SPSS Part 2

A.3 إختبار " ت" لعينتين مرتبطتين 4.3

* الهدف

يستخدم اختبار "ت" لعينتين مرتبطتين للتحقق من ما إذا كانت هناك فروق معنوية بين متوسطي مجتمعين مرتبطين (اختبار قبل – بعد)

يستخدم الاختبار لدراسة تساوي متوسطي مجتمعين مرتبطين ويعرف باسم الاختبار قبل وبعد. في حالة العينات الصغيرة (اقل من 30 مشاهدة) يشترط لتطبيقه ان تكون البيانات مسحوبة من التوزيع الطبيعي. (في حالة العينات الكبيرة (ذات الحجم 30 فأكثر) يمكن الاستغناء عن القيد المذكور، وان الاختبار يعرف إحصائيا باسم اختبار "ص" او Z test).

8- In an experiment comparing 2 feeding methods for caves, eight pairs of twins were used – one twin receiving Method A and other twin receiving Method B. At the end of a given time, the calves were slaughtered and cooked, and the meat was rated for its taste (with a higher number indicating a better taste):

Twin pair	Method A	Method B	
1	27	23	
2	37	28	
3	31	30	
4	38	32	
5	29	27	
6	35	29	
7	41	36	
8	37	31	

Assuming approximate normality, test if the average taste score for calves fed by Method B is less than the average taste foe calves fed by Method A. Use α =0.05.

One-Way-ANOVA إختبار تحليل التباين في اتجاه واحد 4.4

* الهدف

يستخدم إختبار تحليل التباين في اتجاه واحد او مايعرف باختبار "ف" لعينات مستقلة للتحقق من ما إذا كانت هناك فروق معنوية بين متوسطات اكثر من مجتمعين مستقلين

يعتبر اختبار تحليل التباين (أو اختبار "ف") اختبار ا معلمياً هاما، يستخدم لدر اسة تساوي متوسطات اكثر من مجتمعين مستقلتين. في حالة العينات الصغيرة (أقل من 30 مشاهدة) يشترط لتطبيقه ان تكون:

البيانات تتبع التوزيع الطبيعي.
بيانات المجتمعات مستقلة عن بعضها البعض.

A firm wishes to compare four programs for training workers to perform a certain manual task. Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the end of the training period, a test is conducted to see how quickly trainees can perform the task. The number of times the task is performed per minute is recorded for each trainee, with the following results:

Observation	Program 1	Program 2	Program 3	Program 4
1	9	10	12	9
2	12	6	14	8
3	14	9	11	11
4	11	9	13	7
5	13	10	11	8

 $\mathbf{Q4}$ to use the one way ANOVA- test, we need to make sure that

1) The independence of the four samples: It is very clear that there is no correlation between the values of the four samples.

2) The populations follow a normal distribution i.e.

 H_0 : the four populations follow a normal distribution

Vs

 H_1 : the four populations do not follow a normal distribution

)4	NumberOfTask	TypesOfProgram	var
-	9.00	1.00	
-	12.00	1.00	
-	14.00	1.00	
-	11.00	1.00	
-	13.00	1.00	
-	10.00	2.00	
-	6.00	2.00	
-	9.00	2.00	
-	9.00	2.00	
-	10.00	2.00	
-	12.00	3.00	
-	14.00	3.00	
-	11.00	3.00	
-	13.00	3.00	
-	11.00	3.00	
-	9.00	4.00	
-	8.00	4.00	
-	11.00	4.00	
-	7.00	4.00	
-	8.00	4.00	
-	-	-	
-	-	-	
-	-		
-	-	-	
-	-	-	
-	-		
-	-	-	
-	-	-	
-	-	-	
-			
	IBM SPSS	Statistics Processor is ready	/
			EN

sti	ics Data Ed	itor	_	_	-	
	<u>A</u> nalyze	Direct <u>Marketing</u>	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indo
	Repo	orts	►	*		
	D <u>e</u> so	riptive Statistics	•	123 Freq	uencies	
	Ta <u>b</u> le	s	•	La Desc	criptives	
	Co <u>m</u>	pare Means	►		ore	Pass
_	<u>G</u> ene	eral Linear Model	•	Cros	etabe	
_	Gene	erali <u>z</u> ed Linear Mode	ls ▶	<u> </u>	5 Anolysia	
_	Mi <u>x</u> eo	Models	•		F Analysis	
_	Corre	elate		Ratio)	
_	<u>R</u> egr	ession	•	P-P F	Plots	
_	L <u>o</u> gli	near		🛃 <u>Q</u> -Q I	Plots	
_	Neur	al Net <u>w</u> orks	•	-	7.00	
_	Class	si <u>f</u> y	•	-	8.00	
_	Dime	nsion Reduction		-	9.00	
-	Sc <u>a</u> le	•		-	10.00	
-	Nonp	arametric Tests	•		12.00	
-	Fore	casting		-	12.00	
-	Survi	val	*	-	14.00	
-	Multip	ole Response	•	-	15.00	
-	🚧 Missi	ng Value Analysis			16.00	
-	Multip	ole Imputation	•		17.00	
-	Com	plex Samples	•		18.00	
-	🐺 Simu	lation		_	19.00	
	Quali	tv Control	•	-	20.00	
_	ROC	Curve		-	21.00	
		<u>-</u>			22.00	
	-	-		-	23.00	
		ĺ			04.00	

- 62 -

Explore

[DataSet1] E:\328\7 الدرس)Untitled1.sav

TypesOfProgram

Case Processing Summary										
			Cases							
		Va	Valid Missing				tal			
	TypesOfProgram	N	Percent	N	Percent	Z	Percent			
NumberOfTask	1.00	5	100.0%	0	0.0%	5	100.0%			
	2.00	5	100.0%	0	0.0%	5	100.0%			
	3.00	5	100.0%	0	0.0%	5	100.0%			
	4.00	5	100.0%	0	0.0%	5	100.0%			

Descriptives

	TypesC)fProgram		Statistic	Std. Error
NumberOfTask	1.00	Mean		11.8000	.86023
		95% Confidence Interval	Lower Bound	9.4116	
		for Mean	Upper Bound	14.1884	
		5% Trimmed Mean		11.8333	
		Median		12.0000	
		Variance		3.700	
		Std. Deviation		1.92354	
		Minimum		9.00	
		Maximum		14.00	
		Range		5.00	
		Interquartile Range		3.50	
		Skewness		590	.913
		Kurtosis		022	2.000
	2.00	Mean		8.8000	.73485

_	2.00	Mean		8.8000	.73485
		95% Confidence Interval	Lower Bound	6.7597	
		for Mean	Upper Bound	10.8403	
		5% Trimmed Mean		8.8889	
		Median		9.0000	
		Variance		2.700	
		Std. Deviation		1.64317	
		Minimum		6.00	
		Maximum		10.00	
		Range		4.00	
		Interquartile Range		2.50	
		Skewness		-1.736	.913
		Kurtosis		3.251	2.000
_	3.00	Mean		12.2000	.58310
		95% Confidence Interval	Lower Bound	10.5811	
		for Mean	Upper Bound	13.8189	
		5% Trimmed Mean		12.1667	
		Median		12.0000	
		Variance		1.700	
		Std. Deviation		1.30384	
		Minimum		11.00	
		Maximum		14.00	
		Range		3.00	
		Interquartile Range		2.50	
		Skewness		.541	.913
		Kurtosis		-1.488	2.000
_	4.00	Mean		8.6000	.67823
		95% Confidence Interval	Lower Bound	6.7169	
		for Mean	Upper Bound	10.4831	
		5% Trimmed Mean		8.5556	
		Median		8.0000	
		Variance		2.300	
		Std. Deviation		1.51658	
		Minimum		7.00	
		Maximum		11.00	
		Range		4.00	
		Interguartile Range		2.50	

weulan	8.0000	
Variance	2.300	
Std. Deviation	1.51658	
Minimum	7.00	
Maximum	11.00	
Range	4.00	
Interquartile Range	2.50	
Skewness	1.118	.913
Kurtosis	1.456	2.000

Tests of Normality

		Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	TypesOfProgram	Statistic	df	Sig.	Statistic	df	Sig.	
NumberOfTask	1.00	.141	5	.200	.979	5	.928	
	2.00	.348	5	.047	.779	5	.054	
	3.00	.221	5	.200*	.902	5	.421	
	4.00	.254	5	.200*	.914	5	.492	
+ This is a lawyou								

This is a lower bound of the true significance.

a. Lilliefors Significance Correction

As P - value > .05 for the four populations.

Ł

So, we except H_0 : the four populations follow a normal distribution

3) Homogeneity of Variance (to get a test of the assumption of homogeneity of variance) i.e.

$$H_0: \sigma_{program 1}^2 = \sigma_{program 2}^2 = \sigma_{program 3}^2 = \sigma_{program 4}^2$$

i.e. the variances of each sample are equal

Vs

H_1 : The variances are not all equal

This will be clear later.

Now, the **goal** of the question:

 $H_0: \mu_{program 1} = \mu_{program 2} = \mu_{program 3} = \mu_{program 4}$

i.e. treatments are equally effective

Vs

*H*₁: *The means are not all equal*

at $\alpha = .05$

- 65 -

S Statist	tics Data Ed	litor						
sform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp	
	Re <u>p</u> o D <u>e</u> so	orts criptive Statistics	*					1
	Table	es	•					-
0001	Co <u>m</u>	pare Means		Mean Mean	S			Genc
	<u>G</u> ene	eral Linear Model	•	🖸 One-	Sample T Te	st		
	Gene	erali <u>z</u> ed Linear Mode	ls 🕨	🔝 Indep	enden <u>t</u> -Sam	ples T Test		
	Mixed	d Models	•	Raire	d-Samples T	Test		
	<u>C</u> orre	elate		One-	Nav ANOVA			
	<u>R</u> egr	ession	•		6.00		00	
	L <u>o</u> glinear			•	7.00	1.1	00	
	Neur	al Net <u>w</u> orks	•	•	8.00	1.	00	
	Class	sify	•	-	9.00	1.	00	
	<u>D</u> ime	ension Reduction	*	-	10.00	1.	00	
	Sc <u>a</u> le	e	•	-	11.00	1.	00	
	Nonp	oarametric Tests	•	-	12.00	1.	00	
	Fore	casting	•		12.00	2	00	
	<u>S</u> urvi	val			14.00	2	00	
	M <u>u</u> lti;	ple Response	*		15.00	2	00	
	ジ Missi	ng Value Anal <u>y</u> sis			16.00		00	
	Multip	ple Imputation	*		17.00	1.0	00	
	Com	plex Samples	•		18.00	1.0	00	
	🗒 Simu	lation			19.00	1.0	00	
	Quali	ity Control			20.00	1.0	00	
		Cupio			21.00	1.0	00	
	. ROC				22.00	1.0	00	
					22.00	1	00	

Helps in the homogeneity of variance test

- 66 -

as P - value < .05, then we reject $H_0: \mu_{program 1} = \mu_{program 2} = \mu_{program 3} = \mu_{program 4}$.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: NumberOfTask LSD

		Mean Difference (l-			95% Confide	ence Interval
(I) TypesOfProgram	(J) TypesOfProgram	J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	3.00000	1.01980	.010	.8381	5.1619
	3.00	40000	1.01980	.700	-2.5619	1.7619
	4.00	3.20000	1.01980	.006	1.0381	5.3619
2.00	1.00	-3.00000	1.01980	.010	-5.1619	8381
	3.00	-3.40000	1.01980	.004	-5.5619	-1.2381
	4.00	.20000	1.01980	.847	-1.9619	2.3619
3.00	1.00	.40000	1.01980	.700	-1.7619	2.5619
	2.00	3.40000	1.01980	.004	1.2381	5.5619
	4.00	3.60000	1.01980	.003	1.4381	5.7619
4.00	1.00	-3.20000*	1.01980	.006	-5.3619	-1.0381
	2.00	20000	1.01980	.847	-2.3619	1.9619
	3.00	-3.60000*	1.01980	.003	-5.7619	-1.4381

*. The mean difference is significant at the 0.05 level

1) $H_0: \mu_{program 1} = \mu_{program 2} \ vs \ H_1: \mu_{program 1} \neq \mu_{program 2} \ at \ \alpha = .05$

as P - value = .01 < .05, then we reject H_0 .

2) $H_0: \mu_{program 1} = \mu_{program 3}$ vs $H_1: \mu_{program 1} \neq \mu_{program 3}$ at $\alpha = .05$

as P - value = .7 > .05, then we except H_0 .

3) $H_0: \mu_{program 1} = \mu_{program 4} vs H_1: \mu_{program 1} \neq \mu_{program 4} at \alpha = .05$

as P - value = .006 < .05, then we reject H_0 .

4) $H_0: \mu_{program 2} = \mu_{program 3}$ vs $H_1: \mu_{program 2} \neq \mu_{program 3}$ at $\alpha = .05$

as P - value = .004 < .05, then we reject H_0 .

5) $H_0: \mu_{program 2} = \mu_{program 4} vs H_1: \mu_{program 2} \neq \mu_{program 4} at \alpha = .05$

as P - value = .847 > .05, then we except H_0 .

6) $H_0: \mu_{program 3} = \mu_{program 4}$ vs $H_1: \mu_{program 3} \neq \mu_{program 4}$ at $\alpha = .05$

as P - value = .003 < .05, then we reject H_0 .