University *	name

Take $g = 9.8 \text{ ms}^{-2}$ where ever needed

1	A car goes on a ce			n/h and returns along	g the same road with an	
	average speed of 5	0 km/h. The average	speed for the round	trip is:		В
	A) 53.2 km/h	B) 37.5 km/h	C) 42.7 km/h	D) 32.1 km/h	E) 24.5 km/h	
2	A rock is thrown downward from an unknown height above the ground with an initial speed of 10 m/s. It strikes the ground 3 s later. Determine the initial height of the rock above the ground.					D
	A) 57 m	B) 53 m	C) 49 m	D) 74 m	E) 41 m	
3	A car traveling at a constant speed of 45 m/s passes a trooper hidden behind a billboard. One second after the speeding car passes the billboard, the trooper sets out from the billboard to catch it, accelerating at a constant rate of 3 m/s ² . How long does it take him to overtake the car?					
	A) 21 s	B) 45 s	C) 31 s	D) 17 s	E) 36 s	
4		.6 cm, respectively. If	$\mathbf{F}\mathbf{A} - \mathbf{B} + 3\mathbf{C} = 0$, the	e components of vect		Е
	A) 3.2 i , 1.1 j	B) -3.6 i , 5.1 j	C) -6.7 i , 4.1 j	D) 3.2 i , -4.1 j	E) 7.3 i , -7.2 j	
5	A particle undergoes the following consecutive displacements: 3.5 m south, 8.2 m northeast, and 15 m west. The resultant displacement and its direction are: A) 10.51 m, 133° B) 9.48 m, 166° C) 8.38 m, 122° D) 5.32 m, 66° E) 12.33 m, 75°					В
6	At $t = 0$, a particle leaves the origin with a velocity of 9 j m/s and moves in the xy plane with a constant acceleration of $(2\mathbf{i} - 4\mathbf{j})$ m/s ² . At the instant the x coordinate of the particle is 15 m, what is the speed of the particle? A) 10 m/s B) 16 m/s C) 12 m/s D) 14 m/s E) 24 m/s					A
7	A plane is traveling horizontally at 30 m/s and 100 m above the ground. If the plane drops a package, where does the package strike the ground relative to the point at which it is released?					В
	A) 196.5 m	B) 135.5 m	C) 180.8 m	D) 311.2 m	E) 123.4 m	
8	surface (from large	gnitude of the friction est to smallest) in the of all blocks are the s	following 3	□ I	10N 110N	Е
	A) 3,2,1	B) All 3 are equal to each other	C) 2,3,1	D) 1,3,2	E) 1,2,3	

9			figure m ₁ =2 kg and the pulley and string,		a m ₁	D	
	A) 45.13 N	B) 20.54 N	C) 39.22 N	D) 26.13 N	E) 29.46 N		
10	You are standing on a scale in an elevator that is accelerating downward at a constant rate of 1m/s ² . Your mass is 100kg. You look at the scale to determine your weight, it reads:						
	A) 680 N	B) 880 N	C) 980 N	D) 1080 N	E) 780 N	В	
11	An object of mass $m = \sqrt{3}$ kg moves along a frictionless inclined plane $(\theta=30^\circ)$ under the influence of a force $F=10$ N as shown in figure. The acceleration of the mass is:						
	A) 0.1 m/s ²	B) 0.5 m/s^2	C) 1 m/s^2	D) 1.3 m/s^2	E) 2.2 m/s^2		
12	A 30 kg child rides on a circus Ferris wheel that takes her around a vertical circular path with a radius of 20 m every 22 s. What is the magnitude of the resultant force on the child at the highest point on this trajectory?						
	A) 49 N	B) 25 N	C) 39N	D) 26 N	E) 29 N		
13	Swimmers slide on two frictionless water slides as shown in the figure. Both of them drop over the same height, h, slide 1 is straight while slide 2 is curved. What is the relation between the final velocities v_1 and v_2 ?					A	
	A) $v_1 = v_2$	B) $v_1 > v_2$	C) $v_1 < v_2$	$\mathbf{D}) \ v_1 = 2v_2$	E) $v_2 = 2v_1$		
14	A graph of the force on an object is shown in figure. Determine the amount of work done by this force on the object that moves from $x=0$ m to $x=6$ m.						
	A) 31 J	B) 19 J	C) 22 J	D) 35 J	E) 27 J	E	

15	-	gged over a rough hori	· · · · · · · · · · · · · · · · · · ·		16 N	
	-	ngle of 37° above the h from 4 m/s to 6 m/s in		-	370	
		force during this displ	-			
						D
	A) 30 J	B) -64 J	C) -94 J	D) -34 J	E) 64 J	
16	A child pulls a cart	with a horizontal force	e of 77 N. If the car	rt moves horizontally a	total distance 42 m	
	in 3 min, what is the	e average power gener	ated by the child?			D
	A) 22 W	B) 15 W	C) 27 W	D) 18 W	E) 29 W	
17	A 75 kg man climb	os the stairs to the fifth	h floor of a building	g of height 16 m. His	potential energy has	
	increased by:					Δ
	A) 11.76 kJ	B) 15.23 kJ	C) 27.17 kJ	D) 18.04 kJ	E) 24.07 kJ	1 1
18	-	_			-	
	A boy on a bicycle traveling at 10 m/s on a horizontal road stops pedaling as he starts up a hill inclined at 3° to the horizontal. If friction forces are ignored, how far up the hill does he travel before stopping? A) 97.4 m B) 81.7 m C) 27.3 m D) 32.3 m E) 63.4 m What does the slope of a graph of U(x) versus x represent?					
	A) 97.4 m	B) 81.7 m	C) 27.3 m	D) 32.3 m	E) 63.4 m	
19	What does the slope	e of a graph of U(x) ve	rsus x represent?			
	A) the magnitude	B) the negative of	C) the <i>x</i>	D) the negative of the	E) None of these	D
	of the force on the object.	the magnitude of the force on the	component of the force on the	<i>x</i> component of the force on the	is correct.	ע
		object.	object.	object.		
20		rest at the top of a friggle 20° is sliding on a		Α 🛌	£1	
	At the bottom of th	e incline, The block en	ncounters a		<u> </u>	
		where the coefficient of and the ground is 0.21			ВС	
	block travel on the horizontal surface before coming to rest?					В
	A) 82.1 m	B) 95.2 m	C) 101.4 m	D) 78.7 m	E) 113.3 m	
21	A 7 Kg object moving with velocity 3 m/s collides with and sticks to an 8 kg object initially at rest. The magnitude of the velocity of the system after the collision is:					
	magnitude of the ve	receity of the system at	the comision is.			C
	A) 1.9 m/s	B) 2.4 m/s	C) 1.4 m/s	D) 1.7 m/s	E) 2.3 m/s	
22	O U	•	•	rection has a one-dime		
			_	e final velocity of the 8 mass system after the		
	$\frac{1}{x}$ m the positive x diff	schon. The total killeti	c energy of the two-	mass system after the (COMISION 18.	E
	A) 35 J	B) 25 J	C) 29 J	D) 16 J	E) 41 J	

University -	name	
--------------	------	--

23	In a perfectly inelastic one-dimensional collision between two objects, what condition alone is necessary so that all of the original kinetic energy of the system is gone after the collision?					
	A) The objects must have momenta with the same magnitude but opposite directions.	B) The objects must have the same mass.	C) The objects must have the same velocity.	D) The objects must have the same speed, with velocity vectors in opposite directions.	E) None of these is correct.	A
24	interval is 95 rad/s.	The angular accelerat	ion of the wheel is:	. Its angular speed at the		A
	A) 11.67 rad/s^2	B) 16.21 rad/s^2	C) 8.11 rad/s^2	D) 13.36 rad/s^2	E) 9.48 rad/s^2	
25	origin is at the center xy plane about the z rotational kinetic er	onnected by rigid rods er of the rectangle. If the axis with an angular energy of the system is: B) 1.62 kJ	he system rotates in speed of 6 rad/s, Th	the 3.00 kg	2.00 kg 6.00 m 4.00 kg E) 2.57 kJ	Е
26	An 80 N force acts figure). The torque A) 1.36 N.m	at the end of a 12 cm is: B) 11.24 N.m	C) 8.31 N.m	D) 4.23 N.m	E) 3.41 N.m	C
27	A model airplane with mass 0.75 kg is tethered by a wire so that it flies in a circle 40 m in radius. The airplane engine provides a net thrust of 0.80 N perpendicular to the tethering wire. The angular acceleration of the airplane when it is in level flight is:					Е

The End