
 

Surfaces in the space 3  

We have been exploring vectors and vector operations in three-dimensional 
space, and we have developed equations to describe lines, planes, and spheres. 
In this section, we use our knowledge of planes and spheres, which are 
examples of three-dimensional figures called surfaces, to explore a variety of 
other surfaces that can be graphed in a three-dimensional coordinate system. 

Identifying Cylinders 

The first surface we’ll examine is the cylinder. Although most people immediately 
think of a hollow pipe or a soda straw when they hear the word cylinder, here we 
use the broad mathematical meaning of the term. As we have seen, cylindrical 
surfaces don’t have to be circular. A rectangular heating duct is a cylinder, as is a 
rolled-up yoga mat, the cross-section of which is a spiral shape. 

In the two-dimensional coordinate plane, the equation 2 2 9x y   describes a 

circle centered at the origin with radius 3. In three-dimensional space, this same 
equation represents a surface. Imagine copies of a circle stacked on top of each 
other centered on the z-axis, forming a hollow tube. We can then construct a 
cylinder from the set of lines parallel to the z-axis passing through the 

circle 2 2 9x y   in the xy-plane, as shown in the figure. In this way, any curve in 

one of the coordinate planes can be extended to become a surface. 



 

Figure : In three-dimensional space, the graph of equation 2 2 9x y   is a 

cylinder with radius 3 centered on the z-axis. It continues indefinitely in the 
positive and negative directions. 

DEFINITION: CYLINDERS AND RULINGS 

A set of lines parallel to a given line passing through a given curve is known as a 
cylindrical surface, or cylinder. The parallel lines are called rulings. 

From this definition, we can see that we still have a cylinder in three-dimensional 
space, even if the curve is not a circle. Any curve can form a cylinder, and the 
rulings that compose the cylinder may be parallel to any given line. 



 

Figure: In three-dimensional space, the graph of equation 3z x   is a cylinder, 
or a cylindrical surface with rulings parallel to the y-axis. 

EXAMPLE : GRAPHING CYLINDRICAL SURFACES 

Sketch the graphs of the following cylindrical surfaces. 

a. 2 2 25x z    

b. 22z x y   

c. siny x  

Solution 

a. The variable y can take on any value without limit. Therefore, the lines ruling 
this surface are parallel to the y-axis. The intersection of this surface with the xz-
plane forms a circle centered at the origin with radius 5.  



 

Figure : The graph of equation 2 2 25x z   is a cylinder with radius 5 centered 
on the y-axis. 

b. In this case, the equation contains all three variables —x,y, and z— so none of 
the variables can vary arbitrarily. The easiest way to visualize this surface is to 
use a computer graphing utility. 



 

Figure  

c. In this equation, the variable z can take on any value without limit. Therefore, 
the lines composing this surface are parallel to the z-axis. The intersection of this 

surface with the yz-plane outlines curve y=sin x. 



 

Figure :The graph of equation y=sin x is formed by a set of lines parallel to 

the z-axis passing through curve y=sin x in the xy-plane. 

EXERCISE  

Sketch or use a graphing tool to view the graph of the cylindrical surface defined 

by equation z= 2y . 

Answer When sketching surfaces, we have seen that it is useful to sketch the 
intersection of the surface with a plane parallel to one of the coordinate planes. 
These curves are called traces. We can see them in the plot of the cylinder. 

DEFINITION: TRACES 

The traces of a surface are the cross-sections created when the surface 
intersects a plane parallel to one of the coordinate planes. Traces are useful in 
sketching cylindrical surfaces. For a cylinder in three dimensions, though, only 
one set of traces is useful. Notice, in Figure, that the trace of the graph of  



z=sin x in the xz-plane is useful in constructing the graph. The trace in the xy-
plane, though, is just a series of parallel lines, and the trace in the yz-plane is 
simply one line. 

 

Figure : (a) This is one view of the graph of equation z=sin x. (b) To find the 
trace of the graph in the xz-plane, set  y=0. The trace is simply a two-dimensional 

sine wave. 

Cylindrical surfaces are formed by a set of parallel lines. Not all surfaces in three 
dimensions are constructed so simply, however. We now explore more complex 
surfaces, and traces are an important tool in this investigation. 

 

 



Quadric Surfaces 

We have learned about surfaces in three dimensions described by first-order 
equations; these are planes. Some other common types of surfaces can be 
described by second-order equations. We can view these surfaces as three-
dimensional extensions of the conic sections we discussed earlier: the ellipse, 
the parabola, and the hyperbola. We call these graphs quadric surfaces 

DEFINITION: QUADRIC SURFACES AND CONIC SECTIONS 

Quadric surfaces are the graphs of equations that can be expressed in the form 

2 2 2 0A x B y C z D xy E xz F yz G x H y J z K           

When a quadric surface intersects a coordinate plane, the trace is a conic 
section. 

An ellipsoid is a surface described by an equation of the 

form 2 2 2 2 2 2 1a x b y c z   . 

Set x=0 to see the trace of the ellipsoid in the yz-plane. To see the traces in 

the y-and xz-planes, set z=0 and y=0, respectively. Notice that, if a=b, the trace 

in the xy-plane is a circle. Similarly, if a=c, the trace in the xz-plane is a circle 

and, if b=c, then the trace in the yz-plane is a circle. A sphere, then, is an 

ellipsoid with a=b=c. 

EXAMPLE : SKETCHING AN ELLIPSOID 

Sketch the ellipsoid 

2 2 2 2 2 22 3 5 1x y z   . 

Solution 

Start by sketching the traces. To find the trace in the xy-plane, set z=0: 
2 2 2 22 3 1x y  . To find the other traces, first set y=0 and then set x=0. 

https://math.libretexts.org/TextMaps/Calculus/Book%3A_Calculus_(OpenStax)/11%3A_Parametric_Equations_and_Polar_Coordinates/11.5%3A_Conic_Sections
https://math.libretexts.org/TextMaps/Calculus/Book%3A_Calculus_(OpenStax)/11%3A_Parametric_Equations_and_Polar_Coordinates/11.5%3A_Conic_Sections


 

Figure : (a) This graph represents the trace of equation 2 2 2 2 2 22 3 5 1x y z    in 

the xy-plane, when we set z=0. 

 (b) When we set y=0, we get the trace of the ellipsoid in the xz-plane, which is 
an ellipse.  

(c) When we set x=0, we get the trace of the ellipsoid in the yz-plane, which is 
also an ellipse. 

Now that we know what traces of this solid look like, we can sketch the surface in 
three dimensions. 



 

Figure  (a) The traces provide a framework for the surface. 

 (b) The center of this ellipsoid is the origin. 

The trace of an ellipsoid is an ellipse in each of the coordinate planes. However, 
this does not have to be the case for all quadric surfaces. Many quadric surfaces 
have traces that are different kinds of conic sections, and this is usually indicated 
by the name of the surface. For example, if a surface can be described by an 

equation of the form 2 2 2 2a x b y c z  . 

then we call that surface an elliptic paraboloid. The trace in the xy-plane is an 
ellipse, but the traces in the xz-plane and yz-plane are parabolas.  

Other elliptic paraboloids can have other orientations simply by interchanging the 
variables to give us a different variable in the linear term of the 

equation 2 2 2 2a x c z b y   or 2 2 2 2b y c z a x  . 



 

Figure: This quadric surface is called an elliptic paraboloid. 

EXAMPLE: IDENTIFYING TRACES OF QUADRIC SURFACES 

Describe the traces of the elliptic paraboloid 2 2 22
5

z
x y  . 

Solution 

To find the trace in the xy-plane, set z=0: 2 2 22 0x y  . The trace in the 

plane z=0 is simply one point, the origin. Since a single point does not tell us 
what the shape is, we can move up the z-axis to an arbitrary plane to find the 
shape of other traces of the figure. 

The trace in plane z=5 is the graph of equation: 2 2 22 1x y  , which is an ellipse. 

In the xz-plane, the equation becomes 25z x . The trace is a parabola in this 

plane and in any plane with the equation y=b. 

In planes parallel to the yz-plane, the traces are also parabolas, as we can see in 
Figure below. 



 

Figure : (a) The paraboloid 2 2 22 5x y z  . 

 (b) The trace in plane z=5.  

(c) The trace in the xz-plane. (d) The trace in the yz-plane. 



 

 

EXERCISE: 

A hyperboloid of one sheet is any surface that can be described with an 

equation of the form 2 2 2 2 2 2 1a x b y c z   . Describe the traces of the hyperboloid 

of one sheet given by equation 2 2 2 2 2 23 2 5 1x y z    

Hyperboloids of one sheet have some fascinating properties. For example, they 
can be constructed using straight lines, such as in the sculpture in Figure (a). In 
fact, cooling towers for nuclear power plants are often constructed in the shape 
of a hyperboloid. The builders are able to use straight steel beams in the 
construction, which makes the towers very strong while using relatively little 
material (Figure b).  

 

Figure : (a) A sculpture in the shape of a hyperboloid can be constructed of 
straight lines.  

(b) Cooling towers for nuclear power plants are often built in the shape of a 
hyperboloid. 

 



EXAMPLE :  FINDING THE FOCUS OF A PARABOLIC 
REFLECTOR 

Energy hitting the surface of a parabolic reflector is concentrated at the focal 
point of the reflector. If the surface of a parabolic reflector is described by 

equation 2 2100 100 4x y z  , where is the focal point of the reflector? 

 

Figure : Energy reflects off of the parabolic reflector and is collected at the focal 
point. (credit: modification of CGP Grey, Wikimedia Commons) 

Solution 

Since z is the first-power variable, the axis of the reflector corresponds to the z-

axis. The coefficients of 2x  and 2y  are equal, so the cross-section of the 

paraboloid perpendicular to the z-axis is a circle. We can consider a trace in 

the xz-plane or the yz-plane; the result is the same. Setting y=0, the trace is a 

parabola opening up along the z-axis, with standard equation 2100 4x pz , 

where p is the focal length of the parabola. We get p is 6.25 m, which tells us 

that the focus of the paraboloid is 6.25 m up the axis from the vertex. Because 
the vertex of this surface is the origin, the focal point is (0,0,6.25). 

Seventeen standard quadric surfaces can be derived from the general equation 

2 2 2 0A x B y C z D xy E xz F yz G x H y J z K           

The following figures summarize the most important ones. 



 

Figure : Characteristics of Common Quadratic Surfaces: Ellipsoid, Hyperboloid 
of One Sheet, Hyperboloid of Two Sheets. 



 

Figure: Characteristics of Common Quadratic Surfaces: Elliptic Cone, Elliptic 
Paraboloid, Hyperbolic Paraboloid. 



EXAMPLE : IDENTIFYING EQUATIONS OF QUADRIC SURFACES 

Identify the surfaces represented by the given equations. 

a. 16 2x  +9 2y  +16 2z  =144 

b. 9 2x  −18x+4 2y  +16y−36z+25=0 

Solution 

a. The x,y, and z terms are all squared, and are all positive, so this is probably an 
ellipsoid. However, let’s put the equation into the standard form for an ellipsoid 
just to be sure. We have 

16 2x  +9 2y  +16 2z  =144. 

Dividing through by 144 gives 

2 2 2

1
9 16 9

x y z
    . 

So, this is, in fact, an ellipsoid, centered at the origin. 

b. We first notice that the z term is raised only to the first power, so this is either 
an elliptic paraboloid or a hyperbolic paraboloid. We also note there are x terms 
and y terms that are not squared, so this quadric surface is not centered at the 
origin. We need to complete the square to put this equation in one of the 
standard forms. We have 

   

2 2

2 2

2 2 2

2 2

2 2

2 2

9 18 4 16 36 25 0

9( 2 ) 4( 4 ) 36 25 0

9 ( 1) 1 4 ( 2) 2 36 25 0

9( 1) 4( 2) 36

( 1) ( 2)

2 3

x x y y z

x x y y z

x y z

x y z

x y
z

      

      

        

    

 
 

  

 

This is an elliptic paraboloid centered at (1,-2,0). 

 


