdf	$\mathrm{k}=$ floor $(\ln (1-\mathrm{u}) / \ln (1-\mathrm{p}))$, 0	$\mathrm{k}=\mathrm{floor}(\ln (1-\mathrm{u}) / \ln (1-\mathrm{p}))-1$,
$0<u<1$		

Negative Binomial

Definition of k	$\mathrm{x}:$ the number of trials until get the r successes	x : the number of failures before the r successes
Doof	$\binom{x-1}{r-1} p^{r}(1-p)^{\mathrm{x}-r}$,	
$\mathrm{X}=r, r+1, r+2, \ldots$	$\binom{x+r-1}{x} p^{r}(1-p)^{x}$	
$\operatorname{Range}(X)=\{0,1,2,3, \ldots\}$		
mean	$E(X)=\frac{r}{p}$	$\frac{r(1-p)}{p}$
variance	$\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$	$\frac{r(1-p)}{p^{2}}$

Convolution method: The negative binomial distribution ($r=4, p=0.4$) is the sum of 4 geometric random variables with ($p=0.4$).

U	$\operatorname{GEOM}(\mathrm{p}=0.4)=$ floor $(\ln (1-\mathrm{u}) / \ln (1-\mathrm{p}))$
0.943	5
0.498	1
0.102	0
0.398	0

Answer: 6 trials

	A	B	C		A	B
1	$\mathrm{p}=$	0.4		1	$\mathrm{p}=$	0.4
2	1	5		2	1	$=\operatorname{lnT}(\mathrm{LN}(1-\mathrm{RAND}()) / \mathrm{LN}(1-\mathrm{SB}$ 1 1$))$
3	2	1		3	2	$=\operatorname{lNT}\left(\mathrm{LN}(1-\mathrm{RAND}()) / \mathrm{LN}(1-\mathrm{SB} 1)^{\text {a }}\right.$)
4	3	6		4	3	$=1 \mathrm{NT}(\mathrm{LN}(1-\mathrm{RAND}()) / \mathrm{LN}(1-\$ 8 \$ 1))$
5	4	1		5	4	$=\operatorname{lNT}(\mathrm{LN}(1-\mathrm{RAND}()) / \mathrm{LN}(1-\$ \mathrm{~B}$ \$1) $)$
6	Sum $=$	13		6	Sum =	=SUM(B2:B5)
7				7		
8		13		8		=B6
9	1			9	1	=TABLE(,A8)
10	2	18		10	2	=TABLE(,A8)
11	3	11		11	3	-TABLE(,A8)
12	4	11		12		-TABLE(,A8)
13	5	12		13	5	=TABLE(,A8)

Bernoulli (p)
$\mathrm{X} \sim \operatorname{Bernoulli}(p)$
$\operatorname{Pr}\{\mathrm{X}=1\}=p \quad$ and $\quad \operatorname{Pr}\{\mathrm{X}=0\}=1-p$
For $u \sim \mathrm{U}[0,1]$

$$
F(u)^{-1}= \begin{cases}1 & ; 0 \leq u \leq p \\ 0 & ; p<u \leq 1\end{cases}
$$

Bernoulli trials: Generate Bernoulli trials ($p=0.4$)until you get 4 successes

	U	Bernoulli trial
1	0.943	0
2	0.498	0
3	0.102	1
4	0.398	1
5	0.528	0
6	0.057	1
7	0.372	1

Answer: 7 trials

	A	B	C	D
1		$\mathrm{p}=$	0.4	
2				
3	1	0.94830888	0	
4	2	0.27166852	1	
5	3	0.49000916	0	
6	4	0.03448615	1	
7	5	0.03467214	1	
8	6	0.63954252	0	
9	7	0.2122916	1	
10	8	0.68014207	0	
11	9	0.58458677	0	
12	10	0.722571	0	

SOLUTION 3:

This is a mixture distribution. Let F_{1} represent the lognormal distribution with $\omega_{1}=$ 0.3 . Let F_{2} represent the uniform distribution with $\omega_{2}=0.7$.

Generate $u \sim \mathrm{U}(0,1)$
Generate $\mathrm{v} \sim \mathrm{U}(0,1)$
If $u<=0.3$ then
$x=a+(b-a) u$
Else
$\mathrm{x}=\mathrm{e}^{\wedge}\left(\operatorname{NORM} \cdot \operatorname{INV}\left(\mathrm{v}, \mu, \sigma^{2}\right)\right)$
End if
Return x

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is a normal distribution, then $\exp (X) \sim \operatorname{Lognormal}\left(\mu, \sigma^{2}\right)$
By Excel:
Generate $\mathrm{Y} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ via $\operatorname{NORM.INV}(\mathrm{v}, \mu, \sigma)$, then $\mathrm{X}=\operatorname{EXP}(\mathrm{Y})$ will be lognormal, where v will be the $\mathrm{U}(0,1)$ and by let

$$
\begin{aligned}
m & =E[X] \\
v & =V[X]
\end{aligned}
$$

Then,

$$
\begin{gathered}
\mu=\ln \left(\frac{m}{\sqrt{1+\frac{v}{m^{2}}}}\right) \\
\sigma^{2}=\ln \left(1+\frac{v}{m^{2}}\right)
\end{gathered}
$$

Using $\mathrm{U} 1=0.943$ to pick the distribution implies, $\mathrm{X} \sim \mathrm{U}(10,20)$ because $0.943>0.3$
$X=a+(b-a) U 2=10+10 * 0.398=13.98$
Using U3 $=0.372$ to pick the distribution implies, $X \sim U(10,20)$ because $0.372>0.3$
$\mathrm{X}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{U} 4=10+10 * 0.943=19.43$
We "got lucky" and did not have to generate from the lognormal distribution.

SOLUTION 4:

This is a mixture distribution. Let F_{1} represent the $\mathrm{U}(20,25)$ distribution with $\omega_{1}=$ 0.25 . Let F_{2} represent the Weibull distribution $(\alpha=2, \beta=4.5)$ with $\omega_{2}=0.75$.

```
Generate \(\mathrm{u} \sim \mathrm{U}(0,1)\)
Generate v ~ U \((0,1)\)
    If \(u<=0.25\) then
        \(x=a+(b-a) u\)
    Else
        \(x=\beta[-\ln (1-v)]^{\frac{1}{\alpha}}\)
    End if
Return x
```

0.943	0.398	0.372	0.943	0.204	0.794
0.498	0.528	0.272	0.899	0.294	0.156
0.102	0.057	0.409	0.398	0.400	0.997

Using U1 $=0.943$ to pick the distribution implies, $X \sim$ Weibull because $0.943>0.25$
Using $\mathrm{U} 2=0.398$
$X=4.5[-\ln (1-0.398)]^{\wedge}(1 / 2)=3.2057$

Using U3 $=0.372$ to pick the distribution implies, $\mathrm{X} \sim$ Weibull because $0.372>0.25$
Using U4 $=0.943$
$X=4.5[-\ln (1-0.943)]^{\wedge}(1 / 2)=7.616$

SOLUTION 5:

Chi-squared Variable $=\sum$ iid Squared normal variables.

i.e.

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent standard normal random variables, then the sum of their squares has the chi-squared distribution with n degrees of freedom

$$
X_{1}^{2}+\cdots+X_{n}^{2} \sim \chi_{n}^{2}
$$

Use $Z=N O R M . S . I N V(U)$ where U is read from the table. Do this for 5 PRN's and, square and sum the values. Students could also use the z-table or by Excel.

	\mathbf{U}	$\mathbf{Z} \sim \mathbf{N} \mathbf{(0 , 1)}$	$\mathbf{Z} \mathbf{Z}^{\wedge} \mathbf{2}$	
1	0.943	1.580466818	2.497875364	
2	0.398	-0.258527277	0.066836353	
3	0.372	-0.326560927	0.106642039	
4	0.943	1.580466818	2.497875364	
5	0.204	-0.827418321	0.684621077	
		sum $=$	5.853850198	Y 1
1	0.794	0.820379146	0.673021943	
2	0.498	-0.005013278	$2.5133 \mathrm{E}-05$	
3	0.528	0.070243314	0.004934123	
4	0.272	-0.606775364	0.368176342	
5	0.899	1.275874179	1.627854921	
		sum $=$	2.674012462	Y 2

	A	B	C	D
1		U	Z~N(0,1)	Z^2
2	1	0.821	0.917854277	0.842456473
3	2	0.686	0.483418274	0.233693228
4	3	0.04	-1.744995512	3.045009337
5	4	0.567	0.169545728	0.028745754
6	5	0.112	-1.215368342	1.477120208
7			sum $=$	5.627024999
8				
9			5.627024999	
10		1	6.816904869	
11		2	9.866906372	
12		3	2.367665346	
13		4	6.145432952	
14		5	4.99349963	

	A	B	C	D
1		U	Z~N(0,1)	Z^2
2	1	=RAND()	=NORM.S.INV(B2)	$=C 2 \wedge 2$
3	2	=RAND()	=NORM.S.INV(B3)	$=C 3 \wedge 2$
4	3	=RAND()	=NORM.S.INV(B4)	$=C 4 \wedge 2$
5	4	=RAND()	=NORM.S.INV(B5)	$=C 5 \wedge 2$
6	5	=RAND()	=NORM.S.INV(B6)	=C6^2
7			sum $=$	=SUM(D2:D6)
8				
9			=D7	
10		1	=TABLE(,B9)	
11		2	=TABLE(,B9)	
12		3	=TABLE(,B9)	
13		4	=TABLE(,B9)	
14		5	$=$ TABLE(,B9)	

SOLUTION 6:

(a) acceptance/rejection
(b) majorizing
c) acceptance probability

SOLUTION 7:

a)

Choose $\mathrm{g}(\mathrm{x})=3 / 2$. Integrating over $[-1,1]$ yields $\mathrm{c}=3$. Thus, $\mathrm{w}(\mathrm{x})=1 / 2$ over $[-1,1]$

where $\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})=x^{2}$
b
$u=0.943 \rightarrow x=2 * 0.943-1=0.886$
$\mathrm{v}=0.398$
as $f(0.886) / g(0.886)=.785>v$, therefore accept $x=0.886$
$u=0.372 \rightarrow x=2 * 0.372-1=-0.256$
$\mathrm{v}=0.943$
as $f(-0.256) / \mathrm{g}(-0.256)=.066<\mathrm{v}$, therefore reject $\mathrm{x}=0.886$

Continue in this manner until you get the $2^{\text {nd }}$ acceptance.

SOLUTION 8:

a)
$\mathrm{w}(\mathrm{x})=h(x)=a b \frac{x^{a-1}}{\left(b+x^{a}\right)^{2}} \quad$ for $x>0$
$\rightarrow \mathrm{cdf}=\frac{x^{a}}{\left(b+x^{a}\right)} \quad$ for $x>0$
\rightarrow inverce of cdf $=x=\left(\frac{b u}{1-u}\right)^{1 / a}$
b)

SOLUTION 9:

This question demonstrates the splitting property of a Poisson distribution. Each machine experience a Poisson process with mean $\lambda \times p_{i}$. Thus, the distribution of the inter-arrival times to each drill press will be exponential with mean $1 /\left(\lambda \times p_{i}\right)$

Because of the splitting rule for Poisson processes, the drill presses each see arrivals according to the following three Poisson processes:

$$
\begin{gathered}
\lambda_{1}=\lambda p_{1}=12 * 0.25=3 \\
\lambda_{2}=\lambda p_{2}=12 * 0.45=5.4 \\
\lambda_{3}=\lambda p_{3}=12 * 0.3=3.6
\end{gathered}
$$

Since the time between arrivals will be exponential, we have the following first arrival time to each drill press:

$$
\begin{aligned}
& X 1=-(1 / 3) \ln (1-0.943)=0.9549 \\
& X 2=-(1 / 5.4) \ln (1-0.398)=0.09398 \\
& X 3=-(1 / 3.6) \ln (1-0.372)=0.12923
\end{aligned}
$$

Generate from 3 different exponential distributions using these rates.

	A	B	C	D
1	lambda $=$	12		
2	i=	1	2	3
3	$\mathrm{p}(\mathrm{i})=$	0.25	0.45	0.3
4	lambda(i)	3	5.4	3.6
5				
6	TBA	1	2	3
7	1	0.0282274	0.019113	1.1029119
8	2	0.1400122	0.7207481	0.113414
9	3	0.1387528	0.0100121	0.1616798
10				
11	Arrivals			
12	1	0.0282274	0.019113	1.1029119
13	2	0.1682396	0.7398611	1.2163259
14	3	0.3069924	0.7498732	1.3780057

\triangle	A	B	C	D	
1	lambda $=$	12			
2	$\mathrm{i}=$	1	2	3	
3	$\mathrm{p}(\mathrm{i})=$	0.25	0.45	0.3	
4	lambda(i)	= $\mathrm{B} 3 * \$ \mathrm{~B}$ \$ 1	=C3*\$B\$1	=D3*\$B\$1	
5					
6	TBA	1	2	3	
7	1	=(-1/B\$4)*LN(1-RAND())	=(-1/C\$4)*LN(1-RAND())	$=(-1 / D \$ 4)^{*}$ LN(1-RAND())	
8	2	=(-1/B\$4)*LN(1-RAND())	=(-1/C\$4)*LN(1-RAND())	$=(-1 / D \$ 4)^{*}$ LN(1-RAND())	
9	3	$=(-1 / B \$ 4) *$ LN(1-RAND())	$=(-1 / C \$ 4) *$ LN(1-RAND())	$=(-1 / D \$ 4)^{*}$ LN(1-RAND())	
10					
11	Arrivals				
12	1	= ${ }^{\text {7 }}$	=C7	=D7	
13	2	= $\mathrm{B} 12+\mathrm{B8}$	= $\mathrm{C} 12+\mathrm{C} 8$	=D12+D8	
14	3	= $\mathrm{B} 13+\mathrm{B9}$	$=\mathrm{C} 13+\mathrm{C} 9$	=D13+D9	

Alternative solution procedure:
Generate inter-arrival times by using $\lambda=12$. At each arrival, determine which drill press sees the arrival by using the $\operatorname{PMF}(0.25,0.45,0.3)$ to pick the drill press. Continue generating until you get the first arrival at each drill press.

