Some Continuous Probability Distributions: Part II

Gamma Distribution

Chi Square Distribution

T Student Distribution

The Gamma Distribution and The Gamma Function:

Gamma Function:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

Properties of the Gamma function:

-For any $\alpha>1, \Gamma(\alpha)=(\alpha-1) \cdot \Gamma(\alpha-1)$

- For any positive integer, $n, \Gamma(\mathrm{n})=(\mathrm{n}-1)$!,

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

$\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y$
$\Gamma(\alpha+1)=\int_{0}^{\infty} y^{\alpha} e^{-y} d y \quad$ Integrating by Parts :

$$
\begin{aligned}
& u=y^{\alpha} \Rightarrow d u=\alpha y^{\alpha-1} d y \\
& d v=e^{-y} d y \Rightarrow v=-e^{-y}
\end{aligned}
$$

$\Rightarrow \Gamma(\alpha+1)=\int_{0}^{\infty} y^{\alpha} e^{-y} d y=u v-\int v d u=-\left.y^{\alpha} e^{-y}\right|_{0} ^{\infty}+\int_{0}^{\infty} \alpha y^{\alpha-1} e^{-y} d y=$

$$
=-0-(-0)+\alpha \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y=\alpha \Gamma(\alpha) \text { (Recursive Property) }
$$

Note that if α is a positiveinteger number, then $\Gamma(\alpha)=(\alpha-1)$!

Example: $\Gamma(10)=\int_{0}^{\infty} y^{9} e^{-y} d y=9$!
Prove that:

$$
\int_{0}^{\infty} x^{b} e^{-a y} d y=\Gamma(b+1) / a^{b+1}
$$

let $y=a x$ then $d y=a d x, \quad d x=d y / a$ then,
$\int_{0}^{\infty} x^{b} e^{-a y} d y=\Gamma(b+1) / a^{b+1}=$
$\int_{0}^{\infty}(y / a)^{b} e^{a y} d y / a=\left(1 / a^{b+1}\right) \int_{0}^{\infty} y^{b} e^{-y} d y=\Gamma(b+1) /\left(a^{b+1}\right)$
Example :
$\int_{0}^{\infty} x^{10} e^{-4 x} d x=\Gamma(11) / 4^{11}$
Realation with Beta Function:

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\Gamma(x) \Gamma(y) / \Gamma(x+y)
$$

Gamma, Chi and Exponential Distributions

A continuous ry X has a Gamma Distribution if the pdf of X is

$$
f(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{\frac{-x}{\beta}} \quad, \mathrm{x} \geq 0 \\ 0 \quad, \text { otherwise } & \text { Where } \alpha>0 \text { and } \beta>0\end{cases}
$$

The standard Gamma distribution has $\beta=1$

$$
\mu=\alpha \beta, \quad \sigma^{2}=\alpha \beta^{2}, \quad M_{x}(t)=\left(\frac{1}{1-\beta_{t}}\right)^{\alpha}
$$

In Gamma pdf

$$
\begin{array}{cc}
\operatorname{Exp}(x ; \beta) & \text { if } \alpha=1 \\
f(x ; \beta)=\left\{\begin{array}{l}
\frac{1}{\beta} e^{-x / \beta} ; x>0 \\
0 ; \text { elsewhere }
\end{array}\right. \\
\mu=\alpha \beta, \\
\sigma^{2}=\alpha \beta^{2}, \\
M_{x}(t)=\left(\frac{1}{1-\beta t}\right)^{\alpha} & \begin{array}{l}
\text { Chi-Square Dis. } \\
\frac{1}{2^{v / 2} \Gamma(v / \alpha)} x^{(v / 2)-1} e^{\frac{-x}{2}}, \mathrm{x} \geq 0 \\
0
\end{array}, \text { otherwise } \begin{array}{l}
\text { with } v=v, \\
4
\end{array} \\
\sigma^{2}=2 v, \\
M_{x}(t)=\left(\frac{1}{1-2 t}\right)^{v / 2}, t \neq 1 / 2
\end{array}
$$

Why do we need gamma distribution?
Any normal distribution is bell-shaped and symmetric. There are many practical situations that do not fit to symmetrical distribution.

The Gamma family pdfs can yield a wide variety of skewed distributions. β is called the scale parameter because values other than 1 either stretch or compress the pdf in the x-direction.

The (CDF) of the standard gamma r.v. X: (Optional subject)

$F(x ; \alpha)=\int_{0}^{x} \frac{y^{\alpha-1} e^{-y}}{\Gamma(\alpha)} d y, \quad \mathbf{x}>\mathbf{0}$
is called the incomplete gamma function. There are extensive tabulations available for $\mathrm{F}(\mathrm{x} ; \alpha)$. We will refer to page 742 on Devore, for $\alpha=1,2, \ldots, 10$ and $x=$ $1,2, . ., 15$.

- Let X have a gamma distribution with parameters α and β. For any $\mathrm{x}>0$, the cdf of X is given by:

$$
p(X \leq x)=F(x ; \alpha, \beta)=F\left(\frac{x}{\beta} ; \alpha\right)
$$

where $\mathrm{F}(\bullet ; \alpha)$ is the incomplete gamma function.
Example:
$X=$ the survival time in weeks. $\alpha=8, \beta=15$.
Expected survival time $E(X)=(8)(15)=120$ weeks.

$$
\mathrm{V}(\mathrm{X})=(8)(15)^{2}=1800, \sigma_{\mathrm{x}}=42.43
$$

$$
\begin{aligned}
& \mathrm{P}(60 \leq \mathrm{X} \leq 120)=\mathrm{P}(\mathrm{X} \leq 120)-\mathrm{P}(\mathrm{X} \leq 60) \\
&=\mathrm{F}(120 / 15 ; 8)-\mathrm{F}(60 / 15 ; 8) \\
&=\mathrm{F}(8 ; 8)-\mathrm{F}(4 ; 8)=0.547-0.051=0.496 \\
& \mathrm{P}(\mathrm{X} \geq 30)=1-\mathrm{P}(\mathrm{X}<30)=1-\mathrm{P}(\mathrm{X} \leq 30)
\end{aligned}
$$

$$
=1-\mathrm{F}(30 / 15 ; 8)=0.999
$$

Exercises

6.45 The length of time for one individual to be served at a cafeteria is a random variable having an exponential distribution with a mean of 4 minutes. What is the probability that a person is served in less than 3 minutes on at least 4 of the next 6 days?

Solution

6.45 $P(X<3)=\frac{1}{4} \int_{0}^{3} e^{-x / 4} d x=-\left.e^{-x / 4}\right|_{0} ^{3}=1-e^{-3 / 4}=0.5276$.

Let Y be the number of days a person is served in less than 3 minutes. Then

$$
\begin{aligned}
& P(Y \geq 4)=\sum_{x=4}^{6} b\left(y ; 6,1-e^{-3 / 4}\right)=\binom{6}{4}(0.5276)^{4}(0.4724)^{2}+\binom{6}{5}(0.5276)^{5}(0.4724) \\
& +\binom{6}{6}(0.5276)^{6}=0.3968 .
\end{aligned}
$$

6.39 If a random variable X has the gamma distribution with $\alpha=2$ and $0=1$, find $P(1.8<\mathrm{X}<2.4)$.

Solution

6.39 $P(1.8<X<2.4)=\int_{1.8}^{2.4} x e^{-x} d x=\left.\left[-x e^{-x}-e^{-x}\right]\right|_{1.8} ^{2.4}=2.8 e^{-1.8}-3.4 e^{-2.4}=0.1545$.
6.42 Suppose that the time, in hours, taken to repair a heat pump is a random variable X having a gamma distribution with parameters $\alpha=2$ and $3=1 / 2$. What is the probability that the next service call will require (a) at most 1 hour to repair the heat pump?
(b) at least 2 hours to repair the heat pump?

Solution

6.42 (a) $P(X<1)=4 \int_{0}^{1} x e^{-2 x} d x=\left.\left[-2 x e^{-2 x}-e^{-2 x}\right]\right|_{0} ^{1}=1-3 e^{-2}=0.5940$.
(b) $P(X>2)=4 \int_{0}^{\infty} x e^{-2 x} d x=\left.\left[-2 x e^{-2 x}-e^{-2 x}\right]\right|_{2} ^{\infty}=5 e^{-4}=0.0916$.
6.44 In a certain city, the daily consumption of electric power, in millions of kilowatt-hours, is a random variable X having a gamma distribution with mean $\mu=6$ and variance $a^{2}=12$.
(a) Find the values of α and β.
(b) Find the probability that on any given day the daily power consumption will exceed 12 million kilowatthours.

Solution

6.44 (a) $\mu=\alpha \beta=6$ and $\sigma^{2}=\alpha \beta^{2}=12$. Substituting $\alpha=6 / \beta$ into the variance formula we find $6 \beta=12$ or $\beta=2$ and then $\alpha=3$.
(b) $P(X>12)=\frac{1}{16} \int_{12}^{\infty} x^{2} e^{-x / 2} d x$. Integrating by parts twice gives

$$
P(X>12)=\left.\frac{1}{16}\left[-2 x^{2} e^{-x / 2}-8 x e^{-x / 2}-16 e^{-x / 2}\right]\right|_{12} ^{\infty}=25 e^{-6}=0.0620
$$

The T Distribution

Student's \mathbf{t}-distribution has the following probability density function

$$
f(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

where ν is the number of degrees of freedom and Γ is the Gamma function. This may also
be written as $\quad f(t)=\frac{1}{\sqrt{\nu} B\left(\frac{1}{2}, \frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad$ where \mathbf{B} is the Beta function

Some properties

1- It has mean of zero.
2- It is symmetric about the mean.
3- It ranges from $-\infty$ to ∞.
4- compared to the normal distribution, the t distribution is less peaked in the center and has higher tails.
5- It depends on the degrees of freedom ($\mathrm{n}-1$).
6- t distribution approaches the standard norma distribution as ($\mathrm{n}-1$) approaches ∞.

Density of the \boldsymbol{t}-distribution for $\mathrm{v}=1$

Special cases

There are some special cases from t distribution

$$
f(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

Certain values of ν give an especially simple form.

- $\nu=1$

Distribution function:

$$
F(x)=\frac{1}{2}+\frac{1}{\pi} \arctan (x)
$$

Density function:

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

See Cauchy distribution

- $\nu=2$

Distribution function:

$$
F(x)=\frac{1}{2}\left[1+\frac{x}{\sqrt{2+x^{2}}}\right] .
$$

Density function:

$$
f(x)=\frac{1}{\left(2+x^{2}\right)^{\frac{3}{2}}}
$$

Examples

$t(7,0.975)=2.3646$
$t(24,0.995)=2.7696$

If $\mathrm{P}\left(\mathrm{T}_{(18)}>\mathrm{t}\right)=0.975$,
then $\mathrm{t}=-2.1009$

If $\mathrm{P}\left(\mathrm{T}_{(22)}<\mathrm{t}\right)=0.99$, then $\mathrm{t}=2.508$

AlSO.
$\mathbf{t}_{\mathbf{0 . 9 5 , 1 0}}=\mathbf{1 . 8 1 2 5}$
$t_{0.975,18}=2.1009$
$\boldsymbol{t}_{\mathbf{0 . 0 1 , 2 0}}=-2.528$

12 $\mathbf{t}_{\mathbf{0 . 1 0 , 2 9}}=-\mathbf{1 . 3 1 1}$

