Exercise

Question 1:
Choose the correct answer in the following:
1- An example of nodes is:
a \backslash Roads.
b\Pipes.
c\Airports.
$d \backslash$ Airlines.

2- An example of arcs is:
$a \backslash$ Aircraft. $\quad b \backslash$ Intersections $\quad c \backslash$ Airports. $d \backslash$ Airlines.
3 - according to the following; an example of directed cycle:

$a \backslash A C \rightarrow C A$.
$b \backslash A B \rightarrow B C \rightarrow C A$.
$c \backslash A C \rightarrow C D \rightarrow D A$.
$d \backslash D A \rightarrow A B$

Question 2:

Use Kruskal's algorithm to find a set of links ($\mathrm{n}-1$ links for n nodes) with shortest total length - spanning tree

Remember that Kruskal's algorithm the minimum spanning tree of the graph satisfy sub graph including:

- all vertices exist .
- connected
- No cycles .

Iteration	Connected	Closest unconnected node	Arc
1	E	D	E-D
2	E,D	B	D-B
3	E,D,B	A	B-A
4	E,D,B,A	G	B-G
5	E,D,B,A,G	F	G-F
6	E,D,B,A,G,F	C	G-C

All nodes are now connected, so this solution to the problem is the desired (optimal) one. The total length of the links is 16 miles

