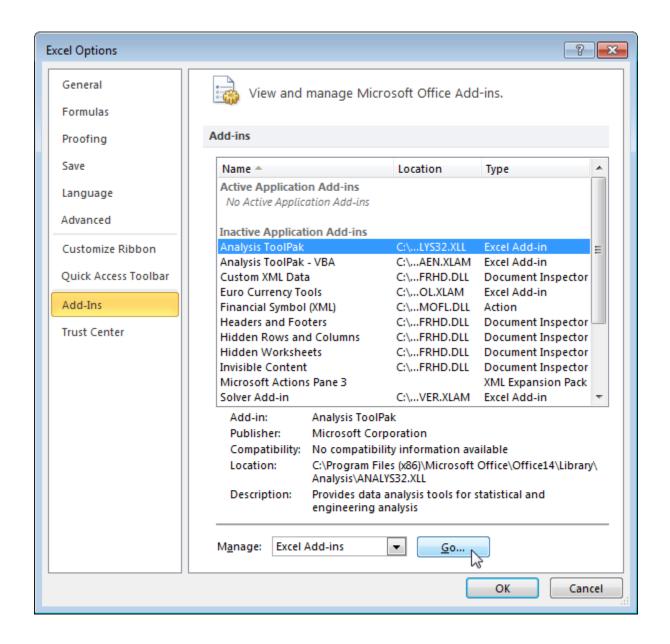
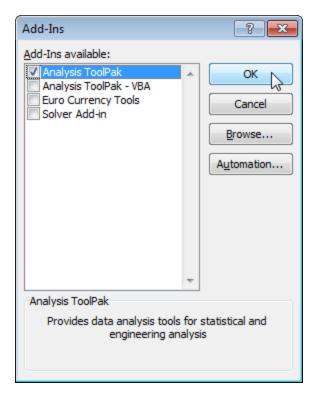
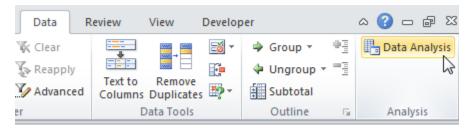

Part 2

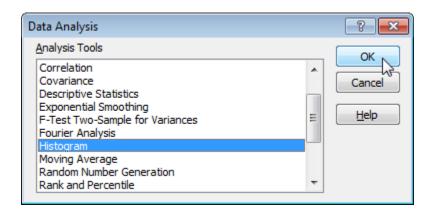
Data Analysis


The Analysis ToolPak is an Excel add-in program that provides data analysis tools for financial, statistical and engineering data analysis.

To load the Analysis ToolPak add-in, execute the following steps.


1. Click on Excel Options.

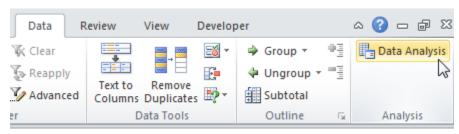

2. Under Add-ins, select Analysis ToolPak and click on the Go button.


3. Check Analysis ToolPak and click on OK.

4. On the Data tab, you can now click on Data Analysis.

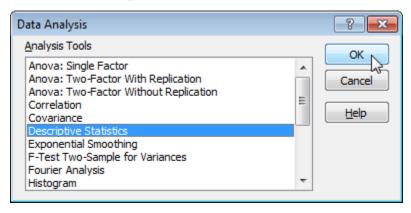
The following dialog box below appears.

Examples on Data analysis

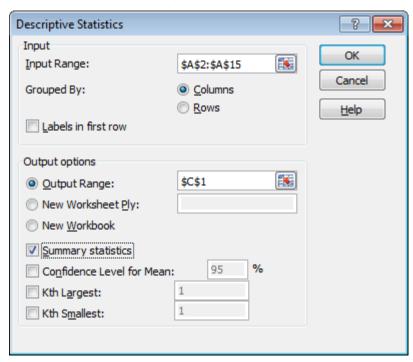

1- Descriptive Statistics

You can use the Analysis Toolpak add-in to generate descriptive statistics. For example, you may have the scores of 14 participants for a test.

M26							
	Α	В					
1	Scores						
2	82						
3	93						
4	91						
5	69						
6	96						
7	61						
8	88						
9	58						
10	59						
11	100						
12	93						
13	71						
14	78						
15	98						
16							
17							


To generate descriptive statistics for these scores, execute the following steps.

1. On the Data tab, click Data Analysis.



Note: can't find the Data Analysis button? Click here to load the Analysis ToolPak add-in.

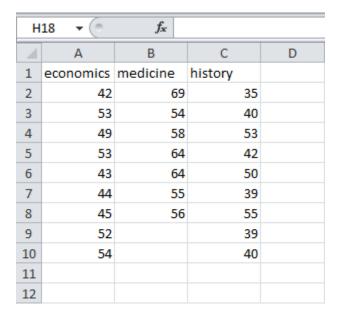
2. Select Descriptive Statistics and click OK.

- 3. Select the range A2:A15 as the Input Range.
- 4. Select cell C1 as the Output Range.
- 5. Make sure Summary statistics is checked.

6. Click OK.

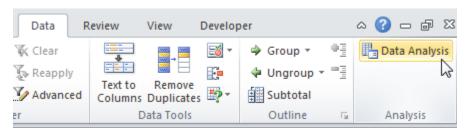
Result:

L28 • f _x								
4	Α	В	С	D	Е			
1	Scores		Column					
2	82							
3	93		Mean	81.21428571				
4	91		Standard Error	4.045318243				
5	69		Median	85				
6	96		Mode	93				
7	61		Standard Deviation	15.13619489				
8	88		Sample Variance	229.1043956				
9	58		Kurtosis	-1.426053506				
10	59		Skewness	-0.402108004				
11	100		Range	42				
12	93		Minimum	58				
13	71		Maximum	100				
14	78		Sum	1137				
15	98		Count	14				
16								
17								

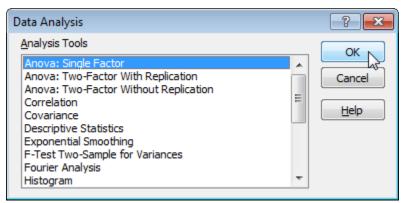

2- Analysis of variance (Anova)

This example teaches you how to perform a single factor ANOVA (analysis of variance) in Excel. A single factor or one-way ANOVA is used to test the null hypothesis that the means of several populations are all equal.

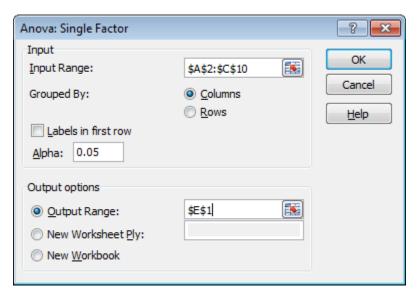
Below you can find the salaries of people who have a degree in economics, medicine or history.


 $H0:\mu 1 = \mu 2 = \mu 3$

H1: at least one of the means is different.


To perform a single factor ANOVA, execute the following steps.

1. On the Data tab, click Data Analysis.



Note: can't find the Data Analysis button? Click here to load the Analysis ToolPak add-in.

2. Select Anova: Single Factor and click OK.

- 3. Click in the Input Range box and select the range A2:C10.
- 4. Click in the Output Range box and select cell E1.

5. Click OK.

Result:

Е	F	G	Н	1	J	K
Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	9	435	48.33333	23.5		
Column 2	7	420	60	32.33333		
Column 3	9	393	43.66667	50.5		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1085.84	2	542.92	15.19623	7.16E-05	3.443357
Within Groups	786	22	35.72727			
Total	1871.84	24				

Conclusion:

if F > F crit, we reject the null hypothesis. This is the case, 15.196 > 3.443. Therefore, we reject the null hypothesis. The means of the three populations are not all equal. At least one of the means is different. However, the ANOVA does not tell you where the difference lies. You need a t-Test to test each pair of means.