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Preface

A statistical model is a probability distribution constructed to enable inferences to
be drawn or decisions made from data. This idea is the basis of most tools in the
statistical workshop, in which it plays a central role by providing economical and
insightful summaries of the information available.

This book is intended as an integrated modern account of statistical models covering
the core topics for studies up to a masters degree in statistics. It can be used for a
variety of courses at this level and for reference. After outlining basic notions, it
contains a treatment of likelihood that includes non-regular cases and model selection,
followed by sections on topics such as Markov processes, Markov random fields,
point processes, censored and missing data, and estimating functions, as well as more
standard material. Simulation is introduced early to give a feel for randomness, and
later used for inference. There are major chapters on linear and nonlinear regression
and on Bayesian ideas, the latter sketching modern computational techniques. Each
chapter has a wide range of examples intended to show the interplay of subject-matter,
mathematical, and computational considerations that makes statistical work so varied,
so challenging, and so fascinating.

The target audience is senior undergraduate and graduate students, but the book
should also be useful for others wanting an overview of modern statistics. The reader
is assumed to have a good grasp of calculus and linear algebra, and to have followed
a course in probability including joint and conditional densities, moment-generating
functions, elementary notions of convergence and the central limit theorem, for ex-
ample using Grimmett and Welsh (1986) or Stirzaker (1994). Measure is not required.
Some sections involve a basic knowledge of stochastic processes, but they are intended
to be as self-contained as possible. To have included full proofs of every statement
would have made the book even longer and very tedious. Instead I have tried to
give arguments for simple cases, and to indicate how results generalize. Readers in
search of mathematical rigour should see Knight (2000), Schervish (1995), Shao
(1999), or van der Vaart (1998), amongst the many excellent books on mathematical
statistics.

Solution of problems is an integral part of learning a mathematical subject. Most
sections of the book finish with exercises that test or deepen knowledge of that section,
and each chapter ends with problems which are generally broader or more demanding.

Real understanding of statistical methods comes from contact with data.
Appendix A outlines practicals intended to give the reader this experience. The
practicals themselves can be downloaded from

http://statwww.epfl.ch/people/~davison/SM

ix



x Preface

together with a library of functions and data to go with the book, and errata. The
practicals are written in two dialects of the S language, for the freely available package
R and for the commercial package S-plus, but it should not be hard for teachers to
translate them for use with other packages.

Biographical sketches of some of the people mentioned in the text are given as
sidenotes; the sources for many of these are Heyde and Seneta (2001) and

http://www-groups.dcs.st-and.ac.uk/~history/

Part of the work was performed while I was supported by an Advanced Research
Fellowship from the UK Engineering and Physical Science Research Council. I am
grateful to them and to my past and present employers for sabbatical leaves during
which the book advanced. Many people have helped in various ways, for example
by supplying data, examples, or figures, by commenting on the text, or by test-
ing the problems. I thank Marc-Olivier Boldi, Alessandra Brazzale, Angelo Canty,
Gorana Capkun, James Carpenter, Valérie Chavez, Stuart Coles, John Copas, Tom
DiCiccio, Debbie Dupuis, David Firth, Christophe Girardet, David Hinkley, Wilfred
Kendall, Diego Kuonen, Stephan Morgenthaler, Christophe Osinski, Brian Ripley,
Gareth Roberts, Sylvain Sardy, Jamie Stafford, Trevor Sweeting, Valérie Ventura,
Simon Wood, and various anonymous reviewers. Particular thanks go to Jean-Yves
Le Boudec, Nancy Reid, and Alastair Young, who gave valuable comments on much of
the book. David Tranah of Cambridge University Press displayed exemplary patience
during the interminable wait for me to finish. Despite all their efforts, errors and
obscurities doubtless remain. I take responsibility for this and would appreciate being
told of them, in order to correct any future versions.

My long-suffering family deserve the most thanks. I dedicate this book to them,
and particularly to Claire, without whose love and support the project would never
have been finished.

Lausanne, January 2003
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Introduction

Statistics concerns what can be learned from data. Applied statistics comprises a
body of methods for data collection and analysis across the whole range of science,
and in areas such as engineering, medicine, business, and law — wherever variable
data must be summarized, or used to test or confirm theories, or to inform decisions.
Theoretical statistics underpins this by providing a framework for understanding the
properties and scope of methods used in applications.

Statistical ideas may be expressed most precisely and economically in mathemat-
ical terms, but contact with data and with scientific reasoning has given statistics a
distinctive outlook. Whereas mathematics is often judged by its elegance and gener-Charles Robert Darwin

(1809–1882) was rich
enough not to have to earn
his living. His reading and
studies at Edinburgh and
Cambridge exposed him
to contemporary scientific
ideas, and prepared him
for the voyage of the
Beagle (1831–1836),
which formed the basis of
his life’s work as a
naturalist — at one point
he spent 8 years dissecting
and classifying barnacles.
He wrote numerous books
including The Origin of
Species, in which he laid
out the theory of evolution
by natural selection.
Although his proposed
mechanism for natural
variation was never
accepted, his ideas led to
the biggest intellectual
revolution of the 19th
century, with
repercussions that
continue today. Ironically,
his own family was
in-bred and his health
poor. See Desmond and
Moore (1991).

ality, many statistical developments arise as a result of concrete questions posed by
investigators and data that they hope will provide answers, and elegant and general
solutions are not always available. The huge variety of such problems makes it hard
to develop a single over-arching theory, but nevertheless common strands appear.
Uniting them is the idea of a statistical model.

The key feature of a statistical model is that variability is represented using probabil-
ity distributions, which form the building-blocks from which the model is constructed.
Typically it must accommodate both random and systematic variation. The random-
ness inherent in the probability distribution accounts for apparently haphazard scatter
in the data, and systematic pattern is supposed to be generated by structure in the
model. The art of modelling lies in finding a balance that enables the questions at
hand to be answered or new ones posed. The complexity of the model will depend on
the problem at hand and the answer required, so different models and analyses may
be appropriate for a single set of data.

Examples

Example 1.1 (Maize data) Charles Darwin collected data over a period of years
on the heights of Zea mays plants. The plants were descended from the same parents
and planted at the same time. Half of the plants were self-fertilized, and half were
cross-fertilized, and the purpose of the experiment was to compare their heights. To

1



2 1 · Introduction

Table 1.1 Heights of
young Zea mays plants,
recorded by Charles
Darwin (Fisher, 1935a,
p. 30).

Height (eighths of an inch)

Pot Crossed Self-fertilized Difference

I 188 139 49
96 163 −67

168 160 8
II 176 160 16

153 147 6
172 149 23

III 177 149 28
163 122 41
146 132 14
173 144 29
186 130 56

IV 168 144 24
177 102 75
184 124 60

96 144 −48
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plots for Darwin’s Zea
mays data. The left panel
compares the heights for
the two different types of
fertilization. The right
panel shows the difference
for each pair plotted
against the pair average.

this end Darwin planted them in pairs in different pots. Table 1.1 gives the resulting
heights. All but two of the differences between pairs in the fourth column of the table
are positive, which suggests that cross-fertilized plants are taller than self-fertilized
ones.

This impression is confirmed by the left-hand panel of Figure 1.1, which sum-
marizes the data in Table 1.1 in terms of a boxplot. The white line in the centre of
each box shows the median or middle observation, the ends of each box show the
observations roughly one-quarter of the way in from each end, and the bars attached
to the box by the dotted lines show the maximum and minimum, provided they are
not too extreme.

Cross-fertilized plants seem generally higher than self-fertilized ones. Overlaid
on this systematic variation, there seems to be variation that might be ascribed to
chance: not all the plants within each group have the same height. It might be possible,
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and for some purposes even desirable, to construct a mechanistic model for plant
growth that could explain all the variation in such data. This would take into account
genetic variation, soil and moisture conditions, ventilation, lighting, and so forth,
through a vast system of equations requiring numerical solution. For most purposes,
however, a deterministic model of this sort is quite unnecessary, and it is simpler and
more useful to express variability in terms of probability distributions.

If the spread of heights within each group is modelled by random variability, the
same cause will also generate variation between groups. This occurred to Darwin,Francis Galton

(1822–1911) was a cousin
of Darwin from the same
wealthy background. He
explored in Africa before
turning to scientific work,
in which he showed a
strong desire to quantify
things. He was one of the
first to understand the
implications of evolution
for homo sapiens, he
invented the term
regression and contributed
to statistics as a
by-product of his belief in
the improvement of
society via eugenics. See
Stigler (1986).

who asked his cousin, Francis Galton, whether the difference in heights between the
types of plants was too large to have occurred by chance, and was in fact due to
the effect of fertilization. If so, he wanted to estimate the average height increase.
Galton proposed an analysis based essentially on the following model. The height of
a self-fertilized plant is taken to be

Y = µ + σε, (1.1)

where µ and σ are fixed unknown quantities called parameters, and ε is a random
variable with mean zero and unit variance. Thus the mean of Y is µ and its variance
is σ 2. The height of a cross-fertilized plant is taken to be

X = µ + η + σε, (1.2)

where η is another unknown parameter. The mean height of a cross-fertilized plantRonald Aylmer Fisher
(1890–1962) was born in
London and educated
there and at Cambridge,
where he had his first
exposure to Mendelian
genetics and the biometric
movement. After
obtaining the exact
distributions of the t
statistic and the
correlation coefficient, but
also having begun a
life-long endeavour to
give a Mendelian basis for
Darwin’s evolutionary
theory, he moved in 1919
to Rothamsted
Experimental Station,
where he built the
theoretical foundations of
modern statistics, making
fundamental contributions
to likelihood inference,
analysis of variance,
randomization and the
design of experiments. He
wrote highly influential
books on statistics and on
genetics. He later held
posts at University
College London and
Cambridge, and died in
Adelaide. See Fisher Box
(1978).

is µ + η and its variance is σ 2. In (1.1) and (1.2) variation within the groups is
accounted for by the randomness of ε, whereas variation between groups is modelled
deterministically by the difference between the means of Y and X . Under this model
the questions posed by Darwin amount to:

� is η non-zero?
� Can we estimate η and state the uncertainty of our estimate?

Galton’s analysis proceeded as if the observations from the self-fertilized plants,
Y1, . . . , Y15, were independent and identically distributed according to (1.1), and
those from the cross-fertilized plants, X1, . . . , X15, were independent and identically
distributed according to (1.2). If so, it is natural to estimate the group means by
Y = (Y1 + · · · + Y15)/15 and X = (X1 + · · · + X15)/15, and to compare Y and X .
In fact Galton proposed another analysis which we do not pursue.

In discussing this experiment many years later, R. A. Fisher pointed out that the
model based on (1.1) and (1.2) is inappropriate. In order to minimize differences in
humidity, growing conditions, and lighting, Darwin had taken the trouble to plant the
seeds in pairs in the same pots. Comparison of different pairs would therefore involve
these differences, which are not of interest, whereas comparisons within pairs would
depend only on the type of fertilization. A model for this writes

Y j = µ j + σε1 j , X j = µ j + η + σε2 j , j = 1, . . . , 15. (1.3)

The parameter µ j represents the effects of the planting conditions for the j th pair,
and the εg j are taken to be independent random variables with mean zero and unit
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Table 1.2 Failure times
(in units of 103 cycles) of
springs at cycles of
repeated loading under the
given stress (Cox and
Oakes, 1984, p. 8). +
indicates that an
observation is
right-censored. The
average and estimated
standard deviation for
each level of stress are y
and s.

Stress (N/mm2)

950 900 850 800 750 700

225 216 324 627 3402 12510+
171 162 321 1051 9417 12505+
198 153 432 1434 1802 3027
189 216 252 2020 4326 12505+
189 225 279 525 11520+ 6253
135 216 414 402 7152 8011
162 306 396 463 2969 7795
135 225 379 431 3012 11604+
117 243 351 365 1550 11604+
162 189 333 715 11211 12470+

y 168 215 348 803 5636 9828
s 33 43 58 544 3864 3355

variance. The µ j could be eliminated by basing the analysis on the X j − Y j , which
have mean η and variance 2σ 2.

The right panel of Figure 1.1 shows a scatterplot of pair differences x j − y j against
pair averages (y j + x j )/2. The two negative differences correspond to the pairs with
the lowest averages. The averages vary widely, and it seems wise to allow for this by
analyzing the differences, as Fisher suggested. �

Both models in Example 1.1 summarize the effect of interest, namely the mean
difference in heights of the plants, in terms of a fixed but unknown parameter. Other
aspects of secondary interest, such as the mean height of self-fertilized plants, are
also summarized by the parameters µ and σ of (1.1) and (1.2), and µ1, . . . , µ15 and σ

of (1.3). But even if the values of all these parameters were known, the distributions
of the heights would still not be known completely, because the distribution of ε has
not been fully specified. Such a model is called nonparametric. If we were willing
to assume that ε has a given distribution, then the distributions of Y and X would be
completely specified once the parameters were known, giving a parametric model.
Most of this book concerns such models.

The focus of interest in Example 1.1 is the relation between the height of a plant
and something that can be controlled by the experimenter, namely whether it is self-
or cross-fertilized. The essence of the model is to regard the height as random with a
distribution that depends on the type of fertilization, which is fixed for each plant. The
variable of primary interest, in this instance height, is called the response, and the vari-
able on which it depends, the type of fertilization, is called an explanatory variable or
a covariate. Many questions arising in data analysis involve the dependence of one or
more variables on another or others, but virtually limitless complications can arise.

Example 1.2 (Spring failure data) In industrial experiments to assess their reli-
ability, springs were subjected to cycles of repeated loading until they failed. The
failure ‘times’, in units of 103 cycles of loading, are given in Table 1.2. There were
60 springs divided into groups of 10 at each of six different levels of stress.
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Figure 1.2 Failure times
(in units of 103 cycles) of
springs at cycles of
repeated loading under the
given stress. The left
panel shows failure time
boxplots for the different
stresses. The right panel
shows a rough linear
relation between log
average and log variance
at the different stresses.

As stress decreases there is a rapid increase in the average number of cycles to
failure, to the extent that at the lowest levels, where the failure time is longest, the
experiment had to be stopped before all the springs had failed. The observations are
right-censored: the recorded value is a lower bound for the number of cycles to failure
that would have been observed had the experiment been continued to the bitter end.
A right-censored observation is indicated as, say, 11520+, indicating that the failure
time would be greater than 11520.

Let us represent the j th number of cycles to failure at the kth loading by yl j , for
j = 1, . . . , 10 and l = 1, . . . , 6. Table 1.2 shows the average failure time for each
loading, yl· = 10−1 ∑

j yl j , and the sample standard deviation, sl , where the sample
variance is s2

l = (10 − 1)−1 ∑
j (yl j − yl·)2. The average and variance at the lowest

stresses underestimate the true values, because of the censoring. The average and
standard deviation decrease as stress increases.

The boxplots in the left panel of Figure 1.2 show that the cycles to failure at
each stress have the marked pattern already described. The right panel shows the log
variance, log s2

l , plotted against the log average, log yl·. It shows a linear pattern with
slope approximately two, suggesting that variance is proportional to mean squared
for these data.

Our inspection has revealed that:

(a) failure times are positive and range from 117–12510×103 or more cycles;
(b) there is strong dependence between the mean and variance;
(c) there is strong dependence of failure time on stress; and
(d) some observations are censored.

To proceed further, we would need to know how the data were gathered. Do system-
atic patterns, of which we have been told nothing, underlie the data? For example, were
all 60 springs selected at random from a larger batch and then allocated to the different
stresses at random? Or were the ten springs at 950 N/mm2 selected from one batch,
the ten springs at 900 N/mm2 from another, and so on? If so, the apparent dependence
on stress might be due to differences among batches. Were all measurements made
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with the same machine? If the answers to these and other such questions were un-
satisfactory, we might suggest that better data be produced by performing another
experiment designed to control the effects of different sources of variability.

Suppose instead that we are provisionally satisfied that we can treat observations
at each loading as independent and identically distributed, and that the apparent
dependence between cycles to failure and stress is not due to some other factor. With
(a) and (b) in mind, we aim to represent the failure time at a given stress level by a
random variable Y that takes continuous positive values and whose probability density
function f (y; θ ) keeps the ratio (mean)2/variance constant. Clearly it is preferable if
the same parametric form is used at each stress and the effect of changing stress enters
only through θ . A simple model is that Y has exponential density

f (y; θ ) = θ−1 exp(−y/θ ), y > 0, θ > 0, (1.4)

whose mean and variance are θ and θ2, so that (mean)2 = variance. We can express
systematic variation in the density of Y in terms of stress, x , by

θ = 1

βx
, x > 0, β > 0, (1.5)

though of course other forms of dependence are possible.
Equations (1.4) and (1.5) imply that when x = 0 the mean failure time is infinite,

but it decreases to zero as stress x increases. Expression (1.4) represents the random
component of the model, for a given value of θ , and (1.5) the systematic component,
which determines how mean failure time θ depends on x . �

In Examples 1.1 and 1.2 the response is continuous, and there is a single explanatory
variable. But data with a discrete response or more than one explanatory variable often
arise in practice.

Example 1.3 (Challenger data) The space shuttle Challenger exploded shortly
after its launch on 28 January 1986, with a loss of seven lives. The subsequent US
Presidential Commission concluded that the accident was caused by leakage of gas
from one of the fuel-tanks. Rubber insulating rings, so-called ‘O-rings’, were not
pliable enough after the overnight low temperature of 31◦F, and did not plug the joint
between the fuel in the tanks and the intense heat outside.

There are two types of joint, nozzle-joints and field-joints, each containing a pri-
mary O-ring and a secondary O-ring, together with putty that insulates both rings
from the propellant gas. Table 1.3 gives the number of primary rings, r , out of the
total m = 6 field-joints, that had experienced ‘thermal distress’ on previous flights.
Thermal distress occurs when excessive heat pits the ring — ‘erosion’ — or when
gases rush past the ring —- ‘blowby’. Blowby can occur in the short gap after igni-
tion before an O-ring seals. It can also occur if the ring seals and then fails, perhaps
because it has been eroded by the hot gas. Bench tests had suggested that one cause
of blowby was that the O-rings lost their resilience at low temperatures. It was also
suspected that pressure tests conducted before each launch holed the putty, making
erosion of the rings more likely.
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Table 1.3 O-ring
thermal distress data. r is
the number of field-joint
O-rings showing thermal
distress out of 6, for a
launch at the given
temperature (◦F) and
pressure (pounds per
square inch) (Dalal et al.,
1989).

Number of O-rings with Temperature (◦F) Pressure (psi)
Flight Date thermal distress, r x1 x2

1 21/4/81 0 66 50
2 12/11/81 1 70 50
3 22/3/82 0 69 50
5 11/11/82 0 68 50
6 4/4/83 0 67 50
7 18/6/83 0 72 50
8 30/8/83 0 73 100
9 28/11/83 0 70 100

41-B 3/2/84 1 57 200
41-C 6/4/84 1 63 200
41-D 30/8/84 1 70 200
41-G 5/10/84 0 78 200
51-A 8/11/84 0 67 200
51-C 24/1/85 2 53 200
51-D 12/4/85 0 67 200
51-B 29/4/85 0 75 200
51-G 17/6/85 0 70 200
51-F 29/7/85 0 81 200
51-I 27/8/85 0 76 200
51-J 3/10/85 0 79 200
61-A 30/10/85 2 75 200
61-B 26/11/86 0 76 200
61-C 21/1/86 1 58 200

61-I 28/1/86 — 31 200
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thermal distress data. The
left panel shows the
proportion of incidents as
a function of joint
temperature, and the right
panel shows the
corresponding plot against
pressure. The x-values
have been jittered to avoid
overplotting multiple
points. The solid lines
show the fitted proportions
of failures under a model
described in Chapter 4.

Table 1.3 shows the temperatures x1 and test pressures x2 associated with thermal
distress of the O-rings for flights before the disaster. The pattern becomes clearer
when the proportion of failures, r/m, is plotted against temperature and pressure in
Figure 1.3. As temperature decreases, r/m appears to increase. There is less pattern
in the corresponding plot for pressure.



8 1 · Introduction

Table 1.4 Lung cancer
deaths in British male
physicians (Frome, 1983).
The table gives man-years
at risk/number of cases of
lung cancer,
cross-classified by years
of smoking, taken to be
age minus 20 years, and
number of cigarettes
smoked per day.

Years of
Daily cigarette consumption d

smoking t Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+

15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1

For these data, the response variable takes one of the values 0, 1, . . . , 6, with fairly
strong dependence on temperature and possibly weaker dependence on pressure.
If we assume that at a given temperature and pressure, each of the six rings fails
independently with equal probability, we can treat the number of failures R as binomial
with denominator m and probability π ,

Pr(R = r ) = m!

r !(m − r )!
π r (1 − π )m−r , r = 0, 1, . . . , m, 0 < π < 1. (1.6)

One possible relation between temperature x1, pressure x2, and the probability of
failure is π = β0 + β1x1 + β2x2, where the parameters β0, β1, and β2 must be derived
from the data. This has the drawback of predicting probabilities outside the range [0, 1]
for certain values of x1 and x2. It is more satisfactory to use a function such as

π = exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)
,

so 0 < π < 1 wherever β0 + β1x1 + β2x2 roams in the real line. It turns out that the
function eu/(1 + eu), the logistic distribution function, has an elegant connection to
the binomial density, but any other continuous distribution function with domain the
real line might be used.

The night before the Challenger was launched, there was a lengthy discussion
about how the O-rings might behave at the low predicted launch temperature. One
approach, which was not taken, would have been to try and predict how many O-rings
might fail based on an estimated relationship between temperature and pressure. The
lines in Figure 1.3 represent the estimated dependence of failure probability on x1

and x2, and show a high probability of failure at the actual launch temperature. When
this is used as input to a probability model of how failures occur, the probability of
catastrophic failure for a launch at 31◦F is estimated to be as high as 0.16. To obtain
this estimate involves extrapolation outside the available data, but there would have
been little alternative in the circumstances of the launch. �

Example 1.4 (Lung cancer data) Table 1.4 shows data on the lung cancer mortality
of cigarette smokers among British male physicians. The table shows the man-years
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Figure 1.4 Lung cancer
deaths in British male
physicians. The figure
shows the rate of deaths
per 1000 man-years at
risk, for each of three
levels of daily cigarette
consumption.

at risk and the number of cases with lung cancer, cross-classified by the number of
years of smoking, taken to be age minus twenty years, and the number of cigarettes
smoked daily. The man-years at risk in each category is the total period for which the
individuals in that category were at risk of death.

As the eye moves from top left to the bottom right of the table, the figures suggest
that death rate increases with increased total cigarette consumption. This is confirmed
by Figure 1.4, which shows the death rate per 100,000 man-years at risk, grouped by
three levels of cigarette consumption. Data for the first two groups show that death
rate for smokers increases with cigarette consumption and with years of smoking.
The only nonsmoker deaths are one in the age-group 35–39 and two in the age-group
75–79.

In this problem the aspect of primary interest is how death rate depends on cigarette
consumption and smoking, and we treat the number of deaths in each category as the
response. To build a model, we suppose that the death rate for those smoking d
cigarettes per day after t years of smoking is λ(d, t) deaths per man-year. Thus we
may imagine deaths occurring at random in the total T man-years at risk in that
category, at rate λ(d, t). If deaths are independent point events in a continuum of
length T , the number of deaths, Y , will have approximately a Poisson density with
mean T λ(d, t),

Pr(Y = y) = {T λ(d, t)}y

y!
exp{−T λ(d, t)}, y = 0, 1, 2, . . . . (1.7)

One possible form for the mean deaths per man-year is

λ(d, t) = β0tβ1
(
1 + β2dβ3

)
, (1.8)

based on a deterministic argument and used in animal cancer mortality studies. In
(1.8) there are four unknown parameters, and power-law dependence of death rate on
exposure duration, t , and cigarette consumption, d. We expect that all the parameters
βr are positive. The background death-rate in the absence of smoking is given by β0tβ1 ,
the death-rate for nonsmokers. This represents the overall effect of other causes of
lung cancer.
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Expressions (1.7) and (1.8) give the random and systematic components for a simple
model for the data, based on a blend of stochastic and deterministic arguments. An
increasingly important development in statistics is the use of very complex models
for real-world phenomena. Stochastic processes often provide the blocks with which
such models are built. �

There is an important difference between Example 1.4 and the previous examples.
In Example 1.1, Darwin could decide which plants to cross and where to plant them,
in Example 1.2 the springs could be allocated to different stresses by the experimenter,
and in Example 1.3 the test pressure for field joints was determined by engineers. The
engineers would have no control over the temperature at the proposed time of a launch,
but they could decide whether or not to launch at a given temperature. In each case,
the allocation of treatments could in principle be controlled, albeit to different extents.
Such situations, called controlled experiments, often involve a random allocation of
treatments — type of fertilization, level of stress or test pressure — to units — plants,
springs, or flights. Strong conclusions can in principle be drawn when randomization
is used — though it played no part in Examples 1.1 or 1.3, and we do not know about
Example 1.2.

In Example 1.4, however, a new problem rears its head. There is no question of
allocating a level of cigarette consumption over a given period to individuals — the
practical difficulties would be insuperable, quite apart from ethical considerations. In
common with many other epidemiological, medical, and environmental studies, the
data are observational, and this limits what conclusions may be drawn. It might be
postulated that propensities to smoking and to lung cancer were genetically related,
causing the apparent dependence in Table 1.4. Then for an individual to stop smoking
would not reduce their chance of contracting lung cancer. In such cases data of
different types from different sources must be gathered and their messages carefully
collated and interpreted in order to put together an unambiguous story.

Despite differences in interpretation, the use of probability models to summarize
variability and express uncertainty is the basis of each example. It is the subject of
this book.

Outline

The idea of treating data as outcomes of random variables has implications for how
they should be treated. For example, graphical and numerical summaries of the ob-
servations will show variation, and it is important to understand its consequences.
Chapter 2 is devoted to this. It deals with basic ideas such as parameters, statistics,
and sampling variation, simple graphs and other summary quantities, and then turns
to notions of convergence, which are essential for understanding variability in large
samples and generating approximations for small ones. Many statistics are based on
quantities such as the largest item in a sample, and order statistics are also discussed.
The chapter finishes with an account of moments and cumulants.
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Variation in observed data leads to uncertainty about the reality behind it. Un-
certainty is a more complicated notion, because it entails considering what it is
reasonable to infer from the data, and people differ in what they find reasonable.
Chapter 3 explains one of the main approaches to expressing uncertainty, leading
to the construction of confidence intervals via quantities known as pivots. In most
cases these can only be approximate, but they are often exact for models based on the
normal distribution, which are then described. The chapter ends with a brief account
of Monte Carlo simulation, which is used both to appreciate variability and to assess
uncertainty.

In some cases information about model parameters θ can be expressed as a density
π (θ ), separate from the data y. Then the prior uncertainty π (θ ) may be updated to
posterior uncertainty π (θ | y) using Bayes’ theoremThomas Bayes

(1702–1761) was a
nonconformist minister
and also a mathematician.
His theorem is contained
in his Essay towards
solving a problem in the
doctrine of chances, found
in his papers after his
death and published in
1764.

π (θ | y) = π (θ ) f (y | θ )

f (y)
,

which converts the conditional density f (y | θ ) of observing data y, given that the true
parameter is θ , into a conditional density for θ , given that y has been observed. This
Bayesian approach to inference is attractive and conceptually simple, and modern
computing techniques make it feasible to apply it to many complex models. However
many statisticians do not agree that prior knowledge can or indeed should always be
expressed as a prior density, and believe that information in the data should be kept
separate from prior beliefs, preferring to base inference on the second term f (y | θ )
in the numerator of Bayes’ theorem, known as the likelihood.

Likelihood is a central idea for parametric models, and it and its ramifications are
described in Chapter 4. Definitions of likelihood, the maximum likelihood estimator
and information are followed by a discussion of inference based on maximum like-
lihood estimates and likelihood ratio statistics. The chapter ends with brief accounts
of non-regular models and model selection.

Chapters 5 and 6 describe some particular classes of models. Accounts are given
of the simplest form of linear model, of exponential family and group transformation
models, of models for survival and missing data, and of those with more complex
dependence structures such as Markov chains, Markov random fields, point processes,
and the multivariate normal distribution.

Chapter 7 discusses more traditional topics of mathematical statistics, with a more
general treatment of point and interval estimation and testing than in the previous
chapters. It also includes an account of estimating functions, which are needed sub-
sequently.

Regression models describe how a response variable, treated as random, depends
on explanatory variables, treated as fixed. The vast majority of statistical modelling
involves some form of regression, and three chapters of the book are devoted to it.
Chapter 8 describes the linear model, including its basic properties, analysis of vari-
ance, model building, and variable selection. Chapter 9 discusses the ideas underlying
the use of randomization and designed experiments, and closes with an account of
mixed effect models, in which some parameters are treated as random. These two
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chapters are largely devoted to the classical linear model, in which the responses
are supposed normally distributed, but since around 1970 regression modelling has
greatly broadened. Chapter 10 is devoted to nonlinear models. It starts with an account
of likelihood estimation using the iterative weighted least squares algorithm, which
subsequently plays a unifying role and then describes generalized linear models,
binary data and loglinear models, semiparametric regression by local likelihood esti-
mation and by penalized likelihood. It closes with an account of regression modelling
of survival data.

Bayesian statistics is discussed in Chapter 11, starting with discussion of the role
of prior information, followed by an account of Bayesian analogues of procedures
developed in the earlier chapters. This is followed by a brief overview of Bayesian
computation, including Laplace approximation, the Gibbs sampler and Metropolis–
Hastings algorithm. The chapter closes with discussion of hierarchical and empirical
Bayes and a very brief account of decision theory.

Likelihood is a favourite tool of statisticians but sometimes gives poor inferences.
Chapter 12 describes some reasons for this, and outlines how conditional or marginal
likelihoods can give better procedures.

The main links among the chapters of this book are shown in Figure 1.5.

Notation

The notation used in this book is fairly standard, but there are not enough letters in
the Roman and Greek alphabets for total consistency. Greek letters generally denote
parameters or other unknowns, with α largely reserved for error rates and confidence
levels in connection with significance tests and confidence sets. Roman letters X , Y ,
Z , and so forth are mainly used for random variables, which take values x , y, z.

Probability, expectation, variance, covariance, and correlation are denoted Pr(·),
E(·), var(·) cov(·, ·), and corr(·, ·), while cum(·, ·, · · ·) is occasionally used to denote
a cumulant. We use I (A) to denote the indicator random variable, which equals 1 if
the event A occurs and 0 otherwise. A related function is the Heaviside function

H (u) =
{

0, u < 0,
1, u ≥ 0,

whose generalized derivative is the Dirac delta function δ(u). This satisfies∫
δ(y − u)g(u) du = g(y)

for any function g.
The Kronecker delta symbols δrs , δrst , and so forth all equal unity when all their

subscripts coincide, and equal zero otherwise.
We use �x� to denote the largest integer smaller than or equal to x , and �x� to

denote the smallest integer larger than or equal to x .
The symbol ≡ indicates that constants have been dropped in defining a log likeli-

hood, while
.= means ‘approximately equals’. The symbols ∼,

.∼ ind∼ , and
iid∼ are
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Figure 1.5 A map of the
main dependencies among
chapters of this book. A
solid line indicates strong
dependence and a dashed
line indicates partial
dependence through the
given subsections.

shorthand for ‘is distributed as’, ‘is approximately distributed as’, ‘are independently
distributed as’, and ‘are independent and identically distributed as’, while

D= means
‘has the same distribution as’. X ⊥ Y means ‘ X is independent of Y ’. We use

D−→ and
P−→ to denote convergence in distribution and in probability. To say that Y1, . . . , Yn

are a random sample from some distribution means that they are independent and
identically distributed according to that distribution.

We mostly reserve Z for standard normal random variables. As usual N (µ, σ 2)
represents the normal distribution with mean µ and variance σ 2. The standard normal
cumulative distribution and density functions are denoted 
 and φ. We use cν(α),
tν(α), and Fν1,ν2 (α) to denote the α quantiles of the chi-squared distribution, Student
t distribution with ν degrees of freedom, and F distribution with ν1 and ν2 degrees of
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freedom, while U (0, 1) denote the uniform distribution on the unit interval. Almost
everywhere, zα is the α quantile of the N (0, 1) distribution.

The data values in a sample of size n, typically denoted y1, . . . , yn , are the observed
values of the random variables Y1, . . . , Yn; their average is y = n−1 ∑

y j and their
sample variance is s2 = (n − 1)−1 ∑

(y j − y)2.
We avoid boldface type, and rely on the context to make it plain when we are

dealing with vectors or matrices; aT denotes the matrix transpose of a vector or matrix
a. The identity matrix of side n is denoted In , and 1n is a n × 1 vector of ones. If
θ is a p × 1 vector and (θ ) a scalar, then ∂(θ )/∂θ is the p × 1 vector whose r th
element is ∂(θ )/∂θr , and ∂2(θ )/∂θ∂θ T is the p × p matrix whose (r, s) element is
∂2(θ )/∂θr∂θs .

The end of each example is marked thus: �
Exercise 2.1.3 denotes the third exercise at the end of Section 2.1, Problem 2.3 is

the third problem at the end of Chapter 2, and so forth.
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Variation

The key idea in statistical modelling is to treat the data as the outcome of a random
experiment. The purpose of this chapter is to understand some consequences of this:
how to summarize and display different aspects of random data, and how to use
results of probability theory to appreciate the variation due to this randomness. We
outline the elementary notions of statistics and parameters, and then describe how
data and statistics derived from them vary under sampling from statistical models.
Many quantities used in practice are based on averages or on ordered sample values,
and these receive special attention. The final section reviews moments and cumulants,
which will be useful in later chapters.

2.1 Statistics and Sampling Variation

2.1.1 Data summaries

The most basic element of data is a single observation, y — usually a number, but
perhaps a letter, curve, or image. Throughout this book we shall assume that whatever
their original form, the data can be recoded as numbers. We shall mostly suppose that
single observations are scalar, though sometimes they are vectors or matrices.

We generally deal with an ensemble of n observations, y1, . . . , yn , known as a
sample. Occasionally interest centres on the given sample alone, and if n is not tiny it
will be useful to summarize the data in terms of a few numbers. We say that a quantity
s = s(y1, . . . , yn) that can be calculated from y1, . . . , yn is a statistic. Such quantities
may be wanted for many different purposes.

Location and scale

Two basic features of a sample are its typical value and a measure of how spread
out the sample is, sometimes known respectively as location and scale. They can be
summarized in many ways.

Example 2.1 (Sample moments) Sample moments are calculated by putting mass
n−1 on each of the y j , and then calculating the mean, variance, and so forth. The

15
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simplest of these sample moments are

y = 1

n

n∑
j=1

y j = 1

n
(y1 + · · · + yn) and

1

n

n∑
j=1

(y j − y)2;

we call the first of these the average. In practice the denominator n in the second
moment is usually replaced by n − 1, giving the sample variance

s2 = 1

n − 1

n∑
j=1

(y j − y)2. (2.1)

The denominator n − 1 is justified in Example 2.14.
Here y and s have the same dimensions as the y j , and are measures of location and

scale respectively. �

Potential confusion is avoided by using the word average to refer to a quantity cal-
culated from data, and the words mean or expectation for the corresponding theoretical
quantity; this convention is used throughout this book.

Example 2.2 (Order statistics) The order statistics of y1, . . . , yn are their values
put in increasing order, which we denote y(1) ≤ y(2) ≤ · · · ≤ y(n). If y1 = 5, y2 = 2
and y3 = 4, then y(1) = 2, y(2) = 4 and y(3) = 5. Examples of order statistics are the
sample minimum y(1) and sample maximum y(n), and the lower and upper quartiles
y(�n/4�) and y(�3n/4�). The lowest quarter of the sample lies below the lower quartile, �u� denotes the smallest

integer greater than or
equal to u.

and the highest quarter lies above the upper quartile.
Among statistics that can be based on the y( j) are the sample median, defined as

median(y j ) =
{

y((n+1)/2), n odd,
1
2

(
y(n/2) + y(n/2+1)

)
, n even.

(2.2)

This is the centre of the sample: equal proportions of the data lie above and below it.
All these statistics are examples of sample quantiles. The pth sample quantile is

the value with a proportion p of the sample to its left. Thus the minimum, maximum,
quartiles, and median are (roughly) the 0, 1, 0.25, 0.75 and 0.5 sample quantiles. Like
the median (2.2) when n is even, the pth sample quantile for non-integer pn is usually
calculated by linear interpolation between the order statistics that bracket it.

Another measure of location is the average of the central observations of the sample.
Suppose that p lies in the interval [0, 0.5), and that k = pn is an integer. Then the
p×100% trimmed average is defined as

1

n − 2k

n−k∑
j=k+1

y( j),

which is the usual average y when p = 0. The 50% trimmed average (p = 0.5) is
defined to be the median, while other values of p interpolate between the average and
the median. Linear interpolation is used when pn is non-integer.

The statistics above measure different aspects of sample location. Some mea-
sures of scale based on the order statistics are the range, y(n) − y(1), the interquartile
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range and the median absolute deviation,

IQR = y(�3n/4�) − y(�n/4�), MAD = median{|yi − median(y j )|}.
These are, respectively, the difference between the largest and smallest observations,
the difference between the observations at the ends of the central 50% of the sample,
and the median of the absolute deviations of the observations from the sample median.
One would expect the range of a sample to grow with its size, but the IQR and MAD
should depend less on the sample size and in this sense are more stable measures of
scale. �

It is easy to establish that the mapping y1, . . . , yn �→ a + by1, . . . , a + byn changes
the values of location and scale measures in the previous examples by m, s �→ a +
bm, bs (Exercise 2.1.1); this seems entirely reasonable.

Bad data

The statistics described in Examples 2.1 and 2.2 measure different aspects of location
and of scale. They also differ in their susceptibility to bad data. Consider what happens
when an error, due perhaps to mistyping, results in an observation that is unusual
compared to the others — an outlier. If the ‘true’ y1 is replaced by y1 + δ, the
average changes from y to y + n−1δ, which could be arbitrarily large, while the
sample median changes by a bounded amount — the most that can happen is that it
moves to an adjacent observation. We say that the sample median is resistant, while
the average is not. Roughly a quarter of the data would have to be contaminated
before the interquartile range could change by an arbitrarily large amount, while the
range and sample variance are sensitive to a single bad observation. The large-sample
proportion of contaminated observations needed to change the value of a statistic by
an arbitrarily large amount is called its breakdown point; it is a common measure of
the resistance of a statistic.

Example 2.3 (Birth data) Table 2.1 shows data extracted from a census of all the
women who arrived to give birth at the John Radcliffe Hospital in Oxford during a
three-month period. The table gives the times that women with vaginal deliveries —
that is, without caesarian section — spent in the delivery suite, for the first seven of
92 successive days of data.

The initial step in dealing with data is to scrutinize them closely, and to under-
stand how they were collected. In this case the time for each birth was recorded
by the midwife who attended it, and numerous problems might have arisen in the
recording. For example, one midwife might intend 4.20 to mean 4.2 hours, but an-
other might mean 4 hours and 20 minutes. Moreover it is difficult to believe that a
time can be known as exactly as 2 hours and 6 minutes, as would be implied by the
value 2.10. Furthermore, there seems to be a fair degree of rounding of the data. In
fact the data collection form was carefully prepared, and the midwives were trained
in how to compile it, so the data are of high quality. Nevertheless it is importantIdeally the statistician

assists in deciding what
data are collected, and
how.

always to ask how the data were collected, and if possible to see the process at
work.
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Table 2.1 Seven
successive days of times
(hours) spent by women
giving birth in the delivery
suite at the John Radcliffe
Hospital. (Data kindly
supplied by Ethel Burns.)

Day

Woman 1 2 3 4 5 6 7

1 2.10 4.00 2.60 1.50 2.50 4.00 2.00
2 3.40 4.10 3.60 4.70 2.50 4.00 2.70
3 4.25 5.00 3.60 4.70 3.40 5.25 2.75
4 5.60 5.50 6.40 7.20 4.20 6.10 3.40
5 6.40 5.70 6.80 7.25 5.90 6.50 4.20
6 7.30 6.50 7.50 8.10 6.25 6.90 4.30
7 8.50 7.25 7.50 8.50 7.30 7.00 4.90
8 8.75 7.30 8.25 9.20 7.50 8.45 6.25
9 8.90 7.50 8.50 9.50 7.80 9.25 7.00

10 9.50 8.20 10.40 10.70 8.30 10.10 9.00
11 9.75 8.50 10.75 11.50 8.30 10.20 9.25
12 10.00 9.75 14.25 10.25 12.75 10.70
13 10.40 11.00 14.50 12.90 14.60
14 10.40 11.20 14.30
15 16.00 15.00
16 19.00 16.50

The average of the n = 95 times in Table 2.1 is y = 7.57 hours. The variance of the
time spent in the delivery suite can be estimated by the sample variance, s2 = 12.97
squared hours. The minimum, median, and maximum are 1.5, 7.5 and 19 hours
respectively, and the quartiles are 4.95 and 9.75 hours. The 0.2 and 0.4 trimmed
averages, 7.48 and 7.55 hours, are similar to y because there are no gross outliers.

�

Shape

The shape of a sample is also important. For example, the upper tails of annual income
distributions are typically very fat, because a few individuals earn enormously more
than most of us. The shape of such a distribution can be used to assess inequality, for
example by considering the proportion of individuals whose annual income is less
than one-half the median. Since shape does not depend on location or scale, statistics
intended to summarize it should be invariant to location and scale shifts of the data.

Example 2.4 (Sample skewness) One measure of shape is the standardized sample
skewness,

g1 = n−1 ∑n
j=1(y j − y)3

{
(n − 1)−1

∑n
j=1(y j − y)2

}3/2 .

If the data are perfectly symmetric, g1 = 0, while if they have a heavy upper tail,
g1 > 0, and conversely. For the times in the delivery suite, g1 = 0.65: the data are
somewhat skewed to the right. �

Example 2.5 (Sample shape) Measures of shape can also be based on the sample
quantiles. One is (y(�0.95n�) − y(�0.5n�))/(y(�0.5n�) − y(�0.05n�)), which takes value one for
a symmetric distribution, and is more resistant to outliers than is the sample skewness.
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For the times in the delivery suite, this is 1.43, again showing skewness to the right.
A value less than one would indicate skewness to the left. �

It is straightforward to show that both these statistics are invariant to changes in
the location and scale of y1, . . . , yn .

Graphs

Graphs are indispensable in data analysis, because the human visual system is so
good at recognizing patterns that the unexpected can leap out and hit the investigator
between the eyes. An adverse effect of this ability is that patterns may be imaginedThis can lead to

inter-ocular trauma. even when they are absent, so experience, often aided by suitable statistics, is needed
to interpret a graph. As any plot can be represented numerically, it too is a statistic,
though to treat it merely as a set of numbers misses the point.

Example 2.6 (Histogram) Perhaps the best-known statistical graph is the his-
togram, constructed from scalar data by dividing the horizontal axis into disjoint
bins — the intervals I1, . . . , IK — and then counting the observations in each. Let nk

denote the number of observations in Ik , for k = 1, . . . , K , so
∑

k nk = n. If the bins
have equal width δ, then Ik = [L + (k − 1)δ, L + kδ), where L , δ, and K are chosen
so that all the y j lie between L and L + K δ. We then plot the proportion nk/n of
the data in each bin as a column over it, giving the probability density function for a
discretized version of the data.

The upper left panel of Figure 2.1 shows this for the birth data in Table 2.1, with
L = 0, δ = 2, and K = 13; the rug of tickmarks shows the data values themselves.
As we would expect from Examples 2.4 and 2.5, the plot shows a density skewed to
the right, with the most popular values in the range 5–10 hours. To increase δ would
give fewer, wider, bins, while decreasing δ would give more, narrower, bins. It might
be better to vary the bin width, with narrower bins in the centre of the data, and wider
ones at the tails. �

Example 2.7 (Empirical distribution function) The empirical distribution func-
tion (EDF) is the cumulative probability distribution that puts probability n−1 at each
of y1, . . . , yn . This is expressed mathematically as

n−1
n∑

j=1

H (y − y j ), (2.3)

where the distribution function that puts mass one at u = 0, that is,

H (u) =
{

0, u < 0,
1, u ≥ 0,

is known as the Heaviside function. The EDF is a step function that jumps by n−1 at
each of the y j ; of course it jumps by more at values that appear in the sample several
times.

The upper right panel of Figure 2.1 shows the EDF of the times in the delivery suite.
It is more detailed than the histogram, but perhaps conveys less information about the
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Figure 2.1 Summary
plots for times in the
delivery suite, in hours.
Clockwise from top left:
histogram, with rug
showing values of
observations; empirical
distribution function;
scatter plot of daily
average hours against
daily median hours, for all
92 days of data, with a
line of unit slope through
the origin; and boxplots
for the first seven days.

shape of the data. Which is preferable is partly a matter of taste, and depends on the
use to which they will be put. �

Example 2.8 (Scatterplot) When an observation has two components, y j =
(u j , v j ), a scatter plot is a plot of the v j on the vertical axis against the u j on the
horizontal axis. An example is given in the lower right panel of Figure 2.1, which
shows the median daily time in the delivery suite plotted against the average daily
time, for the full 92 days for which data are available. As most points lie below the
line with unit slope, and as the slope of the point cloud is slightly greater than one,
the medians are generally smaller and somewhat more variable than the averages. The
average and sample variance of the medians are 7.03 hours and 2.15 hours squared;
the corresponding figures for the averages are 7.90 and 1.54. �

Example 2.9 (Boxplot) Boxplots are usually used to compare related sets of data.
An illustration is in the lower left panel of Figure 2.1, which compares the hours in
the delivery suite for the seven different days in Table 2.1. For each day, the ends
of the central box show the quartiles and the white line in its centre represents the
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daily median: thus about one-half of the data lie in the box, and its length shows the
interquartile range IQR for that day. The bracket above the box shows the largest
observation less than or equal to the upper quartile plus 1.5IQR. Likewise the bracket
below shows the smallest observation greater than or equal to the lower quartile minus
1.5IQR. Values outside the brackets are plotted individually. The aim is to give a good
idea of the location, scale, and shape of the data, and to show potential outliers clearly,
in order to facilitate comparison of related samples. Here, for example, we see that
the daily median varies from 5–10 hours, and that the daily IQR is fairly stable. �

It takes thought to make good graphs. Some points to bear in mind are:

� the data should be made to stand out, in particular by avoiding so-called
chart-junk — unnecessary labels, lines, shading, symbols and so forth;

� the axis labels and caption should make the graph as self-explanatory as possi-
ble, in particular containing the names and units of measurement of variables;

� comparison of related quantities should be made easy, for example by using
identical scales of measurement, and placing plots side by side;Perception experiments

have shown that the eye is
best at judging departures
from 45◦.

� scales should be chosen so that the most important systematic relations between
variables are at about 45◦ to the axes;

� the aspect ratio — the ratio of the height of a plot to its width — can be varied
to highlight different features of the data;

� graphs should be laid out so that departures from ‘standard’ appear as departures
from linearity or from random scatter; and

� major differences in the precision of points should be indicated, at least roughly.

Nowadays it is easy to produce graphs, but unfortunately even easier to produce bad
ones: there is no substitute for drafting and redrafting each graph to make it as clear
and informative as possible.

2.1.2 Random sample

So far we have supposed that the sample y1, . . . , yn is of interest for its own sake. In
practice, however, data are usually used to make inferences about the system from
which they came. One reason for gathering the birth data, for example, was to assess
how the delivery suite should be staffed, a task that involves predicting the patterns
with which women will arrive to give birth, and how long they are likely to stay in
the delivery suite once they are there. Though it is not useful to do this for births that
have already occurred, the data available can help in making predictions, provided
we can forge a link between the past and future. This is one use of a statistical model.

The fundamental idea of statistical modelling is to treat data as the observed values
of random variables. The most basic model is that the data y1, . . . , yn available are
the observed values of a random sample of size n, defined to be a collection of nOr sometimes a simple

random sample. independent identically distributed random variables, Y1, . . . , Yn . We suppose that
each of the Y j has the same cumulative distribution function, F , which represents
the population from which the sample has been taken. If F were known, we could in
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principle use the rules of probability calculus to deduce any of its properties — such
as its mean and variance, or the probability distribution for a future observation — and
any difficulties would be purely computational. In practice, however, F is unknown,
and we must try to infer its properties from the data. Often the quantity of central
interest is a nonrandom function of F , such as its mean or its p quantile, We use d F(y) to

accommodate the
possibility that F is
discrete. If it bothers you,
take d F(y) = f (y) dy.

E(Y ) =
∫

y d F(y), yp = F−1(p) = inf{y : F(y) ≥ p}; (2.4)

these are the population analogues of the sample average and quantiles defined in
Examples 2.1 and 2.2. Often there is a simple form for F−1 and the infimum is
unnecessary. Other population quantities such as the interquartile range, F−1( 3

4 ) −
F−1( 1

4 ), are defined similarly.

Example 2.10 (Laplace distribution) A random variable Y for which Pierre-Simon Laplace
(1749–1827) helped
establish the metric
system during the French
Revolution but was
dismissed by Napoleon
‘because he brought the
spirit of the infinitely
small into the
government’ —
presumably Bonaparte
was unimpressed by
differentiation. Laplace
worked on celestial
mechanics, published an
important book on
probability, and derived
the least squares rule.

f (y; η, τ ) = 1

2τ
exp (−|y − η|/τ ) , −∞ < y < ∞, −∞ < η < ∞, τ > 0,

(2.5)

is said to have the Laplace distribution. As f (η + u; η, τ ) = f (η − u; η, τ ) for any
u, the density is symmetric about η. Its integral is clearly finite, so E(Y ) = η, and
evidently its median y0.5 = η also. Its variance is

var(Y ) = 1

2τ

∫ ∞

−∞
(y − η)2 exp (−|y − η|/τ ) dy = τ 2

∫ ∞

0
u2e−u du = 2τ 2,

as follows after the substitution u = (y − η)/τ and integration by parts; see
Exercise 2.1.3. Integration of (2.5) gives

F(y) =
{ 1

2 exp {(y − η)/τ } , y ≤ η,
1 − 1

2 exp {−(y − η)/τ } , y > η,

so

F−1(p) =
{

η + τ log(2p), p < 1
2 ,

η − τ log{2(1 − p)}, p ≥ 1
2 ,

the interquartile range is

F−1

(
3

4

)
− F−1

(
1

4

)
= η + τ log 2 − (η − τ log 2) = 2τ log 2,

and the median absolute deviation is τ log 2 (Exercise 2.1.5). �

Quantities such as E(Y ), var(Y ) and F−1(p) are called parameters, and as their
values depend on F , they are typically unknown. If F is determined by a finite
number of parameters, θ , the model is parametric, and we may write F = F(y; θ ), We use the term

probability density
function to mean the
density function for a
continuous variable, and
the mass function for a
discrete variable, and use
the notation f (y; θ ) in
both cases.

with corresponding probability density function f (y; θ ). Ignorance about F then boils
down to uncertainty about θ .

It is natural to use sample quantities for inference about model parameters. Suppose
that the data Y1, . . . , Yn are a random sample from a distribution F , that we are
interested in a parameter θ that depends on F , and that we wish to use the statistic



2.1 · Statistics and Sampling Variation 23

0 5 10 15 20 25

0.
0

0.
05

0.
10

0.
15

Arrivals/day

P
ro

ba
bi

lit
y 

de
ns

ity

0 10 20 30

0.
0

0.
05

0.
10

0.
15

Hours

P
ro

ba
bi

lit
y 

de
ns

ity

Figure 2.2 Comparisons
of 92 days of delivery
suite data with Poisson
and gamma models. The
left panel shows a
histogram of the numbers
of arrivals per day, with
the PDF of the Poisson
distribution with mean
θ = 12.9 overlaid. The
right panel shows a
histogram of the hours in
the delivery suite for the
1187 births, with the PDFs
of gamma distributions
overlaid. The gamma
distributions all have
mean κ/λ = 7.93 hours.
Their shape parameters
are κ = 3.15 (solid), 0.8
(dots), 1 (small dashes),
and 5 (large dashes). S = s(Y1, . . . , Yn) to make inferences about θ , for example hoping that S will be close

to θ . Then we call S an estimator of θ and say that the particular value that S takes
when the observed data are y1, . . . , yn , that is, s = s(y1, . . . , yn), is an estimate of θ .
This is the usual distinction between a random variable and the value that it takes,
here S and s.

Example 2.11 (Poisson distribution) The Poisson distribution with mean θ hasSiméon Denis Poisson
(1781–1840) learned
mathematics in Paris from
Laplace and Lagrange. He
did major work on definite
integrals, on Fourier
series, on elasticity and
magnetism, and in 1837
published an important
book on probability.

probability density function

Pr(Y = y) = f (y; θ ) = θ y

y!
e−θ , y = 0, 1, 2, . . . , θ > 0. (2.6)

This discrete distribution is used for count data. For example, the left panel of
Figure 2.2 shows a histogram of the number of women arriving at the delivery suite for
each of the 92 days of data, together with the probability density function (2.6) with
θ = 12.9, equal to the average number of arrivals over the 92 days. This distribution
seems to fit the data more or less adequately. �

Example 2.12 (Gamma distribution) The gamma distribution with scale parameter
λ and shape parameter κ has probability density function�(κ) is the gamma

function; see
Exercise 2.1.3 for some of
its properties. f (y; λ, κ) = λκ yκ−1

�(κ)
exp(−λy), y > 0, λ, κ > 0. (2.7)

This distribution has mean κ/λ and variance κ/λ2.
When κ = 1 the density is exponential, for 0 < κ < 1 it is L-shaped, and for κ > 1

it falls smoothly on either side of its maximum. These shapes are illustrated in the right
panel of Figure 2.2, which shows the hours in the delivery suite for the 1187 births
that took place over the three months of data. In each case the mean of the density
matches the data average of 7.93 hours; the value κ = 3.15 of the shape parameter
was chosen to match the variance of the data by solving simultaneously the equa-
tions κ/λ = 7.93, κ/λ2 = 12.97. Evidently the solid curve gives the best fit of those
shown.
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It is important to appreciate that the parametrization of F is not carved in stone.
Here it might be better to rewrite (2.7) in terms of its mean µ = κ/λ and the shape
parameter κ , in which case the density is expressed as

1

�(κ)

(
κ

µ

)κ

yκ−1 exp(−κy/µ), y > 0, µ, κ > 0, (2.8)

with variance µ2/κ . As functions of y the shapes of (2.7) and (2.8) are the same,
but their expression in terms of parameters is not. The range of possible densities is
the same for any 1–1 reparametrization of (κ, λ), so one might write the density in
terms of two important quantiles, for example, if this made sense in the context of a
particular application. The central issue in choice of parametrization is directness of
interpretation in the situation at hand. �

Example 2.13 (Laplace distribution) To express the Laplace density (2.5) in terms
of its mean and variance η and 2τ 2, we set τ 2 = σ 2/2, giving

1√
2σ

exp(−
√

2|y − η|/σ ) − ∞ < y < ∞, −∞ < η < ∞, σ > 0.

Its shape as a function of y is unchanged, but the new formula is uglier. �

2.1.3 Sampling variation

If the data y1, . . . , yn are regarded as the observed values of random variables, then it
follows that the sample and any statistics derived from it might have been different.
However, although we would expect variation over possible sets of data, we would
also expect to see systematic patterns induced by the underlying model. For instance,
having inspected the lower left panel of Figure 2.1, we would be surprised to be told
that the median hours in the delivery suite on day 8 was 15 hours, though any value
between 5 and 10 hours would seem quite reasonable. From a statistical viewpoint,
data have both a random and a systematic component, and one common goal of data
analysis is to disentangle these as far as possible. In order to understand the systematic
aspect, it makes sense to ask how we would expect a statistic s(y1, . . . , yn) to behave
on average, that is, to try and understand the properties of the corresponding random
variable, S = s(Y1, . . . , Yn).

Example 2.14 (Sample moments) Suppose that Y1, . . . , Yn is a random sample
from a distribution with mean µ and variance σ 2. Then the average Y has expectation
and variance

E(Y ) = E

(
1

n

n∑
j=1

Y j

)
= n

n
E(Y j ) = µ,

var(Y ) = var

(
1

n

n∑
j=1

Y j

)
= 1

n2

n∑
j=1

var(Y j ) = σ 2

n
,
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because the Y j are independent identically distributed random variables. Thus the
expected value of the random variable Y is the population mean µ.

To find the expectation of the sample variance S2 = (n − 1)−1 ∑
j (Y j − Y )2, note

that

n∑
j=1

(Y j − Y )2 =
n∑

j=1

{Y j − µ − (Y − µ)}2

=
n∑

j=1

(Y j − µ)2 − 2
n∑

j=1

(Y j − µ)(Y − µ) +
n∑

j=1

(Y − µ)2

=
n∑

j=1

(Y j − µ)2 − 2n(Y − µ)2 + n(Y − µ)2

=
n∑

j=1

(Y j − µ)2 − n(Y − µ)2.

As

E{(n − 1)S2} = nE{(Y j − µ)2} − nE{(Y − µ)2}
= nσ 2 − nσ 2/n

= (n − 1)σ 2,

we see that S2 has expected value σ 2. This explains our use of the denominator n − 1
when defining the sample variance s2 in (2.1): the expectation of the corresponding
random variable equals the population variance.

The birth data of Table 2.1 have n = 95, and the realized values of the random
variables Y and S2 are y = 7.57 and s2 = 12.97. Thus y has estimated variance
s2/n = 12.97/95 = 0.137 and estimated standard deviation 0.1371/2 = 0.37. This
suggests that the underlying ‘true’ mean µ of the population of times spent in the
delivery suite by women giving birth is close to 7.6 hours. �

Example 2.15 (Birth data) Figure 2.2 suggests the following simple model for the
birth data. Each day the number N of women arriving to give birth is Poisson with
mean θ . The j th of these women spends a time Y j in the delivery suite, where Y j is a
gamma random variable with mean µ and variance σ 2. The values of these parameters
are θ

.= 13, µ
.= 8 hours and σ 2 .= 13 hours squared. The average time and median

times spent, Y = N−1 ∑
Y j and M , vary from day to day, with the lower right panel

of Figure 2.1 suggesting that E(M) < E(Y ) and var(M) > var(Y ), properties we shall
see theoretically in Example 2.30. �

Much of this book is implicitly or explicitly concerned with distinguishing random
and systematic variation. The notions of sampling variation and of a random sample
are central, and before continuing we describe a useful tool for comparison of data
and a distribution.
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2.1.4 Probability plots

It is often useful to be able to check graphically whether data y1, . . . , yn come from a
particular distribution. Suppose that in addition to the data we had a random sample
x1, . . . , xn known to be from F . In order to compare the shapes of the samples, we
could sort them to get y(1) ≤ · · · ≤ y(n) and x(1) ≤ · · · ≤ x(n), and make a quantile-
quantile or Q-Q plot of y(1) against x(1), y(2) against x(2), and so forth. A straight
line would mean that y( j) = a + bx( j), so that the shape of the samples was identical,
while distinct curvature would indicate systematic differences between them. If the
line was close to straight, we could be fairly confident that y1, . . . , yn looks like a
sample from F — after all, it would have a shape similar to the sample x1, . . . , xn

which is from F .
Quantile-quantile plots are helpful for comparison of two samples, but when com-

paring a single sample with a theoretical distribution it is preferable to use F di-
rectly in a probability plot, in which the y( j) are graphed against the plotting posi-
tions F−1{ j/(n + 1)}. This use of the j/(n + 1) quantile of F is justified in Sec-
tion 2.3 as an approximation to E(X ( j)), where X ( j) is the random variable of which
x( j) is a particular value. For example, the j th plotting positions for the normal
and exponential distributions 	{(x − µ)/σ } and 1 − e−λx are µ + σ	−1{ j/(n + 1)}
and −λ−1 log{1 − j/(n + 1)}. When parameters such as µ, σ , and λ are unknown,
the plotting positions used are for standardized distributions, here 	−1{ j/(n + 1)}
and − log{1 − j/(n + 1)}, which are sometimes called normal scores and expo-
nential scores. Probability plots for the normal distribution are particularly com-
mon in applications and are also called normal scores plots. The interpretation of
a probability plot is aided by adding the straight line that corresponds to perfect
fit of F .

Example 2.16 (Birth data) The top left panel of Figure 2.3 shows a probability
plot to compare the 95 times in the delivery suite with the normal distribution. The
distribution does not fit the largest and smallest observations, and the data show
some upward curvature relative to the straight line. The top right panel shows that
the exponential distribution would fit the data very poorly. The bottom left panel,
a probability plot of the log y j against normal plotting positions, corresponding to
checking the log-normal distribution, shows slight downward curvature. The bottom
right panel, a probability plot of the y j against plotting positions for the gamma
distribution with mean y and variance s2, shows the best fit overall, though it is not
perfect.

In the normal and gamma plots the dotted line corresponds to the theoretical dis-
tribution whose mean equals y and whose variance equals s2; the dotted line in the
exponential plot is for the exponential distribution whose mean equals y; and the dot-
ted line in the log-normal plot is for the normal distribution whose mean and variance
equal the average and variance of the log y j . �

Some experience with interpreting probability plots may be gained from
Practical 2.3.
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Figure 2.3 Probability
plots for hours in the
delivery suite, for the
normal, exponential,
gamma, and log-normal
distributions (clockwise
from top left). In each
panel the dotted line is for
a fitted distribution whose
mean and variance match
those of the data. None of
the fits is perfect, but the
gamma distribution fits
best, and the exponential
worst.

Exercises 2.1

1 Let m and s be the values of location and scale statistics calculated from y1, . . . , yn ; m and
s may be any of the quantities described in Examples 2.1 and 2.2. Show that the effect of
the mapping y1, . . . , yn �→ a + by1, . . . , a + byn b > 0, is to send m, s �→ a + bm, bs.
Show also that the measures of shape in Examples 2.4 and 2.5 are unchanged by this
transformation.

2 (a) Show that when δ is added to one of y1, . . . , yn and |δ| → ∞, the average y changes
by an arbitrarily large amount, but the sample median does not. By considering such
perturbations when n is large, deduce that the sample median has breakdown point 0.5.A sketch may help.

(b) Find the breakdown points of the other statistics in Examples 2.1 and 2.2.

3 (a) If κ > 0 is real and k a positive integer, show that the gamma function

�(κ) =
∫ ∞

0
uκ−1e−u du,

has properties �(1) = 1, �(κ + 1) = κ�(κ) and �(k) = (k − 1)!. It is useful to know that
�( 1

2 ) = π1/2, but you need not prove this.
(b) Use (a) to verify the mean and variance of (2.7).The mode of a density f

is a value y such that
f (y) ≥ f (x) for all x .

(c) Show that for 0 < κ ≤ 1 the maximum value of (2.7) is at y = 0, and find its mode
when κ > 1.
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4 Give formulae analogous to (2.4) for the variance, skewness and ‘shape’ of a distribution
F . Do they behave sensibly when a variable Y with distribution F is transformed to
a + bY , so F(y) is replaced by F{(y − a)/b}?

5 Let Y have continuous distribution function F . For any η, show that X = |Y − η| has
distribution G(x) = F(η + x) − F(η − x), x > 0. Hence give a definition of the median
absolute deviation of F in terms of F−1 and G−1. If the density of Y is symmetric about
the origin, show that G(x) = 2F(x) − 1. Hence find the median absolute deviation of the
Laplace density (2.5).

6 A probability plot in which y1, . . . , yn and x1, . . . , xn are two random samples is called a
quantile-quantile or Q-Q plot. Construct this plot for the first two columns in Table 2.1.
Are the samples the same shape?

7 The stem-and-leaf display for the data 2.1, 2.3, 4.5, 3.3, 3.7, 1.2 is

1 | 2
2 | 13
3 | 37
4 | 5

If you turn the page on its side this gives a histogram showing the data values themselves
(perhaps rounded); the units corresponding to intervals [1, 2), [2, 3) and so forth are to
the left of the vertical bars, and the digits are to the right. Construct this for the combined
data for days 1–3 in Table 2.1. Hence find their median, quartiles, interquartile range, and
range.

8 Do Figures 2.1–2.3 follow the advice given on page 21? If not, how could they be im-
proved? Browse some textbooks and newspapers and think critically about any statistical
graphics you find.

2.2 Convergence

2.2.1 Modes of convergence

Intuition tells us that the bigger our sample, the more faith we can have in our
inferences, because our sample is more representative of the distribution F from
which it came — if the sample size n was infinite, we would effectively know F . As
n → ∞ we can think of our sample Y1, . . . , Yn as converging to F , and of a statistic
S = s(Y1, . . . , Yn) as converging to a limit that depends on F . For our purposes there
are two main ways in which a sequence of random variables, S1, S2, . . ., can converge
to another random variable S.

Convergence in probability

We say that Sn converges in probability to S, Sn
P−→ S, if for any ε > 0

Pr(|Sn − S| > ε) → 0 as n → ∞. (2.9)

A special case of this is the weak law of large numbers, whose simplest form is that
if Y1, Y2, . . . is a sequence of independent identically distributed random variables
each with finite mean µ, and if Y = n−1(Y1 + · · · + Yn) is the average of Y1, . . . , Yn ,
then Y

P−→ µ. We sometimes call this simply the weak law. It is illustrated in the
left-hand panels of Figure 2.4, which show histograms of 10,000 averages of random
samples of n exponential random variables, with n = 1, 5, 10, and 20. The individual
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Figure 2.4 Convergence
in probability and in
distribution. The left
panels show how
histograms of the averages
Y of 10,000 samples of n
standard exponential
random variables become
more concentrated at the
mean µ = 1 as n
increases through 1, 5, 10,
and 20, due to the
convergence in probability
of Y to µ. The right panels
show how the distribution
of Zn = n1/2(Y − 1)
approaches the standard
normal distribution, due to
the convergence in
distribution of Zn to
normality.

variables have density e−y for y > 0, so their mean µ and variance σ 2 both equal one.
As n increases, the values of Sn = Y become increasingly concentrated around µ, so
as the figure illustrates, Pr(|Sn − µ| > ε) decreases for each positive ε.

Statistics that converge in probability have some useful properties. For example, if
s0 is a constant, and h is a function continuous at s0, then if Sn

P−→ s0, it follows that
h(Sn)

P−→ h(s0) (Exercise 2.2.1).
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An estimator Sn of a parameter θ is consistent if Sn
P−→ θ as n → ∞, whatever the

value of θ . Consistency is desirable, but a consistent estimator that has poor properties
for any realistic sample size will be useless in practice.

Example 2.17 (Binomial distribution) A binomial random variable R = ∑m
j=1 I j

counts the numbers of ones in the random sample I1, . . . , Im , each of which has a
Bernoulli distribution, Jacob Bernoulli

(1654–1705) was a
member of a mathematical
family split by rivalry. His
major work on probability,
Ars Conjectandi, was
published in 1713, but he
also worked on many
other areas of
mathematics.

Pr(I j = 1) = π, Pr(I j = 0) = 1 − π, 0 ≤ π ≤ 1.

It is easy to check that E(I j ) = π and var(I j ) = π (1 − π ). Thus the weak law applies
to the proportion of successes π̂ = R/m, giving π̂

P−→ π as m → ∞. Evidently π̂

is a consistent estimator of π . However, the useless estimator π̂ + 106/ log m is also
consistent — consistency is a minimal requirement, not a guarantee that the estimator
can safely be used in practice.

Each of the I j has variance π (1 − π ), and this is estimated by π̂ (1 − π̂ ), a contin-
uous function of π̂ that converges in probability to π (1 − π ). �

Convergence in distribution

We say that the sequence Z1, Z2, . . . , converges in distribution to Z , Zn
D−→ Z , if

Pr(Zn ≤ z) → Pr(Z ≤ z) as n → ∞ (2.10)

at every z for which the distribution function Pr(Z ≤ z) is continuous. The most
important case of this is the central limit theorem, whose simplest version applies
to a sequence of independent identically distributed random variables Y1, Y2, . . . ,
with finite mean µ and finite variance σ 2 > 0. If the sample average is Y =
n−1(Y1 + · · · + Yn), the Central Limit Theorem states that

Zn = n1/2 (Y − µ)

σ

D−→ Z , (2.11)

where Z is a standard normal random variable, that is, one having the normal distri-
bution with mean zero and variance one, written N (0, 1); see Section 3.2.1.

The right panels of Figure 2.4 illustrate such convergence. They show histograms
of Zn for the averages in the left-hand panels, with the standard normal probability
density function superimposed. Each of the right-hand panels is a translation to zero
of the histogram to its left, followed by ‘zooming in’: multiplication by a scale factor
n1/2/σ . As n increases, Zn approaches its limiting standard normal distribution.

Example 2.18 (Average) Consider the average Y of a random sample with mean µ

and finite variance σ 2 > 0. The weak law implies that Y is a consistent estimator
of its expected value µ, and (2.11) implies that in addition Y = µ + n−1/2σ Zn ,
where Zn

D−→ Z . This supports our intuition that Y is a better estimate of µ for
large n, and makes explicit the rate at which Y converges to µ: in large samples Y is
essentially a normal variable with mean µ and variance σ 2/n. �

Example 2.19 (Empirical distribution function) Let Y1, . . . , Yn be a random sam-
ple from F , and let I j (y) be the indicator random variable for the event Y j ≤ y. Thus
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I j (y) equals one if Y j ≤ y and zero otherwise. The empirical distribution function of
the sample is

F̂(y) = n−1
n∑

j=1

I j (y),

a step function that increases by n−1 at each observation, as in the upper right panel
of Figure 2.1. We thought of (2.3) as a summary of the data y1, . . . , yn; F̂(y) is the
corresponding random variable.

The I j (y) are independent and each has the Bernoulli distribution with probability
Pr{I j (y) = 1} = F(y). Therefore F̂(y) is an average of independent identically dis-
tributed variables and has mean F(y) and variance F(y){1 − F(y)}/n. At a value y
for which 0 < F(y) < 1,

F̂(y)
P−→ F(y), n1/2 {F̂(y) − F(y)}

[F(y){1 − F(y)}]1/2

D−→ Z , as n → ∞, (2.12)

where Z is a standard normal variate. It can be shown that this pointwise convergence
for each y extends to convergence of the function F̂(y) to F(y). The empirical dis-
tribution function in Figure 2.1 is thus an estimate of the true distribution of times in
the delivery suite. �

The alert reader will have noticed a sleight-of-word in the previous sentence. Con-
vergence results tell us what happens as n → ∞, but in practice the sample size is fixed
and finite. How then are limiting results relevant? They are used to generate approxi-
mations for finite n — for example, (2.12) leads us to hope that n1/2{F̂(y) − F(y)}/
[F(y){1 − F(y)}]1/2 has approximately a standard normal distribution even when n
is quite small. In practice it is important to check the adequacy of such approxima-
tions, and to develop a feel for their accuracy. This may be done analytically or by
simulation (Section 3.3), while numerical examples are also valuable.

Slutsky’s lemmaEvgeny Evgenievich
Slutsky (1880–1948)
made fundamental
contributions to stochastic
convergence and to
economic time series
during the 1920s and
1930s. In 1902 he was
expelled from university
in Kiev for political
activity. He studied in
Munich and Kiev and
worked in Kiev and
Moscow.

Convergence in distribution is useful in statistical applications because we generally
want to compare probabilities. It is weaker than convergence in probability because
it does not involve the joint distribution of Sn and S. If s0 and u0 are constants, these
modes of convergence are related as follows:

Sn
P−→ S ⇒ Sn

D−→ S, (2.13)

Sn
D−→ s0 ⇒ Sn

P−→ s0, (2.14)

Sn
D−→ S and Un

P−→ u0 ⇒ Sn + Un
D−→ S + u0, SnUn

D−→ Su0. (2.15)

The third of these is known as Slutsky’s lemma.Devotees of tricky
analysis will find
references to proofs of
(2.13)–(2.15) in
Section 2.5.

Example 2.20 (Sample variance) Suppose that Y1, . . . , Yn is a random sample of
variables with finite mean µ and variance σ 2. Let

Sn = n−1
n∑

j=1

(Y j − Y )2 = n−1
n∑

j=1

Y 2
j − Y

2
,
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where Y is the sample average. The weak law implies that Y
P−→ µ, and the function

h(x) = x2 is continuous everywhere, so Y
2 P−→ µ2. Moreover

E
(
Y 2

j

) = var(Y j ) + {E(Y j )}2 = σ 2 + µ2,

so n−1 ∑
Y 2

j
P−→ σ 2 + µ2 also. Now (2.13) implies that n−1 ∑

Y 2
j

D−→ σ 2 + µ2,
and therefore (2.15) implies that Sn

D−→ σ 2. But σ 2 is constant, so Sn
P−→ σ 2.

The sample variance S2 may be written as Sn × n/(n − 1), which evidently also
tends in probability to σ 2. Thus not only is it true that for all n, E(S2) = σ 2, but the
distribution of S2 is increasingly concentrated at σ 2 in large samples. �

These ideas extend to functions of several random variables.

Example 2.21 (Covariance and correlation) The covariance between random vari-
ables X and Y is

γ = E[{X − E(X )}{Y − E(Y )}] = E(XY ) − E(X )E(Y ).

An estimate of γ based on a random sample of data pairs (X1, Y1), . . . , (Xn, Yn) is
the sample covariance

C = 1

n − 1

n∑
j=1

(X j − X )(Y j − Y ) = n

n − 1

(
n−1

n∑
j=1

X j Y j − XY

)
,

where X and Y are the averages of the X j and Y j . Provided the moments E(XY ), E(X )
and E(Y ) are finite, the weak law applies to each of n−1 ∑

X j Y j , X and Y , which
converge in probability to their expectations. The convergence is also in distribution,
by (2.13), so (2.15) implies that C

D−→ γ . But γ is constant, so (2.14) implies that
C

P−→ γ .
The correlation between X and Y ,

ρ = E(XY ) − E(X )E(Y )

{var(X )var(Y )}1/2 ,

is such that −1 ≤ ρ ≤ 1. When |ρ| = 1 there is a linear relation between X and Y ,
so that a + bX + cY = 0 for some nonzero b and c (Exercise 2.2.3). Values of ρ

close to ±1 indicate strong linear dependence between the distributions of X and Y ,
though values close to zero do not indicate independence, just lack of a linear relation.
The parameter ρ can be estimated from the pairs (X j , Y j ) by the sample correlation Also known as the

product moment
correlation coefficient.

coefficient,

R =
∑n

j=1(X j − X )(Y j − Y ){∑n
i=1(Xi − X )2

∑n
k=1(Yk − Y )2

}1/2 .

The keen reader will enjoy showing that R
P−→ ρ. �

Example 2.22 (Studentized statistic) Suppose that (Tn − θ )/var(Tn)1/2 converges
in distribution to a standard normal random variable, Z , and that var(Tn) = τ 2/n,
where τ 2 > 0 is unknown but finite. Let Vn be a statistic that estimates τ 2/n, with the
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property that nVn
P−→ τ 2. The function h(x) = τ/(nx)1/2 is continuous at x = 1, so

τ/(nVn)1/2 P−→ 1. Therefore

Zn = n1/2 (Tn − θ )

τ
× τ

(nVn)1/2

D−→ Z × 1,

by (2.15). Thus Zn has a limiting standard normal distribution provided that nVn is a
consistent estimator of τ 2.

The best-known instance of this is the average of a random sample, Y =
n−1(Y1 + · · · + Yn). If the Y j have finite mean θ and finite positive variance, σ 2,
Y has mean θ and variance σ 2/n. The Central Limit Theorem states that

n1/2 (Y − θ )

σ

D−→ Z .

Consider Zn = n1/2(Y − θ )/S, where S2 = (n − 1)−1 ∑
(Y j − Y )2. Example 2.20

shows that S2 P−→ σ 2, and it follows that Zn
D−→ Z .

The replacement of var(Tn) by an estimate is called studentization to honour
W. S. Gossett. Publishing under the pseudonym ‘Student’ in 1908, he considered

William Sealy Gossett
(1876–1937) worked at
the Guinness brewery in
Dublin. Apart from his
contributions to beer and
statistics, he also invented
a boat with two rudders
that would be easy to
manoeuvre when fly
fishing.

the effect of replacing σ by S for normal data; see Section 3.2. �

Intuition suggests that bigger samples always give better estimates, but intuition
can mislead or fail.

Example 2.23 (Cauchy distribution) A Cauchy random variable centred at θ hasAugustin Louis Cauchy
(1789–1857) made
contributions to all the
areas of mathematics
known at his time. He was
a pioneer of real and
complex analysis, but also
developed applied
techniques such as Fourier
transforms and the
diagonalization of
matrices in order to work
on elasticity and the
theory of light. His
relations with
contemporaries were often
poor because of his rigid
Catholicism and his
difficult character.

density

f (y; θ ) = 1

π{1 + (y − θ )2} , −∞ < y < ∞, −∞ < θ < ∞. (2.16)

Although (2.16) is symmetric with mode at θ , none of its moments exist, and in fact
the average Y of a random sample Y1, . . . , Yn of such data has the same distribution
as a single observation. So if we were unlucky enough to have such a sample, it would
be useless to estimate θ by Y : we might as well use Y1. The difficulty is that the tails
of the Cauchy density decrease very slowly. Data with similar characteristics arise in
many financial and insurance contexts, so this is not a purely mathematical issue: the
average may be a poor estimate, and better ones are discussed later. �

2.2.2 Delta method

Variances and variance estimates are often required for smooth functions of random
variables. Suppose that the quantity of interest is h(Tn), and

(Tn − µ)/var(Tn)1/2 D−→ Z , nvar(Tn)
P−→ τ 2 > 0,

as n → ∞, and Z has the standard normal distribution. Then we may write Tn =
µ + n−1/2τ Zn , where Zn

D−→ Z . If h has a continuous non-zero derivative h′ at µ,
Taylor series expansion gives

h(Tn) = h
(
µ + n−1/2τ Zn

) = h(µ) + n−1/2τ Znh′(µ + n−1/2τWn
)
,
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where Wn lies between Zn and zero. As h′ is continuous at µ, it follows that h′(µ +
n−1/2τWn)

P−→ h′(µ), so (2.15) gives

n1/2{h(Tn) − h(µ)}
τh′(µ)

= n1/2{h(Tn) − h(µ)}
τh′(µ + n−1/2τWn

) × h′(µ + n−1/2τWn
)

h′(µ)

= Zn × h′(µ + n−1/2τWn
)

h′(µ)
D−→ Z

as n → ∞. This implies that in large samples, h(Tn) has approximately the normal
distribution with mean h(µ) and variance var(Tn)h′(µ)2, that is,

.∼ means ‘is
approximately distributed
as’.

h(Tn)
.∼ N (h(µ), var(Tn)h′(µ)2). (2.17)

This result is often called the delta method. Analogous results apply if the limiting
distribution of Zn is non-normal.

Furthermore, if h′(µ) is replaced by h′(Tn) and τ 2 is replaced by a consistent
estimator, Sn , a modification of the argument in Example 2.22 gives

n1/2{h(Tn) − h(µ)}
S1/2

n |h′(Tn)|
D−→ Z . (2.18)

Thus the same limiting results apply if the variance of h(Tn) is replaced by a consistent
estimator. In particular, replacement of the parameters in var(Tn)h′(µ)2 by consistent
estimators gives a consistent estimator of var{h(Tn)}.
Example 2.24 (Exponential transformation) Consider h(Y ) = exp(Y ), where Y
is the average of a random sample of size n, and each of the Y j has mean µ and
variance σ 2. Here h′(µ) = eµ, so exp(Y ) is asymptotically normal with mean eµ and
variance n−1σ 2e2µ. This can be estimated by n−1S2 exp(2Y ), where S2 is the sample
variance. �

Several variables

The delta method extends to functions of several random variables T1, . . . , Tp; we
suppress dependence on n for ease of notation. As n → ∞, suppose that for each
r , n−1/2(Tr − θr )

D−→ N (0, ωrr ), that the joint limiting distribution of n−1/2(Tr − θr )
is multivariate normal (see Section 3.2.3) and ncov(Tr , Ts) → ωrs , where the p × p
matrix � whose (r, s) element is ωrs is positive-definite; note that � is symmetric.
Now suppose that a variance is required for the scalar function h(T1, . . . , Tp). An
argument like that above gives

h(T1, . . . , Tp)
.∼ N {h(θ1, . . . , θp), n−1h′(θ )T

�h′(θ )}, (2.19)

where h′(θ ) is the p × 1 vector whose r th element is ∂h(θ1, . . . , θp)/∂θr ; the require-
ment that h′(θ ) = 0 also holds here. As in the univariate case, the variance can be
estimated by replacing parameters with consistent estimators.

Example 2.25 (Ratio) Let θ1 = E(X ) = 0 and θ2 = E(Y ), and suppose we are
interested in h(θ1, θ2) = θ2/θ1. Estimates of θ1 and θ2 based on random samples
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X1, . . . , Xn and Y1, . . . , Yn are T1 = X and T2 = Y , so the ratio is consistently es-
timated by T2/T1. The derivative vector is h′(θ ) = (−θ2/θ

2
1 , θ−1

1 )T, and the limiting
mean and variance of T2/T1 are

θ2

θ1
, n−1

( − θ2/θ
2
1 θ−1

1

) (
ω11 ω12

ω21 ω22

) (−θ2/θ
2
1

θ−1
1

)
,

the second of which equals

(
nθ2

1

)−1

{
ω11

(
θ2

θ1

)2

− 2ω12
θ2

θ1
+ ω22

}
,

assumed finite and positive. The variance tends to zero as n → ∞, so we should aim
to estimate nvar(T2/T1), which is not a moving target.

Examples 2.20 and 2.21 imply that ω11, ω22, and ω12 are consistently esti-
mated by S2

1 = (n − 1)−1 ∑
(X j − X )2, S2

2 = (n − 1)−1 ∑
(Y j − Y )2, and C = (n −

1)−1 ∑
(X j − X )(Y j − Y ) respectively. Therefore nvar(Y/X ) is consistently esti-

mated by

X
−2


S2

1

(
Y

X

)2

− 2C
Y

X
+ S2

2


 = 1

(n − 1)X
2

n∑
j=1

(
Y j − Y

X
X j

)2

,

as we see after simplification. �

Example 2.26 (Gamma shape) In Example 2.12 the shape parameter κ of the
gamma distribution was taken to be y2/s2 = 3.15, based on n = 95 observations.
The corresponding random variable is T 2

1 /T2, where T1 = Y and T2 = S2 are cal-
culated from the random sample Y1, . . . , Yn , supposed to be gamma with mean
θ1 = κ/λ and variance θ2 = κ/λ2. We take h(θ1, θ2) = θ2

1 /θ2, giving h′(θ1, θ2) =
(2θ1/θ2, −θ2

1 /θ2
2 )T. The variance of T1 is θ2/n, that is, n−1κ/λ2, and it turns out that

var(T2) = var(S2) = κ4

n
+ 2κ2

2

n − 1
, cov(T1, T2) = cov(Y , S2) = κ3

n
,

where κ2 = κ/λ2, κ3 = 2κ/λ3, and κ4 = 6κ/λ4. Thus

var
(
T 2

1 /T2
) .= ( 2λ −λ2 )

( κ
nλ2

2κ
nλ3

2κ
nλ3

6κ
nλ4 + 2κ2

(n−1)λ4

) (
2λ

−λ2

)

= 2κ

n

(
1 + nκ

n − 1

)
,

or roughly 2n−1κ(κ + 1). �

Big and little oh notation: O and o
This can be skipped on a
first reading. For two sequences of constants, {sn} and {an} such that an ≥ 0 for all n, we write

sn = o(an) if limn→∞(sn/an) = 0, and sn = O(an) if there is a finite constant k such
that limn→∞ |sn| ≤ ank. A sequence of random variables {Sn} is said to be op(an) if
(Sn/an)

P−→ 0 as n → ∞, and is said to be Op(an) if Sn/an is bounded in probability
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as n → ∞, that is, given ε > 0 there exist n0 and a finite k such that for all n > n0,

Pr(|Sn/an| < k) > 1 − ε.

This gives a useful shorthand for expansions of random quantities.
To illustrate this, suppose that {Y j } is a sequence of independent identically dis-

tributed variables with finite mean µ, and let Sn = n−1(Y1 + · · · + Yn). Then the weak
law may be restated as Sn = µ + op(1), and if in addition the Y j have finite variance
σ 2, the Central Limit Theorem implies that Y = µ + Op(n−1/2). More precisely,

D= means ‘has the same
distribution as’.

Y
D= µ + n−1/2σ Z + op(n−1/2), where Z has a standard normal distribution. Such

expressions are sometimes used in later chapters.

Exercises 2.2

1 Suppose that Sn
P−→ s0, and that the function h is continuous at s0, that is, for any ε > 0

there exists a δ > 0 such that |x − y| < δ implies that |h(x) − h(y)| < ε. Explain why
this implies that

Pr(|Sn − s0| < δ) ≤ Pr{|h(Sn) − h(s0)| < ε} ≤ 1,

and deduce that Pr{|h(s0) − h(Sn)| < ε} → 1 as n → ∞. That is, h(Sn)
P−→ h(s0).

2 Let s0 be a constant. By writing

Pr(|Sn − s0| ≤ ε) = Pr(Sn ≤ s0 + ε) − Pr(Sn ≤ s0 − ε),

for ε > 0, show that Sn
D−→ s0 implies that Sn

P−→ s0.

3 (a) Let X and Y be two random variables with finite positive variances. Use the fact that
var(aX + Y ) ≥ 0, with equality if and only if the linear combination aX + Y is constant
with probability one, to show that cov(X, Y )2 ≤ var(X )var(Y ); this is a version of the
Cauchy–Schwarz inequality. Hence show that −1 ≤ corr(X, Y ) ≤ 1, and say under what
conditions equality is attained.
(b) Show that if X and Y are independent, corr(X, Y ) = 0. Show that the converse is false
by considering the variables X and Y = X 2 − 1, where X has mean zero, variance one,
and E(X 3) = 0.

4 Let X1, . . . , Xn and Y1, . . . , Yn be independent random samples from the exponential
densities λe−λx , x > 0, and λ−1e−y/λ, y > 0, with λ > 0. If X and Y are the sample
averages, show that X Y

P−→ 1 as n → ∞.

5 Show that as n → ∞ the skewness measure in Example 2.4 converges in probability to
the corresponding theoretical quantity∫

(y − µ)3d F(y){∫
(y − µ)2d F(y)

}3/2 ,

provided this has finite numerator and positive denominator. Under what additional con-
dition(s) is the skewness measure asymptotically normal?

iid∼ means ‘are
independent and
identically distributed as’.

6 If Y1, . . . , Yn
iid∼ N (µ, σ 2), show that n1/2(Y − µ)2 P−→ 0 as n → ∞. Given that var{(Y j −

µ)2} = 2σ 4, deduce that (S2 − σ 2)/(2σ 4/n)1/2 D−→ Z , where Z ∼ N (0, 1). When is this
true for non-normal data?

7 Let R be a binomial variable with probability π and denominator m; its mean and variance
are mπ and mπ (1 − π ). The empirical logistic transform of R is

h(R) = log

(
R + 1

2

m − R + 1
2

)
.
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Show that for large m,

h(R)
.∼ N

{
log

(
π

1 − π

)
,

1

mπ (1 − π )

}
.

What is the exact value of E[log{R/(m − R)}]? Are the 1
2 s necessary in practice?

8 Truncated Poisson variables Y arise when counting quantities such as the sizes of groups,
each of which must contain at least one element. The density is

Pr(Y = y) = θ ye−θ

y!(1 − e−θ )
, y = 1, 2, . . . , θ > 0.

Find an expression for E(Y ) = µ(θ ) in terms of θ . If Y1, . . . , Yn is a random sample from
this density and n → ∞, show that Y

P−→ µ(θ ). Hence show that θ̂ = µ−1(Y )
P−→ θ .

9 Let Y = exp(X ), where X ∼ N (µ, σ 2); Y has the log-normal distribution. Use the
moment-generating function of X to show that E(Y r ) = exp(rµ + r 2σ 2/2), and hence
find E(Y ) and var(Y ).
If Y1, . . . , Yn is a log-normal random sample, show that both T1 = Y and T2 = exp(X +
S2/2) are consistent estimators of E(Y ), where X j = log Y j and S2 is the sample variance
of the X j . Give the corresponding estimators of var(Y ).
Are the estimators based on the Y j or on the X j preferable? Why?

10 The binomial distribution models the number of ‘successes’ among independent vari-
ables with two outcomes such as success/failure or white/black. The multinomial distri-
bution extends this to p possible outcomes, for example total failure/failure/success or
white/black/red/blue/. . .. That is, each of the discrete variables X1, . . . , Xm takes values
1, . . . , p, independently with probability Pr(X j = r ) = πr , where

∑
πr = 1, πr ≥ 0. Let

Yr = ∑
j I (X j = r ) be the number of X j that fall into category r , for r = 1, . . . , p, and

consider the distribution of (Y1, . . . , Yp).
(a) Show that the marginal distribution of Yr is binomial with probability πr , and that
cov(Yr , Ys) = −mπrπs , for r = s. Is it surprising that the covariance is negative?
(b) Hence give consistent estimators of positive probabilities πr . What happens if some
πr = 0?
(d) Suppose that p = 4 with π1 = (2 + θ )/4, π2 = (1 − θ )4, π3 = (1 − θ )/4 and π4 =
θ/4. Show that T = m−1(Y1 + Y4 − Y2 − Y3) is such that E(T ) = θ and var(T ) = a/m
for some a > 0. Hence deduce that T is consistent for θ as m → ∞.
Give the value of T and its estimated variance when (y1, y2, y3, y4) equals
(125, 18, 20, 34).

2.3 Order Statistics

Summary statistics such as the sample median, interquartile range, and median ab-
solute deviation are based on the ordered values of a sample y1, . . . , yn , and they are
also useful in assessing how closely a sample matches a specified distribution. In this
section we study properties of ordered random samples.

The r th order statistic of a random sample Y1, . . . , Yn is Y(r ), where

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n−1) ≤ Y(n)

is the ordered sample. We assume that the cumulative distribution F of the Y j is
continuous, so Y(r ) < Y(r+1) with probability one for each r and there are no ties.
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Density function

To find the probability density of Y(r ), we argue heuristically. Divide the line into
three intervals: (−∞, y), [y, y + dy), and [y + dy, ∞). The probabilities that a sin- The dy is a rhetorical

device so that we can say
the probability that Y = y
is f (y)dy.

gle observation falls into each of these intervals are F(y), f (y)dy, and 1 − F(y)
respectively. Therefore the probability that Y(r ) = y is

n!

(r − 1)! 1! (n − r )!
× F(y)r−1 × f (y)dy × {1 − F(y)}n−r , (2.20)

where the second term is the probability that a prespecified r − 1 of the Y j fall in
(−∞, y), the third the probability that a prespecified one falls in [y, y + dy), the
fourth the probability that a prespecified n − r fall in [y + dy, ∞), and the first is a
combinatorial multiplier giving the number of ways of prespecifying disjoint groups
of sizes r − 1, 1, and n − r out of n.

If we drop the dy, expression (2.20) becomes a probability density function, from
which we can derive properties of Y(r ). For example, its mean is

E
(
Y(r )

) = n!

(r − 1)!(n − r )!

∫ ∞

−∞
y f (y)F(y)r−1{1 − F(y)}n−r dy (2.21)

when it exists; of course we expect that E(Y(1)) < · · · < E(Y(n)).

Example 2.27 (Uniform distribution) Let U1, . . . , Un be a random sample from
the uniform distribution on the unit interval,

Pr(U ≤ u) =



0, u ≤ 0,
u, 0 < u ≤ 1,
1, 1 < u;

(2.22)

we write U1, . . . , Un
iid∼ U (0, 1). As f (u) = 1 when 0 < u < 1, U(r ) has density

fU(r ) (u) = n!

(r − 1)!(n − r )!
ur−1(1 − u)n−r , 0 < u < 1, (2.23)

and (2.21) shows that E(U(r )) equals

n!

(r − 1)!(n − r )!

∫ 1

0
u ur−1(1 − u)n−r dy = n!

(r − 1)!(n − r )!

r !(n − r )!

(n + 1)!

= r

n + 1
;

the value of the integral follows because (2.23) must have integral one for any r in
the range 1, . . . , n and any positive integer n. The expected positions of the n order
statistics divide the unit interval and hence the total probability under the density into
n + 1 equal parts.

It is an exercise to show that U(r ) has variance r (n − r + 1)/{(n + 1)2(n + 2)}
(Exercise 2.3.1). For large n this is approximately n−1 p(1 − p), where p = r/n,
and hence we can write U(r ) = r/(n + 1) + {p(1 − p)/n}1/2ε, where ε is a random
variable with mean zero and variance approximately one. �
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Integrals such as (2.21) are nasty, but a good approximation is often available. Let
U, U1, . . . , Un

iid∼ U (0, 1) and F−1(u) = min{y : F(y) ≥ u}. ThenRecall that every
distribution function is
right-continuous. Pr{F−1(U ) ≤ y} = Pr{U ≤ F(y)} = F(y),

which is the distribution function of Y . Hence Y
D= F−1(U ); note that for continu-

ous F the variable F(Y ) has the U (0, 1) distribution; F(Y ) is called the probability
integral transform of Y . It follows that F−1(U1), . . . , F−1(Un) is a random sam-
ple from F and that the joint distributions of the order statistics Y(1), . . . , Y(n) and
of F−1(U(1)), . . . , F−1(U(n)) are the same; in fact this is true for general F . Conse-
quently E(Y(r )) = E{F−1(U(r ))}. But Example 2.27 implies that U(r )

D= r/(n + 1) +
{p(1 − p)/n}1/2ε, where ε is a random variable with mean zero and unit variance. If
we apply the delta method with h = F−1, we obtain

E
(
Y(r )

) = E
{

F−1
(
U(r )

)} .= F−1
{
E
(
U(r )

)} = F−1{r/(n + 1)}. (2.24)

Hence the plotting positions F−1{r/(n + 1)} are approximate expected order statis-
tics, justifying their use in probability plots; see Section 2.1.4.

Several order statistics

The argument leading to (2.20) can be extended to the joint distribution of any col-
lection of order statistics. For example, the probability that the maximum, Y(n), takes
value v and that the minimum, Y(1), takes value u, is

n!

1!(n − 2)!1!
× f (u)du × {F(v) − F(u)}n−2 × f (v)dv, u < v,

and is zero otherwise. Similarly the joint density of all n order statistics is

fY(1),...,Y(n) (y1, . . . , yn) = n! f (y1) × · · · × f (yn), y1 < · · · < yn. (2.25)

In principle one can use (2.25) to calculate other properties of the joint distribution
of the Y(r ), but this can be very tedious. Here is an elegant exception:

Example 2.28 (Exponential order statistics) Consider the order statistics of a ran-
dom sample Y1, . . . , Yn from the exponential density with parameter λ > 0, for which
Pr(Y > y) = e−λy . Let E1, . . . , En denote a random sample of standard exponential
variables, with λ = 1. Thus Y j

D= E j/λ.
The reasoning uses two facts. First, the distribution function of min(Y1, . . . , Yr ) is

1 − Pr {min(Y1, . . . , Yr ) > y} = 1 − Pr{Y1 > y, . . . , Yr > y}
= 1 − Pr(Y1 > y) × · · · × Pr(Yr > y)

= 1 − exp(−rλy);

this is exponential with parameter rλ. Second, the exponential density has the lack-
of-memory property

Pr(Y − x > y | Y > x) = Pr(Y > x + y)

Pr(Y > x)
= exp{−λ(x + y)}

exp(−λx)
= exp(−λy),
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Figure 2.5 Exponential
order statistics for a
sample of size n = 5. The
time to y(1) is the time to
first event in a Poisson
process of rate 5λ, and so
it has the exponential
distribution with mean
1/(5λ). The spacing
y(2) − y(1) is the time to
first event in a Poisson
process of rate 4λ, and is
independent of y(1)

because of the
lack-of-memory property.
It follows likewise that the
spacings are independent
and that the r th spacing
has the exponential
distribution with
parameter (n + 1 − r )λ.

implying that given that Y − x is positive, its distribution is the same as the original
distribution of Y , whatever the value of x .

We now argue as follows. Since Y(1) = min(Y1, . . . , Yn), its distribution is expo-
nential with parameter nλ: Y(1)

D= E1/(nλ). Given Y(1), n − 1 of the Y j remain, and
by the lack-of-memory property the distribution of Y j − Y(1) for each of them is the
same as if the experiment had started at Y(1) with just n − 1 variables; see Figure 2.5. During the second world

war Alfréd Rényi
(1921–1970) escaped
from a labour camp and
rescued his parents from
the Budapest ghetto. He
made major contributions
to number theory and to
probability. He was a
gifted raconteur who
defined a mathematician
as ‘a machine for turning
coffee into theorems’.

Thus Y(2) − Y(1) is exponential with parameter (n − 1)λ, independent of Y(1), giving
Y(2) − Y(1)

D= E2/{(n − 1)λ}. But given Y(2), just n − 2 of the Y j remain, and by the
lack-of-memory property the distribution of Y j − Y(2) for each of them is exponential
independent of the past; hence Y(3) − Y(2)

D= E3/{(n − 2)λ}. This argument yields the
Rényi representation

Y(r )
D= λ−1

r∑
j=1

E j

n + 1 − j
, (2.26)

from which properties of the Y(r ) are easily derived. For example,

E
(
Y(r )

) = λ−1
r∑

j=1

1

n + 1 − j
, cov

(
Y(r ), Y(s)

) = λ−2
r∑

j=1

1

(n + 1 − j)2
, s ≥ r.

The upper right panel of Figure 2.3 shows a plot of the ordered times in the delivery
suite against standard exponential plotting positions or exponential scores,

∑r
j=1(n +

1 − j)−1 .= − log{1 − r/(n + 1)}. The exponential model fits very poorly.
The argument leading to (2.26) may be phrased in terms of Poisson processes. A

superposition of independent Poisson processes is itself a Poisson process with rate
the sum of the individual rates, so the period from zero to Y(1) is the time to the first
event in a Poisson process of rate nλ, the time from Y(1) to Y(2) is the time to first
event in a Poisson process of rate (n − 1)λ, and so on, with the times between events
independent by definition of a Poisson process; see Figure 2.5. Exercise 2.3.4 gives
another derivation. �
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Approximate density

Although (2.20) gives the exact density of an order statistic for a random sample of
any size, approximate results are usually more convenient in practice. Suppose that r
is the smallest integer greater than or equal to np, r = �np�, for some p in the range
0 < p < 1. Then provided that f {F−1(p)} > 0, we prove at the end of this section
that Y(r ) has an approximate normal distribution with mean F−1(p) and variance
n−1 p(1 − p)/ f {F−1(p)}2 as n → ∞. More formally,

√
n

{
Y(r ) − F−1(p)

}
f {F−1(p)}

{p(1 − p)}1/2

D−→ Z as n → ∞, (2.27)

where Z has a standard normal distribution.

Example 2.29 (Normal median) Suppose that Y1, . . . , Yn is a random sample from
the N (µ, σ 2) distribution, and that n = 2m + 1 is odd. The median of the sample is
its central order statistic, Y(m+1). To find its approximate distribution in large samples,
note that (m + 1)/(2m + 1)

.= 1
2 for large m, and since the normal density is sym-

metric about µ, F−1( 1
2 ) = µ. Moreover f (y) = (2πσ 2)−1/2 exp{−(y − µ)2/2σ 2}, so

f {F−1( 1
2 )} = (2πσ 2)−1/2. Thus (2.27) implies that in large samples Y(m+1) is approx-

imately normal with mean µ and variance πσ 2/(2n). �

Example 2.30 (Birth data) In Figure 2.1 and Example 2.8 we saw that the daily
medians of the birth data were generally smaller but more variable than the daily
averages. To understand why, suppose that we have a sample of n = 13 observa-
tions from the gamma distribution F with mean µ = 8 and shape parameter κ = 3;
these are close to the values for the data. Then the average Y has mean µ and vari-
ance µ2/(nκ); these are 8 and 1.64, comparable with the data values 7.90 and 1.54.
The sample median has approximate expected value F−1( 1

2 ) = 7.13 and variance
n−1 1

2 (1 − 1
2 )/ f {F−1( 1

2 )}2 = 4.02, where f denotes the density (2.8); these values
are to be compared with the average and variance of the daily medians, 7.03 and 2.15.
The expected values are close, but the variances are not; we should not rely on an
asymptotic approximation when n = 13. The theoretical variance of the median ex-
ceeds that of the average, so the sampling properties of the daily average and median
are roughly what we might have expected: var(M) > var(Y ), and E(M) < E(Y ). Our
calculation presupposes constant n, but in the data n changes daily; this is one source
of error in the asymptotic approximation. �Vilfredo Pareto

(1848–1923) studied
mathematics and physics
at Turin, and then became
an engineer and director
of a railway, before
becoming professor of
political economy in
Lausanne. He pioneered
sociology and the use of
mathematics in economic
problems. The Pareto
distributions were
developed by him to
explain the spread of
wealth in society.

Expression (2.27) gives asymptotic distributions for central order statistics, that is,
Y(r ) where r/n → p and 0 < p < 1; as n → ∞ such order statistics have increasingly
more values on each side. Different limits arise for extreme order statistics such as
the minimum, for which r = 1 and r/n → 0, and the maximum, for which r = n and
r/n → 1. We discuss these more fully in Section 6.5.2, but here is a simple example.

Example 2.31 (Pareto distribution) Suppose that Y1, . . . , Yn is a random sample
from the Pareto distribution, whose distribution function is

F(y) =
{

0, y < a,
1 − (y/a)−γ , y ≥ a,



42 2 · Variation

where a, γ > 0. The minimum Y(1) exceeds y if and only if all the Y1, . . . , Yn ex-
ceed y, so Pr(Y(1) > y) = (y/a)−nγ . To obtain a non-degenerate limiting distribution,
consider M = γ n(Y(1) − a)/a. Now

Pr(M > z) = Pr

(
Y(1) >

az

nγ
+ a

)
=

(
az
nγ

+ a

a

)−nγ

→ e−z

as n → ∞. Consequently γ n(Y(1) − a)/a converges in distribution to the standard
exponential distribution.

There are two differences between this result and (2.27). First, and most obvi-
ously, the limiting distribution is not normal. Second, as the power of n by which
Y(1) − a must be multiplied to obtain a non-degenerate limit is higher than in (2.27),
the rate of convergence to the limit is faster than for central order statistics. Accel-
erated convergence of extreme order statistics does not always occur, however; see
Example 6.32. �

Derivation of (2.27)
This may be omitted at a
first reading.Consider Y(r ), where r = �np� and 0 < p < 1 is fixed; hence r/n → p as n → ∞.

We saw earlier that Y(r )
D= F−1(U(r )), where U(r ) is the r th order statistic of a random

sample U1, . . . , Un from the U (0, 1) density, and that U(r ) = r/(n + 1) + {p(1 −
p)/n}1/2ε, where ε has mean zero and variance tending to one as n → ∞. Recall that
F is a distribution whose density f exists. Hence the delta method gives E(Y(r ))

.=
F−1{r/(n + 1)} .= F−1(p), and as

var
(
Y(r )

) = var
{

F−1
(
U(r )

)} .= var
(
U(r )

) ×
{

d F−1(p)

dp

}2

and

d

dp
F{F−1(p)} = f {F−1(p)} d

dp
F−1(p) = 1,

we have var{Y(r )} .= p(1 − p)/[ f {F−1(p)}2n] provided f {F−1(p)} > 0.
To find the limiting distribution of Y(r ), note that

Pr
(
Y(r ) ≤ y

) = Pr

(∑
j

I j (y) ≥ r

)
, (2.28)

where I j (y) is the indicator of the event Y j ≤ y. The I j (y) are independent, so their
sum

∑
j I j (y) is binomial with probability F(y) and denominator n. Therefore (2.28)

and the central limit theorem imply that for large n,

Pr
(
Y(r ) ≤ y

) .= 1 − 	

(
r − nF(y)

[nF(y) {1 − F(y)}]1/2

)
. (2.29)

Now choose y = F−1(p) + n−1/2z{p(1 − p)/ f {F−1(p)}2}1/2, so that

F(y) = p + n−1/2z{p(1 − p)}1/2 + o
(
n−1/2

)
,
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and recall that r = �np� .= np. Then (2.28) and (2.29) imply that, as required,

Pr

(
n1/2

{
Y(r ) − F−1(p)

}
{p(1 − p)/ f {F−1(p)}2}1/2

≤ z

)

approximately equals

1 − 	

[
np − np − n1/2z {p(1 − p)}1/2

{np(1 − p)}1/2

]
= 1 − 	(−z) = 	(z).

Exercises 2.3

1 If U(1) < · · · < U(n) are the order statistics of a U (0, 1) random sample, show that
var(U(r )) = r (n − r + 1)/{(n + 1)2(n + 2)}. Find cov(U(r ), U(s)), r < s and hence show
that corr(U(r ), U(s)) → 1 for large n as r → s.

2 Let U1, . . . , U2m+1 be a random sample from the U (0, 1) distribution. Find the exact
density of the median, U(m+1), and show that U(m+1)

.∼ N { 1
2 , (8m)−1} for large m.

3 Let the X1, . . . , Xn be independent exponential variables with rates λ j . Show that Y =
min(X1, . . . , Xn) is also exponential, with rate λ1 + · · · + λn , and that Pr(Y = X j ) =
λ j/(λ1 + · · · + λn).

4 Verify that the joint distribution of all the order statistics of a sample of size n from a
continuous distribution with density f (y) is (2.25). Hence find the joint density of the
spacings, S1 = Y(1), S2 = Y(2) − Y(1), . . . , Sn = Y(n) − Y(n−1), when f (y) = λe−λy , y > 0,
λ > 0. Use this to establish (2.26).

5 Use (2.27) to show that Y(r )
P−→ F−1(p) as n → ∞, where r = �pn� and 0 < p < 1 is

constant.
Consider IQR and MAD (Example 2.2). Show that IQR

P−→ 1.35σ for normal data and
hence give an estimator of σ . Find also the estimator based on MAD.

6 Let N be a random variable taking values 0, 1, . . ., let G(u) be the probability-generating
function of N , let X1, X2, . . . be independent variables each having distribution function
F , and let Y = max{X1, . . . , X N }. Show that Y has distribution function G{F(y)}, and
find this when N is Poisson and the X j exponential.

7 Let M and IQR be the median and interquartile range of a random sample Y1, . . . , Yn from
a density of form τ−1g{(y − η)/τ }, where g(u) is symmetric about u = 0 and g(0) > 0.
Show that as n → ∞,

n1/2 M − η

IQR
D−→ N (0, c),

for some c > 0, and give c in terms of g and its integral G.
Give c when g(u) equals 1

2 exp(−|u|) and exp(u)/{1 + exp(u)}2.

8 The probability that events in a Poisson process of rate λ > 0 observed over the interval
(0, t0) occur at 0 < t1 < t2 < · · · < tn < t0 is

λn exp(−λt0), 0 < t1 < t2 < · · · < tn < t0.

By integration over t1, . . . , tn , show that the probability that n events occur, regardless of
their positions, is

(λt0)n

n!
exp(−λt0), n = 0, 1, . . . ,

and deduce that given that n events occur, the conditional density of their times is n!/tn
0 ,

0 < t1 < t2 < · · · < tn < t0. Hence show that the times may be considered to be order
statistics from a random sample of size n from the uniform distribution on (0, t0).



44 2 · Variation

9 Find the exact density of the median M of a random sample Y1, . . . , Y2m+1 from the uniform
density on the interval (θ − 1

2 , θ + 1
2 ). Deduce that Z = m1/2(M − θ ) has density

f (z) = (2m + 1)!

(m!)2m1/2

(
1

4
+ z2

m

)m

, |z| <
1

2
m1/2,

and by considering the behaviour of log f (z) as m → ∞ or otherwise, show that for large Stirling’s formula implies
that log m! ∼ 1

2 log(2π ) +
(m + 1

2 ) log m − m as
m → ∞.

m, Z
.∼ N (0, 1/8). Check that this agrees with the general formula for the asymptotic

distribution of a central order statistic.

2.4 Moments and Cumulants

Calculations involving moments often arise in statistics, but they are generally simpler
when expressed in terms of equivalent quantities known as cumulants.

The moment-generating function of the random variable Y is M(t) = E(etY ), pro-
vided M(t) < ∞. Let

M ′(t) = d M(t)

dt
, M ′′(t) = d2 M(t)

dt2
, M (r )(t) = dr M(t)

dtr
, r = 3, . . . ,

denote derivatives of M . If finite, the r th moment of Y is µ′
r = M (r )(0) = E(Y r ),

giving the power series expansion

M(t) =
∞∑

r=0

µ′
r tr/r !.

The quantity µ′
r is sometimes called the r th moment about the origin, whereas µr = The characteristic

function E(eitY ), with
i2 = −1 is defined more
broadly than M(t), but as
we shall not need the extra
generality, M(t) is used
almost everywhere in this
book.

E{(Y − µ′
1)r } is the r th moment about the mean. Among elementary properties of the

moment-generating function are the following: M(0) = 1; the mean and variance of
Y may be written

E(Y ) = M ′(0), var(Y ) = M ′′(O) − {M ′(0)}2;

random variables Y1, . . . , Yn are independent if and only if their joint moment-
generating function factorizes as

E {exp(Y1t1 + · · · + Yntn)} = E {exp(Y1t1)} · · · E {exp(Yntn)} ;

and the fact that any moment-generating function corresponds to a unique probability
distribution.

Cumulants

The cumulant-generating function or cumulant generator of Y is the function K (t) =
log M(t), and the r th cumulant is κr = K (r )(0) = dr K (0)/dtr , giving the power series
expansion

K (t) =
∞∑

r=1

trκr/r !, (2.30)
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provided all the cumulants exist. Differentiation of (2.30) shows that the mean and
variance of Y are its first two cumulants

κ1 = K ′(0) = M ′(0)

M(0)
= µ′

1, κ2 = K ′′(0) = M ′′(0)

M(0)
− M ′(0)2

M(0)2
= µ′

2 − (µ′
1)2.

Further differentiation gives higher-order cumulants. Cumulants are mathematically
equivalent to moments, and can be defined as combinations of powers of moments,
but we shall see below that their statistical interpretation is much more natural than
is that of moments.

Example 2.32 (Normal distribution) If Y has the N (µ, σ 2) distribution, its
moment-generating function is M(t) = exp(tµ + 1

2 t2σ 2) and its cumulant-generating
function is K (t) = tµ + 1

2 t2σ 2. The first two cumulants are µ and σ 2, and all its
higher-order cumulants are zero. The standard normal distribution has K (t) = 1

2 t2.
�

The cumulant-generating function is very convenient for statistical work. Consider
independent random variables Y1, . . . , Yn with respective cumulant-generating func-
tions K1(t), . . . , Kn(t). Their sum Y1 + · · · + Yn has cumulant-generating function

log MY1+···+Yn (t) = log E {exp(tY1 + · · · + tYn)} = log
n∏

j=1

MY j (t) =
n∑

j=1

K j (t).

It follows that the r th cumulant of a sum of independent random variables is the
sum of their r th cumulants. Similarly, the cumulant-generating function of a linear
combination of independent random variables is

Ka+∑n
j=1 b j Y j

(t) = log E {exp(ta + tb1Y1 + · · · + tbnYn)} = ta +
n∑

j=1

K j (b j t).

(2.31)

Example 2.33 (Chi-squared distribution) If Z1, . . . , Zν are independent standard
normal variables, each Z2

j has the chi-squared distribution on one degree of freedom,
and (3.10) gives its moment-generating function, (1 − 2t)−1/2. Therefore each Z2

j

has cumulant-generating function − 1
2 log(1 − 2t), and the χ2

ν random variable W =∑ν
j=1 Z2

j has cumulant-generating function

K (t) = −ν

2
log(1 − 2t) = −ν

2

∞∑
r=1

(−1)r−1 (−2t)r

r
= ν

∞∑
r=1

2r−1(r − 1)!
tr

r !
,

provided that |t | < 1
2 . Therefore W has r th cumulant κr = ν2r−1(r − 1)!. In particu-

lar, the mean and variance of W are ν and 2ν. �

Example 2.34 (Linear combination of normal variables) Let L = a +∑n
j=1 b j Y j be a linear combination of independent random variables, where Y j has the
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normal distribution with mean µ j and variance σ 2
j . Then L has cumulant-generating

function

at +
n∑

j=1

{
(b j t)µ j + 1

2
(b j t)

2σ 2
j

}
= t

(
a +

n∑
j=1

b jµ j

)
+ t2

2

(
n∑

j=1

b2
jσ

2
j

)
,

corresponding to a N (a + ∑
b jµ j ,

∑
b2

jσ
2
j ) random variable. �

Skewness and kurtosis

The third and fourth cumulants of Y are called its skewness, κ3, and kurtosis, κ4. Some authors define the
kurtosis to be κ4 + 3κ2

2 , in
our notation.

Example 2.32 showed that κ3 = κ4 = 0 for normal variables. This suggests that they
be used to assess the closeness of a variable to normality. However, they are not
invariant to changes in the scale of Y , and the standardized skewness κ3/κ

3/2
2 and

standardized kurtosis κ4/κ
2
2 are used instead for this purpose; small values suggest

that Y is close to normal.
The average Y of a random sample of observations, each with cumulant-generating

function K (t), has mean and variance κ1 and n−1κ2. Expression (2.31) shows that the
random variable Zn = n1/2κ

−1/2
2 (Y − κ1), which is asymptotically standard normal,

has cumulant-generating function

nK
(
n−1/2κ

−1/2
2 t

) − n1/2κ
−1/2
2 κ1t,

and this equals

n

{
t

n1/2

κ1

κ
1/2
2

+ 1

2

t2

n

κ2

κ2
+ 1

6

t3

n3/2

κ3

κ
3/2
2

+ 1

24

t4

n2

κ4

κ2
2

+ o

(
t4

n2

)}
− n1/2t

κ1

κ
1/2
2

.

After simplification we find that the cumulant-generating function of Zn is

1

2
t2 + 1

3
n−1/2t3 κ3

κ
3/2
2

+ 1

24
n−1t4 κ4

κ2
2

+ o

(
t4

n

)
. (2.32)

Hence convergence of the cumulant-generating function of Zn to 1
2 t2 as n → ∞ is

controlled by the standardized skewness and kurtosis κ3/κ
3/2
2 and κ4/κ

2
2 .

Example 2.35 (Poisson distribution) Let Y1, . . . , Yn be independent Poisson
observations with means µ1, . . . , µn . The moment-generating function of Y j is
exp{µ j (et − 1)}, so its cumulant-generating function is K j (t) = µ j (et − 1) and all
its cumulants equal µ j . As the cumulant-generating function of Y1 + · · · + Yn is∑

j µ j (et − 1), the sum
∑

Y j has a Poisson distribution with mean
∑

µ j .
Now suppose that all the µ j equal µ, say. From (2.31), the cumulant-generating

function of the standardized average, n1/2µ−1/2(Y − µ), is

nK
{
t(nµ)−1/2

} − t(nµ)1/2 = nµ
{
et(nµ)−1/2 − 1

} − t(nµ)1/2

= nµ

∞∑
r=2

tr

(nµ)r/2r !
.
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Thus Y has standardized skewness and kurtosis (nµ)−1/2 and (nµ)−1; in general
κr = (nµ)−(r−2)/2 for r = 2, 3, . . . Hence Y approaches normality for fixed µ and
large n or fixed n and large µ. �

Vector case

A vector random variable Y = (Y1, . . . , Yp)T has moment-generating function M(t) =
E(etTY ), where tT = (t1, . . . , tp). The joint moments of the Yr are the derivatives

E
(
Y r1

1 · · · Y
rp
p

) = ∂r1+···+rp M(t)

∂tr1
1 · · · ∂t

rp
p

∣∣∣∣∣
t=0

.

The cumulant-generating function is again K (t) = log M(t), and the joint cumulants
of the Yr are given by mixed partial derivatives of K (t) with respect to the elements
of t . For example, the covariance matrix of Y is the p × p symmetric matrix whose
(r, s) element is κr,s = ∂2 K (t)/∂tr∂ts , evaluated at t = 0.

Suppose that Y = (Y1, Y2)T, and that the scalar random variables Y1 and Y2 are
independent. Then their joint cumulant-generating function is

K (t) = log E {exp(t1Y1 + t2Y2)} = log E {exp(t1Y1)} + log E {exp(t2Y2)} ,

because the moment-generating function of independent variables factorizes. But
since every mixed derivative of K (t) equals zero, all the joint cumulants of Y1 and Y2

equal zero also. This observation generalizes to several variables: the joint cumulants
of independent random variables are all zero. This is not true for moments, and partlyJoint derivatives are not

needed to obtain first
cumulants, which are not
joint cumulants.

explains why cumulants are important in statistical work.

Example 2.36 (Multinomial distribution) The probability density of a multi-
nomial random variable Y = (Y1, . . . , Yp)T with denominator m and probabilities
π = (π1, . . . , πp), that is Pr(Y1 = y1, . . . , Yp = yp), equals

m!

y1! · · · yp!
π

y1
1 · · · π yp

p , yr = 0, 1, . . . , m,

p∑
r=1

yr = m;

note thatπr ≥ 0,
∑

r πr = 1. This arises when m independent observations take values
in one of p categories, each falling into the r th category with probability πr . Then
Yr is the total number falling into the r th category. If Y1, . . . , Yp are independent
Poisson variables with means µ1, . . . , µp, then their joint distribution conditional
on Y1 + · · · + Yp = m is multinomial with denominator m and probabilities πr =
µr/

∑
µs .

The moment-generating function of Y is

E
(
etTY

) =
∑ m!

y1! · · · yp!
π

y1
1 · · · π yp

p ey1t1+···+yptp = (π1et1 + · · · + πpetp )m ;

the sum is over all vectors (y1, . . . , yp)T of non-negative integers such that
∑

r yr = m.
Thus K (t) = m log(π1et1 + · · · + πpetp ). It follows that the joint cumulants of the
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elements of Y are

κr = mπr ,

κr,s = m (πrδrs − πrπs) ,

κr,s,t = m (πrδrst − πrπsδr t [3] + 2πrπsπt ) ,

κr,s,t,u = m {πrδrstu − πrπs (δr tδsu[3] + δstu[4]) + 2πrπsπtδru[6] − 6πrπsπtπu} ;

here a Kronecker delta symbol such as δrst equals 1 if r = s = t and 0 otherwise,
and a term such as πrπsδr t [3] indicates πrπsδr t + πsπtδrs + πrπtδst . The value of
κr,s implies that components of Y are negatively correlated, because a large value for
one entails low values for the rest. Zero covariance occurs only if πr = 0, in which
case Yr is constant. �

Exercises 2.4

1 Show that the third and fourth cumulants of a scalar random variable in terms of its
moments are

κ3 = µ′
3 − 3µ′

1µ
′
2 + 2(µ′

1)3, κ4 = µ′
4 − 4µ′

3µ
′
1 − 3(µ′

2)2 + 12µ′
2(µ′

1)2 − 6(µ′
1)4.

2 Show that the cumulant-generating function for the gamma density (2.7) is −κ log(1 −
t/λ). Hence show that κr = κ(r − 1)!/λr , and confirm the mean, variance, skewness and
kurtosis in Examples 2.12 and 2.26.
If Y1, . . . , Yn are independent gamma variables with parameters κ1, . . . , κn and the same
λ, show that their sum has a gamma density, and give its parameters.

This demands nodding
acquaintance with
characteristic functions.

3 The Cauchy density (2.16) has no moment-generating function, but its characteristic
function is E(eitY ) = exp(i tθ − |t |), where i2 = −1. Show that the average Y of a random
sample Y1, . . . , Yn of such variables has the same characteristic function as Y1. What does
this imply?

John Wilder Tukey
(1915–2000) was
educated at home and then
studied chemistry and
mathematics at Brown
University before
becoming interested in
statistics during the
1939–45 war, at the end of
which he joined Princeton
University. He made
important contributions to
areas including time
series, analysis of
variance, and
simultaneous inference.
He underscored the
importance of data
analysis, computing,
robustness, and
interaction with other
disciplines at a time when
mathematical statistics
had become somewhat
introverted, and invented
many statistical terms and
techniques. See Fernholtz
and Morgenthaler (2000).

2.5 Bibliographic Notes

The idea that variation observed around us can be represented using probability mod-
els provides much of the motivation for the study of probability theory and underpins
the development of statistics. Cox (1990) and Lehmann (1990) give complementary
general discussions of statistical modelling and a glance at any statistical library will
reveal hordes of books on specific topics, references to some of which are given in
subsequent chapters. Real data, however, typically refuse to conform to neat proba-
bilistic formulations, and for useful statistical work it is essential to understand how
the data arise. Initial data analysis typically involves visualising the observations in
various ways, examining them for oddities, and intensive discussion to establish what
the key issues of interest are. This requires creative lateral thinking, problem solving,
and communication skills. Chatfield (1988) gives very useful discussion of this and
related topics.

J. W. Tukey and his co-workers have played an important role in stimulating devel-
opment of approaches to exploratory data analysis both numerical and graphical; see
Tukey (1977), Mosteller and Tukey (1977), and Hoaglin et al. (1983, 1985, 1991).
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Figure 2.6 Match the
sample to the density.
Upper panels: four
densities compared to the
standard normal (heavy).
Lower panels: normal
probability plots for
samples of size 100 from
each density.

Two excellent books on statistical graphics are Cleveland (1993, 1994), while Tufte
(1983, 1990) gives more general discussions of visualizing data. For a brief account
see Cox (1978).

Cox and Snell (1981) give an excellent general account of applied statistics.
Most introductory texts on probability and random processes discuss the main

convergence results; see for example Grimmett and Stirzaker (2001). Bickel and
Doksum (1977) give a more statistical account; see their page 461 for a proof of
Slutsky’s lemma. See also Knight (2000).

Arnold et al. (1992) give a full account of order statistics and many further
references.

Most elementary statistics texts do not describe cumulants despite their usefulness.
McCullagh (1987) contains forceful advocacy for them, including powerful methods
for cumulant calculations. See also Kendall and Stuart (1977), whose companion
volumes (Kendall and Stuart, 1973, 1976) overlap considerably with parts of this
book, from a quite different viewpoint.

2.6 Problems

1 Figure 2.6 shows normal probability plots for samples from four densities. Which goesPin the tail on the density.

with which?

2 Suppose that conditional on µ, X and Y are independent Poisson variables with means
µ, but that µ is a realization of random variable with density λνµν−1e−λµ/�(ν), µ > 0,
ν, λ > 0. Show that the joint moment-generating function of X and Y is

E
(
es X+tY

) = λν{λ − (es − 1) − (et − 1)}−ν,

and hence find the mean and covariance matrix of (X, Y ). What happens if λ = ν/ξ and
ν → ∞?

3 Show that a binomial random variable R with denominator m and probability π has
cumulant-generating function K (t) = m log(1 − π + πet ). Find lim K (t) as m → ∞ and
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π → 0 in such a way that mπ → λ > 0. Show that

Pr(R = r ) → λr

r !
e−λ,

and hence establish that R converges in distribution to a Poisson random variable. This
yields the Poisson approximation to the binomial distribution, sometimes called the law
of small numbers. For a numerical check in the S language, try

y <- 0:10; lambda <- 1; m <- 10; p <- lambda/m
round(cbind(y,pbinom(y,size=m,prob=p),ppois(y,lambda)),digits=3)

with various other values of m and λ.

4 (a) Let X be the number of trials up to and including the first success in a a sequence
of independent Bernoulli trials having success probability π . Show that Pr(X = k) =
π (1 − π )k−1, k = 1, 2, . . ., and deduce that X has moment-generating function πet/{1 −
(1 − π )et }; hence find its mean and variance. X has the geometric distribution.
(b) Now let Yn be the number of trials up to and including the nth success in such a
sequence of trials. Show that

Pr(Yn = k) =
(

k − 1

n − 1

)
π n(1 − π )k−n, k = n, n + 1, . . . ;

this is the negative binomial distribution. Find the mean and variance of Yn , and show
that as n → ∞ the sequence {Yn} satisfies the conditions of the Central Limit Theorem.
Deduce that

lim
n→∞

21−n
n∑

k=0

(
k + n − 1

n − 1

)
1

2k
= 1.

(c) Find the limiting cumulant-generating function of πYn/(1 − π ) as π → 0, and hence
show that the limiting distribution is gamma.

5 Let Y1, . . . , Yn be a random sample from a distribution with mean µ and variance σ 2. Find
the mean of

T = 1

2n(n − 1)

∑
j =k

(Y j − Yk)2,

and by writing Y j − Yk = Y j − Y − (Yk − Y ), show that T = S2.

6 Let Y1, . . . , Yn be a random sample from the uniform distribution on the interval (θ −
1
2 , θ + 1

2 ). Show that the joint density of the sample maximum and minimum, Y(n) and
Y(1), is

fY(1),Y(n) (u, v) = n(n − 1)(v − u)n−2, θ − 1

2
< u < v < θ + 1

2
.

The sample range is R = Y(n) − Y(1), and a natural estimator of θ is the midrange, T =
(Y(n) + Y(1))/2. Show that the conditional density of T given R is

f (t | r ; θ ) = (1 − r )−1, 0 < r < 1, θ + 1

2
− r

2
> t > θ − 1

2
+ r

2
.

How precisely is θ determined by this density as r → 0 and r → 1?

Waloddi Weibull
(1887–1979) was a
Swedish engineer who in
1937 published the
distribution that bears his
name; it is widely used in
reliability.

7 A random variable X with the Weibull distribution with index α has distribution function
1 − exp{−(x/λ)α}, x > 0, λ, α > 0. The idea that a system with many similar components
will fail when the weakest component fails has led to widespread use of this distribution
in industrial reliability.
(a) Suppose that X1, . . . , Xn are independent identically distributed continuous non-
negative random variables such that as t → 0, the density and distribution functions are
asymptotically atκ−1 and atα/α respectively, where a, α > 0. Let Y = min(X1, . . . , Xn)
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and let W = (a/α)1/αn1/αY . Show that as n → ∞, W has as its limiting distribution the
Weibull distribution with index α.
(b) Explain why a probability plot for the Weibull distribution may be based on plotting
the logarithm of the r th order statistic against log{− log(1 − r

n+1 )}, and give the slope and
intercept of such a plot. Check whether the data in Table 1.2 follow Weibull distributions.

8 Let Y1, . . . , Y2m+1 be a random sample from the uniform density

f (y) =
{

θ−1, 0 ≤ y ≤ θ ,
0, otherwise.

Derive the density function of the sample median T = Y(m+1) and find its exact mean and
variance.
Find the density function of Z = 2(2m + 3)1/2(Y(m+1) − θ/2)/θ and use Stirling’s formula
to show directly that, as m → ∞, Z has asymptotically a standard normal distribution.
Deduce that asymptotically var(T ) ∼ 3var(Y ).

9 The coefficient of variation of a random sample Y1, . . . , Yn is C = S/Y , where Y and
S2 are the sample average and variance. It estimates the ratio ψ = σ/µ of the standard
deviation relative to the mean. Show that

E(C)
.= ψ, var(C)

.= n−1

(
ψ4 − γ3ψ

3 + 1

4
γ4ψ

2

)
+ ψ2

2(n − 1)
.

10 If T1 and T2 are two competing estimators of a parameter θ , based on a random sample
Y1, . . . , Yn , the asymptotic efficiency of T1 relative to T2 is limn→∞ var(T2)/var(T1) ×
100%. If n = 2m + 1, find the asymptotic efficiency of the sample median Y(m+1) relative
to the average Y = n−1

∑
j Y j when the density of the Y j is: (a) normal with mean θ and

variance σ 2; (b) Laplace, (2σ )−1 exp{−|y − θ |/σ } for −∞ < y < ∞; and (c) Cauchy,
σ/[π{σ 2 + (y − θ )2}] for −∞ < y < ∞.

11 Show that the covariance matrix for the multinomial distribution may be written
m(diag{π} − ππT), and deduce that it has determinant zero. Explain why the distribution
is degenerate.

12 (a) If X has the N (µ, σ 2) distribution, show that X 2 has cumulant-generating function

tµ2/(1 − 2tσ 2) − 1

2
log(1 − 2tσ 2).

(b) If X1, . . . , Xν are independent normal variables with variance σ 2 and means
µ1, . . . , µν , show that the cumulant-generating function of W = X 2

1 + · · · + X 2
ν is

tδ2σ 2/(1 − 2tσ 2) − ν

2
log(1 − 2tσ 2),

where δ2 = (µ2
1 + · · · + µ2

ν)/σ 2. The distribution of W/σ 2 is said to be non-central chi-
squared with ν degrees of freedom and non-centrality parameter δ2. Show that the moment-
generating function of W may be written

exp

{
−1

2
δ2 + 1

2
δ2(1 − 2tσ 2)−1

}
(1 − 2tσ 2)−ν/2,

and that this equals

e−δ2/2
∞∑

r=0

1

r !

(
δ2

2

)r

(1 − 2tσ 2)−r−ν/2. (2.33)

Use (2.33) and (3.10) to write down an expression for the density of W .
(c) Hence deduce that (i) W

D= Wν + W2N , where W ∼ σ 2χ 2
ν independent of W2N ∼

σ 2χ 2
2N , with χ 2

0 taking value 0 with unit probability, and N is Poisson with mean δ2/2,
and (ii) W

D= (δσ + Y1)2 + Y 2
2 + · · · + Y 2

ν .
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Uncertainty

In the previous chapter we saw how variation arises in data generated by a model. We
now confront a central issue: how to transform knowledge of this variation into state-
ments about the uncertainty surrounding the model parameters. Uncertainty is a more
elusive concept than variation and there is more disagreement about how it should
be expressed. One important approach described in Chapter 11 uses Bayes’ theorem to
convert prior knowledge into posterior uncertainty, conditional on the data observed.
The route taken below is more common in applications, and is usually known as the
frequentist, repeated sampling, or classical approach. The next section describes how
uncertainty may be expressed in terms of confidence intervals. In practice confidence
intervals are usually approximate, but exact inferences are possible from some central
models derived from the normal distribution, and these are described in the following
section, followed by a brief summary of methods for prediction. There follows an
introduction to the use of simulated data to appreciate both variation and uncertainty,
for example in assessing the quality of approximate confidence intervals.

3.1 Confidence Intervals

3.1.1 Standard errors and pivots

In Section 2.2 we saw that many statistics approach limiting distributions in large
samples. In practice a sample size is never infinite, but nevertheless these limits may
be used to help quantify uncertainty. Suppose that T is an estimator of a parameter
ψ based on a random sample Y1, . . . , Yn , that its unknown variance var(T ) has form
τ 2/n, and that nV is a consistent estimator of τ 2, so nV

P−→ τ 2 as n → ∞. Statements
of uncertainty about an estimator often involve its standard deviation n−1/2τ , but
usually τ is unknown and must be estimated. An estimated standard deviation is
known as a standard error, so V 1/2 is a standard error for T .

Example 3.1 (Average) Suppose each of the Y j has mean µ and variance σ 2. The
sample average, Y , has mean µ and variance σ 2/n. Now S2 = (n − 1)−1 ∑

(Y j − Y )2

is an estimator of σ 2, so V 1/2 = n−1/2S is a standard error for Y . �

52
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Example 3.2 (Gamma shape) In Example 2.26 we saw that the shape parameter

κ of a gamma random sample may be estimated by T = Y
2
/S2, and that this es-

timate has variance approximately 2κ(κ + 1)/n, which may itself be estimated by
V = 2T (T + 1)/n. We saw also that for the n = 95 observations in Example 2.3,
y2/s2 = 3.15. It follows that a standard error for this estimate is

{2 × 3.15(3.15 + 1)/95}1/2 = 0.52.

�

In statements of uncertainty for an unknown parameter ψ , a central role is played
by a pivot — a function of the data and the parameter whose distribution is known.
In the discussion below we must distinguish a generic value of ψ from its true but
unknown value ψ0. The condition that a quantity Z (ψ0) be pivotal means that for
each z Pr{Z (ψ0) ≤ z} is the same for every ψ0; that is, the distribution of Z (ψ0) does
not depend on ψ0.

Example 3.3 (Exponential sample) Let Y1, . . . , Yn be a random sample from the
exponential distribution 1 − exp(−y/ψ0), y > 0, where ψ0 > 0 is unknown. Then
Y j/ψ0 has distribution function

Pr(Y j/ψ0 ≤ u) = Pr(Y j ≤ uψ0) = 1 − exp(−u),

which is known, even though the distribution of Y j itself is not. Each of the
Y j/ψ0 has this same distribution, and they are independent, so the distribution of
Z (ψ0) = ψ−1

0

∑
Y j is known, at least in principle. In fact the density of Z (ψ0) is

zn−1 exp(−z)/(n − 1)! for z > 0; this is the gamma density (2.7) with parameters
λ = 1 and κ = n. As n is known, every property of the distribution of Z (ψ0) may be
obtained. �

Exact pivots are rare, but approximate ones are legion. For example, let Z (ψ0) =
(T − ψ0)/V 1/2 be based on a sample of size n, and suppose that the limiting distribu-
tion of Z (ψ0) as n → ∞ is standard normal; the results of Chapter 2 suggest that this
will often be the case if T is based on averages. Then if n is large, Z (ψ0) is roughly
standard normal, and so is an approximate pivot. Now

Pr {Z (ψ0) ≤ z} = Pr

(
T − ψ0

V 1/2
≤ z

)
.= �(z),

where � is the standard normal distribution function. Then

Pr

(
zα ≤ T − ψ0

V 1/2
≤ z1−α

)
.= 1 − 2α, (3.1)

where zα is the α quantile of this distribution, that is, �(zα) = α. Equivalently

Pr
(
T − V 1/2z1−α ≤ ψ0 ≤ T − V 1/2zα

) .= 1 − 2α. (3.2)

Hence the random interval whose endpoints are

T − V 1/2z1−α, T − V 1/2zα (3.3)

contains ψ0 with probability approximately (1 − 2α), whatever the value of ψ0. This
interval is variously called an approximate (1 − 2α) × 100% confidence interval for
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ψ0 or a confidence interval for ψ0 with approximate coverage probability (1 − 2α);
we call it a (1 − 2α) confidence interval for ψ0. We regard the interval as random,
containing ψ0 with a specified probability. Conventionally α is a number such as 0.1,
0.05, 0.025, or 0.005, corresponding to 0.8, 0.9, 0.95 and 0.99 confidence intervals
for ψ0; these intervals will be increasingly wide. As zα = −z1−α , (3.3) may be written
T ± V 1/2zα . When 1 − 2α = 0.95, zα = −1.96

.= −2, so (3.3) is roughly T ± 2V 1/2.
Given a particular set of data, y1, . . . , yn , we calculate the confidence interval from

(3.3) by replacing T and V with their observed values t and v; this gives t ± v1/2zα .
This interval either does or does not contain ψ0, though we do not know which in any
particular case. We interpret this by reference to a hypothetical infinite sequence of sets
of data generated by the same mechanism or experiment that gave the data from which
the interval was calculated. We then argue that if the observed data had been selected
at random from these sets of data, then the interval actually obtained could be regarded
as being selected randomly from a sequence of intervals with the property (3.2), and in
this sense it would contain ψ0 with probability (1 − 2α). With this interpretation, on
average 19 out of every 20 confidence intervals with coverage 0.95 will contain ψ0,
and on average 99 out of every 100 intervals with coverage 0.99 will contain ψ0, and
so forth. Such an interval will also contain other values of ψ , but we would like it to
be as short as possible on average, so that it does not contain too many of them.

Example 3.4 (Birth data) We use the data from Example 2.3 to construct a 95% con-
fidence interval for the population mean time in the delivery suite, µ0 hours, assuming
that the times for each day are a random sample Y1, . . . , Yn from the population.

An obvious choice of estimator T is the average, Y , and we may take V to equal
n−1S2 = {n(n − 1)}−1 ∑

(Y j − Y )2. In this case a (1 − 2α) × 100% confidence in-
terval has endpoints Y ± n−1/2Szα , and if (1 − 2α) = 0.95, then α = 0.025 and
zα = −1.96. On day 1 there were n = 16 deliveries, with average y = 8.77 and
sample variance s2 = 18.46, so a 95% confidence interval for µ0 based on these data
is y ± n−1/2sz0.025 = (6.66, 10.87) hours.

The upper left panel of Figure 3.1 shows 95% confidence intervals for µ0 based
on data for each of the first 20 days. The dotted line shows the average time in the
delivery suite for all three months of data, which should be close to µ0. The intervals
vary in length and in location, with 18 of them containing the three-month average.
We expect about 19 of these 20 intervals to contain the true parameter, and the data
seem consistent with this.

The upper right panel illustrates the calculation of the confidence interval from
the day 1 data. The horizontal axis shows values of µ, and the diagonal line shows
the function z(µ) = (8.77 − µ)/(18.46/16)1/2. The confidence interval is obtained
by reading off those values of µ for which z(µ) = z0.025, z0.975 = ±1.96, and these
are shown by the vertical dashed lines, values of µ between which lie in the interval.

Other values of Y and S2 that might have been observed would give different func-
tions Z (µ) = (Y − µ)/(S2/n)1/2. The lower right panel shows the observed values
z(µ) of these for each of the first ten days of data. An infinite number of days would
induce a probability density for Z (µ0), corresponding to the points where the solid
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Figure 3.1 Confidence
intervals for the mean
time in the delivery suite.
Upper left: 95%
confidence intervals
calculated using each of
the first 20 days of data,
with the average time for
three months (92 days) of
data (dots). Upper right:
z(µ) = (y − µ)/(s2/n)1/2

as a function of µ for the
data from day 1 (diagonal
line). The dotted lines
show z0.025 = −1.96 and
z0.975 = 1.96, from which
the confidence interval is
read off by solving
z(µ) = ±1.96. Lower
right: lines z(µ) for ten
different samples; their
intersections z(µ0) with
the vertical line at µ0

(blobs) have the standard
normal density shown. If
µ0 were different, the
density would be
translated in the
x-direction but remain
unchanged, because
Z (µ0) is a pivot. Lower
left: proportion of all 92
95% confidence intervals
that include different
values of µ. The vertical
line (dots) shows the most
likely value of µ0, where
the coverage probability
should be 0.95, given by
the horizontal line
(dashes).

vertical line intersects with the diagonal lines, and this density is illustrated also. If
µ0 was equal to the three-month average of 7.93 hours, we would expect a proportion
0.025 of the blobs at z(7.93) to lie outside ±1.96. Exact pivotality of Z (µ0) would
mean that even if µ0 was not 7.93 hours, so that the density was shifted horizontally,
it would not change shape. In fact the normal approximation is not perfect here, as
we shall see in Example 3.6.

We can compute the probability that the confidence interval (3.3) contains any
value of µ. For µ0 this should be (1 − 2α), but it will be lower for other values of µ.
The lower left panel of Figure 3.1 shows the proportion of the 92 separate daily
95% confidence intervals containing each value of µ. This shows the shape we would
expect: values close to the three-month average lie in most of the intervals, while
values far from it are rarely covered. The corresponding proportions from an infinite
number of days of data are the coverage probabilities

Pr
(

T − z1−αV 1/2 ≤ µ ≤ T − zαV 1/2
∣∣ true value is µ0

)
.

If the approximation (3.2) was perfect, this probability would equal 0.95 when µ =
µ0, but a poor approximation would give a probability different from 0.95. We would
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hope that this function would be as peaked as possible, to reduce the probability that
a value other than µ0 is contained in the interval: we want the average length of the
intervals to be as short as possible. �

Example 3.5 (Binomial distribution) In opinion polls about the status of the
political parties in the UK, m = 1000 people are typically asked about their voting
intentions. Let the number of these who support a particular party be denoted by R,
supposed binomial with probability π . An estimate of π is π̂ = R/m, and since π̂

has variance π (1 − π )/m, the standard error of π̂ is {π̂ (1 − π̂ )/m}1/2. Example 2.17
combined with Slutsky’s lemma (2.15) implies that (π̂ − π )/{π̂ (1 − π̂ )/m}1/2 con-
verges in distribution to a standard normal variable, and consequently a (1 − 2α)
confidence interval for π has endpoints

π̂ − z1−α{π̂ (1 − π̂ )/m}1/2, π̂ − zα{π̂ (1 − π̂ )/m}1/2.

For the two main parties π usually lies in the range 0.3–0.4, so suppose that π̂ = 0.35,
m = 1000, and we want a 95% confidence interval for π , so that z0.975 = −z0.025 =
1.96

.= 2. Then as (0.35 × 0.65/1000)1/2 .= 0.015, the interval lies roughly 0.03 on
either side of π̂ . In percentage terms this is the ‘3% margin of error’ sometimes
mentioned when the results of such a poll are reported. The margin depends little on
π̂ because the function π (1 − π ) is fairly flat over the usual range 0.2–0.5 of support
for the main parties. �

There are infinitely many confidence intervals with coverage (1 − 2α), because
we can replace z1−α and zα in (3.3) with any pair z1−α1 , zα2 such that α1, α2 ≥ 0
and 1 − α1 − α2 = 1 − 2α. The choice α1 = α2 = α gives the equi-tailed intervals
discussed above, and these are common in practice. Other standard choices are α1 =
2α, α2 = 0 or α1 = 0, α2 = 2α, which give one-sided intervals (T − V 1/2z1−2α, ∞)
or (−∞, T − V 1/2z2α) respectively. These are appropriate when a lower or an upper
confidence bound is required for ψ0. For example, insurance companies are interested
in upper confidence bounds for potential losses, lower bounds being of little interest.

Complications

In order not to obscure the main points, the discussion above has been deliberately
oversimplified. One complication is that realistic models rarely have just one para-
meter, so our notion of a pivot must be generalized.

Suppose that in addition to ψ , the model has another parameter λ whose value
is not of interest, and that we seek to construct a confidence interval for ψ0 using a
pivot Z (ψ0). Our previous definition must be extended to mean that the distribution
of Z (ψ0) depends neither on ψ0 nor on λ. This is a stronger requirement than before
and harder to satisfy.

A second complication is that there may be several possible (approximate) pivots,
so that some basis is needed for choosing the best of them. Obviously we would
like a pivot whose distribution depends as little as possible on the parameters, and
preferably one that is exact, but we should also like short confidence intervals and a
reliable general procedure for obtaining them. We describe some such procedures in
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two approximate pivots
for setting confidence
intervals for the gamma
mean, based on samples
of size n = 15 from the
gamma distribution. Left
panel: density estimates
based on 10,000 values of
Z1(µ0) =
n1/2(Y − µ0)/S, for shape
parameter κ = 2 (solid), 3
(dots), 4 (dashes), with
N (0, 1) density (heavy).
Right panel: density of
Z2(µ0) = Y/µ0 for κ = 2
(line), 3 (dots) 4 (dashes).

Chapter 4, and return to a general discussion in Chapter 7. The following example
illustrates some of the difficulties.

Example 3.6 (Gamma distribution) A random variable Y with gamma density
(2.8) may be expressed as Y = µX , where X has density (2.8) with µ = 1, that is,
it has unit mean and shape parameter κ . If Y1, . . . , Yn is a sample from the gamma
density with parameters µ0 and κ , then

Z1(µ0) = Y − µ0{
1

n(n−1)

∑
(Y j − Y )2

}1/2 = X − 1{
1

n(n−1)

∑
(X j − X )2

}1/2 ,

and hence the distribution of Z1(µ0) is independent of µ0. As n → ∞,

Z1(µ0)
D−→ N (0, 1), giving the confidence interval (3.3), but for any given n the

distribution of Z1(µ0) depends on n and on κ . Estimates of this density for n = 16
and κ = 2, 3, and 4 are shown in the left panel of Figure 3.2. The density seems
stable over κ , but it is skewed to the left compared to the limiting normal density.
Thus although Z1(µ0) appears to be roughly pivotal, values of the normal quantiles
zα might not give good confidence bounds; this would chiefly affect the upper limit.

Another possible pivot here is Z2(µ0) = Y/µ0 = X , which turns out to have the
gamma density (2.8) with unit mean and shape parameter nκ . Let gα(nκ) be the α

quantile of this distribution. Then

1 − 2α = Pr{gα(nκ) ≤ Y/µ0 ≤ g1−α(nκ)}
= Pr{Y/g1−α(nκ) ≤ µ0 ≤ Y/gα(nκ)},

giving a (1 − 2α) confidence interval (y/g1−α(nκ), y/gα(nκ)) based on a sample
y1, . . . , yn . In practice κ is unknown and must be replaced by an estimate κ̂ , so
Z2(µ0) is also an approximate pivot.

Consider the day 1 data for the delivery suite, for which n = 16, y = 8.77 and
suppose κ̂ = 3. With α = 0.025 we find that gα(nκ̂) = 0.737, g1−α(nκ̂) = 1.302.
This gives 95% confidence interval (6.74, 11.89) hours for µ0. This interval is longer
than that given by the pivot Z1(µ0), (6.66, 10.87), and it is not symmetric about y.
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Densities for Z2(µ0) shown in the right panel of Figure 3.2 depend much more on κ

than those for Z1(µ0). Thus here we have a choice between two approximate pivots,
one which is close to pivotal but whose distribution can only be estimated, and another
which is further from pivotal but whose quantiles are known. �

Interpretation

The repeated sampling basis for interpretation of confidence intervals is not univer-
sally accepted. The central issue is whether or not hypothetical repetitions bear any
relevance to the data actually obtained. One view is that since every set of data is
unique, such repetitions would be irrelevant even if they existed, and another basis
must be found for statements of uncertainty; see Chapter 11. However it is reassuring
that intervals derived from different principles are often similar and sometimes iden-
tical for standard problems, and in practice most users do not worry greatly about the
precise interpretation of the uncertainty measures they report. The essential point is
to provide some assessment of uncertainty, as honest as possible.

Another view is that the repeated sampling interpretation is secure provided the
hypothetical data contain the same information, defined suitably, as the original data,
but that if the set of hypothetical datasets taken is too large then it is irrelevant to
the data actually observed. Thus in the delivery suite example we might argue that as
day 1 had 16 arrivals, the relevant hypothetical repetitions are for days with 16 arrivals,
because to know the number of arrivals is informative about the precision of any
parameter estimate, though not about its value.

3.1.2 Choice of scale

The delta method provides standard errors and limiting distributions for smooth
functions of random variables. This poses a problem, however: on what scale
should a confidence interval for ψ0 be calculated? For suppose that h is a mono-
tone function, and that (L , U ) is a (1 − 2α) confidence interval for h(ψ0), that is,
Pr{L ≤ h(ψ0) ≤ U } .= 1 − 2α. Then, as

Pr{h−1(L) ≤ ψ0 ≤ h−1(U )} .= 1 − 2α,

the interval (h−1(L), h−1(U )) is a (1 − 2α) confidence interval for ψ0. Which of the
many possible transformations h should we use? Sometimes the choice is suggested
by the need to avoid intervals that contain silly values of ψ , as in the following
example.

Example 3.7 (Binomial distribution) Suppose that we want a 95% confidence
interval for the support π for a small political party, based on a sample of m = 100
individuals. If π̂ = 0.02, the standard error is (0.02 × 0.98/100)1/2 = 0.014, so the
95% interval, roughly (−0.008, 0.034), contains negative values of π .

To avoid this, let us construct an interval for h(π ) = log π instead, so that
h′(π ) = π−1. Now log π̂ = −3.91, with standard error π̂−1{π̂ (1 − π̂ )/m}1/2 = 0.7.
Hence the 95% interval for log π is roughly −3.91 ± 1.96 × 0.7, and the corre-
sponding interval for π is (exp(−3.91 − 1.4), exp(3.91 + 1.4)) = (0.005, 0.08). The



3.1 · Confidence Intervals 59

Table 3.1 Exact mean
and variance of
variance-stabilized form
Y 1/2 of Poisson random
variable.

θ 0.25 0.5 1 2 5 10 20

E(Y 1/2) 0.23 0.44 0.77 1.27 2.17 3.12 4.44
var(Y 1/2) 0.20 0.31 0.40 0.39 0.29 0.26 0.26

distribution of R/m is too far from normal here to take this interval very seriously,
but at least it contains only positive values. �

A different approach is to choose a transformation for which var{h(T )} is roughly
constant, independent of ψ . Let T be an estimator of ψ , and suppose that var(T ) =
φV (ψ)/n, where φ is independent of ψ . The function V (ψ) is called the variance
function of T . We aim to choose h such that

1 ∝ var{h(T )} .= h′(ψ)2var(T ) = h′(ψ)2φV (ψ)/n,

where the approximation results from the delta method. This implies that

h(ψ) ∝
∫ ψ du

V (u)1/2
, (3.4)

which is called the variance-stabilizing transformation for T .

Example 3.8 (Poisson distribution) The mean and variance of the Poisson density
(2.6) are both θ , so the average of a random sample of n such variables has mean
θ and variance θ/n, giving V (θ ) = θ and φ = 1. The variance-stabilizing transform
is h(θ ) = ∫ θ u−1/2 du ∝ θ1/2; the constant of proportionality is irrelevant. The delta
method gives var(Y 1/2)

.= 0.25. The exact mean and variance of Y 1/2 are given in
Table 3.1. Variance-stabilization does not work perfectly, but var(Y 1/2) depends much
less on θ than var(Y ) does.

To apply this to the birth data, we use the 16 arrivals on the first day. To con-
struct a (1 − 2α) confidence interval for the mean arrivals per day, we recall that the
Poisson mean and variance both equal θ and suppose that (Y − θ )/θ1/2 .∼ N (0, 1).
An estimator of the denominator is Y 1/2, and taking (Y − θ )/Y 1/2 .∼ N (0, 1) gives
(Y − Y 1/2z1−α, Y − Y 1/2zα) as approximate confidence interval. With α = 0.025 and
y = 16 this yields (8.2, 23.8).

It is better to take Y 1/2 .∼ N (θ1/2, 0.25), giving (1 − 2α) confidence intervals

(
Y 1/2 − 1

2
z1−α, Y 1/2 − 1

2
zα

)
,

((
Y 1/2 − 1

2
z1−α

)2

,

(
Y 1/2 − 1

2
zα

)2
)

for θ1/2 and θ . With α = 0.025 and y = 16 this gives (9.1, 24.8), which is shifted to
the right relative to the interval above, and is not symmetric about y. Here the effect
of transformation is small, but it can be much larger in other problems. �
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3.1.3 Tests

The distribution of the pivot Z (ψ0) implies that some values of ψ are more plausible
than others, and we can gauge this using confidence intervals: values of ψ close to the
centre of a (say) 95% confidence interval are evidently more plausible than are those
that only just lie within it. In some applications a particular value of ψ has special
meaning and we may want to assess its plausibility in the light of some data. Given
a set of data, a pivot Z (ψ) and a value ψ0 whose plausibility we wish to establish,
one approach is to obtain the observed value of the pivot, z(ψ0), and then regard the
probability Pr{Z (ψ0) ≤ z(ψ0)} as a measure of the consistency of ψ0 with the data.
The key point is that if ψ0 was the value of ψ which generated the data, then we
would expect z(ψ0) to be a plausible value for Z (ψ0), but if not, we would expect
z(ψ0) to be more extreme relative to the known distribution of the pivot.

Example 3.9 (Birth data) If the average time in the delivery suite for 10,000 women
at a hospital in Manchester was 6 hours, then we might want to see if this is consistent
with the times in Oxford; the Manchester sample is so large that we can treat the
6 hours as fixed. The times for day 1 of the Oxford data seem longer, but how sure
can we be?

If ψ0 for Oxford was equal to 6 hours, then the observed value of Z (ψ0) for day 1
of the Oxford data,

z(ψ0) = (y − ψ0)/(s2/n)1/2 = (8.77 − 6)/(18.46/16)1/2 = 2.58,

would be the value of an approximately normal variable. However this seems unlikely:
with ψ0 equal to 6 we get

Pr{Z (ψ0) ≤ 2.58} .= �(2.58) = 0.995.

This is an event which might take place about once in 200 repetitions, and it suggests
two possibilities: either the Manchester and Oxford data actually are consistent but
an unusual event has occurred, or they are not consistent, and in fact the average time
is indeed shorter in Manchester. �

Tests and their relation to confidence intervals are discussed further in Sections 4.5
and 7.3.4.

3.1.4 Prediction

In some applications the focus of interest is the likely value of an as-yet unobserved
random variable Y+, to be predicted using known data y, taken to be a realization of
a random variable Y . By analogy with using pivots to make inferences on unknown
parameters, it may then be possible to construct a function Q = q(Y+, Y ) whose
distribution is independent of the parameters and such that

Prediction intervals are
also known as tolerance
intervals.

Pr{q(Y+, Y ) ∈ Rα} = Pr{lα(Y ) ≤ Y+ ≤ uα(Y )} = 1 − 2α.

Then (lα(y), uα(y)) is a (1 − 2α) prediction interval for Y+.
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Example 3.10 (Location-scale model) Suppose that Y+ is to be predicted using an
independent random sample Y1, . . . , Yn from a location-scale model. We can write
Y+ = η + τε+ and Y j = η + τε j , where the εs have common and known density
g, say. If Y and S2 are the sample average and variance of Y1, . . . , Yn , then the
distribution of Q = (Y+ − Y )/S depends only on g, and its quantiles qα may be
found numerically. Then

Pr{qα ≤ (Y+ − Y )/S ≤ q1−α} = Pr(Y + Sqα ≤ Y+ ≤ Y + Sq1−α) = 1 − 2α,

and hence (y + sqα, y + sq1−α) is an equitailed (1 − 2α) prediction interval
for Y+. �

Exercises 3.1

1 Calculate a two-sided 0.95 confidence interval for the mean population time in the delivery
suite based on day 2 of the data in Table 2.1. Obtain also lower and upper 0.90 confidence
intervals.

2 Let Y1, . . . , Yn be defined by Y j = µ + σ X j , where X1, . . . , Xn is a random sample
from a known density g with distribution function G. If M = m(Y ) and S = s(Y ) are
location and scale statistics based on Y1, . . . , Yn , that is, they have the properties that
m(Y ) = µ + σm(X ) and s(Y ) = σ s(X ) for all X1, . . . , Xn , σ > 0 and real µ, then show
that Z (µ) = n1/2(M − µ)/S is a pivot.
When n is odd and large, g is the standard normal density, M is the median of Y1, . . . , Yn

and S = IQR their interquartile range, show that S/1.35
P−→ σ , and hence show that as

n → ∞, Z (µ)
D−→ N (0, τ 2), for known τ > 0. Hence give the form of a 95% confidence

interval for µ.
Compare this interval and that based on using Z (µ) with M = Y and S2 the sample
variance, for the data for day 4 in Table 2.1.

3 If Y is Poisson with large mean θ , then (Y − θ )/θ 1/2 .∼ N (0, 1). Show that the limits of
a (1 − 2α) confidence interval for θ are the solutions of the equation (Y − θ )2 = z2

αθ .
Obtain them and compare them with the intervals for the birth data in Example 3.8.

4 Suppose that the unemployment rate π is estimated by sampling randomly from the
potential workforce. A total of m individuals are sampled and the number unemployed R
is found, giving π̂ = R/m. How large should m be if π

.= 0.05 and a standard error of at
most 0.005 is required? What if π = 0.1?
In some countries such surveys are conducted by telephone interviews with a fixed number
of households chosen randomly from the phone book and then asking how many people
in the household are eligible for work (not children, retired, . . .) and how many are
working. Suppose that the total number of people is n, of whom M are eligible to
work; suppose that M is binomial with denominator n and probability θ . Of the M ,
R are eligible to work, so π̂ = R/M with M now random. If n = 12, 000, θ = 0.5 and
π = 0.05, use the delta method to compute a variance for π̂ . Compute also the variance
when M = 6000 is treated as fixed. Does the variability of M change the variance by
much?
What problems might arise when sampling from the phone book?

5 One way to construct a confidence interval for a real parameter θ is to take the interval
(−∞, ∞) with probability (1 − 2α), and otherwise take the empty set ∅. Show that this
procedure has exact coverage (1 − 2α). Is it a good procedure?

6 A binomial variable R has mean mπ and variance mπ (1 − π ). Find the variance function
of Y = R/m, and hence obtain the variance-stabilizing transform for R.
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7 Let I be a confidence interval for µ based on an estimator T whose distribution is N (µ, σ 2).
Show that exp(I ) is a confidence interval for the median of the distribution of exp(T ).
How would you compute a confidence interval for its mean, if σ 2 is (i) known and (ii)
unknown?

8 If R is binomial with denominator m and probability π , show that

R/m − π

{π (1 − π )/m}1/2

D−→ Z ∼ N (0, 1),

and that the limits of a (1 − 2α) confidence interval for π are the solutions to

R2 − (
2m R + mz2

α

)
π + m

(
m + z2

α

)
π2 = 0.

Give expressions for them.
In a sample with m = 100 and 20 positive responses, the 0.95 confidence interval is
(0.13, 0.29). As this interval either does or does not contain the true π , what is the
meaning of the 0.95?

9 I am uncertain about what will happen when I next roll a die, about the exact amount of
money at present in my bank account, about the weather tomorrow, and about what will
happen when I die. Does uncertainty mean the same thing in all these contexts? For which
is variation due to repeated sampling meaningful, do you think?

10 Let Y1, . . . , Yn be a random sample from a model in which Y j = θ X j , where the X j

are independent with known density g. Show that
∑

Y j/θ is a pivot, and deduce that a
(1 − 2α) confidence interval for θ based on

∑
Y j has form (

∑
Y j/a,

∑
Y j/b), where a

and b are known constants.
If g(x) = e−x , x > 0, is the exponential density, then the 0.025, 0.05, 0.1, 0.5, 0.9, 0.95
and 0.975 quantiles of

∑
X j for n = 12 are 6.20, 6.92, 7.83, 11.67, 16.60, 18.21 and

19.68. Use them to give two-sided 0.80 and 0.95 confidence intervals for θ , based on the
data in Practical 2.5. Give also upper and lower 0.90 confidence intervals for θ .

3.2 Normal Model

3.2.1 Normal and related distributions

The previous section described an approach to approximate statements of uncertainty,
useful in many contexts. We now discuss exact inference for a model of central im-
portance, when the data available form a random sample from the normal distribution.
That is, we treat the data y1, . . . , yn as the observed values of Y1, . . . , Yn , where the
Y j are independently taken from the normal density Laplace named this the

Gaussian density, after
Johann Carl Friedrich
Gauss (1777–1855), who
derived it while writing on
the combination of
astronomical observations
by least squares.

f (y; µ, σ 2) = 1

(2πσ 2)1/2
exp

{
− 1

2σ 2
(y − µ)2

}
, −∞ < y < ∞, (3.5)

with µ real and σ positive. The normal model owes its ubiquity to the central limit
theorem, which, in addition to applying to functions of many observations, may apply
to individual measurements themselves. For example, in Example 1.1 it is reasonable
to suppose that a plant’s height is determined by the effects of many genes, to which
an averaging effect may apply, leading to a normal distribution of heights for the
population to which the individual belongs, and therefore suggesting the use of normal
distributions in (1.1), (1.2), and (1.3). In other situations the simplicity of inference
for the normal distribution leads to its use as an approximation even where no such
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argument applies. Of course it is important to check that the data do appear normally
distributed, for example by a normal probability plot (Section 2.1.4).

Before considering inference for the normal sample, we discuss the normal and
some related distributions. All are widely tabulated,and their density and distributionSee Lindley and Scott

(1984) or Pearson and
Hartley (1976), for
example.

functions and quantiles are readily calculated in statistical packages.

Normal distribution

If we change variable in (3.5) from y to z = (y − µ)/σ , we see that the corresponding
random variable Z = (Y − µ)/σ has density

φ(z) = (2π )−1/2 exp

(
−1

2
z2

)
, −∞ < z < ∞; (3.6)

this is the density of the standard normal random variable Z . The density (3.6) is
symmetric about z = 0, and E(Z ) = 0 and var(Z ) = 1 (Exercise 3.2.1). Consequently
the mean and variance of Y = µ + σ Z are µ and σ 2. We write Y ∼ N (µ, σ 2) as
shorthand for ‘Y has the normal distribution with mean µ and variance σ 2’.

The distribution function corresponding to (3.6),

�(z) = (2π )−1/2
∫ z

−∞
exp

(
−1

2
u2

)
du, (3.7)

has no closed form, and neither do its quantiles, z p = �−1(p). Two useful values are
z0.025 = −1.96 and z0.05 = −1.65. The symmetry of (3.6) about z = 0 implies that
z p = −z1−p.

The moment-generating function of Y is

M(t) = E(etY )

= 1

(2πσ 2)1/2

∫ ∞

−∞
exp

{
t y − 1

2σ 2
(y − µ)2

}
dy

= 1

(2πσ 2)1/2

∫ ∞

−∞
exp

{
µt + σ 2 t2

2
− 1

2σ 2
(y − µ − tσ )2

}
dy

= exp (µt + σ 2t2/2)
∫ ∞

−∞
f (y; µ + σ t, σ 2) dy

= exp (µt + σ 2t2/2), (3.8)

since for any real t , f (y; µ + σ t, σ 2) is just a normal density and has unit integral.
We often use variants of this argument to sidestep integration.

The mean and variance of Y can be read off from its cumulant-generating function,
K (t) = log M(t) = µt + σ 2t2/2: κ1 = E(Y ) = µ and κ2 = var(Y ) = σ 2.

Chi-squared distribution

If Z1, . . . , Zν are independent standard normal random variables, we say that W =
Z2

1 + · · · + Z2
ν has the chi-squared distribution on ν degrees of freedom: we write

W ∼ χ2
ν . The probability density function of W ,Here

�(κ) = ∫ ∞
0 uκ−1e−u du is

the gamma function; see
Exercise 2.1.3. f (w) = 1

2ν/2�(ν/2)
wν/2−1e−w/2, w > 0, ν = 1, 2, . . . , (3.9)
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few degrees of freedom.is shown in the left panel of Figure 3.3 for various values of ν. As one would expect

from its definition, both the mean and variance of W increase with ν. Its p quantile,
denoted cν(p), has the property that Pr{W ≤ cν(p)} = p. When ν = 1, W = Z2,
where Z ∼ N (0, 1), so

Pr(W ≤ w) = Pr(−√
w ≤ Z ≤ √

w),

implying that c1(1 − 2p) = z2
p.

It is clear from the definition of W that if W1 ∼ χ2
ν1

and W2 ∼ χ2
ν2

and they are
independent, then W1 + W2 ∼ χ2

ν1+ν2
; evidently this extends to finite sums of indepen-

dent chi-squared variables. Chi-squared and gamma distributions are closely related:
if X has the gamma density (2.7) with parameter λ and shape κ , then λX ∼ 1

2χ2
2κ

(Exercise 3.2.2).
To find the moment-generating function of W , we first find the moment-generating

function of Z 2
j , namely

E
(
et Z2

j
) = 1

(2π )1/2

∫ ∞

−∞
etz2−z2/2 dz

= (1 − 2t)−1/2 1

(2π )1/2

∫ ∞

−∞
e−u2/2 du

= (1 − 2t)−1/2, t <
1

2
, (3.10)

where we have changed variable from z to u = (1 − 2t)1/2z. The Z2
j are independent

and identically distributed, so W has moment-generating function {(1 − 2t)−1/2}ν =
(1 − 2t)−ν/2, differentiation of which shows that the mean and variance of W are ν

and 2ν.

Student t distribution

Suppose now that Z and W are independent, that Z is standard normal and W is chi-
squared with ν degrees of freedom, and let T = Z/(W/ν)1/2. The random variable
T is said to have a Student t distribution on ν degrees of freedom; we write T ∼ tν .
Its density is

f (t) = �{(ν + 1)/2}√
νπ�(ν/2)

1

(1 + t2/ν)(ν+1)/2
, −∞ < t < ∞, ν = 1, 2, . . . . (3.11)
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The right panel of Figure 3.3 shows (3.11) for various values of ν. The distribution
of T approaches that of Z for large ν, because the fact that W/ν

P−→ 1 as ν → ∞
implies that T

D−→ Z ; see Example 2.22. The extra variability induced by dividing Z
by (W/ν)1/2 spreads out the distribution of T relative to that of Z , by a large amount
when ν is small, but by less when ν is large. One consequence of this is that as
ν → ∞ the quantiles of T , denoted tν(p), approach those of Z , that is, tν(p) → z p.
For example, the 0.025 quantiles for ν = 2, 10, and 20 are −4.30, −2.23 and −2.09,
while t∞(0.025) = z0.025 = −1.96. The symmetry of (3.11) about t = 0 implies that
tν(p) = −tν(1 − p).

Not all the moments of T are finite, because the function tr f (t) is integrable only
if r < ν. One simple way to calculate its mean and variance, when they exist, is to
use the identities

E {h(Z , W )} = EW [E {h(Z , W ) | W }] , (3.12)

var {h(Z , W )} = EW [var {h(Z , W ) | W }] + varW [E {h(Z , W ) | W }] , (3.13)

which hold for any random variables Z and W ; the inner expectation and variance
are over the distribution of Z for W fixed (Exercise 3.2.3). If h(Z , W ) = Z/(W/ν)1/2

and Z and W are independent, then

E{Z/(W/ν)1/2 | W } = (W/ν)−1/2E(Z ) = 0,

var{Z/(W/ν)1/2 | W } = (W/ν)−1var(Z ) = (W/ν)−1.

Consequently (3.12) and (3.13) imply that E(T ) = EW {Z/(W/ν)1/2} = 0 and

var(T ) = EW (ν/W )

= ν

2ν/2�(ν/2)

∫ ∞

0
w−1 · wν/2−1e−w/2 dw

= ν

2ν/2�(ν/2)
2ν/2−1�(ν/2 − 1)

= ν

ν − 2
, ν = 3, 4, . . . ,

the first equality following from (3.13), the second from (3.9), the third on noticing
that the integrand is proportional to the chi-squared density on ν − 2 degrees of
freedom — whose integral must equal one — and the fourth on using the fact that
�(κ + 1) = κ�(κ), for κ > 0 (Exercise 2.1.3). The variance of T is finite only if
ν ≥ 3, and its mean is finite only if ν ≥ 2. Setting ν = 1 in (3.11) gives the Cauchy
density (2.16), useful for counter-examples.

F distribution

Suppose that W1 and W2 have independent chi-squared distributions with ν1 and ν2

degrees of freedom respectively. Then

F = W1/ν1

W2/ν2
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has the F distribution on ν1 and ν2 degrees of freedom: we write F ∼ Fν1,ν2 . Its
density function is

f (u) = �
(

1
2ν1 + 1

2ν2
)
ν

ν1/2
1 ν

ν2/2
2

�
(

1
2ν1

)
�

(
1
2ν2

) u
1
2 ν1−1

(ν2 + ν1u)(ν1+ν2)/2 , u > 0, ν1, ν2 = 1, 2, . . . ,

(3.14)
and its p quantile is denoted Fν1,ν2 (p). When ν1 = 1, F = Z2/(W2/ν2), where Z ∼
N (0, 1) is independent of W2 ∼ χ2

ν2
, so F then has the same distribution as T 2, where

T ∼ tν2 .

3.2.2 Normal random sample

When a random sample Y1, . . . , Yn is normal, there are compelling reasons to base
inference for µ and σ 2 on its average and variance, Y and S2. At the end of this We suppose that n is two

or more, so S2 > 0 with
probability 1.

section we shall prove that their joint distribution is given by

Y ∼ N (µ, n−1σ 2),
(n − 1)S2 ∼ σ 2χ2

n−1,

}
independently. (3.15)

Another way to express this is

Y
D= µ + n−1/2σ Z , Z ∼ N (0, 1),

S2 D= (n − 1)−1σ 2W, W ∼ χ2
n−1,

}
Z , W independent.

The studentized form of Y may therefore be written

T = Y − µ

(S2/n)1/2
(3.16)

D= n−1/2σ Z

{σ 2(n − 1)−1W/n}1/2

= Z

{W/(n − 1)}1/2
,

which has the t distribution with n − 1 degrees of freedom.
As the distribution of T = (Y − µ)/(S2/n)1/2 is known, T is an exact pivot, and

there is no need for large-sample approximation when a confidence interval is required
for µ. That is,

1 − 2α = Pr

{
tn−1(α) ≤ Y − µ

(S2/n)1/2
≤ tn−1(1 − α)

}

= Pr
{
Y − n−1/2Stn−1(1 − α) ≤ µ ≤ Y − n−1/2Stn−1(α)

}
.

As the t distribution is symmetric, the random interval with endpoints

Y ± n−1/2Stn−1(α) (3.17)

contains µ with probability exactly (1 − 2α), for all n ≥ 2. In practice, Y and S are
replaced by their observed values y and s, and the resulting interval has the repeated
sampling interpretation outlined in Section 3.1.
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Example 3.11 (Maize data) The final column of Table 1.1 contains the differences
in heights between n = 15 pairs of self- and cross-fertilized plants. Suppose that
these differences are a random sample from the N (µ, σ 2) distribution; here µ and σ

have units of eighths of an inch, and represent the mean and standard deviation of a
population of such differences.

The values of the average and sample variance are y = 20.93 and s2 = 1424.6.
As t14(0.025) = −2.14, the 95% confidence interval for µ is y ± n−1/2stn−1(α),
that is, 20.93 ± (1424.6/15)1/2 × 2.14 = (0.03, 41.84) eighths of an inch. This in-
terval suggests that the mean difference in heights is positive; the best estimate
of µ is about 2 1

2 inches. However, the value µ = 0 is only just outside the inter-
val, so the evidence for a height difference between the two types of plants is not
overwhelming. �

A similar argument gives confidence intervals for σ 2. If (n − 1)S2 ∼ σ 2χ2
n−1, then

(n − 1)S2/σ 2 ∼ χ2
n−1 is another exact pivot. Thus

Pr

{
cn−1(α) ≤ (n − 1)S2

σ 2
≤ cn−1(1 − α)

}
= 1 − 2α,

leading to the exact (1 − 2α) confidence interval for σ 2,

((n − 1)S2/cn−1(1 − α), (n − 1)S2/cn−1(α)). (3.18)

Example 3.12 (Maize data) Table 1.1 shows samples of sizes n1 = n2 = 15 on the
heights of plants; the sample variances are s2

1 = 837.3 and s2
2 = 269.4 for the cross-

and self-fertilized plants respectively.
If we take α = 0.025, then c14(0.025) = 5.629 and c14(0.975) = 26.119. Hence

the 95% confidence interval (3.18) for the variance for the cross-fertilized
data is (14s2

1/c14(0.975), 14s2
1/c14(0.025)), that is, (449, 2082) eighths of inches

squared. �

The F distribution gives a means to compare the variances of two normal samples.
Suppose that S2

1 and S2
2 are the sample variances for two independent normal samples

of respective sizes n1 and n2, and that the variances of those samples are σ 2 and
ψσ 2. That is, ψ is the ratio of the variances of the samples. Then (n1 − 1)S2

1/σ 2 and
(n2 − 1)S2

2/(ψσ 2) have independent chi-squared distributions on n1 − 1 and n2 − 1
degrees of freedom, and

Pr

{
Fn1−1,n2−1(α) ≤ S2

1/σ 2

S2
2/(ψσ 2)

≤ Fn1−1,n2−1(1 − α)

}
= 1 − 2α,

or equivalently

Pr

{
Fn1−1,n2−1(α)

S2
2

S2
1

≤ ψ ≤ Fn1−1,n2−1(1 − α)
S2

2

S2
1

}
= 1 − 2α.

Thus, given two normal random samples whose variances are s2
1 and s2

2 ,
(
Fn1−1,n2−1(α)s2

2

/
s2

1 , Fn1−1,n2−1(1 − α)s2
2

/
s2

1

)
(3.19)
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is a (1 − 2α) confidence interval for the ratio of variances, ψ . Here the pivot is
ψS2

1/S2
2 , which has an exact Fn1−1,n2−1 distribution.

Example 3.13 (Maize data) Following on from Example 3.12, we take α = 0.025,
giving F14,14(0.025) = 0.336, F14,14(0.975) = 2.979. The 95% confidence inter-
val (3.19) for the ratio of the variances for self- and cross-fertilized plants is
(0.108, 0.958). The value ψ = 1 is not in this interval, which suggests that the self-
fertilized plants are less variable in height than the cross-fertilized ones. �

The comparison of variance estimates using F statistics is a crucial ingredient in
the analysis of variance, discussed in Section 8.5.

3.2.3 Multivariate normal distribution

The normal distribution plays a central role in inference for scalar data. Its simple
properties generalize elegantly to vectors of variables, and these we study now.

One measure of the strength of association between scalar random variables Y1 and
Y2 is their covariance,

cov(Y1, Y2) = E [{Y1 − E(Y1)} {Y2 − E(Y2)}] .

Evidently cov(Y1, Y1) = var(Y1), cov(Y1, Y2) = cov(Y2, Y1), and if a and b are con-
stants then cov(a + bY1, Y2) = bcov(Y1, Y2).

In general we may have several random variables. If Y denotes the p × 1 vector
(Y1, . . . , Yp)T and Z denotes the q × 1 vector (Z1, . . . , Zq )T, let E(Y ) be the
p × 1 vector whose r th element is E(Yr ). We define the covariance of Y and Z
to be the p × q matrix

cov(Y, Z ) = E
[{Y − E(Y )} {Z − E(Z )}T

]
whose (r, s) element is cov(Yr , Zs). In particular, cov(Y, Y ) = �, the p × p sym-
metric matrix whose (r, s) element is ωrs = cov(Yr , Ys); this is called the covariance
matrix of Y . It is symmetric because cov(Yr , Ys) = cov(Ys, Yr ), positive semi-definite Or sometimes just the

variance matrix.because

var(aTY ) = cov(aTY, aTY ) = aTcov(Y, Y )a = aT�a ≥ 0

for any constant p × 1 vector a, and positive definite unless the distribution of Y is
degenerate, here meaning that some Yr is constant or can be expressed in terms of a
linear combination of the others (Exercise 3.2.14).

The covariance matrix of the linear combinations a + BTY and c + DTY , where a
and c are respectively q × 1 and r × 1 constant vectors, and B and D are respectively
p × q and p × r constant matrices, is

cov(a + BTY, c + DTY ) = E
[{BTY − E(BTY )}{DTY − E(DTY )}T

]
= E

[
BT {Y − E(Y )} {Y − E(Y )}T D

]
= BT�D.
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When a, b, c, d are constants, cov(a + bY1, c + dY2) = bdcov(Y1, Y2), and thus co-
variance is not an absolute measure of the association between the variables, because
it depends on their units. A measure that is invariant to the choice of units is the
correlation of Y1 and Y2, namely

corr(Y1, Y2) = cov(Y1, Y2)

{var(Y1)var(Y2)}1/2 ,

some of whose properties were outlined in Example 2.21 and Exercise 2.2.3. Positive
correlation between Y1 and Y2 indicates that large values of Y1 and Y2 tend to occur
together, and conversely; whereas negative correlation means that if Y1 is larger than
E(Y1), Y2 tends to be smaller than E(Y2). The correlation matrix of a p × 1 vector Y
has as its (r, s) element the correlation between Yr and Ys , and may be expressed as
�

−1/2
d ��

−1/2
d , where �d is the diagonal matrix diag(ω11, . . . , ωpp). The diagonal of

�
−1/2
d ��

−1/2
d consists of ones.

Multivariate normal distribution

A p-dimensional multivariate normal random variable Y = (Y1, . . . , Yp)T with p × 1
vector mean µ and p × p covariance matrix � has density

f (y; µ, �) = 1

(2π )p/2|�|1/2
exp

{
−1

2
(y − µ)T�−1(y − µ)

}
; (3.20)

we write Y ∼ Np(µ, �). Here Y , y, and µ take values in IRp. We assume that the
distribution is not degenerate, in which case � is positive definite, implying amongst
other things that its determinant |�| > 0.

The moment-generating function of Y is

M(t) = E
(
etTY

) = 1

(2π )p/2|�|1/2

∫
exp

{
tT y − 1

2
(y − µ)T�−1(y − µ)

}
dy,

where tT is the 1 × p vector (t1, . . . , tp) and Y = (Y1, . . . , Yp)T; the integral is over
y ∈ IRp. To simplify M(t) we write the exponent inside the integral as

tTµ + 1
2 tT�t − 1

2 (y − µ − �t)T�−1(y − µ − �t).

The first two terms of this do not depend on y, so

M(t) = exp

(
tTµ + 1

2
tT�t

) ∫
f (y; µ + �t, �) dy = exp

(
tTµ + 1

2
tT�t

)
,

because for any value of µ, (3.20) is a probability density function. We obtain the
moments of Y by differentiation:

E(Yr ) = ∂ M(0)

∂tr
= µr ,

cov(Yr , Ys) = ∂2 M(0)

∂tr∂ts
− ∂ M(0)

∂tr

∂ M(0)

∂ts
= ωrs + µrµs − µrµs = ωrs .
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Figure 3.4 The bivariate
normal density, with
correlation ρ = 0, 0.3,
and 0.9. The lower right
panel shows contours of
the density when ρ = 0.3;
note that they are
elliptical. In higher
dimensions the contours
of equal density are
ellipsoids.

The cumulant-generating function of Y is

K (t) = log M(t) = tTµ + 1

2
tT�t =

p∑
r=1

trµr + 1

2

p∑
r=1

p∑
s=1

tr tsωrs .

Thus the first and second cumulants are κr = µr and κr,s = ωrs , which are respec-
tively the r th element of µ and the (r, s) element of �; all higher cumulants are
zero.

A special case of (3.20) is the bivariate normal distribution, whose covariance
matrix is

(
ω11 ω12

ω21 ω22

)
;

the correlation between Y1 and Y2 is ρ = ω12/(ω11ω22)1/2. This density is shown
in Figure 3.4 for µ = 0; the effect of increasing ρ is to concentrate the probabil-
ity mass close to the line y1 = y2. The corresponding densities for negative ρ are
obtained by reflection in the line y1 = 0. When p = 2 the contours of constant den-
sity are ellipses, but when p > 2 they are the ellipsoids given by constant values of
(y − µ)T�−1(y − µ).
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Marginal and conditional distributions

To study the distribution of a subset of Y , we write Y T = (Y T
1 , Y T

2 ), where now Y1

has dimension q × 1 and Y2 has dimension (p − q) × 1. Partition t , µ, and � con-
formably, so that

t =
(

t1
t2

)
, µ =

(
µ1

µ2

)
, � =

(
�11 �12

�21 �22

)
,

where t1 and µ1 are q × 1 vectors and �11 is a q × q matrix, t2 and µ2 are (p − q) × 1
vectors and �22 is a (p − q) × (p − q) matrix, and �12 = �T

21 is a q × (p − q)
matrix. The moment-generating function of Y is

E
(
etTY

) = E
(
etT

1 Y1+tT
2 Y2

)
= exp

{
tT
1µ1 + tT

2µ2 + 1
2

(
tT
1�11t1 + 2tT

1�12t2 + tT
2�22t2

)}
,

from which we obtain the moment-generating functions of Y1 and Y2 by setting t2 and
t1 respectively equal to zero, giving

E
(
etT

1 Y1
) = exp

(
tT
1µ1 + 1

2 tT
1�11t1

)
, E

(
etT

2 Y2
) = exp

(
tT
2µ2 + 1

2 tT
2�22t2

)
.

Thus the marginal distributions of Y1 and Y2 are multivariate normal also. Note that
Y1 and Y2 are independent if and only if their joint moment-generating function
factorizes, that is,

E
(
etT

1 Y1+tT
2 Y2

) = E
(
etT

1 Y1
)
E
(
etT

2 Y2
)
, for all t1, t2,

which occurs if and only if �12 = �T
21 = 0.

Equivalently and more elegantly, the cumulant-generating function of Y1 and Y2 is

K (t1, t2) = tT
1µ1 + tT

2µ2 + 1
2

(
tT
1�11t1 + 2tT

1�12t2 + tT
2�22t2

)
,

and Y1 and Y2 are independent if and only if its coefficient in t1 and t2, tT
1�12t2, is

identically zero; this is the case if �12 = 0 but not otherwise.
Thus for normal random variables zero covariance is equivalent to independence.

One implication is that if Y1, . . . , Yn is a random sample from the normal distribution
with mean µ and variance σ 2, then we can write1n denotes the n × 1

vector of 1s and In the
n × n identity matrix. Y ∼ Nn(µ1n, σ

2 In).

The conditional distribution of Y1 given that Y2 = y2 is (Exercise 3.2.18)

Nq
(
µ1 + �12�

−1
22 (y2 − µ2), �11 − �12�

−1
22 �21

)
. (3.21)

In the bivariate normal distribution with zero mean and unit variances,

N2

{(
0
0

)
,

(
1 ρ

ρ 1

)}
,

the conditional mean of Y1 given Y2 = y2 isρy2, and the conditional variance is 1 − ρ2.
Thus var(Y1 | Y2 = y2) → 0 as |ρ| → 1. In the lower right panel of Figure 3.4 this
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conditional density is supported on a horizontal line passing through y2, and the
conditional mean of Y1 increases with y2.

Example 3.14 (Trivariate distribution) Let Y ∼ N3(µ, �), where

µ =

 1

2
1


 , � =


 2 0 1

0 2 1
1 1 2


 .

The marginal distribution of Y1 is N (1, 2) and the marginal distribution of (Y1, Y2)T

is

N2

{(
1
2

)
,

(
2 0
0 2

)}
;

Y1 and Y2 are marginally independent.
For the conditional distribution of (Y1, Y2)T given Y3 we set

µ1 =
(

1
2

)
, µ2 = ( 1 ) , �11 =

(
2 0
0 2

)
, �12 = �T

21 =
(

1
1

)
, �22 = ( 2 ) .

Given Y3 = y3, (Y1, Y2)T is bivariate normal with mean vector and variance matrix(
1
2

)
+

(
1
1

)
2−1(y3 − 1),

(
2 0
0 2

)
−

(
1
1

)
2−1(1, 1) =

(
3/2 −1/2

−1/2 3/2

)
.

Thus knowledge of Y3 induces correlation between Y1 and Y2 despite their marginal
independence. Moreover the conditional variance of Y1 is smaller than the marginal
variance: knowing Y3 makes one more certain about Y1. The positive covariance
between Y1 and Y3 means that if Y3 is known to exceed its mean, that is, y3 > 1, then
the conditional mean of Y1 exceeds its marginal mean by an amount that depends on
the difference y3 − 1. �

Linear combinations of normal variables

Linear combinations of normal random variables often arise. The moment-generating
function of the linear combination a + bTY , where the constants a and b are respec-
tively a scalar and a p × 1 vector, is

E
{
et(a+bTY )

} = eta exp

{
(bt)Tµ + 1

2
(bt)T�(bt)

}

= exp

{
t(a + bTµ) + t2

2
bT�b

}
,

and hence a + bTY has the normal distribution with mean a + bTµ and variance bT�b.
This extends to vectors U = a + BTY , where a is a q × 1 constant vector and B is a
p × q constant matrix. Then U has moment-generating function

E
(
etTU

) = etTaE
(
etT BTY

) = etTaE
(
e(Bt)TY

)
= exp

{
tTa + (Bt)Tµ + 1

2 (Bt)T�(Bt)
}

= exp
{
tT(a + BTµ) + 1

2 tT BT�Bt
}
,
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and so U has a multivariate normal distribution with q × 1 mean a + BTµ and q × q
covariance matrix BT�B; this is singular and the distribution degenerate unless B
has full rank and q ≤ p. That is, if Y ∼ Np(µ, �), then

a + BTY ∼ Nq (a + BTµ, BT�B). (3.22)

Example 3.15 (Trivariate distribution) In the previous example, consider the joint
distribution of U1 = Y1 + Y2 + Y3 − 4 and U2 = Y1 − Y2 + Y3:

U =
( −4

0

)
+

(
1 1 1
1 −1 1

) 
 Y1

Y2

Y3


 .

The mean vector and covariance matrix of U are

( −4
0

)
+

(
1 1 1
1 −1 1

) 
 1

2
1


 =

(
0
0

)
,

(
1 1 1
1 −1 1

) 
 2 0 1

0 2 1
1 1 2





 1 1

1 −1
1 1


 =

(
10 4
4 6

)
.

�

A further consequence of (3.22) follows from the spectral decomposition � =
E L ET, where the columns of E are eigenvectors of �, L is the diagonal matrix
containing the corresponding eigenvalues, and E ET = ET E = Ip. For positive def-
inite �, the elements of L are strictly positive and hence �−1 = E L−1 ET. We set
U = L−1/2 ET(Y − µ), and note that U ∼ Np(0, Ip), so

(Y − µ)T�−1(Y − µ) = (Y − µ)T E L−1 ET(Y − µ) = U TU ∼ χ2
p. (3.23)

Two samples

Result (3.22) has many uses. For example, suppose that a random sample of size n1 is
available from the N (µ1, σ

2
1 ) density and an independent random sample of size n2

is available from the N (µ2, σ
2
2 ) density, and that the focus of interest is the difference

of means µ1 − µ2. This is the situation in Example 1.1. Then since (3.15) applies to
each sample separately,(

Y 1

Y 2

)
∼ N2

{(
µ1

µ2

)
,

(
σ 2

1 /n1 0
0 σ 2

2 /n2

)}
,

and an application of (3.22) with a = 0 and BT = (1, −1) gives that Y 1 − Y 2 has a
normal distribution with mean µ1 − µ2 and variance n−1

1 σ 2
1 + n−1

2 σ 2
2 . To simplify

matters, let us suppose that the variances σ 2
1 and σ 2

2 both equal σ 2, in which case

Y 1 − Y 2
D= (µ1 − µ2) + σ

(
n−1

1 + n−1
2

)1/2
Z ,

where Z ∼ N (0, 1), and (n1 − 1)S2
1/σ 2 and (n2 − 1)S2

2/σ 2 are independent chi-
squared variables with n1 − 1 and n2 − 1 degrees of freedom respectively, so
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(n1 − 1)S2
1 + (n2 − 1)S2

2 ∼ σ 2χ2
n1+n2−2. Hence the pooled estimate of σ 2, S2, has

distribution given by

S2 = (n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
D= σ 2W/(n1 + n2 − 2),

where W ∼ χ2
n1+n2−2, independently of Y 1 − Y 2. Consequently the quantity

Y 1 − Y 2 − (µ1 − µ2){
S2

(
n−1

1 + n−1
2

)}1/2
D= Z

{W/(n1 + n2 − 2)}1/2
∼ tn1+n2−2

is a pivot from which confidence intervals for µ1 − µ2 may be determined. The
argument parallels that leading to (3.17) and shows that the two-sample t confidence
interval whose endpoints are

(Y 1 − Y 2) ± {
S2

(
n−1

1 + n−1
2

)}1/2
tn1+n2−2(α) (3.24)

is a (1 − 2α) confidence interval for µ1 − µ2 based on the two samples. In practice,
the random variables in (3.24) are replaced by their observed values, and the resulting
interval is given the repeated sampling interpretation.

Example 3.16 (Maize data) For the data in Example 1.1, we have n1 = n2 = 15,
y1 = 161.5, s2

1 = 837.3, y2 = 140.6 and s2
2 = 269.4. The difference of averages is

20.9 and the pooled estimate of variance is 553.3; note that pooling here ignores
the evidence of Example 3.13 that the self-fertilized plants are less variable, that is,
σ 2

2 < σ 2
1 .

The 0.025 quantile of t28 is −2.05, so the two-sample 0.95 confidence interval
for µ1 − µ2 is 20.9 ± 553.31/2(1/15 + 1/15)1/2 × 2.05 = (3.34, 38.53) eighths of
an inch. This confidence interval is slightly narrower than that given in Example 3.11,
based on differences of pairs of plants, and gives correspondingly stronger evidence
for a height difference in mean heights. However, this interval is less appropriate,
both because of the pairing of plants in the original experiment, and because of the
evidence for a difference in variances. �

If there are two normal samples with unequal variances, σ 2
1 �= σ 2

2 , there is no exact
pivot. One fairly accurate approach to confidence intervals for the difference of sample
means, µ1 − µ2, is based on the approximate pivot

T = Y 1 − Y 2 − (µ1 − µ2)(
S2

1

/
n1 + S2

2

/
n2

)1/2

.∼ tν, ν =
(
S2

1

/
n1 + S2

2

/
n2

)2

S4
1

/{
n2

1(n1 − 1)
} + S4

2

/{
n2

2(n2 − 1)
} .

The idea of this is to replace the exact variance of Y 1 − Y 2, σ 2
1 /n−1

1 + σ 2
2 /n−1

2 , by an
estimate, and then to find the t distribution whose degrees of freedom give the best
match to the moments of T .

Example 3.17 (Maize data) For the data in Example 1.1, we have ν = 22.16, and
tν(0.025) = −2.07. Now s2

1/n1 + s2
2/n2 = 73.78, so an approximate 95% confidence

interval is 20.9 ± 2.07 × 73.781/2, that is, (3.13, 38.74). As mentioned before, this
interval is more appropriate for these data, but it differs only slightly from the interval
in Example 3.16. �
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Joint distribution of Y and S2

We now derive the key result (3.15). The most direct route starts from noting that
if Y1, . . . , Yn is a random sample from the N (µ, σ 2) distribution, the distribution of
Y = (Y1, . . . , Yn)T is Nn(µ1n, σ

2 In). We now consider the random variable U = BTY ,
where the n × n matrix BT equals




1
n1/2

1
n1/2

1
n1/2

1
n1/2 · · · 1

n1/2

1
21/2 − 1

21/2 0 0 · · · 0
1

61/2
1

61/2 − 2
61/2 0 · · · 0

...
...

...
...

...
1

{n(n−1)}1/2
1

{n(n−1)}1/2
1

{n(n−1)}1/2
1

{n(n−1)}1/2 · · · − n−1
{n(n−1)}1/2




.

For j = 2, . . . , n, the j th row contains { j( j − 1)}−1/2 repeated j − 1 times, followed
by −( j − 1){ j( j − 1)}−1/2 once, with any remaining places filled by zeros. Note that
BT B = In and BT1n = (n1/2, 0, . . . , 0)T, which imply that

U ∼ Nn
{(

n1/2µ, 0, . . . , 0
)T

, σ 2 In
}
.

Thus the components of U are independent, and only the first, U1, has non-zero mean;
in fact U1 = n−1/2 ∑

Y j = n1/2Y , from which we see that Y ∼ N (µ, n−1σ 2), thus
establishing the first line of (3.15). Now

n∑
j=1

Y 2
j = Y TY = Y T BT BY = U TU =

n∑
j=1

U 2
j = nY

2 + U 2
2 + · · · + U 2

n ,

which implies that

(n − 1)S2 =
n∑

j=1

(Y j − Y )2 =
n∑

j=1

Y 2
j − nY

2 = U 2
2 + · · · + U 2

n .

Thus (n − 1)S2/σ 2 equals the sum of the squares of the n − 1 standard normal vari-
ables U2/σ, . . . , Un/σ , and therefore has the chi-squared distribution with n − 1
degrees of freedom, independent of U1, and hence independent of Y . This establishes
the remainder of (3.15).

Exercises 3.2

1 Show that the first two derivatives of φ(z) are −zφ(z) and (z2 − 1)φ(z). Hence use inte-
gration by parts to find the mean and variance of (3.6).

2 If X has density (2.7), show that 2λX has density (3.9) with ν = 2κ .

3 Let h(Z , W ) be a function of two random variables Z and W whose variance is finite,
and let g(W ) = EW {h(Z , W ) | W }. Show that h(Z , W ) − g(W ) has mean zero and is
uncorrelated with g(W ). Hence establish (3.13).

4 Let N be a random variable taking values 0, 1, . . ., let G(u) be the probability-generating
function of N , and let X1, X2, . . . be independent variables each having moment-
generating function M(t). Use (3.12) to show that Y = X1 + · · · + X N has moment-
generating function G{M(t)}, and hence find the mean and variance of Y in terms of those
of X and N .
Use (3.12) and (3.13) to find E(Y ) and var(Y ) directly.
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5 Use (3.6) and (3.9) to derive (3.11).

6 Use (3.9) to derive (3.14).

7 Check carefully the derivations of (3.8) and (3.10).

8 Assuming that the times for each day in Table 2.1 are a random sample from the normal
distribution, use the day 2 data to compute (i) a two-sided 0.95 confidence interval for the
population mean time in delivery suite and (ii) a 0.95 confidence interval for the population
variance. Also give two-sided 0.95 confidence intervals for the difference in mean times
for day 1 and day 2, assuming that their variances are (iii) equal and (iv) unequal. Give
a 0.95 confidence interval for the ratio of their variances. Repeat (i) and (ii) giving 0.95
upper and lower confidence intervals.

9 If Z ∼ N (0, 1), derive the density of Y = Z 2. Although Y is determined by Z , show they
are uncorrelated.

10 If W ∼ χ2
ν , show that E(W ) = ν, var(W ) = 2ν and (W − ν)/

√
2ν

D−→ N (0, 1) as ν →
∞.

11 (a) If F ∼ Fν1,ν2 , show that 1/F ∼ Fν2,ν1 . Give the quantiles of 1/F in terms of those of
F .
(b) Show that as ν2 → ∞, ν1 F tends in distribution to a chi-squared variable, and give its
degrees of freedom.
(c) If Y1 and Y2 are independent variables with density e−y , y > 0, show that Y1/Y2 has
the F distribution, and give its degrees of freedom.

12 Let f (t) denote the probability density function of T ∼ tν .
(a) Use f (t) to check that E(T ) = 0, var(T ) = ν/(ν − 2), provided ν > 1, 2 respectively.
(b) By considering log f (t), show that as ν → ∞, f (t) → φ(t). Recall Stirling’s formula.

13 If Y and Z are p × 1 and q × 1 vectors of random variables, show that cov(Y, Z ) =
E(Y Z T) − E(Y )E(Z )T.

14 Verify that if there is a non-zero vector a such that var(aTY ) = 0, either some Yr takes a
single value with probability one or Yr = ∑

s �=r bsYs, for some r , bs not all equal to zero.

15 Suppose Y ∼ Np(µ, �) and a and b are p × 1 vectors of constants. Find the distribution
of X1 = aTY conditional on X2 = bTY = x2. Under what circumstances does this not
depend on x2?

16 Otherwise, or by noting that

σ−1

∫
�(a + by)φ

(
y − µ

σ

)
dy = EY {Pr(Z ≤ a + bY | Y = y)} ,

where Z ∼ N (0, 1), independent of Y ∼ N (µ, σ 2), show that

σ−1

∫
�(a + by)φ

(
y − µ

σ

)
dy = �

{
a + bµ

(1 + b2σ 2)1/2

}
. (3.25)

17 Let Y = X1 + bX2, where the X j are independent normal variables with means µ j and
variances σ 2

j . Show that conditional on X2 = x , the distribution of Y is normal with mean
µ1 + bx and variance σ 2

1 , and hence establish that

∫
1

σ1
φ

(
y − µ1 − bx

σ1

)
1

σ2
φ

(
x − µ2

σ2

)
dx = 1(

σ 2
1 + b2σ 2

2

)1/2 φ

{
y − µ1 − bµ2(
σ 2

1 + b2σ 2
2

)1/2

}
.

18 To establish (3.21), show that the variables X = Y1 − �12�
−1
22 Y2 and Y2 have a joint

multivariate normal distribution and are independent, find the mean of X , and show that
its variance matrix is �11 − �12�

−1
22 �21. Then use the fact that if X and Y2 are independent,

conditioning on Y2 = y2 will not change the distribution of X , to give (3.21).
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19 Let Y have the p-variate multivariate normal distribution with mean vector µ and co-
variance matrix �. Partition Y T as (Y T

1 , Y T
2 ), where Y1 has dimension q × 1 and Y2

has dimension r × 1, and partition µ and � conformably. Find the conditional dis-
tribution of Y1 given that Y2 = y2 direct from the probability density functions of Y
and Y2.

20 Conditional on M = m, Y1, . . . , Yn is a random sample from the N (m, σ 2) distribution.
Find the unconditional joint distribution of Y1, . . . , Yn when M has the N (µ, τ 2) distribu-
tion. Use induction to show that the covariance matrix � has determinant σ 2n−2(σ 2 + nτ 2),
and show that �−1 has diagonal elements {σ 2 + (n − 1)τ 2)/{σ 2(σ 2 + nτ 2)} and off-
diagonal elements −τ 2/{σ 2(σ 2 + nτ 2)}.

3.3 Simulation

3.3.1 Pseudo-random numbers

Simulation, or the computer generation of artificial data, has many purposes. Among
them are:

� to see how much variability to expect in sampling from a particular model. For
example, a probability plot for a small sample can be hard to interpret, and in
assessing whether any pattern in it is imagined or real it is helpful to compare
it with those for sets of simulated data;

� to assess the adequacy of a theoretical approximation. This is illustrated by
Figure 2.4, which compares histograms of the average of n simulated exponen-
tial variables with the normal density arising from the central limit theorem.
The simulations suggest that the approximation is poor when n ≤ 5, but much
improved when n ≥ 20;

� to check the sensitivity of conclusions to assumptions — for example, how
badly do the methods of the previous section fail when the data are not normal?
We discuss this in Example 3.24 below;

� to give insight or confirm a hunch, on the principle that a rough answer to the
right question is worth more than a precise answer to the wrong question; and

� to provide numerical solutions when analytical ones are unavailable.

The starting point is an algorithm that provides a stream of pseudo-random vari-
ables, U1, U2, . . ., supposed independent and uniformly distributed on the intervalSome authors call them

quasi-random. (0, 1). These are called pseudo-random because although the algorithm should ensure
that they seem independent and identically distributed, they are predictable to anyone
knowing the algorithm. One important class is the linear congruential generators
defined by

X j+1 = (aX j + c) mod M, U j = X j/M,

for some natural number M , with a, c ∈ {0, 1, . . . , M − 1}; such a generator will
repeat with period at most M . The values of M , a and c are chosen to maximize the
period and speed of the generator, and the apparent randomness of the output. An
example is M = 248, a = 517 and c = 1, giving M/4 elements of the set {0, . . . , M −
1}/M in what appears to be a random order.
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Not only is it important that the U j are uniform, but also that they seem independent.
One way to do this is to consider k-tuples (U j , U j+1, . . . , U j+k−1) of successive
values as points in the set (0, 1)k , where they should be uniformly distributed; see
Practical 3.5. Many of the algorithms in standard packages have been thoroughly
tested, but it is wise to store the seed X0 so that if necessary the sequence can be
repeated, and to perform important calculations using two different generators. Below
we suppose it safe to assume that U1, U2, . . . are independent identically distributed
variables from the U (0, 1) distribution (2.22) and refer to them as random rather than
pseudo-random.

Inversion

The simplest way to convert uniform variables into those from other distributions
is inversion. Let F be the distribution function of a random variable, Y , and let
F−1(u) = inf{y : F(y) ≥ u}. If U has the U (0, 1) distribution (2.22), we saw on
page 39 that Y

D= F−1(U ), and that F−1(U1), . . . , F−1(Un) is a random sample
from F .

Example 3.18 (Exponential distribution) The distribution function of an expo-
nential random variable with parameter λ > 0 is

F(y) =
{

0, y ≤ 0,
1 − exp(−λy), 0 < y,

and for 0 < u < 1 the solution to F(y) = u is y = −λ−1 log(1 − u). Therefore a

random variable from F is Y = −λ−1 log(1 − U )
D= − λ−1 log U , because U and

1 − U have the same distribution. �

Example 3.19 (Normal, chi-squared and t distributions) A normal random vari-
able with mean µ and variance σ 2 has distribution function F(y) = �{(y − µ)/σ },
and therefore µ + σ�−1(U1), . . . , µ + σ�−1(Un) is a normal random sample.

If Z1, Z2, . . . is a stream of standard normal variables, V = ∑ν
j=1 Z2

j is chi-squared
with ν degrees of freedom, and T = Zν+1/(V/ν)1/2 has the Student t distribution with
ν degrees of freedom. Since Z j = �−1(U j ), V and T are easily obtained. �

Pseudo-random variables from other distributions and processes can be con-
structed using their definitions, though statistical packages usually contain specially-
programmed algorithms. One general approach for discrete variables is the look-up
method. Suppose that Y takes values in {1, 2, . . . } and that we have created a ta-
ble containing the values of �r = Pr(Y ≤ r ) and πr = Pr(Y = r ). Then inversion
amounts to this algorithm:

1 generate U ∼ U (0, 1) and set r = 1; then
2 while �r ≤ U set r = r + 1; and finally
3 return Y = r .

The number of comparisons at step 2 can be reduced by sorting the πr into decreasing
order and re-ordering {1, 2, . . . } accordingly. An alternative is to begin searching at
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a place that depends on U . Each involves initial expense in obtaining and manipu-
lating the πr ’s, and as the trade-off between this and the number of comparisons is
complicated, fast algorithms for discrete distributions can be complex.

Rejection

Inversion is simple, but to be efficient it requires a fast algorithm for F−1. Another
approach is rejection. Suppose we wish to generate from an awkward density f ,Sometimes called the

acceptance-rejection or
envelope method.

and can easily generate from the uniform distribution and from a density g for which
supy f (y)/g(y) = b < ∞; note that b > 1. The rejection algorithm to generate Y
from f is:

1 generate X from g and U from the U (0, 1) density, independently;
2 set Y = X if Ubg(X ) ≤ f (X ), and otherwise go to 1; finally
3 return Y .

To see why this works, note that the interpretation of Pr(X ≤ a) as the area under g
to the left of a implies that (X, Ubg(X )) is uniformly distributed on the set {(x, w) :
0 ≤ w ≤ bg(x)}, and a value Y is returned only if Ubg(X ) ≤ f (X ). For a single pair
(X, U ), the probability a value Y is returned and is less than y is

Pr {Ubg(X ) ≤ f (X ) and X ≤ y} =
∫ y

−∞
Pr

{
U ≤ f (X )

bg(X )

∣∣∣∣ X = x

}
g(x) dx,

=
∫ y

−∞

f (x)

bg(x)
g(x) dx

= b−1
∫ y

−∞
f (x) dx,

because U is uniform, independent of X . Hence

Pr(Y ≤ y | value returned) = Pr {Ubg(X ) ≤ f (X ) and X ≤ y}
Pr {Ubg(X ) ≤ f (X ) and X ≤ ∞}

=
∫ y

−∞
f (x) dx ;

the density of Y is indeed f . The probability a value is returned is b−1, so the algorithm
is most efficient when b is as small as possible, and the envelope function bg(x) should
ensure both this and fast simulation from g.

Example 3.20 (Half-normal density) A half-normal variable is defined by Y =
|Z |, where Z ∼ N (0, 1). Its density, f (y) = 2φ(y) for y > 0, is shown by the solid
line in the left panel of Figure 3.5. The exponential density g(y) = λe−λy , declines
more slowly than f (y) for large y, and the ratio

f (y)

g(y)
= 2(2π )−1/2e−y2/2

λe−λy
= exp

{
λy − 1

2
y2 + 1

2
log

(
2

πλ2

)}

is maximized at y = λ, giving b = supy f (y)/g(y) = (2/πλ2)−1/2eλ2/2. The function
bg(x) with λ = 1 is shown by the dotted line in the figure.
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0 Figure 3.5 Simulation

by rejection algorithms.
Left panel: half-normal
density f (solid) and
envelope function bg
(dots), with points for
which X rejected shown
by crosses and those
accepted by circles. Right
panel: pairs (V1, V2) are
generated uniformly in the
square [−1, 1] × [−1, 1],
but only those in the disk
v2

1 + v2
2 ≤ 1 are accepted.

They are then transformed
into two independent
normal variables.

Circles shows pairs (X, Ubg(X )) accepted, giving Y = X , and crosses show pairs
for which X is rejected. These lie in the set {(x, w) : f (x) ≤ w ≤ bg(x)}, whose
area is b − 1, while the area under bg(x) is of course b. The proportion of re-
jections is minimized by choosing λ to minimize b, and this occurs when λ = 1,
giving b−1 = 0.760. Whether the resulting algorithm is faster than simply taking Y =
|�−1(U )| will depend on the speeds of the functions and the arithmetical operations
involved. �

Rejection can be combined with other methods to give efficient algorithms.

Example 3.21 (Normal distribution) Let Z1 and Z2 be two independent standard
normal variables. Their joint density is

f (z1, z2) = φ(z1)φ(z2) = 1

2π
exp

{
−1

2

(
z2

1 + z2
2

)}
, −∞ < z1, z2 < ∞.

The polar coordinates of the point (z1, z2) in the plane are r = (z2
1 + z2

2)1/2 and θ =
tan−1(z2/z1), in terms of which z1 = r cos θ , z2 = r sin θ . The transformation from
(z1, z2) to (r, θ ) has Jacobian∣∣∣∣∂(z1, z2)

∂(r, θ )

∣∣∣∣ =
∣∣∣∣ cos θ sin θ

−r sin θ r cos θ

∣∣∣∣ = r > 0,

so the joint density of R = (Z2
1 + Z2

2)1/2 and � = tan−1(Z2/Z1) is

f (r, θ ) = f (z1, z2)

∣∣∣∣∂(z1, z2)

∂(r, θ )

∣∣∣∣ = 1

2π
r exp

(
−1

2
r2

)
, r > 0, 0 ≤ θ < 2π.

Evidently R and � are independent, with � uniform on the interval [0, 2π ) and R

having distribution Pr(R ≤ r ) = 1 − exp(−r2/2). Thus if U1, U2
iid∼ U (0, 1), we can

generate Z1 and Z2 by setting Z1 = R cos �, Z2 = R sin �, where � = 2πU1 and
R = (−2 log U2)1/2; this amounts to inversion for R and �.

A drawback of this method is that trigonometric functions such as sin(·) and cos(·)
tend to be slow. It is better to avoid them by using rejection, as follows. We first generate
U1, U2

iid∼ U (0, 1) and set V1 = 2U1 − 1 and V2 = 2U2 − 1; (V1, V2) is uniformly
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distributed in the square [−1, 1] × [−1, 1]. If S = V 2
1 + V 2

2 > 1, we reject (V1, V2)
and start again; see the right panel of Figure 3.5. If it is accepted, the point (V1, V2) is
uniform in the unit disk, S is independent of the angle� = tan−1(V2/V1) by symmetry,
and comparison of areas gives Pr(S ≤ s) = (sπ )/π = s, 0 ≤ s ≤ 1, so S ∼ U (0, 1);

this implies that R
D= (−2 log S)1/2. Furthermore, if (V1, V2) has been accepted, then

cos � = V1/S1/2, sin � = V2/S1/2. Then Z1 = R cos � = V1(−2S−1 log S)1/2 and
Z2 = R sin � = V2(−2S−1 log S)1/2 are independent standard normal variables, and
may be obtained without recourse to trigonometric functions. The efficiency of this
algorithm is π/4

.= 0.785.

If Z1, Z2
iid∼ N (0, 1), then their ratio C = Z2/Z1 has a Cauchy distribution. Thus

if we want to generate a Cauchy variable, we need only take R sin �/(R cos �) =
V2/V1, where (V1, V2) lies inside the unit disk. This suggests the ratio of uniforms
method (Problem 3.7). �

It may be hard to find an envelope density g(y) for f (y), leading to a high initializa-
tion cost for rejection sampling. If f (y) is log-concave, however, so h(y) = log f (y)
is concave in y, then it turns out to be easy to find an envelope from which quick
simulation is possible. To see how, let f (y) be a log-concave density with known
support [yL , yU ], where possibly yL = −∞ or yU = ∞ or both. Then for any y1, y2

in [yL , yU ],

h{γ y1 + (1 − γ )y2} ≥ γ h(y1) + (1 − γ )h(y2), 0 ≤ γ ≤ 1,

and if h(y) is piecewise differentiable, as we henceforth assume, then h′(y) =
dh(y)/dy is monotonic decreasing in y, though perhaps h(y) has straight line seg-
ments or h′(y) is discontinuous.

Let yL ≤ y1 < · · · < yk ≤ yU and suppose that h(y1), . . . , h(yk) and
h′(y1), . . . , h′(yk) are known. If yL = −∞ we choose y1 so that h′(y1) > 0.
Likewise if yU = ∞, we choose yk so that h′(yk) < 0. We then define a function
h+(y) by taking the upper boundary of the convex hull generated by the tangents to
h(y) at y1, . . . , yk ; see Figure 3.6. That is,

h+(y) =



h(y1) + (y − y1)h′(y1), yL < y ≤ z1,
h(y j+1) + (y − y j+1)h′(y j+1), z j ≤ y ≤ z j+1, j = 1, . . . , k − 1,
h(yk) + (y − yk)h′(yk), zk ≤ y < yU ,

where

z j = y j + h(y j ) − h(y j+1) + (y j+1 − y j )h′(y j+1)

h′(y j+1) − h′(y j )
, j = 1, . . . , k − 1,

are the values of y at which the tangents at y j and y j+1 intersect; we also set z0 = yL

and zk = yU . As the density g+(y) ∝ exp{h+(y)} consists of k piecewise exponential
portions, a variable X with density g+ may be generated by inversion and then rejection
applied. If the X thus generated is rejected, then h(X ) and h′(X ) can be used to update
h+ and provide a better envelope for subsequent simulation.
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Figure 3.6 Adaptive
rejection sampling from
log-concave density
proportional to h(y)
(solid). The left panel
shows the initial envelope
(heavy), formed as the
concave hull of tangents
(dotted) to h(y) at
y = −3.1, 1.9 (rug). The
envelope density looks
like two exponential
densities, back to back,
from which a value shown
by a cross is generated.
This value is rejected but
used to update the
envelope to that on the
right, so the corresponding
density has three
exponential parts. This
time the value generated
by rejection sampling
(circle) is accepted.

This discussion suggests an adaptive rejection sampling algorithm:

1. Initialize by choosing y1 < · · · < yk , calculating h(y1), . . . , h(yk) and
h′(y1), . . . , h′(yk), h+(y) and g+(y). Then

2. generate independent variables X from g+ and U from the U (0, 1) density. If
U ≤ exp{h(X ) − h+(X )} then set Y = X and return Y ; otherwise

3. replace k by k + 1, update y1, . . . , yk , h(y1), . . . , h(yk) and h′(y1), . . . , h′(yk) by
adding X , h(X ) and h′(X ), recompute h+(y) and g+(y) and go to 2.

This can be accelerated by using h(y1), . . . , h(yk) and h′(y1), . . . , h′(yk) to add a
lower envelope h−(y) and then accepting X if U ≤ exp{h−(X ) − h+(X )}, in which
case h(X ) need not be computed (Problem 3.12).

Example 3.22 (Adaptive rejection) To illustrate this we take

h(y) = r y − m log(1 + ey) − (y − µ)2

2σ 2
+ c, −∞ < y < ∞,

where m, σ 2 > 0 and c is the constant ensuring that exp{h(y)} has unit integral; see
Example 11.26. As we deal only with ratios of densities we can ignore c below, and
Figure 3.6 shows h(y) for r = 2, m = 10, µ = 0, σ 2 = 1 and when we set c = 0;
here yL = −∞ and yU = ∞.

An initial search establishes that h′(−3.1) > 0 and h′(1.9) < 0, and the resulting
envelope is shown in the left panel. The corresponding density g+(y) looks like two
back-to-back exponential densities, from which it is easy to simulate a value X . This
is accepted if Ug+(X ) < h(X ), where U ∼ U (0, 1). In the event, the value −0.5 is
generated but not accepted, and the envelope is updated to that shown in the right
panel. A value generated from the new g+(y) is accepted, terminating the algorithm.
Otherwise the envelope would again be updated, and the process repeated. �

Applications

Fast, tested generators are available in many statistical packages, so the details can
often — but not always — be ignored. Here are two uses of them.
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Figure 3.7 Numbers of
women in the delivery
suite over a week of
simulations from the
model for the birth data.
Also shown are arrival and
departure times for the
first 25 simulated women.

Example 3.23 (Birth data) The data in Example 2.3 were collected in order to
assess the workload in the delivery suite. Examples 2.11 and 2.12 suggest that the daily
number of arrivals leading to normal deliveries is Poisson with mean about λ = 12.9,
and that each woman remains for a period whose density is roughly gamma with
shape α = 3.15 and mean µ = 7.93 hours, independent of the others. To simulate t
days of data from this model, we generate a Poisson random variable N with mean λ

for each day, and then generate N arrival times uniformly through the day. We create
departure times by adding a gamma variable with mean µ and shape α to each arrival
time; of course a woman may not depart on the day she arrived. We repeat this for
each day, and record how many women are present at each arrival and departure.

Figure 3.7 shows a week of simulated workload. Note the initial ‘burn-in’ period,
due to starting with no women present rather than in steady state. The number present
has long-run average 12.9 × 7.93/24 = 4.26, but it fluctuates widely, with bursts of
activity when several women arrive almost together.

Such simulations show the random variation in the process due to the model, but
they do not reflect the fact that the model itself is uncertain, because it has been
estimated. However it would be easy to change λ, α, and µ, or to replace the gamma
by a different distribution, and then to repeat the simulation. This would help assess
the effect of model uncertainty.

On leaving the delivery suite, women and their babies go to a ward where midwives
give post-natal care. At one stage hospital managers hoped to save money by imposing
a rigid demarcation between ward and delivery suite, but this would have been counter-
productive. According to hospital guidelines, each woman in the delivery suite should
have a midwife with her at all times, so when bursts of activity begin it is essential to
be able to call in midwives immediately. It is more expensive to do so from outside,
so costs are reduced by allowing easy transfer of workers between ward and suite. �

The previous example illustrates a particularly simple queueing system — each
‘customer’ must be dealt with at once, so there is no queue! More complicated queues
arise in many contexts, and discrete-event simulation packages exist to help operations
researchers estimate quantities such as the average waiting-time.
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We now use simulation use to assess properties of a statistical procedure.

Example 3.24 (t statistic) The elements of a random sample Y1, . . . , Yn from the
N (µ, σ 2) density may be expressed Y j = µ + σ Z j , where the Z j are standard normal
variables. The t statistic may be written as Recall that Y and S2 are

the average and sample
variance of Y1, . . . , Yn .

T = Y − µ

(S2/n)1/2
= n1/2(µ + σ Z − µ){

(n − 1)−1σ 2
∑

j (Z j − Z )2
}1/2 = n1/2 Z

SZ
,

say, whether or not the Z j are normal. When they are, T has a Student t distribution
on n − 1 degrees of freedom and its quantiles tn−1(α) may be explicitly calculated,
leading to the exact (1 − 2α) confidence interval (3.17). How badly does that interval
fail when the data are not normal?

Suppose the Z j have mean zero but distribution F otherwise unspecified. Then the
confidence interval (3.17) contains µ with probability

Pr
{
Y − n−1/2Stn−1(1 − α) ≤ µ ≤ Y − n−1/2Stn−1(α)

}
, (3.26)

and this equals

Pr {tn−1(α) ≤ T ≤ tn−1(1 − α)} = Pr

{
tn−1(α) ≤ n1/2 Z

SZ
≤ tn−1(1 − α)

}

= p(1 − α, n, F) − p(α, n, F),

say, where

p(α, n, F) = Pr

{
n1/2 Z

SZ
≤ tn−1(α)

}
.

When F is normal, p(α, n, F) = α and (3.26) is (1 − 2α), as it should be.
Given any F , α and n, we estimate p(α, n, F) thus. For r = 1 . . . , R,

� generate Z1, . . . , Zn
iid∼ F ;

� calculate Tr = n1/2 Z/SZ ; then
� set Ir = I {Tr ≤ tn−1(α)}. I {A} is the indicator of

the event A.

Having obtained I1, . . . , IR , we compute p̂ = R−1 ∑
r Ir , whose expectation is

E

(
R−1

R∑
r=1

Ir

)
= E

[
I

{
n1/2 Z

SZ
≤ tn−1(α)

}∣∣∣∣∣ Z1, . . . , Zn
iid∼ F

]
= p(α, n, F).

Now
∑

r Ir is binomial with denominator R and probability p(α, n, F), so p̂ has
variance R−1 p(α, n, F){1 − p(α, n, F)}. This can be used to gauge the value of R
needed to estimate p(α, n, F) with given precision. For example, if p(α, n, F)

.= α =
0.05, then R = 1600 gives standard deviation roughly {0.05(1 − 0.05)/1600}1/2 =
0.0054, and a crude 95% confidence interval for p(α, n, F) is p̂ ± 0.01.

Table 3.2 shows values of 100 p̂ for various distributions F , using n = 10 and
R = 1600. The second and third columns are for α = 0.05, 0.95, while the fourth
shows the estimated probability that the confidence interval contains µ; ideally this
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Table 3.2 Estimated
coverage probabilities
p(α, n, F),
p(1 − α, n, F), and p(1 −
α, n, F) − p(α, n, F), for
α = 0.05 and 0.025, for
1600 samples of size
n = 10 from various
distributions. The Laplace
and mixture densities are
1
2 exp(−|z|) and
0.9φ(z) + 0.1φ(z/3)/3,
for z ∈ IR, and tν denotes
the t density on ν degrees
of freedom. The ‘slash’
distribution is that of
Z/U , where Z ∼ N (0, 1)
and U ∼ U (0, 1)
independently. The
estimates have been
multiplied by 100 for
convenience and have
standard errors of
about 0.5.

Target

F 5 95 90 2.5 97.5 95

Normal 4.9 94.7 88.8 2.6 97.1 94.4
Laplace 4.1 94.9 90.8 2.2 98.1 95.9
Mixture 4.0 94.9 90.9 1.9 98.0 96.1
t20 5.4 95.4 90.1 2.2 97.7 95.5
t10 6.1 93.9 87.8 2.6 97.0 94.4
t5 4.6 95.3 90.7 2.5 98.1 95.6
t1 (Cauchy) 2.3 97.3 95.1 0.8 99.1 98.3
Slash 2.6 97.4 94.9 1.3 99.3 98.0
Gamma, α = 2 9.7 97.9 88.3 6.3 99.1 92.8

would be 1 − 2α = 0.90 . Columns 5–7 give the same quantities for 95% confidence
intervals. The first row is included to check the simulation: it does not hit the target
exactly, due to simulation randomness, but it is close. Laplace, mixture, ‘slash’ and
tν densities have heavier tails than the normal; the mixture corresponds to N (0, 1)
samples that are occasionally contaminated by N (0, 32) variables. The results suggest
that heavy-tailed data have little effect on the probabilities until the extreme cases
ν = 1 and the ‘slash’ distribution, for both of which the Z j have infinite mean. Then
the intervals are too wide and therefore have too great a chance of containing µ. The
gamma distribution is the only asymmetric case, and this shows in the estimated one-
tailed probabilities p, though the estimates of p(1 − α, n, F) − p(α, n, F) remain
reasonably close to (1 − 2α). Overall the performance of T seems fairly satisfactory
unless the data are grossly non-normal.

Simulation timings depend on the computer and language used, as well as the skill
of the programmer, so they are often uninformative. Having said this, it took about
20 seconds to obtain each row of the table, using about 25 lines of code in total. This
compares very favourably with the time and effort that would be involved in getting
such results analytically. �

3.3.2 Variance reduction
This section may be
skipped on a first reading. Even though it involves no chemicals or nasty smells, a simulation experiment is

nonetheless an experiment, and it may be worth considering how to increase its
precision for a given effort. There are numerous ways to do this, but as they all
involve extra work on the part of the experimenter, they are only worthwhile when
the amount of simulation is large: a reduction from 30 to five seconds matters much
less than one from 30 to five days.

Suppose that we wish to estimate properties of a rather awkward statistic T =
t(Y1, . . . , Yn) that is correlated with a statistic W = w(Y1, . . . , Yn) with known prop-
erties. Then one way to use W is to write T = W + (T − W ) = W + D, say, work
out the relevant properties of the control variate W analytically, and use simulation
only for the difference D. For example, if moments of W are available explicitly but
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Table 3.3 Estimated
variances of p × 100%
trimmed averages in
samples of size n = 21
from the normal and t5
distributions.

p

F 0 (Average) 0.1 0.2 0.3 0.4 0.5 (Median)

Normal nvar(T ) 1 1.05 1.13 1.23 1.35 1.54
Correlation 1 0.98 0.95 0.91 0.86 0.81
Efficiency gain ∞ 10.4 4.9 3.1 2.3 1.9

t5 nvar(T ) 1.67 1.38 1.37 1.42 1.53 1.73
Correlation 1 0.93 0.89 0.84 0.80 0.75
Efficiency gain ∞ 2.1 1.4 1.1 1 0.9

we want to estimate the variance of T , we write

var(T ) = var(W ) + 2cov(W, D) + var(D),

where only terms involving D need to be estimated by simulation. We then gener-
ate R independent samples Y1, . . . , Yn and calculate T , W and D for each, giving
(Tr , Wr , Dr ), r = 1, . . . , R. Then var(T ) is estimated by

V1 = var(W ) + 2

R − 1

R∑
r=1

(Wr − W )(Dr − D) + 1

R − 1

R∑
r=1

(Dr − D)2, (3.27)

where the exact quantity var(W ) replaces the sample variance of W1, . . . , WR . The
usual estimate of var(T ) would be V2 = (R − 1)−1 ∑

r (Tr − T )2. If var(W ) is a large
part of var(T ), then var(V1) may be much smaller than var(V2), but the efficiency gain
var(V2)/var(V1) will depend on the correlation between W and T .

Example 3.25 (Trimmed average) Let Y1, . . . , Yn be a random sample from a
distribution F with mean µ and variance σ 2. One estimate of µ is the sample average
Y , but as this is sensitive to bad values it may be preferable to use the p × 100%
trimmed average

T = (n − 2k)−1
n−k∑

j=k+1

Y( j),

where Y(1) ≤ · · · ≤ Y(n) are the order statistics of the sample and k = pn is an integer.
One measure of the precision of T is its variance, and if we found that var(T ) < var(Y )
for many different distributions F , we might choose to use T rather than Y . Given
F , var(T ) can in principle be obtained exactly, but as the calculations are tedious it is
simpler to simulate.

An obvious control variate is W = Y = n−1 ∑
j Y( j), which has variance σ 2/n and

is perfectly correlated with T if p = 0. We simulate as described above, obtaining R
values of Wr , Tr and Dr = Tr − Wr , and estimate var(T ) using (3.27). Table 3.3 shows
values of nV1 for samples of size n = 21 from the normal and the t5 distribution, using
various values of p; we took R = 1000 replicates. The table also shows the estimated
correlation between W and T , and the efficiency gains due to use of control variates,
estimated by repeating the experiment 50 times. In practice one would have just one
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value of V1 and one of V2; the repetition here was needed only to find the efficiency
gains. These are largest when p is small, and even infinite when p = 0, when W = T
and var(V2) = 0. In this case D = T − W = 0, and as var(W ) = var(Y ) is known
exactly, V1 is constant and hence var(V1) = 0; simulation is then unnecessary. The
efficiency gains depend not only on the correlation between W and T , but also on the
underlying distribution F .

For normal data, the increase in variance when using T rather than Y is modest
for p < 0.3, and for t5 data var(T ) < var(Y ) when 0 < p < 0.5. This suggests that
a lightly trimmed average may be preferable to Y for non-normal data and not much
more variable than Y for normal data, but we would need more extensive results to
be sure. �

Importance sampling

Another approach to variance reduction is importance sampling. The key idea here is
that sometimes most of the sampling is unproductive, and then it is better to concentrate
on the parts of the sample space where it is most valuable. The idea is often used in
Monte Carlo integration. Suppose we want to estimate

ψ = E{m(Y )} =
∫

m(y)g(y) dy.

The direct approach is to generate Y1, . . . , YR independently from density g, and to
set ψ̂ = R−1 ∑

r m(Yr ). This has mean and variance

E(ψ̂) = E{m(Y )} = ψ, var(ψ̂) =
∫

m(y)2g(y) dy − ψ2,

but it may be a very poor estimate. For example, if m(Y ) = I (Y ≤ a) and ψ =
Pr(Y ≤ a) is very small, then most of the Yr will not contribute to ψ̂ , and the effort
spent in generating them will be wasted. Instead we try simulating from a density h,
chosen to concentrate effort in the important part of the sample space; the support
of h must include the support of g. The resulting estimator is the raw importanceThe support of a density f

is {y : f (y) > 0}. sampling estimator ψ̂raw = R−1 ∑
r m(Yr )w(Yr ), where W = w(Y ) = g(Y )/h(Y ) is

known as the importance sampling weight. The mean and variance of ψ̂raw areEh denotes expectation
with respect to density h.

E(ψ̂raw) = Eh{m(Y )w(Y )} =
∫

m(y)
g(y)

h(y)
h(y) dy =

∫
m(y)g(y) dy = ψ,

var(ψ̂raw) = R−1varh{m(Y )w(Y )}
= R−1[Eh{m(Y )2w(Y )2} − Eh{m(Y )w(Y )}2]

= R−1

{∫
m(y)2 g(y)

h(y)
g(y) dy − ψ2

}
.

Hence ψ̂raw will be a big improvement on ψ̂ if

var(ψ̂)

var(ψ̂raw)
=

∫
m(y)2g(y) dy − ψ2∫

m(y)2 g(y)
h(y) g(y) dy − ψ2

(3.28)

is large. This ratio depends on h, a bad choice of which can make ψ̂raw much more
variable than is ψ̂ . The trick is to choose h well.
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Table 3.4 Efficiency
gains in importance
sampling to estimate
normal probability �(z).
µz is the optimal tilting
parameter.

z −3 −2 −1 0 1 2 3
µz −3.15 −2.22 −1.34 −0.62 −0.18 −0.03 −0.002
Efficiency gain 222 19 4.1 1.75 1.19 1.04 1.004
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Figure 3.8 Importance
sampling for normal tail
probability. Left: N (0, 1)
density and area �(z) to
be estimated (heavy
shading), with importance
sampling density
N (µz , 1), whose lightly
shaded area contributes to
ψ̂raw. Right: weights for
samples with R = 50
from N (0, 1) (circles) and
from N (µz , 1) (blobs).
The vertical line shows
z = −1; only points to the
left of that line contribute
to estimation of �(z).

Example 3.26 (Normal probability) Marooned on a desert island with only parrots
for company, a shipwrecked statistician decides to realize his lifelong ambition of
memorizing values of the normal integral �(z); he hopes to make himself more
attractive to the statisticienne of his dreams. His statistical tables have been ruined
by salt water, but washed up on the beach he finds a programmable solar-powered
calculator on which he is able to implement a slow but reliable normal random number
generator.

Rather than estimate ψ = �(z) directly, he decides to use importance sampling
from the N (µ, 1) distribution, taking m(Y ) = I (Y ≤ z), g(y) = φ(y), and h(y) =
φ(y − µ). If Y1, . . . , YR

iid∼ g, then ψ̂ = R−1 ∑
I (Yr ≤ z) has mean �(z) and vari-

ance R−1�(z){1 − �(z)}. If he samples from h, the importance sampling estimate is
ψ̂raw = R−1 ∑

r w(Yr )I (Yr ≤ z), where w(y) = φ(y)/φ(y − µ) = exp( 1
2µ2 − µy),

and it turns out that

var(ψ̂raw) = R−1{exp(µ2)�(z + µ) − �(z)2}. (3.29)

Given z, therefore, the optimal value µz of µ minimizes eµ2
�(z + µ). Table 3.4

shows values of µz and the efficiency gain (3.28) for a few values of z. Note how
µz

.= z for z < 0, but not for z > 0, and how importance sampling becomes in-
creasingly effective as z → −∞, when almost none of the Yr contribute to ψ̂ . For
z > 0, most of the observations contribute to ψ̂ and importance sampling gives little
improvement.

The panels of Figure 3.8 show the optimal importance sampling distribution when
z = −1 and the weights obtained in samples of size R = 50 from the N (0, 1) and
N (µz, 1) distributions. Most of the observations generated from φ(y − µz) contribute
to ψ̂raw, whereas only a few of those from φ(y) contribute to ψ̂ . The efficiency gain
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of 4.1 implies that 50 observations from the N (µz, 1) distribution are worth about 200
from the N (0, 1) distribution. The gains are larger when z → −∞, and combined
with the fact that �(z) = 1 − �(−z) should enable our hero to fulfil his ambition
before he is rescued. �

A difficulty with ψ̂raw is that the weights Wr can be very variable, with one or
two large ones dominating the rest, leading to the average weight W being very
different from its expectation Eh(W ) = 1. This can be dealt with by rescaling the
weights to W ′

r = Wr/W , for which W ′ = 1, resulting in the importance sampling
ratio estimator ψ̂rat = R−1 ∑

r W ′
r m(Yr ). Another approach treats W as a control

variate, assuming that the pair (T, W ) = (m(Y )w(Y ), w(Y )) has approximately a
bivariate normal distribution, and then estimating the conditional mean of T given
W = 1. This results in the importance sampling regression estimator

ψ̂reg = T +
∑

r (Wr − W )(Tr − T )∑
r (Wr − W )2

(1 − W ), Tr = m(Yr )w(Yr );

note that ψ̂raw = T . If T and W are positively correlated, the ratio here will be positive,
and if W > 1 the adjustment reduces ψ̂raw by an amount that depends on 1 − W . This
makes sense because if T and W are positively correlated and W > E(W ) = 1, then
it is likely that T > E(T ). Both ratio and regression estimators tend to improve on
ψ̂raw.

Exercises 3.3

1 Show how to use inversion to generate Bernoulli random variables. If 0 < π < 1, what
distribution has

∑m
j=1 I (U j ≤ π )?

2 Write down algorithms to generate values from the gamma density with small integer shape
parameter by (a) direct construction using exponential variables, (b) rejection sampling
with an exponential envelope.

3 The Cholesky decomposition of an p × p symmetric positive matrix � is the unique lower
triangular p × p matrix L such that L LT = �. Find the distribution of µ + L Z , where Z
is a vector containing a standard normal random sample Z1, . . . , Z p , and hence give an
algorithm to generate from the multivariate normal distribution.

4 If inversion can be used to generate a variable Y with distribution function F , discuss how
to generate values from F conditioned on the events (a) Y ≤ yU , (b) yL < Y ≤ yU . Under
what circumstances might rejection sampling be sensible?
Define Z by setting Z = j when Y ≤ y j , for y1 < · · · < yk−1 < yk = ∞. Give an algo-
rithm to generate Z .

5 If X has density λe−λx , x > 0, show that Pr(r − 1 ≤ X ≤ r ) = e−λ(r−1)(1 − e−λ).
If Y has geometric density Pr(Y = r ) = π (1 − π )r−1, for r = 1, 2, . . . and 0 < π < 1,

show that Y
D= �log U/ log(1 − π ). Hence give an algorithm to generate geometric vari-

ables.

6 Construct a rejection algorithm to simulate from f (x) = 30x(1 − x)4, 0 ≤ x ≤ 1, using
the U (0, 1) density as the proposal function g. Give its efficiency.

7 Verify (3.29).
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3.4 Bibliographic Notes

The idea of a confidence interval belongs to statistical folklore, but its mathematical
formulation and the repeated sampling interpretation were developed by J. Neyman
in the 1930s. Fisher argued strongly against the repeated sampling interpretation and Jerzy Neyman

(1894–1981) was born in
Moldavia and studied
mathematics at Kharkov
University and then
statistics in Warsaw and
University College
London, where he worked
on the basis of hypothesis
testing with Egon
Pearson, on experimental
design, and on sampling
theory. In 1938 he moved
to Berkeley and became a
leading figure in the
development of statistics
in the USA.

developed his own approaches based on conditioning and fiducial inference. Welsh
(1996) gives a thoughtful comparison of these and other approaches to inference.

Inference procedures for normal samples are treated in many basic statistics texts.
Stochastic simulation is a very large topic. In addition to books such as Rubinstein

(1981), Fishman (1996), Morgan (1984), Ripley (1987), and Robert and Casella
(1999), there is a rapidly growing literature on simulation for stochastic processes,
often using Markov chain theory; see the bibliographic notes to Chapter 11.

3.5 Problems

1 Suppose that Y1, . . . , Y4 are independent normal variables, each with variance σ 2, but with
means µ + α + β + γ , µ + α − β − γ , µ − α + β − γ , µ − α − β + γ . Let

Z T = 1
4 (Y1 + Y2 + Y3 + Y4, Y1 + Y2 − Y3 − Y4, Y1 − Y2 + Y3 − Y4, Y1 − Y2 − Y3 + Y4).

Calculate the mean vector and covariance matrix of Z , and give the joint distribution
of Z1 and V = Z 2

2 + Z 2
3 + Z 2

4 when α = β = γ = 0. What is then the distribution of
Z1/(V/3)1/2?

2 Wi , Xi , Yi , and Zi , i = 1, 2, are eight independent, normal random variables with common
variance σ 2 and expectations µW , µX , µY and µZ . Find the joint distribution of the random
variables

T1 = 1

2
(W1 + W2) − µW , T2 = 1

2
(X1 + X2) − µX ,

T3 = 1

2
(Y1 + Y2) − µY , T4 = 1

2
(Z1 + Z2) − µZ ,

T5 = W1 − W2, T6 = X1 − X2, T7 = Y1 − Y2, T8 = Z1 − Z2.

Hence obtain the distribution of

U = 4
T 2

1 + T 2
2 + T 2

3 + T 2
4

T 2
5 + T 2

6 + T 2
7 + T 2

8

.

Show that the random variables U/(1 + U ) and 1/(1 + U ) are identically distributed,
without finding their probability density functions. Find their common density function
and hence determine Pr(U ≤ 2).

3 Figure 3.9 shows samples of size 100 from densities in which (i) X and Y are independent;
(ii) corr(X, Y ) = −0.7; (iii) corr(X, Y ) = 0.7; (iv) corr(X, Y ) = 0. Say which is which
and why.

4 (a) Suppose that conditional on η, Y1, . . . , Yn is a random sample from the N (η, σ 2)
distribution, but that η has itself a N (µ, σ 2

η ) distribution. Show that the unconditional dis-
tribution of Y1, . . . , Yn is multivariate normal, with correlation ρ = σ 2

η /(σ 2 + σ 2
η ) between

different variables.
(b) Show that

W = (Y − µ)/(S2/n)1/2 D= {1 + nρ/(1 − ρ)}1/2T,

where T ∼ tn−1. Hence show that the probability that the usual confidence interval (3.17)
contains µ is 1 − 2Pr{T ≤ tn−1(α)(1 + nσ 2

η /σ 2)−1/2} and verify that when α = 0.025,
n = 10 and ρ = 0.1, this probability is 0.85, and that when n = 100 and ρ = 0.01, 0.02,
it is 0.84, 0.74.
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Figure 3.9 Samples
from bivariate
distributions with
correlations −0.7, 0, 0.7;
one sample has
independent components.
Which is which? Why?

What does this tell you about the assumptions underlying (3.17)?

5 If Z is standard normal, then Y = exp(µ + σ Z ) is said to have the log-normal distribution.
Show that E(Y r ) = exp(rµ)MZ (rσ ) and hence give expressions for the mean and variance
of Y . Show that although all its moments are finite, Y does not have a moment-generating
function.

6 (a) Let Y = Z1 and W = Z2 − λZ1, where Z1, Z2 are independent standard normal vari-
ables and λ is a real number. Show that the conditional density of Y given that W < 0 is
f (y; λ) = 2φ(y)�(λy); Y is said to have a skew-normal distribution. Sketch f (y; λ) for
various values of λ. What happens when λ = 0?
(b) Show that Y 2 ∼ χ2

1 .
(c) Use Exercise 3.2.16 to show that Y has cumulant-generating function t2/2 + log �(δt),
where δ = λ/(1 + λ2)1/2, and hence find its mean and variance. Show that the standardized
skewness of Y varies in the range (−0.995, 0.955).

7 For h(x) a non-negative function of real x with finite integral, let

Ch = {
(u, v) : 0 ≤ u ≤ h(v/u)1/2

}
.

(a) By considering the change of variables (u, v) → (w = u, x = v/u), show that Ch has
finite area, and that if (U, V ) is uniformly distributed on Ch , then X = V/U has density
h(x)/

∫
h(y) dy.

(b) If h(x) and x2h(x) are bounded and a = √
sup{h(x) : −∞ < x < ∞},

b+ =
√

sup{x2h(x) : x ≥ 0}, b− = −
√

sup{x2h(x) : x ≤ 0},
show that Ch ⊂ [0, a] × [b−, b+]. Hence justify the following algorithm:

1 Repeat
� generate U1, U2

iid∼ U (0, 1);
� let U = aU1, V = b− + (b+ − b−)U2;
until (U, V ) ∈ Ch .

2 Return X = V/U .
(c) If h(x) = (1 + x2)−1 on −∞ < x < ∞, show that this algorithm gives the method for
generating Cauchy variables described in Example 3.21.
(d) If h(x) = e−x on 0 < x < ∞, show that a = 1, b− = 0, and b+ = 2/e, and give the
algorithm.
(e) If h(x) = e−x2/2 on −∞ < x < ∞, find the values of a, b− and b+, and show that X
is accepted if and only if V 2 ≤ −4U 2 log U . Hence give the algorithm.

8 Let R1, R2 be independent binomial random variables with probabilities π1, π2 and de-
nominators m1, m2, and let Pi = Ri/mi . It is desired to test if π1 = π2.
Let π̂ = (m1 P1 + m2 P2)/(m1 + m2). Show that when π1 = π2, the statistic

Z = P1 − P2√
π̂ (1 − π̂ )(1/m1 + 1/m2)

D−→ N (0, 1)

when m1, m2 → ∞ in such a way that m1/m2 → ξ for 0 < ξ < 1.
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Figure 3.10 Analysis of
Yahoo.com share values.
Left: share price x j from
12 April 1996 to 26 April
2000 (above); log daily
returns
y j = 100 log(x j /x j−1)
(below). Centre: normal
probability plot of y j

(above) and plot of y j+1

against y j (below). Right:
normal probability plot of
log weekly returns
(above); log weekly
returns (below).

Now consider a 2 × 2 table formed using two independent binomial variables and having
entries Ri , Si where Ri + Si = mi , Ri/mi = Pi , for i = 1, 2. Show that if π1 = π2 and
m1, m2 → ∞, then

X 2 = (n1 + n2)(R1 S2 − R2 S1)2/ {n1n2(R1 + R2)(S1 + S2)} D−→ χ 2
1 .

Two batches of trees were planted in a park: 250 were obtained from nursery A and 250
from nursery B. Subsequently 41 and 64 trees from the two groups die. Do trees from
the two nurseries have the same survival probabilities? Are the assumptions you make
reasonable?

9 If Y is the average of a random sample Y1, . . . , Yn from density θ−1 exp(−y/θ ), y > 0,
θ > 0, give the limiting distribution of Z (θ ) = n1/2(Y − θ )/θ as n → ∞. Hence obtain
an approximate two-sided 95% confidence interval for θ .
Show that for large n, log(Y )

.= log θ + n−1/2 Z , find an approximate mean and variance
for log Y , and hence give another approximate two-sided 95% confidence interval for θ .
Which interval would you prefer in practice?

10 Independent pairs (X j , Y j ), j = 1, . . . , m arise in such a way that X j is normal with mean
λ j and Y j is normal with mean λ j + ψ , X j and Y j are independent, and each has variance
σ 2. Find the joint distribution of Z1, . . . , Zm , where Z j = Y j − X j , and hence show that
there is a (1 − 2α) confidence interval for ψ of form A ± m−1/2 Bc, where A and B are
random variables and c is a constant.
Obtain a 0.95 confidence interval for the mean difference ψ given (x, y) pairs (27, 26),
(34, 30), (31, 31), (30, 32), (29, 25), (38, 35), (39, 33), (42, 32). Is it plausible that ψ �= 0?

11 The upper left panel of Figure 3.10 shows daily closing share prices x j forYahoo.com from
12 April 1996 to 26 April 2000. We define the log daily returns y j = 100 log(x j/x j−1);
y j is roughly the daily percentage change in price.
(a) The lower left panel shows the y j . Does their distribution seem to change with time?
(b) The upper central panel shows a normal probability plot of the y j . Do they seem normal
to you? If not, describe how they differ from normal variates.
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(c) The lower central panel shows a plot of y j+1 against y j . Are successive daily log
returns correlated? What would be the implication if they were?
(d) The n = 1015 values of y j have average and variance y = 0.376 and s2 = 25.35. Is
E(y j ) > 0?
(e) We can also define the log weekly returns, w j = y5( j−1)+1 + · · · + y5 j , whose normal
probability plot is shown in the top right panel. Are they normal? They have average and
variance 1.878 and 110.07. Is their mean positive?
(f) The data suggest the simple geometric Brownian motion model that the stock value at

the end of week k is Sk = s0 exp
(

kµ + σ
∑k

j=1 Z j

)
, where the Z j are a standard normal

random sample and s0 is the initial stock value. If I bought $100 worth of stock when it was
launched and its value on 26 April 2000 was $4527, give its median predicted value and
a 95% prediction interval for its value 400 weeks after launch. Do you find this credible?Remember: past

performance is no guide
to the future!

Under the normal model, how long must I wait before the probability is 0.5 that I am a
millionaire?

12 (a) Check the expressions for z j for adaptive rejection sampling.
(b) Show that G+(y) = ∫ y

−∞ g+(x) dx satisfies

G+(zi ) =
∑i

j=0
1

h′(y j+1) {exp h+(z j+1) − exp h+(z j )}∑k−1
j=0

1
h′(z j+1) {exp h+(z j+1) − exp h+(z j )}

;

let ck denote the denominator of this expression. Show that a value X from g+ is generated
by taking U ∼ U (0, 1), finding the largest zi such that G+(zi ) < U and setting

X = zi + 1

h′(yi+1)
log

[
1 + h′(yi+1)ck {U − G+(zi )}

exp h+(zi )

]
.

(c) Let h−(y) be defined by taking the chords between the points (y j , h(y j )), for j =
1, . . . , k, and let it be −∞ outside [y1, yk]. Explain how to use h−(y) to speed up sampling
from f when h is complicated, by performing a pretest based on exp{h−(X ) − h+(X )}.
(Gilks and Wild, 1992; Wild and Gilks, 1993)
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Likelihood

4.1 Likelihood

4.1.1 Definition and examples

Suppose we have observed the value y of a random variable Y , whose probability
density function is supposed known up to the value of a parameter θ . We write f (y; θ )
to emphasize that the density is a function of both data and a parameter. In general
both y and θ will be vectors whose respective elements we denote by y j and θr .
The parameter takes values in a parameter space �, and the data Y take values in a
sample space Y . Our goal is to make statements about the distribution of Y , based on
the observed data y. The assumption that f is known apart from uncertainty about θ

reduces the problem to making statements about what range of values of θ within �

is plausible, given that y has been observed.
A fundamental tool is the likelihood for θ based on y, which is defined to be

L(θ ) = f (y; θ ), θ ∈ �, (4.1)

regarded as a function of θ for fixed y. Our interest in this is motivated by the idea
that it will be relatively larger for values of θ near that which generated the data.
When Y is discrete we use f (y; θ ) = Pr(Y = y; θ ), while if Y is continuous, we take
f (y; θ ) to be its probability density function. Owing to rounding, the recorded y is
always discrete in practice, and occasional minor difficulties can be avoided by taking
this into account, as we shall see in Example 4.42. However in constructing (4.1) for
continuous Y we almost always use its density function. When y = (y1, . . . , yn) is a
collection of independent observations the likelihood is

L(θ ) = f (y; θ ) =
n∏

j=1

f (y j ; θ ). (4.2)

Example 4.1 (Poisson distribution) Suppose that y consists of a single observation
from the Poisson density (2.6). Here the data and the parameter are both scalars,
and L(θ ) = θ ye−θ /y!. The parameter space is {θ : θ > 0} and the sample space is

94



4.1 · Likelihood 95

theta

Li
ke

lih
oo

d 
(x

 1
0^

-2
7)

0 100 200 300 400 500 600

0
1

2
3

2 4 6 8 101214

alpha100

150

200

250

theta

 0
2

4
6

Li
ke

lih
oo

d 
(x

 1
0^

-2
2)

alpha

th
et

a

0 2 4 6 8 10 12 14

10
0

15
0

20
0

25
0

-50 -55

-60

-80

-80

-200

alpha

P
ro

fil
e 

lo
g 

lik
el

ih
oo

d

0 2 4 6 8 10 12 14

-6
5

-6
0

-5
5

-5
0

Figure 4.1 Likelihoods
for the spring failure data
at stress 950 N/mm2. The
upper left panel is the
likelihood for the
exponential model, and
below it is a perspective
plot of the likelihood for
the Weibull model. The
upper right panel shows
contours of the log
likelihood for the Weibull
model; the exponential
likelihood is obtained by
setting α = 1. that is,
slicing L along the
vertical dotted line. The
lower right panel shows
the profile log likelihood
for α, which corresponds
to the log likelihood
values along the dashed
line in the panel above,
plotted against α.

{0, 1, 2, . . .}. If y = 0, L(θ ) is a monotonic decreasing function of θ , whereas if y > 0
it has a maximum at θ = y, and limit zero as θ approaches zero or infinity. �

Example 4.2 (Exponential distribution) Let y be a random sample y1, . . . , yn

from the exponential density f (y; θ ) = θ−1e−y/θ , y > 0, θ > 0. The parameter space
is � = IR+ and the sample space the Cartesian product IRn

+. Here (4.2) gives

L(θ ) =
n∏

j=1

θ−1e−y j /θ = θ−n exp

(
−1

θ

n∑
j=1

y j

)
, θ > 0. (4.3)

The spring failure times at stress 950 N/mm2 in Example 1.2 are

225, 171, 198, 189, 189, 135, 162, 135, 117, 162,

and the top left panel of Figure 4.1 shows the likelihood (4.3). The function is
unimodal and is maximized at θ

.= 168; L(168)
.= 2.49 × 10−27. At θ = 150, L(θ )

equals 2.32 × 10−27, so that 150 is 2.32/2.49 = 0.93 times less likely than θ = 168
as an explanation for the data. If we were to declare that any value of θ for which
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Figure 4.2 Cauchy
likelihood and log
likelihood for the spring
failure data at stress
950N/mm2.

L(θ ) > cL(168) was “plausible” based on these data, values of θ in the range
(120, 260) or so would be plausible when c = 1

2 . �

Example 4.3 (Cauchy distribution) The Cauchy density centered at θ is f (y; θ ) =
[π{1 + (y − θ )2}]−1, where y ∈ IR and θ ∈ IR. Hence the likelihood for a random
sample y1, . . . , yn is

L(θ ) =
n∏

j=1

1

π{1 + (y j − θ )2} , −∞ < θ < ∞.

The sample space is IRn and the parameter space is IR.
The left panel of Figure 4.2 shows L(θ ) for the spring data in Example 4.2. There

seem to be three local maxima in the range for which L(θ ) is plotted, with a global
maximum at θ

.= 162. We can see more detail in the log likelihood log L(θ ) shown in
the right panel of the figure. There are at least four local maxima — apparently one at
each observation, with a more prominent one when observations are duplicated. By
contrast with the previous example, for some values of c a “plausible” set for θ here
consists of disjoint intervals. �

Example 4.4 (Weibull distribution) The Weibull density is

f (y; θ, α) = α

θ

( y

θ

)α−1
exp

{
−

( y

θ

)α}
, y > 0, θ, α > 0. (4.4)

When α = 1 this is the exponential density of Example 4.2; the exponential model
is nested within the Weibull model, the parameter space for which is IR2

+, and the
sample space for which is IRn

+.
A random sample y = (y1, . . . , yn) from (4.4) has joint density

f (y; θ, α) =
n∏

j=1

f (y j ; θ, α) =
n∏

j=1

[
α

θ

( y j

θ

)α−1
exp

{
−

( y j

θ

)α}]
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and hence the likelihood is

L(θ, α) = αn

θnα

(
n∏

j=1

y j

)α−1

exp

{
−

n∑
j=1

( y j

θ

)α

}
, θ, α > 0. (4.5)

The lower left panel of Figure 4.1 shows L(θ, α) for the data of Example 4.2. The
likelihood is maximized at θ

.= 181 and α
.= 6, and L(181, 6) equals 6.7 × 10−22.

This is 2.7 × 105 times greater than the largest value for the exponential model. The top
right panel shows contours of the log likelihood, log L(θ, α). The dotted line indicates
the slice corresponding to the exponential density obtained when α = 1. The factor
2.5 × 105 gives a difference of log(2.7 × 105) = 12.5 between the maximum log
likelihoods. This big improvement suggests that the Weibull model fits the data better.
However, if we judge model fit by the maximum likelihood value, the Weibull model is
bound to fit at least as well as the exponential, because maxθ,α L(θ, α) ≥ maxθ L(θ, 1),
with equality only if the maximum occurs on the line α = 1. �

The examples above involve random samples, but (4.1) and (4.2) apply also to
more complex situations.

Example 4.5 (Challenger data) Consider the data in Table 1.3 on O-ring thermal
distress. For now we ignore the effect of pressure, and treat the temperature x1 at
launch as fixed and the number of O-rings with thermal distress as binomial variables
with denominator m and probability π , giving

Pr(R = r ) = m!

r !(m − r )!
π r (1 − π )m−r , r = 0, 1, . . . , m.

If π depends on temperature through the relation

π = exp(β0 + β1x1)

1 + exp(β0 + β1x1)
,

then the parameter β0 determines the probability of thermal distress when x1 = 0◦F,
which is eβ0/(1 + eβ0 ). The parameter β1 determines how π depends on temperature;
we expect that β1 < 0, since π decreases with increasing x1.

If the data for the j th flight consist of r j O-rings with thermal distress at launch
temperature x1 j , j = 1, . . . , n, and n = 23 and m = 6, we have

Pr(R j = r j ; β0, β1) = m!

r j !(m − r j )!

{
eβ0+β1x1 j

1 + eβ0+β1x1 j

}r j {
1

1 + eβ0+β1x1 j

}m−r j

= m!

r j !(m − r j )!

exp{r j (β0 + β1x1 j )}
{1 + exp(β0 + β1x1 j )}m

.

If the R j are independent, the likelihood for the entire set of data is

L(β0, β1) =
n∏

j=1

Pr(R j = r j ; β0, β1)

=
n∏

j=1

m!

r j !(m − r j )!
× exp

(
β0

∑n
j=1 r j + β1

∑n
j=1 r j x1 j

)
∏n

j=1{1 + exp(β0 + β1x1 j )}m
. (4.6)
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Figure 4.3 Log
likelihoods for a binomial
model for the O-ring
thermal distress data. The
probability of thermal
distress is taken to be ψ =
exp(β0 + β1x1)/{1 +
exp(β0 + β1x1)}. The left
panel gives the log
likelihood for parameters
β0 and β1, and the right
panel the log likelihood
for the probability of
thermal distress at 31◦F,
ψ =
exp(β0 + 31β1)/{1 +
exp(β0 + 31β1)} and
λ = β1.

The left panel of Figure 4.3 shows contours of this function, which is largest at
β0

.= 5 and β1
.= −0.1. However it is difficult to interpret because of the strong

negative association between β0 and β1: the values of β1 most plausible for β0
.= 0

are different from those most plausible when β0
.= 10. �

Dependent data

In the examples above the data are assumed independent, though not necessarily
identically distributed. In more complicated problems the dependence structure of the
data may be very complex, making it hard to write down f (y; θ ) explicitly. Matters
simplify when the data are recorded in time order, so that y1 precedes y2 precedes
y3, . . . . Then it can help to write This is sometimes called

the prediction
decomposition.

f (y; θ ) = f (y1, . . . , yn; θ ) = f (y1; θ )
n∏

j=2

f (y j | y1, . . . , y j−1; θ ). (4.7)

For example, if the data arise from a Markov process, (4.7) becomes

f (y; θ ) = f (y1; θ )
n∏

j=2

f (y j | y j−1; θ ), (4.8)

where we have used the Markov property, that given the “present” Y j−1, the ‘future’,
Y j , Y j+1, . . . , is independent of the ‘past’, . . . , Y j−3, Y j−2.

Example 4.6 (Poisson birth process) Suppose that Y0, . . . , Yn are such that, given
that Y j = y j , the conditional density of Y j+1 is Poisson with mean θy j . That is,

f (y j+1 | y j ; θ ) = (θy j )y j+1

y j+1!
exp(−θy j ), y j+1 = 0, 1, . . . , θ > 0.

If Y0 is Poisson with mean θ , the joint density of data y0, . . . , yn is

f (y0; θ )
n∏

j=1

f (y j | y j−1; θ ) = θ y0

y0!
exp(−θ )

n−1∏
j=0

(θy j )y j+1

y j+1!
exp(−θy j ),
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so the likelihood (4.8) equals

L(θ ) =
(

n∏
j=0

y j !

)−1

exp (s0 log θ − s1θ ) , θ > 0,

where s0 = ∑n
j=0 y j and s1 = 1 + ∑n−1

j=0 y j . �

4.1.2 Basic properties

It can be convenient to plot the likelihood on a logarithmic scale. This scale is also
mathematically convenient, and we define the log likelihood to be

�(θ ) = log L(θ ).

Statements about relative likelihoods become statements about differences between
log likelihoods. When y has independent components, y1, . . . , yn , we can write

�(θ ) =
n∑

j=1

log f (y j ; θ ) =
n∑

j=1

� j (θ ), (4.9)

where � j (θ ) ≡ �(θ ; y j ) = log f (y j ; θ ) is the contribution to the log likelihood from
the j th observation. The arguments of f and � are reversed to stress that we are
primarily interested in f as a function of y, and in � as a function of θ .

To combine the likelihoods for two independent sets of data y and z that both carry
information about θ , note that their joint probability density is just the product of their
individual densities, and therefore the likelihood based on y and z is the product of
the individual likelihoods:

L(θ ; y, z) = f (y; θ ) f (z; θ ) = L(θ ; y)L(θ ; z),

say, where for clarity the data are an additional argument in the likelihoods.
An important property of likelihood is its invariance to known transformations of

the data. Suppose that there are two observers of the same experiment, and that one
records the value y of a continuous random variable, Y , while the other records the
value z of Z , where Z is a known 1–1 transformation of Y . Then the probability
density function of Z is

fZ (z; θ ) = fY (y; θ )

∣∣∣∣dy

dz

∣∣∣∣, (4.10)

where y is regarded as a function of z, and |dy/dz| is the Jacobian of the transformation
from Y to Z . As (4.10) differs from (4.1) only by a constant that does not depend on
the parameter, the log likelihood based on z equals that based on y plus a constant:
the relative likelihoods of different values of θ are the same. This implies that within
a particular model f the absolute value of the likelihood is irrelevant to inference
about θ . When the maximum value of the likelihood is finite we define the relative
likelihood of θ to be

RL(θ ) = L(θ )

maxθ ′ L(θ ′)
.
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This takes values between one and zero, and its logarithm takes values between zero
and minus infinity. As the absolute value of L(θ ), or equivalently �(θ ), is irrelevant
to inference about θ , we can neglect constants and use whatever version of L we
wish. Henceforth we use the notation ≡ to indicate that constants have been ignored
in defining a log likelihood. However we may not neglect constants if our goal is to
compare models from different families of distributions.

Example 4.7 (Spring failure data) We can compare the Cauchy and Weibull mod-
els for the data in Examples 4.2–4.4 in terms of the maximum likelihood value
achieved. Under this criterion, the Weibull model, for which the largest log likelihood
is about −48, is a much better model than is the Cauchy, for which the maximum log
likelihood is about −66. Evidently it makes no sense to add a constant to one of these
and not to the other. �

Suppose that the distribution of Y is determined by ψ , which is a 1–1 transformation
of θ , so that θ = θ (ψ). Then the likelihood for ψ , L∗(ψ), and the likelihood for θ ,
L(θ ), are related by the expression L∗(ψ) = L{θ (ψ)}. The value of L is not changed
by this transformation, so the likelihood is invariant to 1–1 reparametrization. We
can use a parametrization that has a direct interpretation in terms of our particular
problem.

Example 4.8 (Challenger data) We focus on the probability of thermal distress at
31◦F, expressed in terms of the original parameters as

ψ = exp(β0 + 31β1)

1 + exp(β0 + 31β1)
.

If we reparametrize L in terms of ψ and λ = β1, we have β0(ψ, λ) = log{ψ/(1 −
ψ)} − 31λ, and L∗(ψ, λ) = L{β0(ψ, λ), λ}. The plot of the log likelihood �∗(ψ, λ) =
log L∗(ψ, λ) in the right panel of Figure 4.3 is easier to interpret than the plot of
�(β0, β1) in the left panel, because the plausible range of values for ψ changes more
slowly with λ. The contours in the left panel seem roughly elliptical, but those in the
right are not. The most plausible range of values for ψ is (0.7, 0.9), throughout which
the value of λ is roughly −0.1. �

Interpretation

When there is a particular parametric model for a set of data, likelihood provides
a natural basis for assessing the plausibility of different parameter values, but how
should it be interpreted? One viewpoint is that values of θ can be compared using a
scale such as

1 ≥ RL(θ ) > 1
3 , θ strongly supported,

1
3 ≥ RL(θ ) > 1

10 , θ supported,
1

10 ≥ RL(θ ) > 1
100 , θ weakly supported,

1
100 ≥ RL(θ ) > 1

1000 , θ poorly supported,
1

1000 ≥ RL(θ ) > 0, θ very poorly supported.

(4.11)
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Under this pure likelihood approach, values of θ are compared solely in terms of
relative likelihoods. A scale such as (4.11) is simple and directly interpretable, but
as it has the disadvantages that the numbers 1

3 , 1
10 and so forth are arbitrary and take

no account of the dimension of θ , this interpretation is not the most common one in
practice. We discuss repeated sampling calibration of likelihood values in Section 4.5.

Exercises 4.1

1 Sketch the Cauchy likelihood for the observations 1.1, 2.3, 1.5, 1.4.
Show that the distribution function of the two-parameter Cauchy density,

f (u; θ, σ ) = σ

π{σ 2 + (u − θ )2} , −∞ < u < ∞, σ > 0, −∞ < θ < ∞,

is F(u) = 1
2 + π−1 tan−1{(u − θ )/σ }. Hence find Pr(|Y − θ | < 20) when σ = 1, and with

hindsight explain why the model in Example 4.3 fits poorly.

2 Find the likelihood for a random sample y1, . . . , yn from the geometric density
Pr(Y = y) = π (1 − π )y , y = 0, 1, . . . , where 0 < π < 1.

3 Verify that the likelihood for f (y; λ) = λ exp(−λy), y, λ > 0, is invariant to the
reparametrization ψ = 1/λ.

4 Show that the log likelihood for two independent sets of data is the sum of their log
likelihoods.

5 Let An ⊂ An−1 ⊂ · · · ⊂ A1 be events on the same probability space. Show that

Pr(An) = Pr(An | An−1)Pr(An−1) = Pr(An | An−1) · · · Pr(A2 | A1)Pr(A1)

and hence establish (4.7).

4.2 Summaries

4.2.1 Quadratic approximation

In a problem with one or two parameters, the likelihood can be visualized. However
models with a few dozen parameters are commonplace, and sometimes there are many
more, so we often need to summarize the likelihood.For example, an image of

512 × 512 pixels may
have a parameter for each
pixel.

A key idea is that in many cases the log likelihood is approximately quadratic as
a function of the parameter. To illustrate this, the left panel of Figure 4.4 shows log
likelihoods for random samples of size n = 5, 10, 20, 40 and 80 from an exponential
density, θ−1 exp(−u/θ ), θ > 0, u > 0. In each case the sample has average y = e−1.As usual, y = n−1 ∑

y j .

The panel has two general features. First, the maximum of each log likelihood is at
θ = e−1. To see why, note that (4.3) implies that

�(θ ) = −n log θ − θ−1
n∑

j=1

y j = −n (log θ + y/θ ) ,

which is maximized when d�(θ )/dθ = 0, that is, when θ = y. Now

d2�(θ )

dθ2
= −n

(
− 1

θ2
+ 2y

θ3

)
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n = 5, and the lowest is
for n = 80.

takes the value −n/y2 at θ = y, so y gives the unique maximum of �. The value of θ for
which L , or equivalently �, is greatest is called the maximum likelihood estimate, θ̂ . In
this case θ̂ = y. For future reference, note that the values of −n−1d2�(θ )/dθ2 and its
derivative −n−1d3�(θ )/dθ3 are bounded in a neighbourhood N = {θ : |θ − θ̂ | < δ}
of θ̂ , provided N excludes θ = 0.

Second, the curvature of the log likelihood at the maximum increases with n,
because the second derivative of �, which measures its curvature as a function of θ , is
a linear function of n. The function −d2�(θ )/dθ2 is called the observed information.
In this case its value at θ̂ is n/y2 = n/̂θ2.

The right panel of Figure 4.4 shows the relative likelihoods corresponding to the left
panel. The effect of increasing n is that the likelihood becomes more concentrated
about the maximum, and so it becomes relatively less and less plausible that each
value of θ a fixed distance from θ̂ generated the data. To express this algebraically,
we write the log relative likelihood, log RL(θ ), as �(θ ) − �(̂θ ) and expand �(θ ) in a
Taylor series about θ̂ to obtain

log RL(θ ) = �(̂θ ) + (θ − θ̂ )�′ (̂θ ) + 1

2
(θ − θ̂ )2�′′(θ1) − �(̂θ ) = 1

2
(θ − θ̂ )2�′′(θ1);

(4.12)
θ1 lies between θ and θ̂ . We denote differentiation with respect to θ by a prime, thus
�′(θ ) = d�(θ )/dθ , and so forth; note that �′ (̂θ ) = 0. Each derivative of � is a sum of
n terms. As n increases, we see that the bound on −n−1�′′(θ1) implies that (4.12)
will become increasingly negative except at θ = θ̂ . Hence RL(θ ) tends to zero unless
θ = θ̂ , while RL (̂θ ) = 1 for all n.

To examine the behaviour of the log likelihood more closely, we take another term
in the Taylor expansion leading to (4.12), to find that

log RL(θ ) = 1

2
(θ − θ̂ )2�′′ (̂θ ) + 1

6
(θ − θ̂ )3�′′′(θ2),

where θ2 lies between θ and θ̂ . Now consider what happens, not at a fixed distance
from θ̂ , but at θ = θ̂ + n−1/2δ. As n increases this corresponds to “zooming in” and
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examining the region around θ̂ ever more closely. Now

log RL
(
θ̂ + n−1/2δ

) = 1

2
δ2n−1�′′ (̂θ ) + 1

6
δ3n−3/2�′′′(θ2), (4.13)

and crucially, both �′′(θ ) and �′′′(θ ) are linear functions of n. The bound on −n−1�′′′(θ )
implies that the last term on the right of (4.13) disappears as n → ∞, but the quadratic
term becomes− 1

2δ2{−n−1�′′ (̂θ )}, which in this case is− 1
2δ2/y2. Thus in large samples

the likelihood close to the maximum is a quadratic function and can be summarized
in terms of the maximum likelihood estimate θ̂ and the observed information −�′′ (̂θ ).
One implication of this is that if we restrict ourselves to parameter values that are
plausible relative to the maximum likelihood estimate, say those values of θ such that
RL(θ ) > c, we find log RL(θ ) > log c. Comparison with (4.13) shows that our range
of ‘plausible’ θ is decreasing with n and has length roughly proportional to n−1/2.

This discussion concerns a scalar parameter, but extends to higher dimensions,
where d2�/dθ2 is replaced by the matrix of second derivatives of �.

Whether a quadratic approximation to � is useful depends on the problem. To
summarize the log likelihood in Figure 4.2 in such terms would be very misleading,
unless a summary was required only very close to the maximum. If feasible, it is
sensible to plot the likelihood.

Example 4.9 (Uniform distribution) Suppose we are presented with a random
sample y1, . . . , yn from the uniform density on (0, θ ):

f (u; θ ) =
{

θ−1, 0 < u < θ ,
0, otherwise.

The likelihood is

L(θ ) =
∏

j

f (y j ; θ ) =
{

θ−n, 0 < y1, . . . , yn < θ,

0, otherwise.

It is maximized at θ̂ = max(y j ), but d�(̂θ )/dθ 
= 0 and −d2�(̂θ )/dθ2 = −n/̂θ2 < 0,
and �(θ ) becomes increasingly spikey as n → ∞ and is not approximately quadratic
near θ̂ for any n. �

4.2.2 Sufficient statistics

In well-behaved problems and with large samples the likelihood may be summarized
in terms of the maximum likelihood estimate and observed information, though Ex-
amples 4.3 and 4.9 show that this can fail. A better approach rests on the fact that
the likelihood often depends on the data only through some low-dimensional func-
tion s(y) of the y j , and then a suitable summary can be given in terms of this. Thus
in Examples 4.2 and 4.9 the likelihoods depend on the data through (n,

∑
y j ) and

(n, max y j ) respectively. If we believe that our model is correct, we need only these
functions to calculate the likelihoods for any value of θ . These functions are examples
of sufficient statistics.
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Suppose that we have observed data, y, generated by a distribution whose density
is f (y; θ ), and that the statistic s(y) is a function of y such that the conditional density
of the corresponding random variable Y , given that S = s(Y ), is independent of θ .
That is,

fY |S(y | s; θ ) (4.14)

does not depend on θ . Then S is said to be a sufficient statistic for θ based on Y , or
just a sufficient statistic for θ . The idea is that any extra information in Y but not in S
is given by the conditional density (4.14), and if this conditional density is free of θ ,
Y contains no more information about θ than does S. We shall see later that S is not
unique.

Definition (4.14) is hard to use, because we must guess that a given statistic S is
sufficient before we can calculate the conditional density. An equivalent and more
useful definition is via the factorization criterion. This states that a necessary and
sufficient condition for a statistic S to be a sufficient statistic for a parameter θ in
a family of probability density functions f (y; θ ) is that the density of Y can be
expressed as

f (y; θ ) = g{s(y); θ}h(y). (4.15)

Thus the density of Y factorizes into a function g of s(y) and θ , and a function of y,
h, that does not depend on θ .

The equivalence of these two definitions is almost self-evident. First note that if S
is a sufficient statistic, the conditional distribution of Y given S is independent of θ ,
that is,

fY |S(y | s) = fY,S(y, s; θ )

fS(s; θ )
(4.16)

is free of θ . But as S is a function s(Y ) of Y , the joint density of S and Y is zero except
where S = s(Y ), and so the numerator of the right-hand side of (4.16) is just fY (y; θ ).
Rearrangement of (4.16) implies that if S is sufficient, (4.15) holds with g(·) = fS(·)
and h(·) = fY |S(·).

Conversely, if (4.15) holds, we find the density of S at s by summing or integrating
(4.15) over the range of y for which s(y) = s. In the discrete case Proof in the continuous

case would replace the
sum here by an integral,
but a detailed proof is not
simple because all
elements of the parametric
model must be dominated
by a single measure. See
for example Theorem 2.21
of Schervish (1995).

fS(s; θ ) =
∑

g{s(y); θ}h(y) = g{s; θ}
∑

h(y),

because the sum is over those y for which s(y) equals s. Therefore the conditional
density of Y given S is

fY (y; θ )

fS(s; θ )
= g{s(y); θ}h(y)

g{s; θ} ∑
h(y)

= h(y)∑
h(y)

,

which shows that S is sufficient.

Example 4.10 (Bernoulli distribution) A Bernoulli random variable Y records the
‘success’ or ‘failure’ of a binary trial. Thus

Pr(Y = 1) = 1 − Pr(Y = 0) = π, 0 ≤ π ≤ 1,
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with Y = 1 representing success and Y = 0 failure. The likelihood contribution from
a single trial with outcome Y = y may be written π y(1 − π )1−y , and hence the like-
lihood for π based on the outcomes of n independent trials is

L(π ) =
n∏

j=1

π y j (1 − π )1−y j = π r (1 − π )n−r ,

say, where r = ∑
y j is the number of successes in the n trials. The distribution of

the corresponding random variable, R = ∑
Y j , is binomial with probability π and

denominator n, that is,

Pr(R = r ) =
(

n

r

)
π r (1 − π )n−r , r = 0, . . . , n.

Hence the distribution of Y1, . . . , Yn conditional on R is

Pr
(

Y1 = y1, . . . , Yn = yn |
∑

Y j = r
)

= 1( n
r

) ,

which puts equal probability on each of the ( n
r ) permutations of r 1’s and n − r 0’s.

This conditional distribution does not depend on π , so R is sufficient for π , as is
intuitively clear.

Although there is no loss of information about π when Y1, . . . , Yn is reduced to
R, the original data are more useful for some purposes. For example, if y1, . . . , yn

consisted of a sequence of zeros followed by a sequence of ones, we might want to
revise our belief that the trials were independent, but we could not know this if only∑

y j had been reported. �

Example 4.11 (Exponential distribution) Suppose that Y1 and Y2 are indepen-
dently exponentially distributed. Then their joint density is

f (y; λ) = λe−λy1 · λe−λy2 , y1, y2 > 0,

= λ2 exp{−λ(y1 + y2)}
= λ2 exp(−λs) · 1,

which factorizes into a function of s = y1 + y2 and the constant 1. Therefore S =
Y1 + Y2 is sufficient, using the factorization criterion (4.15).

To verify this using the original definition (4.14), note that S is a sum of two
independent exponential random variables, and so has the gamma distribution with
density

f (s; λ) = λ2s exp(−λs), s > 0.

Thus the conditional density of Y1 and Y2 given that S = Y1 + Y2 = s is

f (y1, y2; λ)

f (s; λ)
= λ2 exp{−λ(y1 + y2)}

λ2s exp(−λs)
= 1

s
, y1 + y2 = s > 0.

This, the uniform density on (0, s), is free of λ. Thus given the particular value s for
the line Y1 + Y2 = s on which the point (Y1, Y2) lies, the position of (Y1, Y2) on the
line conveys no extra information about λ. �
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Example 4.12 (Random sample) Let Y1, . . . , Yn be a random sample of scalar
observations from a density f (y; θ ). Now as all the observations are on an equal
footing, their order is irrelevant. It follows that the order statistics Y(1), . . . , Y(n) are
sufficient for θ . To see this, note that we saw at (2.25) that the joint density of the
order statistics is

n! f (y(1); θ ) × · · · × f (y(n); θ ), y(1) ≤ · · · ≤ y(n).

Hence the conditional density of Y1, . . . , Yn given Y(1), . . . , Y(n) is 1/n!, provided
that Y(1), . . . , Y(n) is a permutation of Y1, . . . , Yn , and is zero otherwise. Evidently
this conditional density is free of θ , and hence the order statistics are a sufficient
statistic of dimension n for θ .

If we are willing to make more specific assumptions about f (y; θ ), we can re-
duce the data further. For the exponential density, for example, the likelihood is
θ−n exp(−θ−1 ∑

y j ), so it follows that (N ,
∑

Y j ) is also sufficient for θ . Thus there
can be different sufficient statistics for a single model. �

Example 4.13 (Capture-recapture model) Capture-recapture models are widely
used to estimate the sizes of animal populations and survival rates from one year to
the next. The idea is to capture animals on a number of separate occasions, to mark
them, and to return them to the wild after each occasion. The proportion of marked
animals seen on the second and subsequent occasions gives an idea of the quantities
of interest. For example, if the population is large and only a small proportion of it is
seen on the first occasion, then few of the animals captured next time will already be
marked.

Suppose there are three capture occasions (years) labelled 0, 1, and 2, that the
probability of survival from one occasion to the next is ψ , and that, for an animal
alive in year s, the probability of recapture is λs . Then the possible capture histories
and their probabilities are

111 ψλ1 × ψλ2, 011 ψλ2,

110 ψλ1 × {1 − ψ + ψ(1 − λ2)}, 010 1 − ψ + ψ(1 − λ2),
101 ψ(1 − λ1) × ψλ2, 001 1,

100 1 − ψ + ψ(1 − λ1){1 − ψ + ψ(1 − λ2)}
where, for example, 110 represents an animal seen in years 0 and 1, but not 2. The
probability of being alive and seen in year 1 is ψλ1, and conditional on being alive
in year 1, the animal may be dead in year 2, with probability 1 − ψ , or alive but not
seen, with probability ψ(1 − λ2). Without further assumptions we can say nothing
about animals with history 000, which we never see.

If animals are assumed independent, the likelihood is a product of such terms, and
we notice that, for example, there is a contribution ψλ1 from animals with history
111 or 110, a contribution ψλ2 from animals with history 111 or 011, and so on. Thus
the likelihood may be written as

(ψλ1)r01{ψ(1 − λ1)ψλ2}r02 {1 − ψλ1 − ψ(1 − λ1)ψλ2}m0−r01−r02

× (ψλ2)r11 (1 − ψλ2)m1−r11 ,
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Table 4.1 Sufficient
statistics and probabilities
for capture-recapture
model.

Number
Number first recaptured in year

Number never
Year captured 1 2 recaptured

0 m0 r01 r02 m0 − r01 − r02

1 m1 r11 m1 − r11

Probability first recaptured in year
Probability never

Year 1 2 recaptured

0 ψλ1 ψ(1 − λ1)ψλ2 1 − ψλ1 − ψ(1 − λ1)ψλ2

1 ψλ2 1 − ψλ2

where ms is the number of animals seen in year s, of whom rst are first seen again
in year t . Evidently the quantities ms and rst are sufficient statistics. We lay out
these and the corresponding probabilities in Table 4.1, which is a standard represen-
tation for such data. With k occasions the number of individual histories is 2k − 1
but the table contains just 1

2 (k + 2)(k − 1) elements, so the reduction can be consid-
erable, but more importantly the data structure is clearer in terms of the sufficient
statistics. �

Minimal sufficiency

Even for a single model, sufficient statistics are not unique. Apart from the possi-
bility that different functions s(Y ) might satisfy the factorization criterion, the data
themselves form a sufficient statistic. Moreover it is easy to see from (4.15) that any
known 1–1 function of a sufficient statistic is itself sufficient. What is unique to each
sufficient statistic is the partition that it induces on the sample space.

To see this, we say that two samples Y1 and Y2 with corresponding sufficient
statistics S1 = s(Y1) and S2 = s(Y2) are equivalent if S1 = S2. This evidently satisfies
the three properties of an equivalence relation:

� reflexivity, Y is equivalent to itself;
� symmetry, Y1 is equivalent to Y2 if Y2 is equivalent to Y1; and
� transitivity, Y1 is equivalent to Y3 whenever Y1 is equivalent to Y2 and Y2 is

equivalent to Y3.

Therefore the sample space is partitioned by the relation into equivalence classes,
corresponding to each of the distinct values that S can take. Unlike the sufficient
statistic itself, this partitioning is invariant under 1–1 transformation of S. By the
factorization criterion it has the property that the conditional density of the data Y
given that Y falls into a particular equivalence class is independent of the parameter,
and hence is called a sufficient partition. Such a partition has the property that if we
are told into which of its equivalence classes the data fall, we can reconstruct the log
likelihood up to additive constants. A mathematical discussion of sufficiency would
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be in terms of sufficient partitions rather than sufficient statistics. However it is more
natural to think in terms of sufficient statistics, and we mostly do so.

As sufficient statistics are not unique, we can choose which to use. The biggest
reduction of the data is obtained by taking a sufficient statistic whose dimension is
as small as possible, that is, a minimal sufficient statistic. A sufficient statistic is said
to be minimal if it is a function of any other sufficient statistic. This corresponds to
the coarsest sufficient partition of the sample space, while the data generate the finest
sufficient partition. To find a minimal sufficient statistic, we return to the likelihood.
Suppose that the likelihoods of two sets of data, y and z, are the same up to a constant.
Then L(θ ; y)/L(θ ; z) does not depend on θ , and the partition that this equivalence re-
lation generates is minimally sufficient. Thus a minimal sufficient statistic is obtained
by examining the likelihood to see on what functions of the data it depends.

Example 4.14 (Exponential distribution) In Example 4.11 the sample space into
which (Y1, Y2) falls is IR2

+, and this is partitioned by the lines y1 + y2 = s, s > 0,
each of which corresponds to an equivalence class.

In order to find a minimal sufficient statistic, note that the likelihood based on data
y1, y2 is λ2 exp{−λ(y1 + y2)}, whereas the likelihood based on x1, . . . , xm would
be λm exp{−λ(x1 + · · · + xm)} The ratio of these would be independent of λ only
if m = 2 and x1 + x2 = y1 + y2. Hence a minimal sufficient statistic is (N , S), the
number of observations in the sample, and their sum. Usually N is chosen without
regard to λ, and S alone is regarded as minimal sufficient. �

Example 4.15 (Poisson birth process) We saw in Example 4.6 that the likelihood
based on data y0, . . . , yn from such a process is

L(θ ) =
(

n∏
j=0

y j !

)−1

exp (s0 log θ − s1θ ) , θ > 0,

where s0 = ∑n
j=0 y j and s1 = 1 + ∑n−1

j=0 y j . The factorization criterion shows that
a sufficient statistic is (S0, S1) , but equally so is (S0, Yn), since S1 = S0 + 1 − Yn .
Evidently either of these is also minimal sufficient. �

Example 4.16 (Logistic regression) Suppose that independent binomial random
variables R j have denominators m j and probabilities π j , where

π j = exp(β0 + β1x1 j )

1 + exp(β0 + β1x1 j )
, j = 1, . . . , n,

and the x1 j are known constants. The likelihood is (4.6), and on applying the
factorization criterion we see that a minimal sufficient statistic for (β0, β1) is
S = (

∑
R j ,

∑
R j x1 j ). Although the m j , x1 j , and n are needed to calculate the like-

lihood, they are non-random and not included in S. �

Exercises 4.2

1 Find the maximum likelihood estimate and observed information in Example 4.1. Find
also the maximum likelihood estimate of Pr(Y = 0).
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2 Find maximum likelihood estimates for θ based on a random sample of size n from the
densities (i) θyθ−1, 0 < y < 1, θ > 0; (ii) θ2 ye−θy , y > 0, θ > 0; and (iii) (θ + 1)y−θ−2,
y > 1, θ > 0;

3 Plot the likelihood for θ based on a random sample y1, . . . , yn from the density

f (x ; θ ) =
{

1/(2c), θ − c < x < θ + c,
0, otherwise,

where c is a known constant. Find a maximum likelihood estimate, and show that it is not
unique.

4 In the discussion following (4.13), show that if the log likelihood was exactly quadratic
and we agreed that values of θ such that RL(θ ) > c were ‘plausible’, the range of plausible
θ would be θ̂ ± {2 log c/�′′ (̂θ )}1/2.

5 Data are available from n independent experiments concerning a scalar parameter θ .
The log likelihood for the j th experiment may be summarized as a quadratic function,
� j (θ )

.= �̂ j − 1
2 Jj (̂θ j )(θ − θ̂ j )2, where θ̂ j is the maximum likelihood estimate and Jj (̂θ j )

is the observed information. Show that the overall log likelihood may be summarized as a
quadratic function of θ , and find the overall maximum likelihood estimate and observed
information.

6 In a first-order autoregressive process, Y0, . . . , Yn , the conditional distribution of Y j given
the previous observations, Y1, . . . , Y j−1, is normal with mean αy j−1 and variance one.
The initial observation Y0 has the normal distribution with mean zero and variance one.
Show that the log likelihood is proportional to y2

0 + ∑n
j=1(y j − αy j−1)2, and hence find

the maximum likelihood estimate of α and the observed information.

7 Find a minimal sufficient statistic for θ based on a random sample Y1, . . . , Yn from the
Poisson density (2.6).

8 Let Y1, . . . , Yn be a random sample from the N (µ, σ 2) distribution.
(a) Use the factorization criterion to show that (

∑
Y j ,

∑
Y 2

j ) is sufficient for (µ, σ 2). Say,

giving your reasons, which of the following are also sufficient: (i) (Y , S2); (ii) (Y
2
, S);

(iii) the order statistics Y(1) < · · · < Y(n).
(b) If σ 2 = 1, show that the sample average is minimal sufficient for µ.
(c) Suppose that µ equals the known value µ0. Show that S = ∑

(Y j − µ0)2 is a minimal
sufficient statistic for σ 2, and give its distribution. Show that S is a function of the minimal
sufficient statistic when both parameters are unknown.

9 Find the minimal sufficient statistic based on a random sample Y1, . . . , Yn from the gamma
density (2.7).

10 Use the factorization criterion to show that the maximum likelihood estimate and observed
information based on f (y; θ ) are functions of data y only through a sufficient statistic
s(y).

11 Verify that the relation ‘y1 is equivalent to y2’ if L(θ ; y1)/L(θ ; y2) is independent of θ is
an equivalence relation and that the corresponding partition is sufficient. Deduce that the
likelihood itself is minimal sufficient.

4.3 Information

4.3.1 Expected and observed information

In a model with log likelihood �(θ ), the observed information is defined to be

J (θ ) = −d2�(θ )

dθ2
.
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When �(θ ) is a sum of n components, so too is J (θ ), because (4.9) implies that

J (θ ) = −d2�(θ )

dθ2
= − d2

dθ2

n∑
j=1

� j (θ ) =
n∑

j=1

−d2 log f (y j ; θ )

dθ2
. (4.17)

We saw in Section 4.2.1 that when the log likelihood is roughly quadratic, the
relative plausibility of parameter values near the maximum likelihood estimate is
determined by the observed information. High information, or equivalently high
curvature, will pin down θ more tightly than if the observed information is low.
The amount of information is typically related to the size of the dataset, a fact
useful in planning experiments. Before we conduct an experiment it is valuable
to assess what information there will be in the data, to see if the proposed sam-
ple is large enough. Otherwise we may need more data or a more informative ex-
periment. Before the experiment is performed we have no data, so we cannot ob-
tain the observed information. However we can calculate the expected or Fisher
information,

I (θ ) = E

{
−d2�(θ )

dθ2

}
,

which is the mean information the data will contain when collected, if the model is
correct and the true parameter value is θ .

If the data are a random sample, (4.17) implies that I (θ ) = ni(θ ), where i(θ ) is the
information from a single observation,

i(θ ) = E

{
−d2 log f (Y j ; θ )

dθ2

}
.

When θ is a p × 1 vector, the information matrices are For a p × 1 vector θ we
use ∂�/∂θ to denote the
p × 1 vector whose r th
element is ∂�/∂θr , and
∂2�/∂θ∂θT to denote the
p × p matrix whose (r, s)
element is ∂2�/∂θr ∂θs .

J (θ ) = −∂2�(θ )

∂θ∂θ T
, I (θ ) = −E

{
∂2�(θ )

∂θ∂θ T

}
;

these are symmetric p × p matrices whose (r, s) elements are respectively

− ∂2�(θ )

∂θr∂θs
, E

{
− ∂2�(θ )

∂θr∂θs

}
.

Example 4.17 (Binomial distribution) The likelihood for a binomial variable R
with denominator m and probability of success 0 < π < 1 is L(π ) = ( m

r )π r (1 −
π )m−r , so �(π ) ≡ r log π + (m − r ) log(1 − π ) and

J (π ) = −d2�(π )

dπ2
= r

π2
+ m − r

(1 − π )2
,

given an observed value r of R. Before the experiment has been performed the value
of r is unknown, and we replace it by the corresponding random variable R. In this
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case J (π ) too is random, and

I (π ) = E {J (π )}

= E

{
R

π2
+ m − R

(1 − π )2

}

= mπ

π2
+ m(1 − π )

(1 − π )2
= m

π (1 − π )
,

since E(R) = mπ . The expected information I (π ) increases linearly with m and is
symmetric in π , for 0 < π < 1. �

Example 4.18 (Normal distribution) The density function of a normal random
variable with mean µ and variance σ 2 is (3.5), so the log likelihood for a random
sample y1, . . . , yn is

�(µ, σ ) ≡ −n

2
log σ 2 − 1

2σ 2

n∑
j=1

(y j − µ)2.

Its first derivatives are
∂�

∂µ
= σ−2

∑
(y j − µ),

∂�

∂σ 2
= − n

2σ 2
+ 1

2σ 4

∑
(y j − µ)2,

and the elements of the observed information matrix J (µ, σ 2) are given by

∂2�

∂µ2
= − n

σ 2
,

∂2�

∂µ∂σ 2
= − n

σ 4
(y − µ),

∂2�

∂(σ 2)2
= − n

2σ 4
+ 1

σ 6

∑
(y j − µ)2.

On replacing y j with Y j and taking expectations, we get

I (µ, σ 2) =
(

n/σ 2 0
0 n/(2σ 4)

)
, (4.18)

because E(Y j ) = µ and E{(Y j − µ)2} = σ 2. �

4.3.2 Efficiency

Suppose that we might adopt one of two sampling schemes, and we wish to see which
is most efficient in the sense of needing least data to pin down the parameter to a
given range. One way to do this is to compare the information in each likelihood. If θ

is scalar, the asymptotic efficiency of sampling scheme A relative to sampling scheme
B is

IA(θ )

IB(θ )
, (4.19)

where IA(θ ) and IB(θ ) are the expected information quantities for schemes A and
B. In simple random samples (4.19) equals nAiA(θ )/{nBiB(θ )}, where nA and nB

observations are used by the sampling schemes. The information from both schemes
is equal if

nB

nA
= iA(θ )

iB(θ )
(4.20)
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and we see that iA(θ )/ iB(θ ) can be interpreted as the number of observations an
observer using scheme B would need in order to get the information in a single
observation sampled under scheme A, when the parameter value is θ . Expression
(4.19) is called the asymptotic efficiency because this use of the information rests on
the quadratic likelihoods usually entailed by large samples.

Example 4.19 (Poisson process) Over short periods the times at which vehicles
pass an observer on a country road might be modelled as a Poisson process of rate
λ vehicles/hour. Observer A decides to estimate λ by counting how many cars pass in
a period of t0 minutes. Observer B, who is more diligent, records the times at which
they pass.

The total number of events, N , when a Poisson process of rate λ is observed for
a period of length t0 has the Poisson distribution with mean λt0. Hence A bases her
inference on the likelihood

LA(λ) = (λt0)N

N !
e−λt0 , λ > 0,

for which the observed and expected information quantities are

JA(λ) = N/λ2, IA(λ) = t0/λ,

since E(N ) = λt0.
The times between events in a Poisson process of rate λ have independent expo-

nential distributions with density λe−λu , u > 0. Therefore if observer B records cars
passing at times 0 < t1 < · · · < tN < t0, his likelihood is

λe−λt1 × λe−λ(t2−t1) × · · · × λe−λ(tN −tN−1) × e−λ(t0−tN ),

where the final term corresponds to observing no cars in the interval (tN , t0). Thus B
bases his inference on

LB(λ) = λN e−λt0 ,

for which the observed and expected information quantities are the same as those for
A. Thus the efficiency of A relative to B is IA(λ)/IB(λ) = 1: no information is lost
by recording only the number of cars. This is because LA(λ) ∝ LB(λ); under either
sampling scheme, the statistic N is sufficient for λ.

Inference for Poisson processes is discussed in Section 6.5.1. �

Example 4.20 (Censoring) A widget has lifetime T , but trials to estimate widget
lifetimes finish after a known time c when the vice president for widget testing
has a tea break. The available data are the observed lifetime Y = min(T, c), and I (·) is the indicator

function of the event ‘·’.D = I (T ≤ c), where D indicates whether T has been observed. If T > c then T is
said to be right-censored: we know only that its value exceeds c.

If T has density and distribution functions f (t ; θ ) and F(t ; θ ), the likelihood
contribution from (Y, D) is

f (Y ; θ )D {1 − F(c; θ )}1−D ,
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so the likelihood for a random sample of data (y1, d1), . . . , (yn, dn) is

n∏
j=1

[ f (y j ; θ )d j {1 − F(y j ; θ )}1−d j ] =
∏

uncens

f (y j ; θ ) ×
∏
cens

{1 − F(c; θ )},

where the first product is over uncensored data, and the second is over censored data.
The likelihood for a random sample with exponential density f (u; λ) = λe−λu ,

u > 0, λ > 0, and distribution F(u; λ) = 1 − e−λu , u > 0, is

∏
uncens

λe−λy j ×
∏
cens

e−λc = exp

(
n∑

j=1

d j log λ − λ

n∑
j=1

y j

)
.

The observed information is J (λ) = ∑
d j/λ

2, which decreases as
∑

d j decreases:
if n is known, there is information only in observations that were seen to fail. To find
the expected information Ic(λ) when there is censoring at c, note that

E

(
n∑

j=1

D j

)
= nPr(Y ≤ c) = n(1 − e−λc),

so that Ic(λ) = n(1 − e−λc)/λ2. By letting c → ∞ we can obtain the expected infor-
mation when there is no censoring, I∞(λ) = n/λ2. Therefore the relative efficiency
when there is censoring at c is

Ic(λ)

I∞(λ)
= n(1 − e−λc)/λ2

n/λ2
= 1 − e−λc.

This equals the proportion of uncensored data, which is unsurprising, as we saw above
that censored observations do not contribute to J (λ). As one would anticipate, the
loss of information becomes more severe as c decreases.

Inference for censored data is discussed in Sections 5.4 and 10.8. �

When θ is a p × 1 vector, we replace (4.19) by the ratio|C | is the determinant of
the p × p matrix C . { |IA(θ )|

|IB(θ )|
}1/p

,

which preserves the interpretation of efficiency given at (4.20) in terms of numbers of
observations. This is an overall measure of the efficiency of the schemes, but often in
practice one may want to compare the efficiency of estimation for a single component
of θ , say θr . For reasons to be given in Section 4.4.2, the appropriate measure is then
I rr
B (θ )/I rr

A (θ ), where I rr
A (θ ) is the (r, r )th element of the inverse matrix IA(θ )−1.

Example 4.21 (Rounding) What information is lost when the sample 2.71828,

3.14159, . . . is rounded to 2.7, 3.1, . . .? Let Y denote a real-valued continuous random
variable with distribution function F(y; θ ). In recording the data, Y is rounded to X ,
the nearest multiple of δ. Thus X = kδ if (k − 1

2 )δ ≤ Y < (k + 1
2 )δ, an event with

probability

πk(θ ) = F

{(
k + 1

2

)
δ; θ

}
− F

{(
k − 1

2

)
δ; θ

}
.
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Table 4.2 Efficiency (%)
of likelihood inference
when N (0, σ 2) data are
rounded to the nearest δ.

δ/σ 0.001 0.01 0.1 0.2 0.5 1 1.5 2 3

Overall efficiency 100 100 99.9 99.5 97.0 88.9 77.9 64.0 37.5
Efficiency for µ 100 100 99.9 99.7 98.0 92.3 84.2 75.5 54.2
Efficiency for σ 2 100 100 99.8 99.3 96.0 85.5 72.0 54.2 25.9

The density of a single rounded observation may be written
∏

k πk(θ )I (X=kδ), so
the log likelihood for θ based on X is

�(θ ) =
∞∑

k=−∞
I (X = kδ) log πk(θ ).

On differentiation we find that

∂2�(θ )

∂θr∂θs
=

∞∑
k=−∞

I (X = kδ)

{
1

πk

∂2πk

∂θr∂θs
−

(
1

πk

∂πk

∂θr

) (
1

πk

∂πk

∂θs

)}
,

and as
∑

k πk(θ ) = 1 for all θ and E{I (X = kδ)} = πk(θ ), the (r, s) element of the
expected information matrix for a random sample X1, . . . , Xn is

n
∞∑

k=−∞

1

πk(θ )

∂πk(θ )

∂θr

∂πk(θ )

∂θs
. (4.21)

For concreteness, suppose that Y is normally distributed with mean µ and variance
σ 2, in which case πk(µ, σ 2) = �(zk+1) − �(zk) and

∂πk

∂µ
= − 1

σ
{φ(zk+1) − φ(zk)} ,

∂πk

∂σ 2
= − 1

2σ 2
{zk+1φ(zk+1) − zkφ(zk)}, (4.22)

where zk = σ−1{(k − 1
2 )δ − µ}. With µ = 0 it turns out that the expected information

may be written as

n

(
σ−2 Iµµ(δ/σ ) 0

0 (4σ 4)−1 Iσσ (δ/σ )

)
,

where the elements are given by substituting (4.22) into (4.21). On comparing
this with (4.18), we see that the overall efficiency for the two parameters is
{Iµµ(δ/σ )Iσσ (δ/σ )/2}1/2, while the efficiencies for µ and σ 2 separately are Iµµ(δ/σ )
and 1

2 Iσσ (δ/σ ). Table 4.2 shows that these are remarkably high even with quite heavy
rounding. When δ = σ = 1, rounding Y to X gives a discrete distribution with almost
all its probability on the seven values −3, −2, . . . , 3, but a sample x1, . . . , x100 of
such values gives almost the same efficiency as 89 of the corresponding ys: the overall
loss of efficiency is only 11%. If the data are rounded to the equivalent of one decimal
place, δ = 0.1σ , there is effectively no information lost. with δ = 1.5σ or more the
loss is more dramatic, particularly for estimation of σ , and with δ = 3σ the data are
almost binary.

Although suggestive, these results should be regarded with caution for two reasons.
First, they apply to large samples, and the efficiency loss might be different in small
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samples. Second, they rest on the assumption that the multinomial likelihood based on
the x j is used, but in practice the rounded data would usually be treated as continuous
and inference based on the (incorrect) log likelihood

∑
j log f (x j ; θ ). Practical 4.1

considers the effect of this. �

Exercises 4.3

1 (a) Show that the log likelihood for a random sample from density (2.7) is

�(λ, κ) = nκ log λ + (κ − 1)
∑

log y j − λ
∑

y j − n log �(κ),

deduce that the observed information is

J (λ, κ) = n
(

κ/λ2 −1/λ
−1/λ d2 log �(κ)/dκ2

)
,

and find the expected information I (λ, κ).
(b) Suppose that we write λ = κ/µ, where µ is the distribution mean. Find the log
likelihood in terms of µ and κ , and show that J (µ, κ) is random and I (µ, κ) =
ndiag{2κ/µ2, d2 log �(κ)/dκ2 − 1/κ}.

2 Check the details of Example 4.19.

3 Y1, . . . , Yn are independent normal random variables with unit variances and means
E(Y j ) = βx j , where the x j are known quantities in (0, 1] and β is an unknown parameter.
Show that �(β) ≡ − 1

2

∑
(y j − x jβ)2 and find the expected information I (β) for β.

Suppose that n = 10 and that an experiment to estimate β is to be designed by choosing
the x j appropriately. Show that I (β) is maximized when all the x j equal 1. Is this designA sketch may help.

sensible if there is any possibility that E(Y j ) = α + βx j , with α unknown?

4 Use (4.21) and (4.22) to give expressions for the quantities Iµµ(δ/σ ) and Iσσ (δ/σ ) in
Example 4.21. Show that Iµσ (δ/σ ) = 0 when µ = 0.

5 Find the expected information for θ based on a random sample Y1, . . . , Yn from the
geometric density

f (y; θ ) = θ (1 − θ )y−1, y = 1, 2, 3, . . . , 0 < θ < 1.

A statistician has a choice between observing random samples from the Bernoulli or
geometric densities with the same θ . Which will give the more precise inference on θ?

6 Suppose a random sample Y1, . . . , Yn from the exponential density is rounded down to
the nearest δ, giving δZ j , where Z j = Y j/δ�. Show that the likelihood contribution
from a rounded observation can be written (1 − e−λδ)e−Zλδ , and deduce that the expected
information for λ based on the entire sample is nδ2 exp(−λδ){1 − exp(−λδ)}−2. Show
that this has limit n/λ2 as δ → 0, and that if λ = 1, the loss of information when data are
rounded down to the nearest integer rather than recorded exactly, is less than 10%. Find
the loss of information when δ = 0.1, and comment briefly.

4.4 Maximum Likelihood Estimator

4.4.1 Computation

The maximum likelihood estimate of θ , θ̂ , is a value of θ that maximizes the likelihood,
or equivalently the log likelihood. Suppose ψ = ψ(θ ) is a 1–1 function of θ . Then in
terms of ψ the likelihood is

L∗(ψ) = L∗{ψ(θ )} = L(θ ),
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so the largest values of L∗ and L coincide, and the maximum likelihood estimate of
ψ is ψ̂ = ψ (̂θ ). This simplifies calculation of maximum likelihood estimates, as we
can compute them in the most convenient parametrization, and then transform them
to the scale of interest.

Often, though not invariably, θ̂ satisfies the likelihood equation

∂�(̂θ )

∂θ
= 0. (4.23)

If θ is a p × 1 vector, (4.23) is a p × 1 system of equations that must be solved
simultaneously for the components of θ̂ . We check that θ̂ gives a local maximum by
verifying that −d2�(̂θ )/dθ2 > 0, or in the vector case that the observed information
matrix J (θ ) = −d2�(θ )/dθdθ T is positive definite at θ̂ . If there are several solutions to
(4.23), in principle we find them all, check which are maxima, and then evaluate �(θ )
at each local maximum, thereby obtaining the global maximum. If there are numerous
local maxima, as in Figure 4.2, doubt is cast on the usefulness of summarizing �(θ )
in terms of θ̂ and J (̂θ ), but many log likelihoods can be shown to be strictly concave.
Then a local maximum is also the global maximum, so there is a unique maximum;
moreover if there is a solution to (4.23), it is unique and gives the maximum.

Example 4.22 (Normal distribution) The likelihood equation for a random
sample y1, . . . , yn from the normal distribution with mean µ and variance σ 2 is
(Example 4.18)( ∂�(µ,σ 2)

∂µ

∂�(µ,σ 2)
∂σ 2

)
=

(
σ−2 ∑

(y j − µ)
− n

2σ 2 + 1
2σ 4

∑
(y j − µ)2

)
=

(
0
0

)
.

The first of these has the sole solution µ̂ = y for all values of σ 2, and �(µ̂, σ 2) is
unimodal with maximum at σ̂ 2 = n−1 ∑

(y j − y)2. At the point (µ̂, σ̂ 2), the observed
information matrix J (µ, σ 2) is diagonal with elements diag{n/σ̂ 2, n/(2σ̂ 4)}, and so is
positive definite. Hence y and n−1 ∑

(y j − y)2 are the sole solutions to the likelihood
equation, and therefore are the maximum likelihood estimates.

If we wish to estimate the mean of exp(Y ), which is ψ = exp(µ + σ 2/2), then
rather than reparametrize in terms of ψ and µ, say, and maximizing directly, we use
the earlier results on transformations to see that the maximum likelihood estimate of
ψ is ψ̂ = exp(µ̂ + σ̂ 2/2). �

In most realistic cases (4.23) must be solved iteratively, and often variants of the
Newton–Raphson algorithm can be used. Given a starting-value θ †, we expand (4.23)
by Taylor series about θ † to obtain

0 = ∂�(̂θ )

∂θ

.= ∂�(θ †)

∂θ
+ ∂2�(θ †)

∂θ∂θ T
(̂θ − θ †). (4.24)

On rearranging (4.24) we obtain

θ̂
.= θ † + J (θ †)−1U (θ †), (4.25)

where U (θ ) = ∂�(θ )/∂θ is called the score statistic or score vector, and J (θ ) is the
observed information (4.17). In the vector case θ̂ , θ † and U (θ †) are p × 1 vectors and
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J (θ †) is a p × p matrix. The log likelihood is usually maximized in a few iterations
of (4.25), using θ̂ from one iteration as θ † for the next. In doubtful cases it is wise to
try several initial values of θ †.

The iteration (4.25) gives θ̂ in one step if �(θ ) is actually quadratic, so convergence
is accelerated by choosing a parametrization in which �(θ ) is as close to quadratic
as possible. Often it helps to transform components of θ to take values in the real
line, for example removing the restrictions λ > 0 and 0 < π < 1 by maximizing in
terms of log λ and log{π/(1 − π )}. This also avoids steps that take θ̂ outside the
parameter space. Another simple trick is to use a variable step-length in (4.25). We
replace J (θ †)−1U (θ †) by cJ (θ †)−1U (θ †), choose c to maximize � along this line, then
recalculate U and J , and try again. Many standard models are readily fitted with a
few lines of code in statistical packages, but fitting more adventurous models may
involve writing special programs.

Example 4.23 (Weibull distribution) The log likelihood for a random sample from
the Weibull density (4.4) is

�(θ, α) = n log α − n log θ + (α − 1)
n∑

j=1

log
( y j

θ

)
−

n∑
j=1

( y j

θ

)α

,

the score function is

U (θ, α) =
(

∂�/∂θ

∂�/∂α

)
=

( −nα/θ + αθ−1 ∑
(y j/θ )α

n/α + ∑
log(y j/θ ) − ∑

(y j/θ )α log(y j/θ )

)
,

and the likelihood equation (4.23) cannot be solved analytically. The observed infor-
mation matrix J (θ, α) is(

α(α + 1)/θ2 ∑
(y j/θ )α − nαθ−2 θ−1 ∑

[1 − (y j/θ )α{1 + α log(y j/θ )}]
θ−1 ∑

[1 − (y j/θ )α{1 + α log(y j/θ )}] n/α2 + ∑
(y j/θ )α{log(y j/θ )}2

)
,

and to obtain maximum likelihood estimates we would iterate (4.25) until it converged.
Suitable starting-values could be obtained by setting α† = 1, in which case θ † = y.
If trouble arose in using (4.25), it would be sensible to write the problem in terms of
ψ = (log θ, log α)T, and iterate based on ψ̂ = ψ† + J (ψ†)−1U (ψ†).

In this case a two-dimensional maximization can be avoided by noticing that for
fixed α the unique maximum likelihood estimate of θ is

θ̂α =
(

n−1
n∑

j=1

yα
j

)1/α

.

The dashed line in the upper right panel of Figure 4.1 shows the curve traced out by
θ̂α as a function of α. The value of � along this curve, the profile log likelihood for α,

�p(α) = max
θ

�(θ, α) = �(̂θα, α),

is shown in the lower right panel of the figure. This function is unimodal, and from it
we see that α̂

.= 6. More precise estimates are obtained maximizing �p(α) numerically
over α, to obtain α̂ and hence θ̂ = θ̂α̂ . �
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A variant of the Newton–Raphson method, Fisher scoring, replaces J (θ †) in (4.25)
with the expected information I (θ †). This is useful when J (θ †) is badly behaved — for
example, not positive definite — but typically (4.25) works well. It has the advantage
that it can be implemented in an automatic way using numerical first and second
derivatives of �(θ ). In simple problems where minimizing programming time is more
important than saving computing time it is generally simplest to maximize the log
likelihood directly using a packaged routine.

4.4.2 Large-sample distribution

Thus far we have treated the maximum likelihood estimate as a summary of a likeli-
hood based on a given sample y1, . . . , yn , rather than as a random variable. Evidently,
however, we may consider its properties when samples are repeatedly taken from the
model. Suppose we have a random sample Y1, . . . , Yn from a density f (y; θ ) that
satisfies the regularity conditions:

� the true value θ0 of θ is interior to the parameter space �, which has finite
dimension and is compact;

� the densities defined by any two different values of θ are distinct;
� there is a neighbourhood N of θ0 within which the first three derivatives of the

log likelihood with respect to θ exist almost surely, and for r, s, t = 1, . . . , p,
n−1E{|∂3�(θ )/∂θr∂θs∂θt |} is uniformly bounded for θ ∈ N ; and

� within N , the Fisher information matrix I (θ ) is finite and positive definite, and
its elements satisfy

I (θ )rs = E

{
∂�(θ )

∂θr

∂�(θ )

∂θs

}
= E

{
− ∂2�(θ )

∂θr∂θs

}
, r, s = 1, . . . , p.

We shall see below that this implies that I (θ ) is the variance matrix of the score
vector.

Some cases where these conditions fail are described in Section 4.6. If they do hold,
the main results below also apply to many situations where the data are neither
independent nor identically distributed.

At the end of this section we establish two key results. First, as n → ∞ there is a
value θ̂ of θ such that �(̂θ ) is a local maximum of �(θ ) and Pr(̂θ → θ0) = 1; this is a
strongly consistent estimator of θ . Second,

I (θ0)1/2(̂θ − θ0)
D−→ Z as n → ∞, (4.26)

where Z has the Np(0, Ip) distribution. The first holds very generally, but the second
requires smoothness of certain log likelihood derivatives. The condition n → ∞ can
often be replaced by I (θ0) → ∞.

Another way to express (4.26) is to say that for large n, θ̂
.∼ N (θ0, I (θ0)−1), and

this explains our definition of asymptotic relative efficiency for components of vector
parameters, on page 113: we compare asymptotic variances of two different estimators
of θ0.
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Figure 4.5 Repeated
sampling likelihood
inference for the
exponential mean. The
upper left panel shows the
functions log RL(θ ) for
ten random samples of
size n = 10 from the
exponential distribution
with mean θ0 = 1; the
dashed line shows θ0. The
lower left panel shows a
histogram of 5000
maximum likelihood
estimates θ̂ , together with
their approximate normal
density. The upper right
panel shows a probability
plot of 5000 replicates of
W (θ0) = −2 log RL(θ0)
against quantiles of the χ2

1
distribution. The lower
right panel shows the
construction of a 95%
confidence region for the
value of θ using ten
observations from the
spring failure data. The
region is the set of all θ

such that
log RL(θ ) ≥ − 1

2 c1(0.95),
where c1(0.95) is the 0.95
quantile of the χ2

1
distribution; the dotted
horizontal line shows
1
2 c1(0.95) and the limits
of the region are the
dashed vertical lines.

We illustrate (4.26) with random samples of size n = 10 from the exponential
distribution with true mean θ0 = 1. As we saw in Section 4.2.1, the log likelihood for
a random sample y1, . . . , yn is �(θ ) ≡ −n(log θ + y/θ ), and the maximum likelihood
estimate is θ̂ = y. The observed information and expected information are J (θ ) =
n(2y/θ3 − 1/θ2) and I (θ ) = n/θ2. The upper left panel of Figure 4.5 shows the
log relative likelihoods for ten such samples. Each curve is asymmetric about its
maximum, so the distribution of θ̂ is skewed; see the lower left panel. The density
of θ̂ is roughly normal with mean θ0 = 1 and variance I (θ0)−1 = 1/10, but this is a
poor approximation. In fact Y has an exact gamma density with shape parameter 10
and unit mean.

On replacing I (θ0) in (4.26) by I (̂θ ), we obtain the approximation

θ̂
.∼ Np(θ0, V ), (4.27)

where V = I (̂θ )−1 is the inverse expected information. Provided (4.26) is true, re-
placement of I (θ0) by I (̂θ ) or J (̂θ ) is justified by the fact that both converge in
probability to I (θ0), so we can apply Slutsky’s lemma (2.15). The main use of (4.27)
is to construct confidence regions for components of θ0.
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Scalar parameter

If θ is scalar, (4.27) boils down to

I (̂θ )1/2(̂θ − θ0)
.∼ N (0, 1).

Thus I (̂θ )1/2(̂θ − θ0) is an approximate pivot from which to find confidence intervals
for θ0. That is, zα is the α quantile of the

standard normal
distribution.1 − 2α = Pr

{
zα ≤ I (̂θ )1/2(̂θ − θ0) ≤ z1−α

}
= Pr

{̂
θ − z1−α I (̂θ )−1/2 ≤ θ0 ≤ θ̂ − zα I (̂θ )−1/2

}
,

giving the (1 − 2α) confidence interval for θ0,(
θ̂ − z1−α I (̂θ )−1/2, θ̂ − zα I (̂θ )−1/2

)
. (4.28)

The corresponding interval using the observed information J (̂θ ),(
θ̂ − z1−α J (̂θ )−1/2, θ̂ − zα J (̂θ )−1/2

)
, (4.29)

is easier to calculate than (4.28) because it requires no expectations, and moreover its
coverage probability is often closer to the nominal level. Both intervals are symmetric
about θ̂ .

Example 4.24 (Spring failure data) We reconsider the exponential model fitted
to the data of Example 4.2, for which n = 10 and θ̂ = y = 168.3. For this model
I (̂θ ) = J (̂θ ) = n/y2, so the 95% confidence intervals (4.28) and (4.29) for the true
mean both equal y ± z0.025n−1/2 y, that is, (64.0, 272.6). �

Example 4.25 (Cauchy data) To see the quality of these confidence intervals, we
take samples of size n from the Cauchy density (2.16), for which

�(θ ) ≡ −
n∑

j=1

log{1 + (y j − θ )2}, J (θ ) = 2
n∑

j=1

1 − (y j − θ )2

{1 + (y j − θ )2}2
, I (θ ) = 1

2
n;

we take θ0 = 0. The basis of (4.28) and (4.29) is large-sample normality of Z I =
I (̂θ )1/2(̂θ − θ0) and Z J = J (̂θ )1/2(̂θ − θ0), and to assess this we compare Z I and
Z J with a standard normal variable Z . Symmetry of the Cauchy density about θ0

implies that Z I and Z J are distributed symmetrically about the origin, so the left
panel of Figure 4.6 compares quantiles of |Z J | with those of |Z | in a half-normal
plot (Practical 3.1), for 5000 simulated Cauchy samples of size n = 15. Evidently the
distribution of Z J is close to normal; its empirical 0.9, 0.95, 0.975 and 0.99 quantiles
are 1.34, 1.76, 2.08 and 2.55, compared with 1.28, 1.65, 1.96 and 2.33 for Z . With
α = 0.025, (4.29) has estimated coverage probability 0.93, close to the nominal 0.95.
The right panel shows that Z I has heavier tails than Z J ; the coverage probability
for (4.28) with α = 0.025 is 0.91. Use of observed information is preferable, but
the large-sample approximations seem accurate enough for practical use even with
n = 15.

Just one of the 5000 log likelihoods had two local maxima, compared to 36 for
5000 samples with n = 10; the rest appeared unimodal. Thus θ̂ was almost invariably
the sole solution to the likelihood equation. �
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4Figure 4.6 Inference
based on observed and
expected information in
samples of n = 15
Cauchy observations.
Left: half-normal plot of
|Z J | = J (̂θ )1/2 |̂θ − θ0|;
the dotted line shows the
ideal, so Z J is slightly
heavier-tailed than
normal. Right:
comparison of
|Z I | = I (̂θ )1/2 |̂θ − θ0|
with |Z J |. |Z I | has
heavier tails.

Vector parameter

When θ is a vector, confidence sets for the r th element of θ0, θ0
r , may be based on the

fact that the corresponding maximum likelihood estimator, θ̂r , has approximately the
N (θ0

r , vrr ) distribution, where vrr is the (r, r ) element of V = I (̂θ )−1 or J (̂θ )−1. This
gives intervals (4.28) and (4.29), but with θ̂ , I (̂θ )−1, and J (̂θ )−1 replaced by θ̂r , vrr ,
and the (r, r ) element of J (̂θ )−1.

Example 4.26 (Normal distribution) In Examples 4.18 and 4.22 we saw that
the maximum likelihood estimates of the mean and variance of the normal distribu-
tion based on a random sample y1, . . . , yn are µ̂ = y and σ̂ 2 = n−1 ∑

(y j − y)2,
and that the expected information matrix is diag{n/σ 2, n/(2σ 4)}. Hence V =
diag{n−1σ̂ 2, n−12σ̂ 4}, and the (1 − 2α) confidence intervals for µ and σ 2 based on
the large-sample results above are

y ± n−1/2σ̂ zα, σ̂ 2 ± (2/n)1/2σ̂ 2zα.

The asymptotic approximation gives an interval for µ with the same form as the exact
interval, y ± n−1/2stn−1(α), but with s replaced by σ̂ and the t quantile replaced bys2 = nσ̂ 2/(n − 1) is the

unbiased estimate of σ 2. the corresponding normal quantile. Provided that n > 20 or so, these alterations will
typically have little effect on the interval. Larger samples are needed for the interval
for σ 2 to be good, because normal approximation to the distribution of σ̂ 2 is poorer
than to the distribution of µ̂. �

The use of (4.27) to give confidence regions for the whole of θ rests on the fact
that (4.27) entails (̂θ − θ0)TV −1(̂θ − θ0)

.∼ χ2
p. Hence an approximate (1 − 2α) con-

fidence region is

{θ : (̂θ − θ )TV −1(̂θ − θ ) ≤ cp(1 − 2α)};

an ellipsoid centred at θ̂ , with shape determined by the elements of V and volume
determined by cp(1 − 2α). Another version replaces I (̂θ )−1 with J (̂θ )−1.



122 4 · Likelihood

Example 4.27 (Challenger data) Examples 4.5 and 4.8 discuss a model for the
Challenger data, where the probability of O-ring thermal distress depends on the
launch temperature. The maximum likelihood estimates for this model are β̂0 = 5.084
and β̂1 = −0.116, and the inverse observed information is

J (̂β0, β̂1)−1 =
(

9.289 −0.142
−0.142 0.00220

)
,

yielding standard errors 9.2891/2 = 3.048 and 0.002201/2 = 0.0469. The estimated
correlation of β̂0 and β̂1, −0.142/(9.289 × 0.00220)1/2, equals −0.993, and we see
that the matrix J (̂β0, β̂1) is close to singular. In view of the left panel of Figure 4.3
this is not surprising.

A joint 95% confidence region for (β0, β1) is the ellipsoid given by

(β0 − 5.084, β1 + 0.116)J (̂β0, β̂1)

(
β0 − 5.084
β1 + 0.116

)
≤ c2(0.95) = 5.99.

�

Often we focus on a scalar parameter ψ = ψ(θ ), estimated by ψ̂ = ψ (̂θ ). To ap-
proximate the variance of ψ̂ we apply the delta method (2.19), giving

ψ (̂θ )
.= ψ(θ0) + ∂ψ(θ0)

∂θ T
(̂θ − θ0).

Consequently

var{ψ (̂θ )} .= ∂ψ(θ0)

∂θ T
var(̂θ )

∂ψ(θ0)

∂θ

.= ∂ψ (̂θ )

∂θ T
J (̂θ )−1 ∂ψ (̂θ )

∂θ
,

where ∂ψ (̂θ )/∂θ is the p × 1 vector of derivatives of ψ evaluated at θ̂ . Thus an
approximate (1 − 2α) confidence interval for ψ is

ψ (̂θ ) ± zα{∂ψ (̂θ )/∂θ T J (̂θ )−1∂ψ (̂θ )/∂θ}1/2. (4.30)

Example 4.28 (Challenger data) One quantity of particular interest is the probabil-
ity of failure at 31◦F, ψ = eβ0+31β1/(1 + eβ0+31β1 ). Its maximum likelihood estimate
and derivatives are

ψ̂ = eβ̂0+31β̂1

1 + eβ̂0+31β̂1
= 0.816,

∂ψ

∂β0
= ψ(1 − ψ),

∂ψ

∂β0
= 31ψ(1 − ψ).

The 95% confidence interval (4.30) for ψ is 0.816 ± 1.96 × 0.242 = (0.34, 1.29).
As this contains values greater than one it is less than satisfactory, so we need a better
approach, such as the one described in Section 4.5.2. �

Consistency of θ̂

We now obtain the key convergence results for maximum likelihood estimation of a
scalar, subject to the regularity conditions on page 118.
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Let h : IR → IR be convex. Then for any real x1, x2,

h{πx1 + (1 − π )x2} ≤ πh(x1) + (1 − π )h(x2), 0 ≤ π ≤ 1.

If X is a real-valued random variable, then Jensen’s inequality says that E{h(X )} ≥
h{E(X )}, with equality if and only if X is degenerate.

Let Y1, . . . , Yn be a random sample from a density f (y; θ ), where θ is scalar with
true value θ0, and let �(θ ) = n−1 ∑

log f (Y j ; θ ). Now

E{�(θ ) − �(θ0)} = E

[
log

{
f (Y1; θ )

f (Y1; θ0)

}]

≤ log E

{
f (Y1; θ )

f (Y1; θ0)

}
(4.31)

= log
∫

f (y; θ )

f (y; θ0)
f (y; θ0) dy = 0,

where we have applied Jensen’s inequality to the convex function − log x . The in-
equality is strict unless the density ratio is constant, so that the densities are the same,
and according to our regularity conditions this may occur only if θ = θ0. As n → ∞,
the weak law of large numbers applies to the average �(θ ) − �(θ0), which converges
in probability to

∫
log

{
f (y; θ )

f (y; θ0)

}
f (y; θ0) dy = −D( fθ , fθ0 ),

say. This is negative unless θ = θ0. The quantity D( f, g) ≥ 0 is known as the
Kullback–Leibler discrepancy between f and g; it is minimized when f = g. InSolomon Kullback

(1907–1994) was born
and educated in New
York. He had careers in
the US Defense
Department and then at
George Washington
University. His main
scientific contribution is to
information theory.
Richard Arthur Leibler
(1914–) has spent much of
his life working in the US
defense community. Their
definition of information
was published in 1951.

fact this convergence is almost sure, that is, �(θ ) − �(θ0) converges to −D( fθ , fθ0 )
with probability one. This shores up our earlier informal discussion of Figure 4.4, for
we see that if θ 
= θ0, then

�(θ ) − �(θ0) ∼ nD( fθ , fθ0 ) → −∞

with probability one as n → ∞.
Now for any δ > 0, �(θ0 − δ) − �(θ0) and �(θ0 + δ) − �(θ0) converge with prob-

ability one to the negative quantities −D( fθ0−δ, fθ0 ) and −D( fθ0+δ, fθ0 ). Hence for
any sequence of random variables Y1, . . . , Yn there is an n′ such that for n > n′, �(θ )
has a local maximum in the interval (θ0 − δ, θ0 + δ). If we let θ̂ denote the value at
which this local maximum occurs, then Pr(̂θ → θ0) = 1 and θ̂ is said to be a strongly

consistent estimate of θ0. This implies θ̂
P−→ θ0, so θ̂ is consistent in our usual,

weaker, sense.
As this proof does not require f (y; θ ) to be smooth it is very general. It says nothing

about uniqueness of θ̂ , merely that a strongly consistent local maximum exists, but if
�(θ ) has just one maximum, then θ̂ must also be the global maximum. A more delicate
argument is needed when θ is vector, because it is then not enough to consider only
the two values θ0 ± δ.
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Asymptotic normality of θ̂

To prove asymptotic normality of θ̂ , we assume that θ̂ satisfies the likelihood equation
and consider the score statistic, U (θ ) = d�(θ )/dθ . Its mean and variance are

E {U (θ )} =
n∑

j=1

E

{
d log f (Y j ; θ )

dθ

}
= n E{u(θ )},

var {U (θ )} =
n∑

j=1

var

{
d log f (Y j ; θ )

dθ

}
= n var{u(θ )},

where u(θ ) = d log f (Y j ; θ )/dθ is the score function for a single random variable.
Provided the order of differentiation and integration may be interchanged, the mean
of u(θ ) is

E {u(θ )} =
∫

d log f (y; θ )

dθ
f (y; θ ) dy =

∫
d f (y; θ )

dθ
dy = d

dθ

∫
f (y; θ )dy = 0,

(4.32)
because f (y; θ ) has integral one for each value of θ . Furthermore

0 = d

dθ

∫
d log f (y; θ )

dθ
f (y; θ ) dy

=
∫

d2 log f (y; θ )

dθ2
f (y; θ )dy +

∫ {
d log f (y; θ )

dθ

}2

f (y; θ ) dy,

and so

var{u(θ )} = E{u(θ )2} = −
∫

d2 log f (y; θ )

dθ2
f (y; θ )dy = i(θ ), (4.33)

the expected information from a single observation.
Now both U (θ0) and J (θ0) = − ∑

d2�(θ0)/dθ2 are sums of n independent ran-
dom variables, and E{U (θ0)} = 0, var{U (θ0)} = I (θ0) = ni(θ0), while E{J (θ0)} =
I (θ0) = ni(θ0). Hence the central limit theorem (2.11) and the weak law of large
numbers imply that

I (θ0)−1/2U (θ0)
D−→ Z , I (θ0)−1 J (θ0)

P−→ 1, (4.34)

where Z has the standard normal distribution.
If the log likelihood is sufficiently smooth to allow Taylor series expansion, then θ̂

satisfies the likelihood equation

0 = U (̂θ )
.= U (θ0) + d2�(θ0)

dθ2
(̂θ − θ0),

rearrangement of which gives

θ̂ − θ0 .= J (θ0)−1U (θ0),
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where J (θ0) is the observed information and we require that the missing terms of the
Taylor series are asymptotically small enough to be ignored. If so,

I (θ0)1/2(̂θ − θ0)
.= I (θ0)1/2 J (θ0)−1U (θ0)

= I (θ0)1/2 J (θ0)−1 I (θ0)1/2 × I (θ0)−1/2U (θ0)
D−→ Z ,

by (4.34) and Slutsky’s lemma (2.15). Replacement of I (θ0) by I (̂θ ) or J (̂θ ) is justified
by the fact that both converge in probability to I (θ0) as n → ∞.

This argument is generalized to vector θ by interpreting the score as a p × 1
vector and the information quantities as p × p matrices, with Z having a Np(0, Ip)
distribution.

Exercises 4.4

1 In Example 4.23, show that α̂ is the solution of the equation

α̂ =
{∑

j yα̂
j log y j∑
j yα̂

j

− n−1
∑

j

log y j

}−1

.

2 If the log likelihood for a p × 1 vector of parameters is �(θ ) = a + bTθ − 1
2 θTCθ , where

the constants a, b and C are respectively scalar, a p × 1 vector, and a p × p symmetric
positive definite matrix, show that the score statistic can be written b − Cθ . Find the
observed information J (θ ), and show that θ̂ is attained in one step of (4.25) from any
initial value of θ .

3 The Laplace or double exponential distribution has density

f (y; µ, σ ) = 1

2σ
exp (−|y − µ|/σ ) , −∞ < y < ∞, −∞ < µ < ∞, σ > 0.

Sketch the log likelihood for a typical sample, and explain why the maximum likelihood
estimate is only unique when the sample size is odd. Derive the score statistic and observed
information. Is maximum likelihood estimation regular for this distribution?

4 Eggs are thought to be infected with a bacterium salmonella enteriditis so that the number
of organisms, Y , in each has a Poisson distribution with mean µ. The value of Y cannot be
observed directly, but after a period it becomes certain whether the egg is infected (Y > 0)
or not (Y = 0). Out of m such eggs, r are found to be infected. Find the maximum likelihood
estimator µ̂ of µ and its asymptotic variance. Is the exact variance of µ̂ defined?

5 If Y1, . . . , Yn is a random sample from density θ−1e−x/θ , show that the maximum likelihood
estimator θ̂ has an asymptotic normal distribution with mean θ and variance θ2/n. Deduce
that an approximate (1 − 2α) confidence interval for θ iszα is the α quantile of the

standard normal
distribution. θ̂

1 + zαn−1/2
≥ θ ≥ θ̂

1 + z1−αn−1/2
.

Show that θ̂/θ is an exact pivot, having the gamma distribution with unit mean and shape
parameter κ = n. Hence find an exact confidence interval for θ , and compare it with the
approximate one when n = 10 and θ̂ = 100.

6 If Y1, . . . , Yn
iid∼ N (µ, cµ2), where c is a known constant, show that the minimal sufficient

statistic for µ is the same as for the N (µ, σ 2) distribution. Find the maximum likelihood
estimate of µ and give its large-sample standard error. Show that the distribution of Y

2
/S2

does not depend on µ.



126 4 · Likelihood

4.5 Likelihood Ratio Statistic

4.5.1 Basic ideas

Suppose that our model is determined by a parameter θ of dimension p, whose true
but unknown value is θ0, and for which the maximum likelihood estimate is θ̂ . Then
provided the model satisfies the conditions for asymptotic normality of the maximum
likelihood estimator given in the previous section, in large samples the likelihood
ratio statistic

W (θ0) = −2 log RL(θ0) = 2{�(̂θ ) − �(θ0)} (4.35)

has an approximate chi-squared distribution on p degrees of freedom under repeated
sampling of data from the model. That is, as I (θ0) → ∞,

W (θ0)
D−→ χ2

p, (4.36)

so W (θ0)
.∼ χ2

1 when θ is scalar. In practice this result is used to generate approx-
imations for finite samples. It is illustrated in the upper right panel of Figure 4.5,
which compares 5000 simulated values of W (θ0), based on exponential samples of
size n = 10, with quantiles of the χ2

1 distribution. Here p = 1, W (θ0) = 2n{Y/θ0 −
1 − log(Y/θ0)}, and θ0 = 1. This approximation seems better than that for θ̂ .

To establish (4.36), we note that d�(̂θ )/dθ = 0 and make a Taylor series expansion
of W (θ0), giving

W (θ0) = 2{�(̂θ ) − �(θ0)}
.= 2

{
�(̂θ ) − �(̂θ ) − (θ0 − θ̂ )T

∂�(̂θ )

∂θ
− 1

2
(θ0 − θ̂ )T

∂2�(̂θ )

∂θ∂θ T
(θ0 − θ̂ )

}

= (̂θ − θ0)T J (̂θ )(̂θ − θ0)
.= (̂θ − θ0)T I (θ0)(̂θ − θ0),

and the limiting normal distribution for θ̂ at (4.26) and the relation (3.23) linking this
to the chi-squared distribution yield (4.36).

Expression (4.36) shows that W (θ0) is an approximate pivot which may be used to
provide confidence regions for θ0. For if W (θ0)

.∼ χ2
p, then cp(α) denotes the α

quantile of the χ2
p

distribution.Pr{W (θ0) ≤ cp(1 − 2α)} .= 1 − 2α,

and hence values of θ for which W (θ ) ≤ cp(1 − 2α) may be regarded as ‘plausible’
at the (1 − 2α) level. Equivalently, the set

{
θ : �(θ ) ≥ �(̂θ ) − 1

2
cp(1 − 2α)

}
(4.37)

is a (1 − 2α) confidence region for the unknown θ0. We use (1 − 2α) here for con-
sistency with our earlier discussion of confidence intervals.

These ‘plausible’ sets of θ based on W (θ0) under repeated sampling have the same
form as those for the pure likelihood approach described at the end of Section 4.1.2,
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since the condition RL(θ ) ≥ c is equivalent to W (θ ) ≤ −2 log c. Here however the
constant −2 log c is replaced by cp(1 − 2α), chosen with respect to the approximate
distribution of W (θ0) under repeated sampling. Often α is taken to be 0.05, 0.025 or
0.005, values that correspond to regions containing θ0 with approximate probabilities
0.9, 0.95 and 0.99.

Example 4.29 (Spring failure data) The likelihood ratio statistic for the exponen-
tial model in Example 4.2 is W (θ ) = 2n{y/θ − 1 − log(y/θ )}. As c1(0.95) = 3.84,
a 95% confidence region for θ based on W (θ ) is the set

{θ : 2n {y/θ − 1 − log(y/θ )} ≤ 3.84} .

This set is found by plotting the log likelihood and reading off the values of θ for
which �(θ ) ≥ �(̂θ ) − 1

2 × 3.84. The lower right panel of Figure 4.5 shows this region,
(96, 335), which is not symmetric about the maximum likelihood estimate y = 168.3.

We saw in Example 4.24 that the 95% confidence interval for θ based on the asymp-
totic normal distribution of θ̂ , (64, 273), is symmetric about θ̂ . The difference between
intervals based on W (θ ) and θ̂ would vanish in sufficiently large samples, but it can
be important to capture the asymmetry of �(θ ) when n is small or moderate. Regions
defined by (4.37) need not be connected, unlike those based on normal approximation
to the distribution of θ̂ , which may be problematic when �(θ ) is multimodal. �

When θ is vector, confidence regions for θ0 can in principle be obtained from (4.37)
through contour plots of �. This seems infeasible when p exceeds three. We discuss
one resolution of this in the next section.

4.5.2 Profile log likelihood

In the previous section we treated all elements of θ equally, but in practice some
are more important than others. We write θ T = (ψT, λT), where ψ is a p × 1 vec-
tor of parameters of interest, and λ is a q × 1 vector of nuisance parameters. Our
enquiry centres on ψ , but we cannot avoid including λ in the model. We may wish
to check whether a particular value ψ0 of ψ is consistent with the data, or to find a
plausible range of values for ψ , but in either case the value of λ is irrelevant or of at
most secondary interest. The division into ψ and λ may change in the course of an
investigation.

Two models are said to be nested if one reduces to the other when certain parameters
are fixed. Thus a model with parameters (ψ0, λ) is nested within the more general
model with parameters (ψ, λ); the corresponding parameter spaces are {ψ0} × �

and � × �, where ψ0 ∈ �. Under the more restrictive model the value of λ that
maximizes the log likelihood �(ψ0, λ) is λ̂ψ0 , whereas the overall maximum likelihood
estimate, (ψ̂, λ̂), maximizes � over both parameters. Of course, �(ψ̂, λ̂) ≥ �(ψ0, λ̂ψ0 ).

Example 4.30 (Weibull distribution) The Weibull density (4.4) has two parameters
α and θ , and reduces to the exponential density when α = 1. In terms of our general
discussion we set α = ψ and λ = θ , with ψ0 = 1, � = IR+, and � = IR+. Then the
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vertical dotted line in the upper right panel of Figure 4.1 corresponds to {ψ0} × �,
while the entire upper right quadrant of the plane is � × �. Evidently the likelihood
reaches its maximum away from the exponential submodel. The maximum likelihood
estimates under the submodel are (1, 168), while overall they are roughly (6, 181);
the difference of log likelihoods is 12.5. �

A natural statistic with which to compare two nested models is the log ratio of
maximized likelihoods,

Wp(ψ0) = 2{�(ψ̂, λ̂) − �(ψ0, λ̂ψ0 )}. (4.38)

This is sometimes called the generalized likelihood ratio statistic because it gener-
alizes (4.35), but as (4.38) is the version almost invariably used in practice we shall
refer to both simply as likelihood ratio statistics. At the end of this section we show
that for regular models (4.36) generalizes to

Wp(ψ0)
D−→ χ2

p. (4.39)

That is, even though nuisance parameters are estimated, the likelihood ratio statistic
has an approximate chi-squared distribution in large samples.

Often the parameter of interest, ψ , is scalar or has much smaller dimension than
the nuisance parameter, λ, and we wish to form a confidence region for its true value
ψ0 regardless of λ. To do so we use the profile log likelihood,

�p(ψ) = max
λ

�(ψ, λ) = �(ψ, λ̂ψ ),

where λ̂ψ is the maximum likelihood estimate of λ for fixed ψ . The above result for
Wp(ψ0) implies that confidence regions for ψ0 can be based on �p for regular models.
A (1 − 2α) confidence region for ψ0 is the set{

ψ : �p(ψ) ≥ �p(ψ̂) − 1

2
cp(1 − 2α)

}
. (4.40)

This is our primary approach to finding confidence regions from likelihoods. It often
yields good approximations to standard intervals.

When ψ is scalar we define the signed likelihood ratio statistic This is sometimes called
the directed deviance
statistic.Z (ψ0) = sign(ψ̂ − ψ0)[2{�(ψ̂, λ̂) − �(ψ0, λ̂ψ0 )}]1/2.

The relation between the normal and chi-squared distributions implies that
c1(1 − 2α) = z2

α = z2
1−α , so

1 − 2α
.= Pr{Wp(ψ0) ≤ c1(1 − 2α)}
= Pr{Z (ψ0) ≤ z1−α} − Pr{Z (ψ0) ≤ zα},

and Z (ψ0) may be regarded as having an approximate standard normal distribution
and is an approximate pivot on which inference for ψ0 may be based; when p = 1,
a different way of writing (4.40) is

{ψ : zα ≤ Z (ψ) ≤ z1−α} . (4.41)
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We have briefly mentioned the effect of reparametrization on likelihood. If ψ is of
central interest, inference should be invariant to interest-preserving transformations,
under which ψ, λ �→ η(ψ), ζ (ψ, λ), where the map ψ → η is one-one for each value
of ψ , and so too is the map λ �→ ζ . For such a reparametrization, �p(η) = �p(ψ), so
Wp(ψ) is invariant; so too is Z (ψ) apart from a possible change in sign.

Example 4.31 (Normal distribution) The log likelihood for a normal sample
y1, . . . , yn is

�(µ, σ 2) ≡ −1

2

{
n log σ 2 + 1

σ 2

n∑
j=1

(y j − µ)2

}
.

To use the profile log likelihood to find a confidence region for µ, we set ψ = µ,
λ = σ 2, and note that for fixed µ, the maximum likelihood estimate of σ 2 is

σ̂ 2
µ = n−1

∑
(y j − µ)2

= n−1
{∑

(y j − y)2 + n(y − µ)2
}

= n − 1

n
s2

{
1 + t(µ)2

n − 1

}
,

where t(µ) = (y − µ)/(s2/n)1/2 is the observed value of the t statistic (3.16) and
s2 = (n − 1)−1 ∑

(y j − y)2. Thus the profile log likelihood for µ is

�p(µ) = �
(
µ, σ̂ 2

µ

) ≡ −n

2
log[s2{1 + t(µ)2/(n − 1)}],

and as the overall maximum likelihood estimate of µ is µ̂ = y, t(µ̂) = 0 and

Wp(µ) = n log

{
1 + T (µ)2

n − 1

}
, Z (µ) = sign(Y − µ)

[
n log

{
1 + T (µ)2

n − 1

}]1/2

,

whose values are large when T (µ) = (Y − µ)/(S2/n)1/2 is large, that is, when µ

differs from Y in either direction. Evidently the confidence interval (4.40) has the
form T (µ)2 ≤ c and may be written Y ± n−1/2Sc1/2. The usual (1 − 2α) confidence
interval, based on the exact distribution of T (µ), sets c1/2 to be a quantile of the
Student t distribution, tn−1(1 − α). For n = 15 and α = 0.025, tn−1(1 − α) = 2.14,
while the value of c1/2 from (4.40) is 2.05. This close agreement is not surprising, as
Taylor series expansion shows that Wp(µ)

.= nT (µ)2/(n − 1), T (µ)2 has the F1,n−1

distribution, and the F1,ν2 distribution approaches the χ2
1 distribution when ν2 → ∞.

The lower left panel of Figure 4.7 shows z(µ) = sign(y − µ)wp(µ)1/2 for the differ-
ences between cross- and self-fertilized plant heights in Table 1.1, for which n = 15,
y = 20.93, and s2 = 1424.6. The function z(µ) differs only slightly from the straight
line t(µ) = (y − µ)/(s2/n)1/2. The inner dotted lines at zα, z1−α = ±1.96 lead to the
confidence set (4.41), here (1.23, 40.63), shown by the inner vertical dashed lines.
This is only slightly narrower than the exact interval (0.03, 41.84) obtained by solving
t(µ) = ±t14(0.025); this interval is shown by the outer dotted and dashed lines.
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Figure 4.7 Inference
from likelihood ratio
statistics. Top left and
right: profile log
likelihoods for the shape
parameter of the Weibull
model for the springs
failure data, and for the
probability, ψ , of O-ring
thermal distress at 31◦F
for the Challenger data.
The dashed vertical lines
show 95% confidence
intervals based on the
approximate distribution
of the likelihood ratio
statistic, that is, the set of
ψ such that �p(ψ) ≥
�p(ψ̂) − 1

2 c1(0.95), with
the horizontal dotted line
at − 1

2 c1(0.95). Bottom
left and right: signed
likelihood ratio statistics
for the maize data and the
Challenger data
probability ψ . The solid
curves are Z (µ) and
Z (ψ), and the dotted
horizontal lines are at
zα, z1−α = ±1.96; the
dashed vertical lines show
95% confidence intervals.
The dashed diagonal line
in the right panel shows
(0.816 − ψ)/0.242 and
corresponds to using
approximate normality of
ψ̂ to set a confidence
interval. The dashed
diagonal line in the left
panel shows the Student t
quantity t(µ), with the
outer dotted lines showing
±t14(0.025), from which
the t confidence interval
shown by the outer dashed
lines is read off.

In practice the exact interval would be used, but such results build confidence in
use of (4.40) and (4.41) when there is no exact interval. �

Example 4.32 (Weibull distribution) For the data in Example 4.4, we saw that the
difference of maximized likelihoods for the Weibull and exponential models is roughly
12.5, and so Wp(α0) = 2{�(̂θ, α̂) − �(̂θα0 , α0)} .= 25. If α0 = 1 was the true value for
α, (4.39) implies that the distribution of Wp(α0) would be approximately χ2

1 . However
the 0.95 and 0.99 quantiles of this distribution are respectively c1(0.95) = 3.84 and
c1(0.99) = 6.635, and a value as large as 25 is very unlikely to arise by chance. Thus
the Weibull model fits the data appreciably better than the exponential one.

A 95% confidence region for the true value of α based on the profile log likelihood
is the set of α such that �p(α) ≥ �p(̂α) − 1

2 × 3.84; we read this off from the top left
panel of Figure 4.7 and obtain (3.5, 9.2). As we would expect, this interval does not
contain α = 1. �

Example 4.33 (Challenger data) Examples 4.5, 4.8, and 4.27 concern likelihood
analysis of a binomial model for the data in Table 1.3. Our model is that at temperature
x1 and pressure x2, the number of O-rings suffering thermal distress is binomial with
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denominator m = 6 and probability

π (β0, β1, β2) = exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)
.

Apart from a constant, the corresponding log likelihood is

β0

n∑
j=1

r j + β1

n∑
j=1

r j x1 j + β2

n∑
j=1

r j x2 j − m
n∑

j=1

log{1 + exp(β0 + β1x1 j + β2x2 j )}.

We maximize this first as it is, then with β2 held equal to zero, and then with both β1

and β2 held equal to zero, and obtain −15.05, −15.82 and −18.90. To check whether
there is a pressure effect when temperature is included, we calculate the corresponding
likelihood ratio statistic, 2 × {−15.05 − (−15.82)} = 1.54. This is smaller than the
0.95 quantile of the χ2

1 distribution, c1(0.95) = 3.84, so any pressure effect is slight.
Assuming no pressure effect, the likelihood ratio statistic for no temperature effect
is 2 × {−15.82 − (−18.90)} = 6.16, which we again compare to the χ2

1 distribution.
But Pr(χ2

1 ≥ 6.16) = 0.013, so 6.16 is unlikely to occur by chance if the true value
of β1 is zero: there seems to be a temperature effect.

The focus in this problem is the probability of thermal distress at temperature
x1 = 31◦F, and if there is an effect of temperature but not of pressure this probability
is ψ = π (β0, β1, 0), for which we would like confidence intervals. In Example 4.28
we saw how to apply the delta method to ψ̂ , but it gave the unsatisfactory 95%
confidence interval (0.34, 1.29).

The upper right panel of Figure 4.7 shows the profile log likelihood �p(ψ). A 95%
confidence interval based on this is (0.14, 0.99); unlike intervals based on normal
approximation to ψ̂ , this is guaranteed to be a subset of (0, 1). The panel below shows
the signed likelihood ratio statistic, which is far from a straight line because the profile
log likelihood is far from quadratic in ψ . The dashed diagonal line shows how the
interval based on the normal distribution of ψ̂ contains values outside the interval
[0, 1]; an interval symmetric about ψ̂ is wholly inappropriate. �

In both the preceding examples the profile log likelihood is asymmetric. Particularly
in the second example, the profile log likelihood or equivalently Wp(ψ) or Z (ψ),
provide better confidence intervals than normal approximation to the distribution of
the maximum likelihood estimate.

4.5.3 Model fit

So far we have supposed that the model is known apart from parameter values, but
this is rarely the case in practice and it is essential to check model fit. Graphs play an
important role in this, with variants of probability plots (Section 2.1.4) particularly
useful. A more formal approach is to nest the model in a larger one, and then to assess
whether the expanded model fits the data appreciably better. If its log likelihood is
�(ψ, λ) and the original model restricts ψ to ψ0, the two may be compared using a
likelihood ratio statistic. The usefulness of this approach depends on the expanded
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model: if it is uninteresting, so too will be the comparison. We have already seen an
application of this in Example 4.33.

Example 4.34 (Generalized gamma distribution) A random variable Y with the
generalized gamma distribution has density function

f (y; λ, α, κ) = αλκ yακ−1

�(κ)
exp(−λyα), y > 0, λ, α, κ > 0. (4.42)

This arises on supposing that for some α, Y α has a gamma distribution, and reduces
to the gamma density (2.7) when α = 1, to the Weibull density (4.4) with θ = λ−1/α

when κ = 1, and to the exponential density when α = κ = 1; it is a flexible general-
ization of these models. In terms of our general discussion ψ = α, with ψ0 = 1, and
λ = (κ, λ)T.

When applied to the data in Table 2.1, the maximized log likelihoods are −250.65
for the generalized gamma model, −251.12 for the gamma model, and −251.17 for
the Weibull model. The likelihood ratio statistic for comparison of the gamma and
generalized gamma densities is 2 × {−250.65 − (−251.12)} = 0.94, to be treated as
χ2

1 . There is no evidence that (4.42) fits better than the gamma density, which fits
about equally as well as the Weibull density. �

One useful approach in this context is a score test. Suppose that ψ and λ have
dimensions p × 1 and q × 1, and let Iλψ = E(−∂2�/∂λ∂ψT), and so forth. The idea
is that if the restricted model is adequate, then the maximized log likelihood �(ψ0, λ̂ψ0 )
will not increase sharply in the ψ-direction, so its gradient ∂�(ψ, λ)/∂ψ evaluated at
(ψ0, λ̂ψ0 ) should be modest. We show at the end of this section that

∂�(ψ0, λ̂ψ0 )

∂ψ

.∼ Np
(
0, Iψψ − Iψλ I −1

λλ Iλψ

)
,

implying that if the simpler model is adequate, then

S = ∂�(ψ0, λ̂ψ0 )

∂ψT

(
Iψψ − Iψλ I −1

λλ Iλψ

)−1 ∂�(ψ0, λ̂ψ0 )

∂ψ

.∼ χ2
p, (4.43)

where S is evaluated at (ψ0, λ̂ψ0 ). When p = 1 the signed square root of S should
have an approximate standard normal distribution. The statistic S is asymptotically
equivalent to the likelihood ratio statistic Wp(ψ0), but is more convenient because it
involves maximization only under the simpler model. Expected information quantities
may be replaced by observed information quantities.

Example 4.35 (Spring failure data) We illustrate the score test by checking
whether α = 1 for the spring failure data. In terms of our general discussion,
ψ = α, with ψ0 = 1, and λ = θ . The score and observed information are given in
Example 4.23. When α = 1, θ̂ = y = 168.3. At (̂θ, 1), we have ∂�(θ, α)/∂α = 9.64
and (Jαα − Jαθ J−1

θθ Jθα)−1 = 0.097, so S takes value 8.99. Compared to the χ2
1

distribution this gives strong evidence that α 
= 1. �
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Chi-squared statistics

Sometimes it is useful to assess fit without a specific alternative in mind. One approach
is to group the data and to use a chi-squared statistic.

Suppose we have n independent observations that fall into categories 1, . . . , k,
with Yi denoting the number of observations in category i . The probability that a
single observation falls into this category is πi , where 0 < πi < 1 and

∑k
i=1 πi = 1,

but as πk = 1 − π1 − · · · − πk−1, the parameter space is the interior of a simplex in
k dimensions, that is, the set

{
(π1, . . . , πk) :

k∑
i=1

πi = 1, 0 < π1, . . . , πk < 1

}
(4.44)

of dimension k − 1. The model whose fit we wish to assess is that category i has
probability πi (λ), where

∑
i πi (λ) = 1 for each λ and the parameter λ has dimen-

sion p. This is multinomial with probabilities π1, . . . , πk and denominator n; see
Example 2.36. We suppose that there is a 1–1 mapping between π = (π1, . . . , πk−1)T

and (ψ, λ), and that setting ψ = ψ0 corresponds to the restricted model π (λ) =
(π1(λ), . . . , πk−1(λ))T. Thus our model of interest restricts π to a p-dimensional
subset of (4.44), where p < k − 1, and is nested within the full multinomial model
with k − 1 parameters.

Given data y1, . . . , yk , the likelihood under the general model is

L(π ) = n!

y1! · · · yk!
π

y1
1 × · · · × π

yk

k ,

k∑
i=1

πi = 1, 0 < π1, . . . , πk < 1,

where
∑

i yi = n, so the log likelihood is

�(π ) ≡
k−1∑
i=1

yi log πi + yk log(1 − π1 − · · · − πk−1), (4.45)

resulting in score vector and observed information matrix with components

∂�(π )

∂πi
= yi

πi
− yk

1 − π1 − · · · − πk−1
, (4.46)

− ∂2�(π )

∂πi dπ j
=

{ yi

π2
i

+ yk

(1−π1−···−πk−1)2 , i = j ,
yk

(1−π1−···−πk−1)2 , i 
= j ,

where i and j run over 1, . . . , k − 1. Manipulation of the likelihood equations shows
that the maximum likelihood estimators are π̂i = Yi/n (Exercise 4.5.4). The expected
information matrix involves E(Yi ), which may be calculated by noting that if we regard
an observation in category i as a ‘success’, Yi is the number of successes out of n
independent trials, so its marginal distribution is binomial with denominator n and
probability πi and mean nπi ; see Example 2.36. The expected information is the
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(k − 1) × (k − 1) matrix

I (π ) = n




1/π1 + 1/πk 1/πk · · · 1/πk

1/πk 1/π2 + 1/πk · · · 1/πk
...

...
. . .

...
1/πk 1/πk · · · 1/πk−1 + 1/πk


 , (4.47)

and it is straightforward to verify that its inverse is

I (π )−1 = n−1




π1(1 − π1) −π1π2 · · · −π1πk−1

−π2π1 π2(1 − π2) · · · −π2πk−1
...

. . .
...

−πk−1π1 −πk−1π2 · · · πk−1(1 − πk−1)


 ;

this is unsurprising, because π̂i = Yi/n. Provided none of the πi equals zero or one,
the usual large-sample properties of maximum likelihood estimates are satisfied as
n → ∞, and in particular π̂ has a limiting normal distribution.

We now return to the restricted model, whose log likelihood is

�(λ) = �{π (λ)} ≡
k−1∑
i=1

yi log πi (λ) + yk log {1 − π1(λ) − · · · − πk−1(λ)} ,

maximization of which gives the maximum likelihood estimator λ̂. The first and
second derivatives of �(λ) are

∂�(λ)

∂λr
=

k−1∑
i=1

∂πi

∂λr

∂�(π )

∂πi
,

∂2�(λ)

∂λr∂λs
=

k−1∑
i=1

∂2πi

∂λr∂λs

∂�(π )

∂πi
+

k−1∑
i=1

k−1∑
j=1

∂πi

∂λr

∂π j

∂λs

∂2�(π )

∂πi∂π j
,

and as E{∂�(π )/∂πi } = 0, the expected information for λ is the p × p matrix

I (λ) = ∂π T

∂λ
E

{
− ∂2�(π )

∂π∂π T

}
∂π

∂λT
= ∂π T

∂λ
I (π )

∂π

∂λT
,

where ∂π T/∂λ is the p × (k − 1) matrix of partial derivatives of the πi with respect
to the λr , and I (π ) is given by (4.47); see Problem 4.2. Thus provided ∂π T/∂λ 
= 0,
the parameter λ has a large-sample normal distribution under the restricted model,
and the general results in Section 4.5.2 imply that the likelihood ratio statistic used
to compare the two models satisfies

W = 2
k∑

i=1

yi log

{
π̂i

πi (̂λ)

}
= 2

k∑
i=1

yi log

{
yi

nπi (̂λ)

}
.∼ χ2

k−1−p

if the simpler model is true. We may write W = 2
∑

Oi log(Oi/Ei ), where Oi = yi We take 0 log 0 =
limy↓0 y log y = 0.and Ei = nπi (̂λ) are the i th observed and expected values under the fitted model;
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as
∑

πi (̂λ) = 1, it is true that
∑

Ei = ∑
Oi = n. Taylor series expansion shows that

W
.= ∑

(Oi − Ei )2/Ei (Exercise 4.5.5), leading to Pearson’s statistic,Karl Pearson (1857–1936)
was a leader of the
English biometrical
school, which applied
statistical ideas to heredity
and evolution. His energy
was astonishing: he
practised law and wrote
books on history and
religion as well as the
classic ‘The Grammar of
Science’ and over 500
other publications. He
coined the terms ‘standard
deviation’, ‘histogram’
and ‘mode’. He invented
the correlation coefficient
and also the chi-square
test. He feuded with
Fisher, who pointed out
that Pearson gave P too
many degrees of freedom.
The statistic P is
sometimes denoted X2 or
χ2.

P =
k∑

i=1

{yi − nπi (̂λ)}2

nπi (̂λ)
;

this too has an approximate χ2
k−1−p distribution if the simpler model is true.

Both W and P provide checks on the adequacy of the restricted multinomial
compared to the most general multinomial possible, which requires only that the
probabilities sum to one. The approximate distributions of W and P apply when
there are large counts, and experience suggests that the chi-squared approximations
are more accurate if most of the fitted values exceed five. Though asymptotically
equivalent to W , P behaves better in small samples because it does not involve
logarithms.

Example 4.36 (Birth data) Figure 2.2 shows the Poisson density with mean θ̂ =
12.9 fitted to the numbers of daily arrivals for the delivery suite data. How good is
the fit? Here p = 1 parameters are estimated under the Poisson model. With the n =
92 daily counts split among the k = 13 categories [0, 7.5), [7.5, 8.5), . . . , [18.5, ∞),
the values for O and E are

O 6 3 3 8 13 10 11 11 8 6 4 4 5
E 5.23 4.37 6.26 8.08 9.48 10.19 10.11 9.32 8.01 6.46 4.91 3.52 6.07

and P takes value 4.39, to be treated as a χ2
11 variable. As Pr(χ2

11 ≥ 4.39)
.= 0.96, the

Poisson model fits very well, perhaps surprisingly so.
A minor problem here is that θ̂ is obtained from the original data rather than from

the data grouped into the k categories. However the maximum likelihood estimate
from the grouped data is 12.89, so the fit is hardly affected at all. Use of the parameter
estimate from the ungrouped data increases the degrees of freedom for the test, because
slightly fewer than p degrees of freedom must be subtracted from the k − 1. The
estimates will usually be similar unless the grouping is very coarse. �

Example 4.37 (Two-way contingency table) Suppose that each of n individuals
chosen at random from a population is classified according to two sets of categories.
The first corresponds to the r rows of the table, and the second to the c columns;
there are k = rc cells indexed by (i, j), i = 1, . . . , r , j = 1, . . . , c. Such a setup is
known as an r × c contingency table or two-way contingency table. The top part of
Table 4.3 shows an example in which 422 people have been cross-classified according
to presence or absence of the antigens ‘A’ and ‘B’ in their blood. There are 202 people
without either antigen, 179 with antigen ‘A’ but not ‘B’, and so forth. This is the
simplest cross-classification, a 2 × 2 table.

Suppose that there are yi j individuals in the (i, j) cell, so
∑

i, j yi j = n. If the
individuals are independently chosen at random from a population in which the pro-
portion in cell (i, j) is πi j , the joint density of the cell counts Yi j is multinomial with
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Table 4.3 Blood groups
in England (Taylor and
Prior, 1938). The upper
part of the table shows a
cross-classification of 422
persons by presence or
absence of antigens ‘A’
and ‘B’, giving the groups
‘A’, ‘B’, ‘AB’, ‘O’ of the
human blood group
system. The lower part
shows genotypes and
corresponding
probabilities under one-
and two-locus models. See
Example 4.38 for details.

Antigen ‘B’

Absent Present Total

Absent ‘O’: 202 ‘B’: 35 237
Antigen ‘A’ Present ‘A’: 179 ‘AB’: 6 185

Total 381 41 422

Two-locus model One-locus model

Group Genotype Probability Genotype Probability

‘A’ (AA; bb), (Aa; bb) α(1 − β) (AA), (AO) λ2
A + 2λAλO

‘B’ (aa; B B), (aa; Bb) (1 − α)β (B B), (BO) λ2
B + 2λBλO

‘AB’ (AA; B B), (Aa; B B), αβ (AB) 2λAλB

(AA; Bb), (Aa; Bb)
‘O’ (aa; bb) (1 − α)(1 − β) (O O) λ2

O

denominator n and probabilities πi j , that is,

n!

y11!y12! · · · yrc!
π

y11
11 π

y12
12 · · · π yrc

rc , yi j = 0, . . . , n,
∑
i, j

yi j = n,

where 0 < πi j < 1 and
∑

i, j πi j = 1. The log likelihood is

�(π ) ≡
∑
i, j

yi j log πi j , 0 < πi j < 1,
∑
i, j

πi j = 1;

there are rc − 1 parameters because of the constraint that the probabilities sum to one.
The preceding general results imply that estimated proportion of the population in
cell (i, j) is the sample proportion in that cell, that is, π̂i j = yi j/n, so the maximized
log likelihood is

∑
i, j yi j log(yi j/n).

Often the question arises whether the row and column classifications are indepen-
dent. If so, and if the proportion of the population in row category i is αi , and that
in column category j is β j , then πi j = αiβ j . As

∑
i αi = ∑

j β j = 1, this model has
p = (r − 1) + (c − 1) parameters. The log likelihood is

∑
i, j yi j log(αiβ j ), and to

maximize it subject to the constraints on the αi and β j we use Lagrange multipliers
ζ and η and seek extremal points of

�∗(α, β, ζ, η) =
∑
i, j

yi j log(αiβ j ) + ζ

(∑
i

αi − 1

)
+ η

(∑
j

β j − 1

)
.

We find that α̂i = yi ·/n and β̂ j = y· j/n, where yi · = ∑
j yi j and y· j = ∑

i yi j ; these
are respectively the observed proportions of observations in the i th row and j th column
categories. The fitted value in cell (i, j) is nα̂i β̂ j = yi ·y· j/n, and the maximized log
likelihood is

∑
i, j yi j log(̂αi β̂ j ).
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The likelihood ratio statistic for comparing the independence model with the more
general model is

W = 2
∑
i, j

{
yi j log

( yi j

n

)
− yi j log

( yi ·y· j

n2

)}
= 2

∑
i, j

yi j log

(
nyi j

yi ·y· j

)
,

and when the independence model is true, the approximate distribution of W isχ2
k−1−p;

here k − 1 − p = rc − 1 − {(r − 1) + (c − 1)} = (r − 1)(c − 1).
In this case Pearson’s statistic may be expressed as

P =
∑
i, j

(yi j − yi ·y· j/n)2

yi ·y· j/n
,

with an approximate χ2
(r−1)(c−1) distribution when the categorizations are independent.

�

Example 4.38 (ABO blood group system) The most important classification of
human blood types is into the four groups ‘A’, ‘B’, ‘AB’, and ‘O’, corresponding to
presence or absence of the antigens ‘A’ and ‘B’; ‘AB’ refers to the presence of both
and ‘O’ to their absence. In a set of data shown in Table 4.3, the frequencies of these
groups were 179, 35, 6, and 202.

According to a model thought credible until the 1920s, the blood group of a person
is controlled by two loci (1; 2) on a pair of chromosomes, one chromosome being
inherited from each parent. At the loci they independently inherit alleles (x1; y1)
from their mother and (x2; y2) from their father, where x1 and x2 are one of a or
A, and y1 and y2 are one of b or B. Thus their genotype (x1x2; y1 y2) is any one of
(aa; bb), . . . , (AA, B B), and they have the antigen ‘A’ only if allele A is present;
similarly for antigen ‘B’. In fact (Aa; Bb) is indistinguishable from (a A; bB) and so
forth, so under this model there are nine genotypes shown in the second column of
the lower part of Table 4.3. Since the loci are independent, the probabilities that a
person randomly taken from the population will have blood groups ‘A’, ‘B’, ‘AB’ and
‘O’ may be written as α(1 − β), (1 − α)β, αβ, and (1 − α)(1 − β), where α and β

are the probabilities that they have antigens ‘A’ and ‘B’.
An alternative model posits a single locus at which three alleles, A, B, and O

may appear, A and B conferring the respective antigens, and O conferring nothing.
If λA, λB and λO denote the probabilities that a parent has the three alleles on one
chromosome, and if the population is in equilibrium, then the probabilities that the
child has blood types ‘A’, ‘B’, ‘AB’ and ‘O’ are

πA = λ2
A + 2λAλO , πB = λ2

B + 2λBλO , πAB = 2λAλB, πO = λ2
O .

where λO = 1 − λA − λB .
Under the two-locus model, Example 4.37 implies that the maximum likelihood

estimates of α and β are the corresponding sample proportions, α̂ = 185/422 = 0.438
and β̂ = 41/422 = 0.097. The fitted values, 213.97, 167.03, 23.02, 17.97, are rather
far from 202, 179, 35, 6. The values for W and P are 17.66 and 15.73, to be treated
as χ2

k−1−p if the two-locus model is adequate; here k − 1 − p = 4 − 1 − 2 = 1. As
c1(0.95) = 3.84, the fit is poor.
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Under the single-locus model, the log likelihood is

179 log
(
λ2

A + 2λAλO
) + 35 log

(
λ2

B + 2λBλO
) + 6 log(2λAλB) + 202 log

(
λ2

O

)
,

where λO = 1 − λA − λB , and maximization in terms of (log λA, log λB) gives λ̂A =
0.252, λ̂B = 0.050. The fitted values for the blood groups are 205.85, 174.99, 30.54,
and 10.62, and the values of W and P are 3.17 and 2.82. The single-locus model is
much better supported by the data. �

Derivations of (4.39) and (4.43)
This may be skipped at a
first reading.In the regular case when the model is correct and the true values of the p × 1 and

q × 1 vectors ψ and λ are ψ0 and λ0, we denote the score vector and observed and
expected information matrices by

U (ψ0, λ0) =
(

Uψ

Uλ

)
, J (ψ0, λ0) =

(
Jψψ Jψλ

Jλψ Jλλ

)
, I (ψ0, λ0) =

(
Iψψ Iψλ

Iλψ Iλλ

)
,

where, for example, Uλ is the q × 1 vector ∂�/∂λ, Jλψ is the q × p matrix
−∂2�/∂λ∂ψT, and and Iλψ = E(−∂2�/∂λ∂ψT), evaluated at (ψ0, λ0). The compo-
nents of U are Op(n1/2), those of J are Op(n), and those of I are O(n).

To establish (4.43), we expand the likelihood equations U (ψ̂, λ̂) = 0 and
∂�(ψ0, λ̂ψ0 )/∂λ = 0 about (ψ0, λ0), giving(

Uψ

Uλ

)
= J (ψ0, λ0)

(
ψ̂ − ψ0

λ̂ − λ0

)
+ op

(
n1/2

)

= I (ψ0, λ0)

(
ψ̂ − ψ0

λ̂ − λ0

)
+ op

(
n1/2

)
,

Uλ = Jλλ (̂λψ0 − λ0) + op
(
n1/2

) = Iλλ (̂λψ0 − λ0) + op
(
n1/2

)
.

Thus

λ̂ψ0 − λ0 = I −1
λλ Uλ + op

(
n−1/2

) = λ̂ − λ0 + I −1
λλ Iλψ (ψ̂ − ψ0) + op

(
n−1/2

)
.

Taylor series expansion gives

∂�(ψ0, λ̂ψ0 )

∂ψ
= Uψ − Iψλ (̂λψ0 − λ0) + op

(
n−1/2

) = Uψ − Iψλ I −1
λλ Uλ + op

(
n−1/2

)
,

and the joint limiting normal distribution(
Uψ

Uλ

)
.∼ Np+q{0, I (ψ0, λ0)}

implies that

∂�(ψ0, λ̂ψ0 )

∂ψ

.∼ Np
(
0, Iψψ − Iψλ I −1

λλ Iλψ

)
, (4.48)

so

∂�(ψ0, λ̂ψ0 )

∂ψT

(
Iψψ − Iψλ I −1

λλ Iλψ

)−1 ∂�(ψ0, λ̂ψ0 )

∂ψ

.∼ χ2
p.



4.5 · Likelihood Ratio Statistic 139

To establish (4.39), we write the likelihood ratio statistic (4.38) as

Wp(ψ0) = 2{�(ψ̂, λ̂) − �(ψ0, λ0)} − 2{�(ψ0, λ̂ψ0 ) − �(ψ0, λ0)},

and then replace �(ψ̂, λ̂) and �(ψ0, λ̂ψ0 ) with second-order Taylor series expansions
about (ψ0, λ0). The results above imply that Wp(ψ0) is approximately

(
ψ̂ − ψ0

λ̂ − λ0

)T

I (ψ0, λ0)

(
ψ̂ − ψ0

λ̂ − λ0

)
−

(
0

λ̂ψ0 − λ0

)T

I (ψ0, λ0)

(
0

λ̂ψ0 − λ0

)
,

and replacement of λ̂ψ0 with its expression in terms of (ψ̂, λ̂) gives

Wp(ψ0)
.= (ψ̂ − ψ0)T

(
Iψψ − Iψλ I −1

λλ Iλψ

)
(ψ̂ − ψ0) + op(1). (4.49)

But as our previous asymptotics for the maximum likelihood estimators under the
full model give

(
ψ̂

λ̂

)
.∼ Np+q

{(
ψ0

λ0

)
, I (ψ0, λ0)−1

}
, (4.50)

the asymptotic covariance matrix of ψ̂ is (Iψψ − Iψλ I −1
λλ Iλψ )−1, and (4.49) and (3.23)

give

Wp(ψ0) = 2{�(ψ̂, λ̂) − �(ψ0, λ̂ψ0 )} .∼ χ2
p :

the asymptotic distribution of the likelihood ratio statistic for comparison of two nested
models is chi-squared with degrees of freedom equal to the number of parameters that
are restricted by the less general model. This result applies only to nested models,
and the expansions leading to it are valid only when (̂λ, ψ̂) converges to (ψ0, λ0).
This may need checking in applications.

Exercises 4.5

1 If Y1, . . . , Yn is a random sample from the N (µ, σ 2) distribution with known σ 2, show
that the likelihood ratio statistic for comparing µ = µ0 with general µ is W (µ0) =
n(Y − µ)2/σ 2. Show that W (µ0) is a pivot, and give the likelihood ratio confidence
region for µ.

2 Independent values y1, . . . , yn arise from a distribution putting probabilities 1
4 (1 + 2θ ),

1
4 (1 − θ ), 1

4 (1 − θ ), 1
4 on the values 1, 2, 3, 4, where − 1

2 < θ < 1. Show that the likelihood
for θ is proportional to (1 + 2θ )m1 (1 − θ )m2 and express m1 and m2 in terms of y1, . . . , yn .
Find the maximum likelihood estimate of θ in terms of m1 and m2.
Obtain the maximum likelihood estimate and the likelihood ratio statistic for θ = 0 based
on data in which the frequencies of 1, 2, 3, 4 were 55, 11, 8, 26. Is it plausible that θ = 0?

3 Consider Examples 4.27 and 4.33. Show that the standard error for η = β0 + 31β1 is
(9.289 − 2 × 31 × 0.142 + 312 × 0.00220)1/2, and hence obtain a 95% confidence inter-
val for η. Use this to construct an interval for φ = eη/(1 + eη), and compare it with the
interval based on the profile log likelihood for φ.

4 Use (4.46) to show that π̂ j = y j/n, and verify the contents of the corresponding observed,
expected, and inverse expected information matrices.
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5 Verify that the Taylor expansion O log(O/E)
.= O − E + 1

2 (O − E)2/E + · · · is valid
for small O − E , and hence check that provided Oi − Ei is small relative to Ei , Pearson’s
statistic P is close to the likelihood ratio statistic W .

6 Let Y1, . . . , Yn and Z1, . . . , Zm be two independent random samples from the N (µ1, σ
2
1 )

and N (µ2, σ
2
2 ) distributions respectively. Consider comparison of the model in which

σ 2
1 = σ 2

2 and the model in which no restriction is placed on the variances, with no restriction
on the means in either case. Show that the likelihood ratio statistic Wp to compare these
models is large when the ratio T = ∑

(Y j − Y )2/
∑

(Z j − Z )2 is large or small, and that
T is proportional to a random variable with the F distribution.

7 In an experiment to assess the effectiveness of a treatment to reduce blood pressure in heart
patients, n independent pairs of heart patients are matched according to their sex, weight,
smoking history, initial blood pressure, and so forth. Then one of each pair is selected at
random and given the treatment. After a set time the blood pressures are again recorded,
and it is desired to assess whether the treatment had any effect. A simple model for this
is that the j th pair of final measurements, (Y j1, Y j2) is two independent normal variables
with means µ j and µ j + β, and variances σ 2. It is desired to assess whether β = 0 or not.
One approach is a t confidence interval based on Z j = Y j2 − Y j1. Explain this, and give
the degrees of freedom for the t statistic. Show that the likelihood ratio statistic for β = 0

is equivalent to Z
2
/
∑

(Z j − Z )2.

4.6 Non-Regular Models

The large-sample normal and chi-squared approximations (4.26) and (4.39) apply to
many important models. There are exceptions, however, due to failure of regularity
conditions for the parameter space, the likelihood and its derivatives, and convergence
of information quantities. A model can be non-regular in many ways, and rather
than attempt a general discussion we give some examples intended to flag possible
problems.

Parameter space

If standard asymptotics are to apply, the true parameter value must be interior to the
parameter space �. One way to ensure this is to insist that � be an open subset of
IRp endowed with its usual topology. If not, and if the true θ0 lies on the edge of
the parameter space, then the maximum likelihood estimator cannot fall on ‘both
sides’ of θ0, and therefore cannot have a limiting normal distribution with mean θ0.
Alternatively, if one or more components of θ are discrete, we cannot expect the
maximum likelihood estimator to be approximately normal.

Example 4.39 (t distribution) One model for heavy-tailed data is

f (y; µ, σ 2, ψ) = �{(ψ−1 + 1)/2}ψ1/2

(σ 2π )1/2�{1/(2ψ)} {1 + ψ(y − µ)2/σ 2}−(ψ−1+1)/2,

where ψ, σ > 0 and −∞ < µ, y < ∞. This generalizes the Student t density with
ψ−1 = ν degrees of freedom to continuous ψ . Its tails are heavier than those of
the normal density, obtained when ψ → 0; f (y; µ, σ 2, 1) is Cauchy. The left panel
of Figure 4.8 shows the profile log likelihood for ψ based on the n = 15 differ-
ences between heights of plants in the fourth column of Table 1.1; ψ = 0 is of
particular interest. The likelihood ratio statistic for comparing t and normal models
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Figure 4.8 Likelihood
inference for tν
distribution. Left: profile
log likelihoods for
ψ = ν−1 for maize data
(solid), and for 19
simulated normal samples
(dots); ψ = 0 corresponds
to the N (µ, σ 2) density.
Right: χ2

1 probability plot
for the 1237 positive
values of the likelihood
ratio statistic Wp(0)
observed in 5000
simulated normal samples
of size 15; the rest had
Wp(0) = 0.

is Wp(0) = 2{�(µ̂, σ̂ 2, ψ̂) − �(µ̂0, σ̂
2
0 , 0)}, where µ̂0 and σ̂ 2

0 are maximum likelihood
estimates for the N (µ, σ 2) density. Its observed value of 1.366 suggests that the t fit
is only marginally better, but ψ = 0 is on the boundary of the parameter space and
standard asymptotics do not apply, as we see from profile log likelihoods for simu-
lated normal samples of size 15. In many cases ψ̂ = 0, so Wp(0) = 0: its distribution
cannot be χ2

1 .
To understand this, we expand log f (µ, σ 2, ψ) about ψ = 0, giving

− 1

2
{z2 + log(2πσ 2)} + ψ

4
(z4 − 2z2 − 1) + ψ2

2

(
1

2
z4 − 1

3
z6

)

+ ψ3

24
(3z8 − 4z6 − 1) + O(ψ4),

where z = (y − µ)/σ . The first and second derivatives that involve ψ are
∂ log f/∂ψ = (z4 − 2z2 − 1)/4 and

∂2 log f

∂ψ2
= 1

2
z4 − 1

3
z6,

∂2 log f

∂ψ∂µ
= (z − z3)/σ,

∂2 log f

∂ψ∂σ 2
= (z2 − z4)/(2σ 2)

evaluated atψ = 0, while Example 4.18 gives the other derivatives needed. When ψ =
0, Z = (Y − µ)/σ ∼ N (0, 1), with odd moments zero and first three even moments
1, 3, and 15, so cov(Z4, Z4) = 96, cov(Z2, Z4) = 12, and var(Z2) = 2. The expected
information matrix,

i(µ, σ 2, 0) =

 σ−2 0 0

0 1
2σ−4 σ−2

0 σ−2 7
2


 ,

equals the covariance matrix of the score statistic, and the third derivatives of log f
are well-behaved, so the large-sample distribution of the score vector when ψ = 0 is
normal with mean zero and covariance matrix ni(µ, σ 2, 0). On setting λ = (µ, σ 2)
and ψ = 0, (4.48) entails

∂�(µ̂0, σ̂
2
0 , 0)

∂ψ

.∼ N (0, 3n/2).
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Figure 4.9 Changepoint
analysis for data on
diarrhoea-associated
haemolytic uraemic
syndrome (HUS)
(Henderson and
Matthews, 1993). Left:
counts of cases of HUS
treated in Birmingham,
1970–1989 (solid), and
scaled likelihood ratio
statistic Wp(τ )/10 (blobs).
Right: density of W ,
estimated from 10,000
simulations, and χ2

1
density (solid).

In large samples this derivative is negative with probability 1
2 , and then Wp(0) = 0;

while if it is positive the usual Taylor series expansion applies and Wp(0) ∼ χ2
1 . Thus

the limiting distribution of Wp(0) is 1
2 + 1

2χ2
1 , giving

Pr{Wp(0) ≤ 1.366} = 1

2
+ 1

2
Pr(χ2

1 ≤ 1.366) = 0.88.

The asymptotic distribution of ψ̂ puts mass 1
2 at ψ = 0, with the remaining probability

spread as a normal density confined to the positive half-line.
To assess the quality of such approximations, 5000 normal samples of size n =

15 were generated. Just 1237 of the Wp(0) were positive, but those that were had
distribution close to χ2

1 , as the right panel of Figure 4.8 shows. Hence

Pr{Wp(0) ≤ 1.366} .= (3763/5000) + (1237/5000)Pr
(
χ2

1 ≤ 1.366
) = 0.94,

stronger though not decisive evidence for the t model. Large-sample results are un-
reliable even with n = 100, when Pr{Wp(0) = 0} .= 0.37.

Such problems also arise if the favoured model is close to the boundary. For ex-
ample, despite being normal in large samples, when n is small the distribution of ψ̂

would have a point mass at ψ = 0. If several parameters lie on their boundaries, then
asymptotics become yet more cumbersome. Simulation seems preferable. �

Example 4.40 (HUS data) The left panel of Figure 4.9 shows annual numbers
of cases of ‘diarrhoea-associated haemolytic uraemic syndrome’ (HUS) treated at a
clinic in Birmingham from 1970 to 1989. HUS is a disease that can threaten the lives
of small children; physicians have speculated that it is linked to levels of E. coli. The
data suggest a sharp rise in incidence at about 1980.

A simple model for this increase is that the annual counts y1, . . . , yn are realizations
of independent Poisson variables Y1, . . . , Yn with positive means

E(Y j ) =
{

λ1, j = 0, . . . , τ ,
λ2, j = τ + 1, . . . , n.

Here the changepoint τ is a discrete parameter with possible values 0, . . . , n. The
simpler model of no change appears when τ = 0 or n, and then λ1 or λ2 vanishes
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from the model. Obviously these two situations are indistinguishable. Moreover, there
would be no changepoint to detect if λ1 = λ2.

In terms of si = y1 + · · · + yi the log likelihood may be written

�(τ, λ1, λ2) ≡ sτ log λ1 − τλ1 + (sn − sτ ) log λ2 − (n − τ )λ2,

and given τ , the maximum likelihood estimates are λ̂1(τ ) = sτ /τ and λ̂2(τ ) = (sn −
sτ )/(n − τ ). Hence the profile log likelihood for τ is

�p(τ ) = sτ log(sτ /τ ) + (sn − sτ ) log {(sn − sτ )/(n − τ )} − sn, τ = 0, . . . , n,

and the likelihood ratio statistic for comparing the model of change at τ with that of
constant λ is

Wp(τ ) = 2

[
Sτ log

(
Sτ /τ

Sn/n

)
+ (Sn − Sτ ) log

{
(Sn − Sτ )/(n − τ )

Sn/n

}]
,

where Si is the random variable corresponding to si . As Si is a sum of inde-
pendent Poisson variables, its distribution is Poisson. For completeness we set
Wp(0) = Wp(n) = 0. The values of Wp(τ )/10 shown in the left panel of Figure 4.9
give strong evidence of change in the rate.

If we wish to test for change at a known value of τ , the usual asymptotics will
apply provided λ1 and λ2 can be estimated consistently from the independent Poisson
variables Sτ and Sn − Sτ , and this will be so if their means τλ1 and (n − τ )λ2 both
tend to infinity. Two asymptotic frameworks for this are:

� λ1, λ2 → ∞ with n and τ fixed; and
� n → ∞ and τ/n → a, with 0 < a < 1 and λ1, λ2 positive and fixed.

The practical implication is that if τ is so close to one of the endpoints that τλ1 or
(n − τ )λ2 is small, a χ2

1 approximation for the null distribution of Wp(τ ) will be poor,
and its quality should be checked; otherwise no new issues arise. They do, however,
if τ is unknown.

The likelihood ratio statistic for existence of a changepoint, regardless of its loca-
tion, is

W = max{Wp(τ ) : τ = 1, . . . , n − 1}.
The values of Wp(τ ) in the left panel of Figure 4.9 show that τ̂ = 11, corresponding to
a change between 1980 and 1981; the observed value of W is w = 74.14. This seems
to be the strong evidence for change that we would have anticipated from plotting the
data, but can we be sure?

To find the distribution of W when λ1 = λ2 = λ, we first note that Y1, . . . , Yn are
then a Poisson random sample with mean λ. For reasons given in Sections 5.2.3 it is
appropriate to treat W conditional on Sn = m, and Example 2.36 implies that the joint
distribution of Y1, . . . , Yn conditional on Sn = m is multinomial with denominator m
and probability vector π = (n−1, . . . , n−1)T. We can simulate the exact distribution of
W under this setup, because no parameters are involved. The right panel of Figure 4.9
shows a histogram of 10,000 simulated values of W . Clearly W is stochastically
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larger than the χ2
1 density, that is, Pr(W > v) > Pr(χ2

1 > v) for any v > 0. Even so,
w = 74.14 is much too large to have occurred by chance: there is overwhelming
evidence for a change.

Here the maximum likelihood estimator τ̂ has a discrete distribution on 0, . . . , 20
and normal approximation would be foolish. Other approaches have more appeal, and
we revisit these data in Example 11.13. �

Parameter identifiability

There must be a 1–1 mapping between models and elements of the parameter space,
otherwise there may be no unique value of θ for θ̂ to converge to. A model in which
each θ generates a different distribution is called identifiable. We saw a failure of this
in Example 4.40, where setting λ1 = λ2 gave the same model for any changepoint
τ . A rarer possibility is that a parameter cannot be estimated from a particular set
of data. In the changepoint example, for instance, the profile likelihood for τ is flat
when y1 = · · · = yn . The probability of such an event vanishes asymptotically, but
such likelihoods do occasionally occur in practice; they demand a simpler model,
more data or external knowledge about parameter values.

Sometimes a model has been set up in such a way that its parameters are non-
identifiable from any dataset. Suppose we have data y1, . . . , yn with corresponding
parameters η1, . . . , ηn , and that we may write both η j = η j (θ ) and η j = η j (β), where
θ and β = β(θ ) are p × 1 and q × 1 vectors of parameters, with q < p. Then the
model with η(θ ) is said to be parameter redundant. The chain rule gives

∂ηT

∂θ
= ∂βT

∂θ

∂ηT

∂β
,

where both matrices on the right have rank q or lower for any θ . Hence the matrix on
the left is symbolically rank-deficient: there is a 1 × p vector function γ (θ ), non-zero
for all θ , such that γ (θ )∂ηT/∂θ = 0 for all θ . It is fairly straightforward to see that
the converse is true, so the model is parameter redundant if and only if ∂ηT/∂θ is
symbolically rank-deficient. Computer algebra can be used to check the symbolic
rank of ∂ηT/∂θ for a complex model.

Example 4.41 (Exponential density) Let Y1, . . . , Yn be independent exponential
variables with mean η, and set η = θ1θ2, where θ1 = β and θ2 = β. Evidently θ1 and
θ2 cannot be estimated separately, and this is reflected by the n × 2 matrix ∂ηT/∂θ ,
which consists of a row of θ2’s above a row of θ1’s. It has symbolic rank one, as is
seen on premultiplying it by γ (θ ) = (θ1, −θ2).

The likelihood L(θ ) is constant on the curves (θ1, θ2) = (ψβ, β−1) in IR2
+ and is

maximized not at a single point but everywhere on the curve (θ1, θ2) = (yt, t−1),
t > 0. A ridge such as this is a feature of parameter-redundant likelihoods. �

Score and information

For regular inference the log likelihood and its derivatives must be well-behaved
enough to allow Taylor series expansions and the neglect of their higher-order terms,
and the score must have the asymptotic normal distribution at (4.34). For a random
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sample, I (θ0) = ni(θ0), and so the expected information increases without limit as
n → ∞; in order to have a normal limit in more complicated situations we also need
I (θ0) → ∞. Furthermore the observed information must converge in probability as
at (4.34).

Example 4.42 (Normal mixture) For an example of a non-smooth likelihood, let
L(µ1, µ2, σ

2
1 , σ 2

2 , γ ) be the likelihood for a random sample y1, . . . , yn from the mix-
ture of normal densities

γ

(2π )1/2σ1
exp

{
− (y − µ1)2

2σ 2
1

}
+ 1 − γ

(2π )1/2σ2
exp

{
− (y − µ2)2

2σ 2
2

}
, 0 ≤ γ ≤ 1,

with the means and variances in their usual ranges. This corresponds to taking ob-
servations in proportions γ , 1 − γ from two normal populations, not knowing from
which they come. If γ 
= 0, 1, then for each y j

lim
σ1→0

L
(
y j , µ2, σ

2
1 , σ 2

2 , γ
) = lim

σ2→0
L
(
µ1, y j , σ

2
1 , σ 2

2 , γ
) = +∞,

so L is a smooth surface pocked with singularities, each of which corresponds to
estimating the mean and variance of one of the populations from a single observation.
For large n the strong consistency result guarantees the existence of a smooth local
maximum of L near the true parameter values. When finding this numerically a careful
choice of starting values can help one avoid ending up at a spike instead, but it is worth
asking why they occur.

The issue is rounding. As we saw in Example 4.21, the fiction that data are con-
tinuous is usually harmless and convenient. Here it is not harmless, however, be-
cause it results in infinite likelihoods. The spikes can be removed by accounting for
the rounding of the y j . If they are rounded to multiples of δ, then Pr(Y = kδ) =
F(kδ + δ/2) − F(kδ − δ/2), where

F(y) = γ�

(
y − µ1

σ1

)
+ (1 − γ )�

(
y − µ2

σ2

)
.

As 0 < F(y j ) < 1, the largest possible contribution to L is then finite. See Exam-
ple 5.36 for further discussion. �

Example 4.43 (Shifted exponential density) To see a failure of regularity con-
ditions for the score statistic, let y1, . . . , yn be an exponential random sample with
lower endpoint φ and mean θ + φ, so

f (y; φ, θ ) = θ−1 exp {−(y − φ)/θ} , y > φ, θ > 0.

The corresponding random variables Y1, . . . , Yn have the same distribution as
φ + θ E1, . . . , φ + θ En , where E1, . . . , En is a random sample from the standard
exponential density. The log likelihood contribution from a single observation y > φ

is �(φ, θ ) = − log θ − (y − φ)/θ , so

∂�(φ, θ )

∂φ
=

{
θ−1, y > φ,
0, otherwise.
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For a regular model this would have mean zero, but here the interchange of differ-
entiation and integration that yields (4.32) fails because the support of the density The support of g(y) is the

set {y : g(y) > 0}.depends on φ, and E(∂�/∂φ) = θ−1.
The likelihood is L(φ, θ ) = θ−n exp {−n(y − φ)/θ} for y1, . . . , yn > φ and θ > 0,

and for any θ this increases as φ ↑ min y j and is zero thereafter. Thus φ has maximum
likelihood estimate φ̂ = y(1), while θ̂ = y − φ̂ = y − y(1).

To find limiting distributions of φ̂ and θ̂ , recall from Example 2.28 that the r th order
statistic E(r ) of a standard exponential random sample may be written

∑r
j=1(n + 1 −

j)−1 E j , where E1, . . . , En is an exponential random sample. As Y(r )
D= φ + θ E(r ), we

see that Y(1)
D= φ + n−1θ E1, implying that nθ−1(̂φ − φ)

D= E1: the rescaled endpoint
estimate φ̂ has a non-normal limit distribution. Moreover it converges faster than
usual because φ̂ − φ must be multiplied by n rather than n1/2 in order to give a
non-degenerate limit.

For the distribution of θ̂ , note that as Y − Y(1) = n−1 ∑n
r=1 Y(r ) − Y(1),

θ̂
D= n−1

{
nφ + θ

n∑
r=1

r∑
j=1

E j

n + 1 − j
− nφ − θ E1

}
= n−1(n − 1)θ E,

with E the average of E2, . . . , En . The central limit theorem implies that
n1/2(̂θ − θ )/θ

D−→ N (0, 1), so standard asymptotics apply to θ̂ despite their fail-
ure for φ̂, which converges so fast that its randomness has no impact on the limiting
distribution of θ̂ .

In this problem exact inference is possible for any n (Exercise 4.6.4), but the general
conclusion is that endpoints must be treated gingerly. �

Though artificial, our next example illustrates how trouble in stochastic process
problems can stem from the information quantities.

Example 4.44 (Poisson birth process) Consider a sequence Y0, . . . , Yn such
that given the values of Y0, . . . , Y j−1, the variable Y j has a Poisson density with
mean θY j−1, and E(Y0) = θ . The likelihood for θ based on such data was given in
Example 4.6, and the log likelihood and observed information are

�(θ ) ≡
n∑

j=0

Y j log θ − θ

(
1 +

n−1∑
j=0

Y j

)
, J (θ ) = θ−2

n∑
j=0

Y j .

The expected value of Y j , given Y j−1, is θY j−1, so its unconditional expectation is
θ j+1. Hence the expected information is I (θ ) = θ−2(θ + · · · + θn+1). If θ ≥ 1, then
I (θ ) → ∞ as n → ∞, but if not, I (θ ) is asymptotically bounded. In fact, as n → ∞,
the process is certain to become extinct — that is, there will be an n0 such that Yn0 =
Yn0+1 = · · · = 0 — unless θ > 1, and even then there is a non-zero probability of
extinction. Hence J (θ ) remains finite with probability one unless θ > 1, and remains
finite with non-zero probability for any θ . Thus the maximum likelihood estimator
θ̂ = (Y0 + · · · + Yn)/(1 + Y0 + · · · + Yn−1) is neither consistent nor asymptotically
normal if θ ≤ 1.
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From a practical viewpoint, this failure of standard asymptotics is less critical than
it might appear. The limit (4.26) is used to obtain finite-sample approximations such
as (4.27), but we can still use these if they can be justified by other means. Inference
is not impossible, merely more difficult than with independent data. �

Wrong model

Up to now we have supposed that the model fitted to the data is correct, with only
parameter values unknown. To explore some consequences of fitting the wrong model,
suppose the true model is g(y), but that ignorant of this we attempt to fit f (y; θ )
to a random sample y1, . . . , yn . Under mild conditions the log likelihood �(θ ) =∑

log f (y j ; θ ) will be maximized at θ̂ , say, and as n → ∞ the quantity �(̂θ ) =
n−1�(̂θ ) will tend to ∫

log f (y; θg)g(y) dy,

where θg is the value of θ that minimizes the Kullback–Leibler discrepancy

D( fθ , g) =
∫

log

{
g(y)

f (y; θ )

}
g(y) dy

with respect to θ . Thus θg is the ‘least bad’ value of θ given our wrong model; of
course θg depends on g. Differentiation gives

0 =
∫

∂ log f (y; θg)

∂θ
g(y) dy,

with θ̂ determined by the finite-sample version of this,

0 = n−1
n∑

j=1

∂ log f (y j ; θ̂ )

∂θ
. (4.51)

Expansion of (4.51) about θg yields

θ̂
.= θg +

{
−n−1

n∑
j=1

∂2 log f (y j ; θg)

∂θ∂θ T

}−1 {
n−1

n∑
j=1

∂ log f (y j ; θg)

∂θ

}

and a modification of the derivation that starts on page 124 gives

θ̂
.∼ Np{θg, I (θg)−1 K (θg)I (θg)−1}, (4.52)

where the information sandwich variance matrix depends on

K (θg) = n
∫

∂ log f (y; θ )

∂θ

∂ log f (y; θ )

∂θ T
g(y) dy,

(4.53)

Ig(θg) = −n
∫

∂2 log f (y; θ )

∂θ∂θ T
g(y) dy.

If g(y) = f (y; θ ), so that the supposed density is correct, then θg is the true θ , the
multivariate version of (4.33) gives K (θg) = Ig(θg) = I (θ ), and (4.52) reduces to the
usual approximation.
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In practice g(y) is of course unknown, and then K (θg) and Ig(θg) may be esti-
mated by

K̂ =
n∑

j=1

∂ log f (y j ; θ̂ )

∂θ

∂ log f (y j ; θ̂ )

∂θ T
, Ĵ = −

n∑
j=1

∂2 log f (y j ; θ̂ )

∂θ∂θ T
; (4.54)

the latter is just the observed information matrix. We may then construct confidence
intervals for θg using (4.52) with variance matrix Ĵ−1 K̂ Ĵ−1.

For future reference we give the approximate distribution of the likelihood ratio
statistic. Taylor series approximation gives

2{�(̂θ ) − �(θg)} .= (̂θ − θg)T

{
−

n∑
j=1

∂2 log f (y j ; θg)

∂θ∂θ T

}
(̂θ − θg)

.= n(̂θ − θg)T Ig(θg)(̂θ − θg)

and the normal distribution (4.52) of θ̂ implies that the likelihood ratio statistic has
a distribution proportional to χ2

p, but with mean tr{Ig(θg)−1 K (θg)}. If the model is
correct, Ig(θg) = K (θg), giving the previous mean, p.

Example 4.45 (Exponential and log-normal models) Let f (y; θ ) be the exponen-
tial density with mean θ , while in fact Y = eσ Z , where Z is standard normal. Then Y
is log-normal, with mean eσ 2/2 and variance eσ 2

(eσ 2 − 1).
The presumed log likelihood is − log θ − y/θ , so that

∫
log f (y; θ )g(y) dy = − log θ − θ−1

∫
yg(y) dy = − log θ − θ−1eσ 2/2,

and differentiation of this with respect to θ gives θg = eσ 2/2. Here the ‘least bad’
exponential model has the same mean as the true log-normal distribution, which must
always exceed one. Further calculation gives I (θg) = θ−2

g and K (θg) = 1 − θ−2
g ,

The maximum likelihood estimate of θ is θ̂ = Y , and either directly or using the
information sandwich we see that var(̂θ ) = n−1θ2

g (θ2
g − 1). Note that replacement of

θg with its estimate θ̂ could result in a negative variance. This is not the case if we use
the empirical variance — simple calculations give Ĵ = n/y2 and K̂ = y−4 ∑

(y j −
y)2, so Ĵ−2 K̂ = n−2 ∑

(y j − y)2. Reassuringly, this is a consistent estimate of the
variance of the average of a random sample from any distribution with finite variance
(Example 2.20).

As Ig(θg)−1 K (θg) = eσ 2 − 1 = θ2
g − 1, the likelihood ratio statistic may be over-

or under-dispersed relative to the χ2
1 distribution. �

The discussion above is too crude to be the last word. In practice the model fitted
will often be elaborate enough to be reasonably close to the data, in the sense that
only glaring departures from the model are certain to be detected. Thus it would be
better to examine the properties of θ̂ and related quantities when f (y; θ ) is near g(y)
in a suitable sense.
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Exercises 4.6

1 Data arise from a mixture of two exponential populations, one with probability π and
parameter λ1, and the other with probability 1 − π and parameter λ2. The exponential
parameters are both positive real numbers and π lies in the range [0, 1], so � = [0, 1] ×
IR2

+ and

f (y; π, λ1, λ2) = πλ1e−λ1 y + (1 − π )λ2e−λ2 y, y > 0, 0 ≤ π ≤ 1, λ1, λ2 > 0.

Are the parameters identifiable?
Does standard likelihood theory apply when (i) using a likelihood ratio statistic to test if
π = 0? (ii) estimating π when λ1 = λ2?

2 One model for outliers in a normal sample is the mixture

f (y; µ, π ) = (1 − π )φ(y − µ) + πg(y − µ), 0 ≤ π ≤ 1, ∞ < µ < ∞,

where g(z) has heavier tails than the standard normal density φ(z); take g(z) = 1
2 e−|z|,

for example. Typically π will be small or zero. Show that when π = 0 the likelihood
derivative for π has zero mean but infinite variance, and discuss the implications for the
likelihood ratio statistic comparing normal and mixture models.

3 Show that the capture-recapture model in Example 4.13 is not parameter redundant, but
that it is if different survival probabilities are allowed in each year. Why is this obvious?

4 In Example 4.43, use relations between the exponential, gamma, chi-squared and F dis-
tributions (Section 3.2.1) to show that

2nθ̂

θ
∼ χ2

2(n−1),
n(̂φ − φ)

θ̂
∼ n

n − 1
F2,2(n−1);

hence give exact (1 − 2α) confidence intervals for the parameters.

5 Show that the score statistic for a variable Y from the uniform density on (0, θ ) is U (θ ) =
−θ−1 in the range 0 < Y < θ and zero otherwise, and deduce that E {U (θ )} = −1 and
i(θ ) = −θ−1. Why is this model non-regular?
Sketch the likelihood based on a random sample Y1, . . . , Yn , and verify that θ̂ = Y(n). To
find its limiting distribution, note that

Pr(̂θ ≤ a) =
{

0, a < 0,
(a/θ )n, 0 ≤ a ≤ θ ,
1, a > θ .

Show that as n → ∞, Zn = n(θ − θ̂ )/θ
D−→ E , where E is exponential.

This requires basic
knowledge of partial
differential equations.

6 Suppose that ∂ηT/∂θ is symbolically rank-deficient, that is, there exist γr (θ ), non-zero for
all θ , such that

p∑
r=1

γr (θ )
∂η j

∂θr
= 0, j = 1, . . . , n.

Show that the auxiliary equations

dθ1

γ1(θ )
= · · · = dθp

γp(θ )

have p − 1 solutions given implicitly by βt (θ ) = ct for constants c1, . . . , cp−1. Deduce
that the model is parameter redundant.
(Catchpole and Morgan, 1997)
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4.7 Model Selection

Model formulation involves judgement, experience, trial, and error. Evidently models
should be consistent with knowledge of the system under study, extrapolate to related
sets of data, and if possible have reasonable mathematical and statistical properties.
Thus, for example, we prefer discrete distributions for discrete quantities and contin-
uous for continuous, while if a probability π (x) depends on a quantity x , the relation
π (x) = eβx/(1 + eβx ) is preferable to π (x) = βx , because the latter may lie outside
the interval (0, 1); see Example 4.5. Often subject-matter considerations suggest a
stochastic argument for a range of suitable models, which typically have primacy
over purely ad hoc ones. Even after such principles have been applied, however, there
are usually several competing models, and a basis is needed for comparing them.

A principle already used but as yet unstated is the principle of parsimony or
Ockham’s razor: ‘it is vain to do with more what can be done with fewer’. According William of Ockham or

Occam
(?1285–1347/1349) was
an English Franciscan
who studied at Oxford and
Paris, was imprisoned by
Pope John XXII for
arguing that the
Franciscan ideal of
poverty was prefigured in
the Gospels, and then
escaped to Bavaria where
he wrote in defense of
Emperor Louis IV against
papal claims; Eco (1984)
gives some idea of these
controversies. Regarded
as the most important
scholastic philosopher
after Thomas Aquinas, his
insistence that logic and
human knowledge could
be studied without
reference to theology and
metaphysics encouraged
scientific research. He
probably died in the Black
Death of 1349.

to this, given several explanations of the same phenomenon, we should prefer the
simplest, or, in our terms, favour simple models over complex ones that fit our data
about equally well. But what does this last phrase mean? If we have models with 1, 2,
and 3 parameters and maximized log likelihoods of 0, 10, and 11, the second clearly
improves on the first, but do the second and third fit ‘about equally well’? For regular
nested models, standard asymptotics could be applied, but more generally there are
difficulties. First, model selection usually involves many fits to the same set of data,
so our previous discussion focussing on comparing two prespecified models may be
wildly inappropriate. Second, useful asymptotics may be unavailable, for example be-
cause the models to be compared are not nested. Third, we may wish to treat none of
the models as the truth. An example is in prediction, where a fitted model is sometimes
treated as a ‘black box’ whose contents have no intrinsic interest but are merely used to
generate predictions; we should then adopt the agnostic position described at the end
of Section 4.6. Here we outline how those ideas may be applied to model selection.

Suppose we have a random sample Y1, . . . , Yn from the unknown true model
g(y). We fit a candidate model f (y; θ ) by maximizing �(θ ) = ∑

log f (y j ; θ ), giving
p × 1 parameter estimate θ̂ ; equivalently we could minimize −�(θ ). The fact that the
Kullback–Leibler discrepancy is positive,

D( fθ , g) =
∫

log

{
g(y)

f (y; θ )

}
g(y) dy ≥ 0,

with equality if and only if f (y; θ ) = g(y), suggests that we aim to choose the can-
didate that minimizes D( fθ , g). Let θg denote the corresponding value of θ . Unfortu-
nately this approach to model selection is not sufficiently discriminating. The catch is
that an infinity of candidate models have D( fθg , g) = 0. To see why, suppose that by
a lucky chance the candidate model contains the true one. Then f (y; θg) = g(y) and
we call fθ correct. As g has fewer parameters we prefer it to fθ , but D( fθ , g) ≥ 0
with equality when θ = θg . Hence on this basis any correct model is indistinguish-
able from the true one. We want to pick out the simplest correct model, so we should
favour models with few rather than many parameters, provided they fit about equally
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well. For example, if g is the exponential density with unit mean, fθ might be the
Weibull density with unknown shape and scale parameters. This is correct because it
reduces to g when both its parameters take value one, but given the choice we would
prefer g. A example of a wrong model is the log normal density, which does not
become exponential for any values of its parameters.

The expected likelihood ratio statistic for comparing g with fθ at θ = θ̂ for another
random sample Y +

1 , . . . , Y +
n from g, independent of Y1, . . . , Yn , is

E+
g

[
n∑

j=1

log

{
g(Y +

j )

f (Y +
j ; θ̂ )

}]
= nD( f θ̂ , g) ≥ nD

(
fθg , g

)
,

where E+
g (·) denotes expectation over the density g of Y +. If fθ is close to g, then

nD( fθg , g) will be close to nD(g, g), and we may hope that nD( f θ̂ , g) is close to
both. But if further parameters do not give a worthwhile reduction in D( fθg , θ ), adding
degrees of freedom gives θ̂ more latitude to miss θg , and the corresponding increase
in D( f θ̂ , g) will tend to outweigh any decrease in D( fθg , g). To remove dependence
on θ̂ , we average over its distribution, giving

Eg

(
E+

g

[
n∑

j=1

log

{
g(Y +

j )

f (Y +
j ; θ̂ )

}])
= nEg{D( f θ̂ , g)}; (4.55)

the outer expectation is over the distribution of θ̂ , independent of Y +. Taylor series
expansion shows that log f (y; θ̂ ) approximately equals

log f (y; θg) + (̂θ − θg)T
∂ log f (y; θg)

∂θ
+ 1

2
(̂θ − θg)T

∂2 log f (y; θg)

∂θ∂θ T
(̂θ − θg),

and as θg minimizes D( fθ , g),∫
∂ log f (y; θg)

∂θ
g(y) dy = 0.

Hence

nD( f θ̂ , g) = n
∫

log

{
g(y)

f (y; θ̂ )

}
g(y) dy

.= nD( fθg , g) + 1

2
tr{(̂θ − θg)(̂θ − θg)T Ig(θg)},

where Ig(θg) is given at (4.53) and we have used the fact that the trace of a scalar is
itself. At the end of Section 4.6 we discussed likelihood estimation under the wrong
model, and saw that for regular models θ̂ is asymptotically normal with mean θg

and variance matrix Ig(θg)−1 K (θg)Ig(θg)−1, where K (θg) too is given at (4.53); both
Ig(θg) and K (θg) are positive definite. Hence

nEg{D( f θ̂ , g)} .= nD( fθg , g) + 1

2
tr{Ig(θg)−1 K (θg)}, (4.56)

where the second term penalizes the dimension p of θ . The first term here is O(n),
but as both Ig(θ ) and K (θ ) are O(n), the second term is O(p). When fθ is correct
and regular, Ig(θg) = K (θg) so tr{Ig(θg)−1 K (θg)} = p.
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To build an estimator of (4.56), note first that the term
∫

log g(y) g(y) dy is constant
and can be ignored. Now �(̂θ ) = �(θg) + {�(̂θ ) − �(θg)}, so

Eg{−�(̂θ )} = −Eg

{
�(θg) + 1

2
W (θg)

}

.= nD( fθg , g) − 1

2
tr{I (θg)−1 K (θg)} − n

∫
log g(y) g(y) dy,

where we have used the fact that under the wrong model, the likelihood ratio statis-
tic W (θg) has mean approximately tr{I (θg)−1 K (θg)}. Hence −�(̂θ ) tends to under-
estimate nD( fθg , g) − n

∫
log g(y) g(y) dy. On reflection this is obvious, because

�(̂θ ) ≥ �(θg) by definition of θ̂ . As p increases, so will the extent of overestimation.
An estimator of (4.56) is −�(̂θ ) + c, where c estimates tr{I (θg)−1 K (θg)}. Two

possible choices of c are p and tr( Ĵ −1 K̂ ), where Ĵ and K̂ are defined at (4.54), and
these lead to AIC was introduced by

Akaike (1973) and is
known as Akaike’s
information criterion.
Hirotugu Akaike (1927–)
was educated in Tokyo
and worked at the Institute
of Statistical Mathematics.
He has made important
contributions to time
series and model
selection, and also to
production engineering;
see Findley and Parzen
(1995). NIC and BIC are
the network information
criterion, and Bayes’
information criterion.
They may be modified to
improve their behaviour
for particular models.

AIC = 2{−�(̂θ ) + p}, NIC = 2{−�(̂θ ) + tr( Ĵ−1 K̂ )}; (4.57)

another possibility derived in Section 11.3.1 is BIC = −2�(̂θ ) + p log n. The model
is chosen to minimize AIC, say, with the factor 2 putting differences of AIC on the
same scale as likelihood ratio statistics. In practice AIC, BIC, and NIC are used far
beyond random samples.

For insight into properties of AIC, suppose that by rare good fortune we fit the
true and a correct model, getting maximized log likelihoods �̂g and �(̂θ ) with q and
p parameters respectively, and p > q . We prefer fθ to g if �(̂θ ) − p > �̂g − q, but as
g is nested within fθ , properties of the likelihood ratio statistic give

Pr{�(̂θ ) − p > �̂g − q} .= Pr
{
χ2

p−q > 2(p − q)
}
.

For every large n, and with p − q = 1, 2, 4 and 10, g is selected with probability
0.84, 0.86, 0.91 and 0.97. Hence model selection using AIC is inconsistent:

Pr(true model selected) 
→ 1 as n → ∞.

In applications many models would be fitted, and the probability of selecting the true
one might be much lower than these calculations suggest.

Modification of this argument shows that NIC also gives an inconsistent procedure.
For consistent model selection differences of the penalty must lie between O(1) and
O(n) — for example, O(log n) — but in practice the true model is rarely among those
fitted and finite-sample properties are more important. BIC does give consistent model
selection when fθ is correct, but in finite samples it typically leads to underfitting
because it tends to suggest too parsimonious a model.

If the candidate model fθ is not correct, then

Eg {̂�g − �(̂θ )} .= nD( fθg , g) > 0,

so the weak law of large numbers implies that Pr{̂�g − q > �(̂θ ) − p} → 1 as n → ∞
for fixed p. Hence with enough data we can always distinguish the true model from
a fixed incorrect one.
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Figure 4.10 Model
selection using likelihood
criteria. Upper left: 21n
observations (blobs) with
true mean (solid) and
polynomial fits r = 1, 2, 3
(dots, small dashes, large
dashes); n = 3. Upper
right: empirical versions
of AIC, BIC and NIC for
data on left. All are
maximized with r = 3.
Lower left: twice expected
log likelihood 2Eg(�(θg)}
(blobs) and theoretical
versions of AIC, BIC and
NIC for the panel above.
The crosses show how
2Eg{�(̂θ )} increases with
the dimension of the fitted
model. Lower right: as
lower left panel, but with
n = 8 observations at
each value of x .

Example 4.46 (Poisson model) We illustrate this discussion with data whose mean
µ(x) = 8 exp q(x) is shown in the upper left panel of Figure 4.10, together with
observations generated by taking n = 3 independent Poisson variables with means
µ(−10), µ(−9), . . . , µ(10); 21n variables in all. This is the true model g.

We fit candidate models fθ with Poisson variables having means λ(x) = exp(θ0 +
θ1x + · · · + θr xr ). The dimension is p = r + 1, and taking r = 1, . . . , 19 gives in-
creasingly complex incorrect models, because q(x) = 1.2ex/(1 + ex ) is not poly-
nomial. A polynomial with r = 20 terms can mimic q(x) exactly at x = −10,

−9, . . . , 10, however, so taking r = 20 is correct but hardly parsimonious. The dif-
ference between the linear and the quadratic fits shown in the upper left panel of
Figure 4.10 is small, but adding a cubic term seems to improve the fit.

The upper right panel shows AIC, NIC, and BIC for these data. All three suggest
the choice of r = 3, but BIC penalizes complexity much more drastically than the
others. In practice one should not only look at such a graph, but also examine any
models for which the chosen criterion is close to the optimum.

To see the theoretical quantities estimated by AIC, BIC, and NIC, note that the data
here comprise n variables Y1,x , . . . , Yn,x at each value of x . The log likelihood for an
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incorrect model which takes Y j,x to be Poisson with mean λ(x) is

�(θ ) ≡
n∑

j=1

10∑
x=−10

{Y j,x log λ(x) − λ(x)}.

Now Eg(Y j,x ) = µ(x), so Eg{�(θ )} = n
∑

x {µ(x) log λ(x) − λ(x)}; the values of
θ0, . . . , θr that maximize this give Eg{�(θg)}. The blobs in the lower left panel of
the figure show how −2Eg{�(θg)} depends on r . Initially there are big decreases, but
after r = 5 adding further parameters is barely worthwhile. The crosses show how
−2Eg{�(̂θ )} depends on r : not penalizing the log likelihood would lead to choosing
r = 20. The exact values of AIC, BIC, and NIC all indicate r = 5. However BIC
indicates fits about equally good for r = 5 and the simpler model r = 3, whereas
for AIC and NIC the best fit is similar to that with the more complex model r = 7.
The penalty applied by BIC is substantially larger than for the others, which are very
similar. These functions are what is being estimated in the upper right panel.

To see the effect of increased sample size, the lower right panel of the figure shows
exact values of −Eg{�(θg)}, AIC, BIC and NIC when n = 8. The jumps in −Eg{�(θg)}
are larger than with n = 3, and with this larger sample r = 7 seems appreciably better
than r = 5: more data make it worthwhile to fit more complex models, because we can
distinguish them more clearly. Enormous values of n, however, are required to separate
r = 10 and r = 20 reliably: −Eg{�(θg)} .= −0.08 when n = 3 and r = 10, so even
a sample with n = 100 might indicate that r = 10. With n = 8, BIC is much more
peaked than when m = 3, so the value r = 5 it indicates is better determined, even
though the more complex choice r = 7 seems sensible on the basis of −Eg{�(θg)}. By
contrast the penalties applied by AIC and NIC are unchanged. Both indicate r = 7,
but evidently their empirical counterparts might have minima anywhere in the range
r = 5, . . . , 20.

The closeness of NIC to AIC in this context leads us to ignore NIC below. �

Example 4.47 (Spring failure data) To analyze the full set of spring failure data
in Example 1.2, suppose that the data have Weibull densities whose parameters α and
θ may depend on stress x , and consider the models:

M1: unconnected values of α and θ at each stress, with p = 12 parameters;
M2: a common value of α but unconnected θ at each stress, with p = 7;
M3: a common value of α, and θ = (βx)−1, with p = 2; and
M4: common values of α and θ at every stress, with p = 2.

The nesting structure of these models is M4, M3 ⊆ M2 ⊆ M1, where ⊆ means ‘is
nested within’; neither M3 nor M4 is nested within the other. We anticipate from
Figure 1.2 that M4 will fit the data very poorly.

To deal with the censoring at lower stresses, note that Example 4.20 implies that
the likelihood for a censored Weibull random sample y1, . . . , yn is∏

u

α

θ

( y j

θ

)α−1
exp

{
−

( y j

θ

)α} ∏
c

exp
{
−

( y j

θ

)α}
,
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Table 4.4 Model
selection for spring failure
data.

Model p Maximized log likelihood AIC BIC

M1 12 −360.40 744.8 769.9
M2 7 −378.90 771.8 786.5
M3 2 −411.50 827.0 831.2
M4 2 −460.56 925.1 929.3

Table 4.5 Parameter
estimates and standard
errors based on observed
information for model M1

for the spring failure data,
fitting separate parameters
at each stress.

Stress xs 700 750 800 850 900 950

α̂ (SE) 1.59 (0.82) 1.44 (0.39) 1.69 (0.39) 7.36 (1.85) 5.37 (1.23) 5.97 (2.13)
θ̂ (SE) 18044 (7295) 6609 (1566) 907 (180) 372 (16.9) 232 (14.5) 181 (10.2)

where
∏

u and
∏

c denote products over uncensored and censored data. We regard all
observations as independent, with parameters αs and θs at stress xs , and with indicator
dsj equalling one if the j th observation at stress xs , ys j , is uncensored and equalling
zero otherwise. The overall likelihood is then

6∏
s=1

10∏
j=1

{
αs

θs

(
ys j

θs

)αs−1
}ds j

exp

{
−

(
ys j

θs

)αs
}

.

Table 4.4 shows that M4 fits much worse than any of the other models, and M3,
which has the same number of parameters, is more promising. Evidently M1 is best
by a large margin.

Table 4.5 gives estimates for M1, with standard errors based on observed informa-
tion. The values of α̂ depend strongly on the stress, and suggest one value of α at the
three lower stresses and another at the higher ones. The standard errors are useless at
the lower stresses, with heavy censoring: with so little information any inference will
be very uncertain.

The model with six separate values of θs and two values of α, one for the three
upper and one for the three lower levels of xs , has maximized log likelihood −360.92,
AIC = 737.8, and BIC = 754.6, so it beats M1. A plot of log θ̂s against log stress is
close to a straight line, suggesting a three-parameter model with θ = 1/(βx) and two
different levels for α, but smooth dependence of α on x is both more plausible and
more useful for prediction: what value of α is suitable at stress 825 N/mm2? Absent
more knowledge about the purpose of the experiment, we proceed no further. �

Further discussion of model selection and the related topic of model uncertainty
may be found in Sections 8.7.3 and 11.2.4.

Exercises 4.7

1 Show that both sides of (4.56) are invariant to 1–1 reparametrizations θ = θ (φ). Why is
this important?

2 Use AIC and BIC to compare the models fitted in Example 4.34.
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3 Two densities for counts y = 0, 1, . . . are the Poisson θ ye−θ /y!, θ > 0 and the geometric
π (1 − π )y , 0 < π < 1; their means are θ and π−1 − 1. Show that if the true model is one
but the other is fitted, the ‘least bad’ parameter value matches the means. How easy is
it to tell them apart when the data are Poisson with θ = 1, 5, 10, and when the data are
geometric?

4 Consider a regular penalized log likelihood �(̂θ ) − cn , where cn
P−→ c as n → ∞, �(θ )

is based on a correct model, θ has dimension p, and �g is the log likelihood for the
true model. Show that 2{�(̂θ ) − cn − �g} D−→ χ 2

p − 2c, and deduce that the probability of
selecting the true model is Pr(χ 2

p ≤ 2c). Hence show that while model selection based on
BIC is consistent, that based on AIC is not.

4.8 Bibliographic Notes

The ideas of likelihood, information, sufficiency and efficient estimation were devel-
oped in a remarkable series of papers by R. A. Fisher in the 1920s and 1930s. Most
introductions to mathematical statistics contain this core material. A recent excellent
account is Knight (2000). The approach here is influenced by Silvey (1970), Edwards
(1972), Cox and Hinkley (1974) and Kalbfleisch (1985). See also Barndorff-Nielsen
and Cox (1994) and Pace and Salvan (1997).

The literature on non-regular models is diffuse. See Self and Liang (1987), Smith
(1985, 1989b, 1994) and Cheng and Traylor (1995), or Davison (2001) for a partial
review. Parameter redundancy is discussed by Catchpole and Morgan (1997), with
applications to capture-recapture models.

Model selection and uncertainty are topics of current research interest, with much
heat generated by Chatfield (1995) and discussants. For a longer discussion, see
Burnham and Anderson (2002).

4.9 Problems

1 The logistic density with location and scale parameters µ and σ is

f (y; µ, σ ) = exp {(y − µ)/σ }
σ [1 + exp{(y − µ)/σ }]2

, −∞ < y < ∞, −∞ < µ < ∞, σ > 0.

(a) If Y has density f (y; µ, 1), show that the expected information for µ is 1/3.
(b) Instead of observing Y , we observe the indicator Z of whether or not Y is positive.
When σ = 1, show that the expected information for µ based on Z is eµ/(1 + eµ)2, and
deduce that the maximum efficiency of sampling based on Z rather than Y is 3/4. Why is
this greatest at µ = 0?
(c) Find the expected information I (µ, σ ) based on Y when σ is unknown. Without doing
any calculations, explain why both parameters cannot be estimated based only on Z .

2 Let ψ(θ ) be a 1–1 transformation of θ , and consider a model with log likelihoods �(θ )
and �∗(ψ) in the two parametrizations respectively; � has a unique maximum at which the
likelihood equation is satisfied. Show that

∂�∗(ψ)

∂ψr
= ∂θT

∂ψr

∂�(θ )

∂θ
,

∂2�∗(ψ)

∂ψr∂ψs
= ∂θT

∂ψr

∂2�(θ )

∂θ∂θT

∂θ

∂ψs
+ ∂2θT

∂ψr∂ψs

∂�(θ )

∂θ
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and deduce that

I ∗(ψ) = ∂θT

∂ψ
I (θ )

∂θ

∂ψT
,

but that a similar equation holds for observed information only when θ = θ̂ .

3 A location-scale model with parameters µ and σ has density

f (y; µ, σ ) = 1

σ
g

(
y − µ

σ

)
, −∞ < y < ∞, −∞ < µ < ∞, σ > 0.

(a) Show that the information in a single observation has form

i(µ, σ ) = σ−2
( a b

b c

)
,

and express a, b, and c in terms of h(·) = log g(·). Show that b = 0 if g is symmetric about
zero, and discuss the implications for the joint distribution of the maximum likelihood
estimators µ̂ and σ̂ when g is regular.
(b) Find a, b, and c for the normal density (2π )−1/2e−u2/2 and the log-gamma density
exp(κu − eu)/�(κ), where κ > 0 is known.

4 Let y1, . . . , yn be a random sample from f (y; µ, σ ) = (2σ )−1 exp(−|y − µ|/σ ), −∞ <
y, µ < ∞, σ > 0; this is the Laplace density.
(a) Write down the log likelihood for µ and σ and by showing that# means ‘the number of

times’.
d

dµ

∑
|y j − µ| = #{y j < µ} − #{y j > µ} = n − 2R,

where R = #{y j > µ}, show that for any fixed σ > 0 the maximum likelihood estimate
of µ is µ̂ = median{y j }, and deduce that the maximum likelihood estimate of σ is the
mean absolute deviation σ̂ = n−1

∑ |y j − µ̂|.
(b) Use the results of Section 2.3 to show that in large samples µ̂

.∼ N (µ, σ 2/n) and
σ̂

P−→ σ . Hence give an approximate confidence interval for the difference of means
based on the data in Table 1.1.
(c) Is this a regular model for maximum likelihood estimation?

5 Show that the expected information for a random sample of size n from the Weibull density
in Example 4.4 is

I (θ, α) = n
(

α2/θ2 −ψ(2)/θ
−ψ(2)/θ {1 + ψ ′(2) + ψ(2)2}/α2

)
,

where ψ(z) = d log �(z)/dz.
Given that ψ(2) = 0.42278 and ψ ′(2) = 0.64493, show that

I −1(θ, α) = n−1
( 1.108θ2/α2 0.257θ

0.257θ 0.608α2

)
.

Hence find standard errors based on expected information for the estimates in the last
column of Table 4.5. What problem arises in a similar calculation for the column with
stress x = 700?

6 Persons who catch an infectious disease either die almost at once during its initial phase,
or live an exponential time; denote the survival time Y and declare that Y = 0 if death
occurs in the initial phase. Explain why the likelihood can be written as a product of terms
of form

(1 − p)1−I × {pθ−1 exp(−Y/θ )}I , 0 < p < 1, θ > 0,

where I is an indicator of survival beyond the initial phase. Give interpretations of p
and θ .
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Table 4.6 Frequencies
of eight possible
sequences, with their
probabilities based on a
model in which the
probability of a male at
first birth is 1

2 but the
probability that the next
child has the same sex is
(1 + θ )/2, for 6906
three-child families.

MMM MMF MFM MFF
953 914 846 845

(1 + θ )2/8 (1 − θ2)/8 (1 − θ )2/8 (1 − θ2)/8

FMM FMF FFM FFF
825 748 852 923

(1 − θ2)/8 (1 − θ )2/8 (1 − θ2)/8 (1 + θ )2/8

Given data (i1, y1), . . . , (in, yn) on the survival of n persons, show that the log likelihood
has form

�(p, θ ) = r log p + (n − r ) log(1 − p) − r log θ − θ−1
n∑

j=1

i j y j ,

where r = ∑
i j , and hence find the maximum likelihood estimators of p and θ , together

with the observed and expected information matrices.
Comment on the form of the information matrices and give approximate 95% confidence
intervals for the parameters.

7 The administrator of a private hospital system is comparing legal claims for damages
against two of the hospitals in his system. In the last five years at hospital A the following
19 claims ($, inflation-adjusted) have been paid:

59 172 4762 1000 2885 1905 7094 6259 1950 1208
882 22793 30002 55 32591 853 2153 738 311

At hospital B, in the same period, there were 16 claims settled out of court for $800 or
less, and 16 claims settled in court for

36539 3556 1194 1010 5000 1370 1494 55945
19772 31992 1640 1985 2977 1304 1176 1385

The proposed model is that claims within a hospital follow an exponential distribution.
How would you check this for hospital A?
Assuming that the exponential model is valid, set up the equations for calculating max-
imum likelihood estimates of the means for hospitals A and B. Indicate how you would
solve the equation for hospital B.
The maximum likelihood estimate for hospital B is 5455.7. If a common mean is fitted for
both hospitals, the maximum likelihood estimate is 5730.6. Use these results to calculate
the likelihood ratio statistic for comparing the mean claims of the two hospitals, and
interpret the answer.

8 Are the sexes of successive children within a family dependent? Table 4.6 gives for 6906
three-child families the frequencies of the eight possible sequences, with their probabilities
based on a model in which the probability of a male at first birth is 1

2 but the probability
that the next child has the same sex is (1 + θ )/2; here −1 < θ < 1. What is special about
the model in which θ = 0?
(a) If yMMM, yMMF and so forth denote the numbers of families with orders MMM, MMF,
in a sample of m families, write down the likelihood for θ and show that the numbers of
consecutive pairs MM and FF is a sufficient statistic.
(b) Obtain the score statistic and observed information, and verify that for the data above
the maximum likelihood estimate is θ̂

.= 0.04 with standard error 0.0085. Give a 95%
confidence interval for θ . Discuss.
(c) Is it true that the probability that the first child is male is 1

2 ? Suggest how you might
generalize the model to allow for (i) this probability being unequal to 1

2 , and (ii) the
probability that a female follows a female being unequal to the probability that a male
follows a male. Write down the probabilities for Table 4.6. If you are feeling energetic,
conduct a full likelihood analysis of the data.
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9 Let Yi j , j = 1, . . . , ni , i = 1, . . . , k, be independent normal random variables with means
µi and variances σ 2

i , and ni ≥ 2; set Y i · = n−1
i

∑
j Yi j .

(a) Show that the likelihood ratio statistic for σ 2
1 = · · · = σ 2

k = σ 2, with no restrictions
on the µi , is given by

W =
k∑

i=1

ni log
(
σ̂ 2/σ̂ 2

i

)
, σ̂ 2 =

k∑
i=1

ni σ̂
2
i /

k∑
i=1

ni , σ̂ 2
i = n−1

i

ni∑
j=1

(Yi j − Y i ·)2, (4.58)

and give its approximate distribution for large ni .
(b) A modification to W to improve its behaviour in small samples replaces the ni in (4.58)
with νi = ni − 1. Use the modified statistic to check the homogeneity of the variances for
the data in Table 1.2 at the three highest stresses, and comment.
(c) If k = 2 show that a test of σ 2

1 = σ 2
2 may be based on σ̂ 2

1 /σ̂ 2
2 , and give its exact

distribution.
(d) If n1 = · · · = nk = 3, show that σ̂ 2

i may be written as 2σ 2
i Ei/3, where the Ei are

independent exponential random variables with unit means. Explain how a plot of the
ordered σ̂ 2

i against exponential plotting positions can be used to check variance homo-
geneity and to assess the adequacy of the assumption of normality. What could be done if
n1 = · · · = nk = 2?

10 In a normal linear model through the origin, independent observations Y1, . . . , Yn are such
that Y j ∼ N (βx j , σ

2). Show that the log likelihood for a sample y1, . . . , yn is

�(β, σ 2) = −n

2
log(2πσ 2) − 1

2σ 2

n∑
j=1

(y j − βx j )
2.

Deduce that the likelihood equations are equivalent to
∑

x j (y j − β̂x j ) = 0 and σ̂ 2 =
n−1

∑
(y j − β̂x j )2, and hence find the maximum likelihood estimates β̂ and σ̂ 2 for data

with x = (1, 2, 3, 4, 5) and y = (2.81, 5.48, 7.11, 8.69, 11.28).
Show that the observed information matrix evaluated at the maximum likelihood estimates
is diagonal and use it to obtain approximate 95% confidence intervals for the parameters.
Plot the data and your fitted line y = β̂x . Say whether you think the model is correct, with
reasons. Discuss the adequacy of the normal approximations in this example.

11 In some measurements of µ-meson decay by L. Janossy and D. Kiss the following ob-
servations were recorded from a four channel discriminator: in 844 cases the decay time
was less than 1 second; in 467 cases the decay time was between 1 and 2 seconds; in 374
cases the decay time was between 2 and 3 seconds; and in 564 cases the decay time was
greater than 3 seconds.
Assuming that decay time has density λe−λt , t > 0, λ > 0, find the likelihood for λ. Find
the maximum likelihood estimate, λ̂, find its standard error, and give a 95% confidence
interval for λ.
Check whether the data are consistent with an exponential distribution by comparing the
observed and fitted frequencies.

12 A family has two children A and B. Child A catches an infectious disease D which is so
rare that the probability that B catches it other than from A can be ignored. Child A is
infectious for a time U having probability density function αe−αu, u ≥ 0, and in any small
interval of time [t, t + δt] in [0, U ), B will catch D from A with probability βδt + o(δt),
where α, β > 0. Calculate the probability ρ that B does catch D. Show that, in a family
where B is actually infected, the density function of the time to infection is γ e−γ t , t ≥ 0,
where γ = α + β.
An epidemiologist observes n independent similar families, in r of which the second child
catches D from the first, at times t1, . . . , tr . Write down the likelihood of the data as the
product of the probability of observing r and the likelihood of the fixed sample t1, . . . , tr .
Find the maximum likelihood estimators ρ̂ and γ̂ of ρ and γ , and the asymptotic vari-
ance of γ̂ .



160 4 · Likelihood

Table 4.7 Mendel’s data
on four kinds of pea seeds
(theoretical probability)
(Kendall and Stuart, 1973,
p. 439).

Round Wrinkled

Yellow 315 (9/16) 101 (3/16)
Green 108 (3/16) 32 (1/16)

13 Counts y1, y2, y3 are observed from a multinomial density

Pr(Y1 = y1, Y2 = y2, Y3 = y3) = m!

y1!y2!y3!
π

y1
1 π

y2
2 π

y3
3 , yr = 0, . . . , m,

∑
yr = m,

where 0 < π1, π2, π3 < 1 and π1 + π2 + π3 = 1. Show that the maximum likelihood
estimate of πr is yr/m.
It is suspected that in fact π1 = π2 = π , say, where 0 < π < 1. Show that the maximum
likelihood estimate of π is then 1

2 (y1 + y2)/m.
Give the likelihood ratio statistic for comparing the models, and state its asymptotic
distribution.

14 In experiments on cross-breeding peas, Mendel noted frequencies of seeds of different Gregor Mendel
(1823–1884) was the
second child of farmers in
Brunn, Moravia. He
showed early promise but
his family’s poverty meant
that he could continue his
education only as an
Augustinian monk. His
work on pea plants was
begun out of curiosity; it
took seven years to amass
enough data to formulate
his theory of genetic
inheritance based on
discrete inheritable
characteristics, which we
know as genes.

kinds when crossing plants with round yellow seeds and plants with wrinkled green
seeds. His data and the theoretical probabilities according to his theory of inheritance are
in Table 4.7.
Calculate the expected values under the model, and check the adequacy of the theory
using the likelihood ratio and Pearson statistics W and P . How would the degrees of
freedom change if the table was treated as a two-way contingency table with unknown
probabilities?

15 The negative binomial density may be written

f (y; µ, ψ) = �(y + ψ−1)

�(ψ−1)y!

(ψµ)y

(1 + ψµ)y+1/ψ
, y = 0, 1, . . . , µ, ψ > 0;

its limit as ψ → 0 is the Poisson density. Taylor series expansion about ψ = 0 shows that
log f (y; µ, ψ) is

y log µ − µ − log y! + ψ

2
{(y − µ)2 − y} + ψ2

12
{6µ2 y − 4µ3 − y(1 − 3y + 2y2)}

+ψ3

12
{3µ4 − 4µ3 y + y2(y − 1)2} + O(ψ4).

Find the expected information I (µ, ψ) when ψ = 0, and show that the asymptotic dis-
tribution of the score ∂�(µ̂ψ , ψ)/∂ψ based on a sample of size n is then N (0, nµ2/2).
Discuss properties of the likelihood ratio statistic for comparison of Poisson and negative
binomial models.

16 A possible model for the data in Table 11.7 is that pumps are independent, and that the
failures for the j th pump have the Poisson distribution with mean λx j , where x j is the
operating hours (1000s). Find the maximum likelihood estimate of λ under this model
and give its standard error. Construct the likelihood ratio statistic to compare this with the
model in which all the pumps have different rates. Justifying your reasoning, say whether
you expect this statistic to have an approximate χ 2 distribution.

17 If y1, . . . , yn is a random sample with density σ−1 f {(y − µ)/σ ; λ}, where f is the skew-
normal density function (Problem 3.6), write down the log likelihood for µ, σ , and λ, and
investigate likelihood inference for this model.
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Models

Chapter 4 described methods related to a central notion in inference, namely like-
lihood. This chapter and the next discuss how those ideas apply to some particular
situations, beginning with the simplest model for the dependence of one variable on
another, straight-line regression. There is then an account of exponential family distri-
butions, which include many models commonly used in practice, such as the normal,
exponential, gamma, Poisson and binomial densities, and which play a central role in
statistical theory. We then briefly describe group transformation models, which are
also important in statistical theory. This is followed by a description of models for
data in the form of lifetimes, which are common in medical and industrial settings,
and a discussion of missing data and the EM algorithm.

5.1 Straight-Line Regression

We have already met situations where we focus on how one variable depends on
others. In such problems there are two or more variables, some of which are regarded
as fixed, and others as random. The random quantities are known as responses and
the fixed ones as explanatory variables. We shall suppose that only one variable is
regarded as a response. Such models, known as regression models, are discussed
extensively in Chapters 8, 9, and 10. Here we outline the basic results for the simplest
regression model, where a single response depends linearly on a single covariate. We
start with an example.

Example 5.1 (Venice sea level data) Table 5.1 and Figure 5.1 show annual maxi-
mum sea levels in Venice for 1931–1981. The most obvious feature is that the maxi-
mum sea level increased by about 25 cm over that period. A simple model is of linear
trend in the sea level, y, so in year j ,

y j = β0 + β1 j + ε j , (5.1)

where β0 (cm) represents the expected maximum sea level in year j = 0, β1 the
annual increase (cm/year) , and ε j is a random variable with mean zero and variance

161
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Table 5.1 Annual
maximum sea levels (cm)
in Venice, 1931–1981
(Pirazzoli, 1982). To be
read across rows.
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Figure 5.1 Annual
maximum sea levels in
Venice, 1931–1981, with
fitted regression line.

σ 2 (cm2) representing scatter about the trend. Here the response is sea level, y j , and
the year, j , is the sole explanatory variable. �

The simplest linear model is that independent random variables Y j satisfy

Y j = β0 + β1x j + ε j , j = 1, . . . , n, (5.2)

where the x j are known constants, the ε j
iid∼ N (0, σ 2), and β0, β1 and σ 2 are unknown iid∼ means ‘are

independent and
identically distributed as’.

parameters, Thus Y j is normal with mean β0 + β1x j and variance σ 2. The data arise
as pairs (x1, y1), . . . , (xn, yn), from which β0, β1, and σ 2 are to be estimated. In
Example 5.1 the pairs are (1931, 103), . . . , (1981, 138). If all the x j are equal, we
cannot estimate the slope of the dependence of y on x , so we assume that at least two
x j are distinct.

A reparametrization of (5.2) is more convenient, so we consider instead

Y j = γ0 + γ1(x j − x) + ε j , j = 1, . . . , n, (5.3)

where x = n−1 ∑
x j . In terms of the original parameters, γ1 = β1, and γ0 = β0 +

β1x . This can make better statistical sense too. In (5.1) the interpretation of β0 as a
mean sea level at the start of the Christian era — when j = 0 — involves a ludicrous
extrapolation of the straight-line model over two millenia, whereas γ0 concerns its
level when j = x = 1956; this is clearly more sensible.
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Under (5.3) the Y j are independent and normal with means and variances γ0 +
γ1(x j − x) and σ 2, so the likelihood based on (x1, y1), . . . , (xn, yn) is

n∏
j=1

1

(2πσ 2)1/2
exp

[
− 1

2σ 2
{y j − γ0 − γ1(x j − x)}2

]
,

−∞ < γ0, γ1 < ∞, σ 2 > 0.

The log likelihood is

�(γ0, γ1, σ
2) ≡ −1

2

[
n log σ 2 + 1

σ 2

n∑
j=1

{y j − γ0 − γ1(x j − x)}2

]
. (5.4)

For any σ 2, maximizing this over γ0 and γ1 is equivalent to minimizing the sum of
squares

SS(γ0, γ1) =
n∑

j=1

{y j − γ0 − γ1(x j − x)}2,

which is the sum of squared vertical deviations between the y j and their means
γ0 + γ1(x j − x) under the linear model. Its derivatives are

∂SS

∂γ0
= −2

n∑
j=1

{y j − γ0 − γ1(x j − x)},

∂SS

∂γ1
= −2

n∑
j=1

(x j − x) {y j − γ0 − γ1(x j − x)},

∂2SS

∂γ 2
0

= 2n,
∂2SS

∂γ 2
1

= 2
n∑

j=1

(x j − x)2,
∂2SS

∂γ0∂γ1
= 2

n∑
j=1

(x j − x) = 0.

The solutions to the equations ∂SS/∂γ0 = ∂SS/∂γ1 = 0 are the least squares
estimates,

γ̂0 = y, γ̂1 =
∑n

j=1 y j (x j − x)∑n
j=1(x j − x)2

. (5.5)

As anticipated, γ1 cannot be estimated if all the x j are equal, for then x j ≡ x and
γ̂1 is undefined. The matrix of second derivatives of SS is positive definite, so the
estimates (5.5) minimize the sum of squares and hence maximize �(γ0, γ1, σ

2) with
respect to γ0 and γ1.

As the log likelihood may be written as − 1
2

{
n log σ 2 + SS(γ0, γ1)/σ 2

}
, the max-

imum likelihood estimate of σ 2 is

σ̂ 2 = n−1SS(γ̂0, γ̂1) = 1

n

n∑
j=1

{y j − γ̂0 − γ̂1(x j − x)}2.

The quantity SS(γ̂0, γ̂1), known as the residual sum of squares, is the smallest sum
of squares attainable by fitting (5.3) to the data.
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The least squares estimators are linear combinations of normal variables, so their
distributions are also normal. If we rewrite them as

γ̂0 = n−1
n∑

j=1

{γ0 + γ1(x j − x) + ε j } = γ0 + n−1
n∑

j=1

ε j ,

γ̂1 =
∑n

j=1 {γ0 + γ1(x j − x) + ε j }(x j − x)∑n
j=1(x j − x)2

= γ1 +
∑n

j=1(x j − x)ε j∑n
j=1(x j − x)2

,

we see that because the ε j are independent with means zero and variances σ 2, γ̂0 has
mean γ0 and variance σ 2/n, and that γ̂1 has mean γ1 and variance σ 2/

∑
(x j − x)2.

Moreover

cov(γ̂0, γ̂1) = cov

{
n−1

∑
ε j ,

∑n
j=1(x j − x)ε j∑n
j=1(x j − x)2

}

=
∑n

j=1 n−1(x j − x)var(ε j )∑n
j=1(x j − x)2

= 0 :

as γ̂0 and γ̂1 are uncorrelated normal random variables, they are independent.
If σ 2 is known, confidence intervals for the true values of γ0 and γ1 may be based

on the normal distributions of γ̂0 and γ̂1. A (1 − 2α) confidence interval for γ1, for
example, is γ̂1 ± σ zα/{∑(x j − x)2}1/2.

We shall see in Chapter 8 that the residual sum of squares SS(γ̂0, γ̂1) ∼ σ 2χ2
n−2,

independent of γ̂0 and γ̂1. Thus when σ 2 is unknown, the estimator

S2 = 1

n − 2
SS(γ̂0, γ̂1)

satisfies E(S2) = σ 2, and as S2 is independent of γ̂0 and γ̂1, a (1 − 2α) confidence
interval for γ1 is γ̂1 ± Stn−2(α)/{∑(x j − x)2}1/2, because

γ̂1 − γ1{
S2/

∑
(x j − x)2

}1/2 ∼ tn−2.

Example 5.2 (Venice sea level data) For the model y j = β0 + β1 j + ε j of Exam-
ple 5.1, we have n = 51, x1 = 1931, . . . , xn = 1981, so x = 1956. In parametrization
(5.3), γ0 is the expected annual maximum sea level in 1956 in cm, and γ1 is the mean
annual increase in maximum sea level in cm/year.

Straightforward calculation yields γ̂0 = 119.61 cm and γ̂1 = 0.567 cm/year,
SS(γ̂0, γ̂1) = 16988.1, and

∑
(x j − x)2 = 11050. The unbiased estimate of σ 2 is

s2 = 16988.1/(51 − 2) = 346.7, so we estimate σ by s = 18.6. This is very large
relative to the annual increase in sea level, which as we see from Figure 5.1 is small
relative to the overall vertical variation.

Standard errors for γ̂0 and γ̂1 are s/n1/2 = 2.61 and s/
{∑

(x j − x)2
}1/2 = 0.177,

and a 95% confidence interval for γ1 is γ̂1 ± 0.177t49(0.025), that is, (0.213, 0.921).
This does not include zero, confirming that the trend in Figure 5.1 is real. �
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Linear combinations

Distributional results for linear functions of γ̂0 and γ̂1 are readily obtained. For exam-
ple, in the original linear model (5.2) we have β0 = γ0 − γ1x , the maximum likelihood
estimator of which is β̂0 = γ̂0 − γ̂1x . This has expected value γ0 − γ1x and variance

var(γ̂0 − γ̂1x) = var(γ̂0) − 2xcov(γ̂0, γ̂1) + x2var(γ̂1) = σ 2

{
1

n
+ x2∑n

j=1(x j − x)2

}
.

As

cov(̂β0, β̂1) = cov(γ̂0 − γ̂1x, γ̂1) = cov(γ̂0, γ̂1) − xvar(γ̂1) = −σ 2x∑n
j=1(x j − x)2

,

the normal random variables β̂0 and β̂1 are independent if and only if x = 0.
Suppose we wish to predict the response value at x+,

Y+ = γ0 + γ1(x+ − x) + ε+.

Here ε+ represents the random variation about the expected value, which is inde-
pendent of the other responses, because of our modelling assumptions. The random
variable Y+ has expected value γ0 + γ1(x+ − x). The maximum likelihood estimator
of this, γ̂0 + γ̂1(x+ − x), has mean and variance

γ0 + γ1(x+ − x), σ 2

{
1

n
+ (x+ − x)2∑n

j=1(x j − x)2

}
.

This is the variance not of Y+ but of γ̂0 + γ̂1(x+ − x): it does not account for the extra
variability introduced by ε+. The variance appropriate for the predicted response
actually observed is

var(Y+) = var {γ̂0 + γ̂1(x+ − x) + ε+} = σ 2

{
1

n
+ (x+ − x)2∑n

j=1(x j − x)2

}
+ σ 2. (5.6)

The final σ 2 is due to ε+ and would remain even if the parameters were known.

Example 5.3 (Venice sea level data) For illustration we take x+ = 1993. Our pre-
dicted value for Y+ is γ̂0 + γ̂1(x+ − x) = 140.59, with estimated variance 49.75 +
346.70 = 396.45, obtained by replacing σ 2 with s2 in (5.6). The estimated variance
of ε+, 346.70, is much larger than the estimated variance 49.75 of the fitted value
γ̂0 + γ̂1(x+ − x). A confidence interval for Y+ could be obtained from the t statistic.

Our model (5.2) presupposes that the errors ε j are normal, and that the dependence
of y on x is linear. We discuss how to check these assumptions in Section 8.6.1, here
noting that simple estimates of the errors ε j are the raw residuals e j = y j − β̂0 −
β̂1x j , which should be normal and approximately independent of x if the model is
correct. We check linearity by looking for patterns in a plot of the e j against the x j ,
and check normality by a normal probability plot of the e j ; see Figure 5.2. Linearity
seems justifiable, but the errors seem too skewed to be normally distributed.
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Figure 5.2 Straight-line
regression fit to annual
maximum sea levels in
Venice, 1931–1981. Left:
raw residuals plotted
against time. Right:
normal scores plot of raw
residuals; the line has
slope σ̂ . The skewness of
the residuals suggests that
the errors are not normal.

The astute reader will realise that the changing sea level is due not to the rising
waters of the Adriatic, but to the sinking of the marker that measures water height,
along with Venice, to which it is attached. �

Exercises 5.1

1 Find the observed and expected information matrices for the parameters in (5.4), and
confirm that general likelihood theory gives the same variances and covariance for the
least squares estimates as the direct argument on page 164.

2 Show that (γ̂0, γ̂1, s2) are minimal sufficient for the parameters of the straight-line regres-
sion model.

3 Consider data from the straight-line regression model with n observations and

x j =
{

0, j = 1, . . . , m,
1, otherwise,

where m ≤ n. Give a careful interpretation of the parameters β0 and β1, and find their least
squares estimates. For what value(s) of m is var(̂β1) minimized, and for which maximized?
Do your results make qualitative sense?

4 Let Y1, . . . , Yn be observations satisfying (5.2), with not all the x j equal. Find var(̂β0 +
x+β̂1), where x+ is fixed. Hence give exact 0.95 confidence intervals for β0 + β1x+ when
σ 2 is known and when it is unknown.

5.2 Exponential Family Models

Exponential families include most of the models we have met so far and are widely
used in applications. Densities such as the normal, gamma, Poisson, multinomial,
and so forth have the same underlying structure with elegant properties giving them
a central role in statistical theory. This section outlines those properties, first giving
the basic ideas for scalar random variables, then extending them to more complex
models, and finally considering inference.

5.2.1 Basic notions

Let f0(y) be a given probability density, discrete or continuous, under which random
variable Y has support Y = {y : f0(y) > 0} that is a subset of the real line IR. For
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example, f0(y) might be the uniform density on the unit interval Y = (0, 1), or might
have probability mass function e−1/y! on Y = {0, 1, . . .}. Let s(Y ) be a function of
Y , and letWhen Y is discrete we

interpret the integrals as
sums over y ∈ Y .

N =
{
θ : κ(θ ) = log

∫
es(y)θ f0(y) dy < ∞

}

denote the values of θ for which the cumulant-generating function κ(θ ) of s(Y ) is
finite. Evidently 0 ∈ N . To avoid trivial cases we suppose that N has at least one
other element and that var{s(Y )} > 0 under f0, so s(Y ) is not a degenerate random
variable. In fact the set N is convex, because if θ1, θ2 ∈ N and α ∈ [0, 1], then
αθ1 + (1 − α)θ2 ∈ N :∫

es(y){αθ1+(1−α)θ2} f0(y) dy =
∫ {

es(y)θ1
}α {

es(y)θ2
}1−α

f0(y) dy

≤
{∫

es(y)θ1 f0(y) dy

}α {∫
es(y)θ2 f0(y) dy

}1−α

< ∞;

the second line follows from Hölder’s inequality (Exercise 5.2.1). Moreover, as
κ{αθ1 + (1 − α)θ2} ≤ ακ(θ1) + (1 − α)κ(θ2), the function κ(θ ) is convex on the
set N . Equality occurs only if θ1 = θ2, so in fact κ(θ ) is strictly convex.

A single fixed density f0 is not flexible enough to be useful in practice, for which
we need families of distributions. Hence we embed f0 in the larger class

f (y; θ ) = es(y)θ f0(y)∫
es(x)θ f0(x) dx

, y ∈ Y, θ ∈ N ,

by exponential tilting: f0 has been tilted by multiplication by es(y)θ and then the
resulting positive function has been renormalized to have unit integral. Evidently
f (y; θ ) has support Y for every θ . If s(Y ) = Y , we have a natural exponential family
of order 1,

f (y; θ ) = exp {yθ − κ(θ )} f0(y), y ∈ Y, θ ∈ N . (5.7)

The family is called regular if the natural parameter space N is an open set.

Example 5.4 (Uniform density) Let f0(y) = 1 for y ∈ Y = (0, 1). Now

κ(θ ) = log
∫

eyθ f0(y) dy = log
∫ 1

0
eyθ dy = log{(eθ − 1)/θ} < ∞

for all θ ∈ N = (−∞, ∞), and the natural exponential family

f (y; θ ) =
{

θeθy/(eθ − 1), 0 < y < 1,
0, otherwise,

(5.8)

is plotted in the left panel of Figure 5.3 for θ = −3, 0, 1. For this or any natural
exponential family with bounded Y , N = (−∞, ∞) and the family is regular.
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A different choice of s(Y ) will generate a different exponential family. With s(Y ) =
log{Y/(1 − Y )}, for example, the cumulant-generating function is given by For a, b > 0, B(a, b) =∫ 1

0 ua−1(1 − u)b−1 du is
the beta function. It equals
�(a)�(b)/�(a + b),
where
�(a) = ∫ ∞

0 ua−1e−u du is
the gamma function; see
Exercise 2.1.3.

∫ 1

0
eθ log{y/(1−y)} dy =

∫ 1

0
y(1+θ )−1(1 − y)(1−θ )−1 dy

= B(1 + θ, 1 − θ )

= �(1 + θ )�(1 − θ )

�(1 + θ + 1 − θ )
, |θ | < 1,

and as �(2) = 1, we have κ(θ ) = log �(1 + θ ) + log �(1 − θ ). Here the set N =
(−1, 1) is open, so the resulting family is regular. Figure 5.3 shows how this family
differs from the natural one, being unbounded unless θ = 0. �

The natural exponential family of order 1 generated by a tilted version of f0 is
the same as that generated by f0 itself. To see why, note that if s(Y ) has density
(5.7) for some θ = θ1, say, exponential tilting generates a density proportional to
exp{s(y)θ} exp{s(y)θ1 − κ(θ1)} f0(y) with cumulant-generating function κ(θ + θ1) −
κ(θ1) for θ + θ1 ∈ N . The new density is exp{s(y)(θ + θ1) − κ(θ + θ1)} f0(y), for
θ + θ1 ∈ N . This is (5.7) apart from replacement of θ by θ + θ1. Hence just one
family is generated by a specific choice of f0 and s(Y ), and this family is obtained
by tilting any of its members.

For many purposes discussion of an exponential family is simplified if it is expressed
without reference to a baseline density f0. If a density may be written as

f (y; ω) = exp {s(y)θ (ω) − b(ω) + c(y)}, y ∈ Y, ω ∈ �, (5.9)

where Y is independent of the parameter ω and θ is a function of ω, it is said to be
an exponential family of order 1. Here θ and s are called the natural parameter and
natural observation.

Example 5.5 (Exponential density) The exponential density with mean ω is
f (y; ω) = ω−1 exp(−y/ω), for y > 0 and ω > 0. Here � = Y = (0, ∞), with
natural observation and parameter s(y) = y and θ (ω) = −1/ω, and b(ω) = log ω.
The cumulant-generating function is κ(θ ) = b{ω−1(θ )} = − log(−θ ), which has
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derivatives (r − 1)!(−1)rθ−r = (r − 1)!ωr , the usual formula for cumulants of an
exponential variable. �

Example 5.6 (Binomial density) If R is binomial with denominator m and proba-
bility 0 < π < 1, its density is

(
m

r

)
π r (1 − π )m−r = exp

{
r log

(
π

1 − π

)
+ m log(1 − π ) + log

(
m

r

)}
,

for r ∈ Y = {0, 1, . . . , m}. This has form (5.9) with ω = π ,

s(r ) = r, θ (π ) = log

(
π

1 − π

)
, b(π ) = m log(1 − π ), c(r ) = log

(
m

r

)
.

The natural parameter is the log odds θ = log{π/(1 − π )} ∈ (−∞, ∞). This family
is regular, with cumulant-generating function κ(θ ) = m log(1 + eθ ). �

If the function θ (ω) in (5.9) is 1–1, the density of S = s(Y ) has form

f (s; θ ) = exp [sθ − b {ω−1(θ )}]h(s), s ∈ s(Y), θ ∈ θ (�).

If � = θ (�) = N for some baseline density f0 then this is a natural exponential

θ (�) denotes the set
{θ (ω) : ω ∈ �}.

family with cumulant-generating function κ(θ ) = b {ω−1(θ )}.
Expressed as a function of θ rather than ω, the moment-generating function of s(Y )

under (5.9) is, if finite,

E
{
ets(Y )

} =
∫

exp {ts(y) + θs(y) − κ(θ ) + c(y)} dy

= exp {κ(θ + t) − κ(θ )}
∫

exp {(θ + t)y − κ(θ + t) + c(y)} dy

= exp {κ(θ + t) − κ(θ )} ,

because the second integral equals unity; here θ = θ (ω) andκ(θ ) = b {ω−1(θ )}. Hence
when Y has density (5.9), the cumulant-generating function of s(Y ) isκ(θ + t) − κ(θ ).
The cumulants result from differentiating κ(θ + t) − κ(θ ) with respect to t and then
setting t = 0, or equivalently differentiating κ(θ ) with respect to θ .

Mean parameter

Under (5.7) the cumulant-generating function of Y is κ(θ + t) − κ(θ ), so its mean
and variance are

E(Y ) = dκ(θ )

dθ
= κ ′(θ ), var(Y ) = d2κ(θ )

dθ2
= κ ′′(θ ),

say. As Y is non-degenerate under f0, var(Y ) > 0 for all θ ∈ N , and hence κ ′(θ ) is
a strictly monotonic increasing function of θ . Thus there is a smooth 1–1 mapping
between θ and the mean parameter µ = µ(θ ) = κ ′(θ ), and as θ varies in N , µ varies
in the expectation space M.

The function µ(θ ) is important for likelihood inference. A natural exponential
family is called steep if |µ(θi )| → ∞ for any sequence {θi } in intN that converges
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to a boundary point of N . Let us define the closed convex hull of Y to be C(Y), the The interior of a set,
intN , is what remains
when its boundary is
subtracted from its
closure.

smallest closed set containing

{y : y = αy1 + (1 − α)y2, 0 ≤ α ≤ 1, y1, y2 ∈ Y} .

Now M ⊆ C(Y), because every density (5.7) reweights elements of Y . It can be
shown that a regular natural exponential family is steep, and that for such a family,
steepness is equivalent to M = int C(Y). Thus there is a duality between int C(Y)
and the expectation space M, and hence between int C(Y) and intN : for every
µ ∈ int C(Y) there is a unique θ ∈ N such that f (y; θ ) has mean µ. This equivalence
applies widely because most natural exponential families are regular. As we shall see
below, it implies that there is a unique maximum likelihood estimator of θ except for
pathological samples.

Example 5.7 (Uniform density) The mean function for the natural exponential
family generated by the U (0, 1) density, µ(θ ) = (1 − e−θ )−1 − θ−1, is shown in the
right panel of Figure 5.3. Here Y = (0, 1), so C(Y) = [0, 1] and int C(Y) = (0, 1) =
M. The family is steep because the only boundary points of N = (−∞, ∞) are ±∞,
to which no sequence {θi } ⊂ N can converge.

The family with � = [0, ∞) is not steep, because µ(θ ) → 1/2 as θ ↓ 0. �

Example 5.8 (Poisson density) If Y = {0, 1, . . .} and f0(y) = e−1/y!, then

κ(θ ) = log

( ∞∑
y=0

eθy−1/y!

)
= eθ − 1

is finite for all θ ∈ N = (−∞, ∞). Hence

f (y; θ ) = exp (θy − eθ )/y!, y ∈ Y, θ ∈ N ,

is a regular natural exponential family. Here C(Y) = [0, ∞), and the mean function
is µ(θ ) = κ ′(θ ) = eθ , so M = (0, ∞) = int C(Y); the family is steep.

In terms of µ we have the familiar expression

f (y; µ) = exp (y log µ − µ) /y! = µye−µ/y!, y = 0, 1, . . . , µ > 0.

�

Variance function

When Y has a natural exponential family density with cumulant-generating function
κ(θ ), its mean is µ(θ ) = κ ′(θ ). Now κ(θ ) is smooth and strictly convex, so the mapping
between θ and µ = µ(θ ) = κ ′(θ ) is smooth and monotone. It follows that the density
(5.7) can be reparametrized in terms of µ, setting θ = θ (µ). In terms of µ, κ(θ ) =
κ{θ (µ)}, so

var(Y ) = κ ′′(θ ) = dµ

dθ

∣∣∣∣
θ=θ (µ)

= V (µ), µ ∈ M,

say, where V (µ) is the variance function of the family. As we saw in Section 3.1.2, the
variance function determines the variance-stabilizing transformation for Y . It plays a
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central role in generalized linear models, which we shall study in Section 10.3. The
variance function and its domain M together determine their exponential family, as
we shall now see.

On differentiating the identity µ{θ (µ)} = µ with respect to µ, we obtain
µ′{θ (µ)}dθ/dµ = 1, and this implies that

dθ (µ)

dµ
= 1

µ′{θ (µ)} = 1

V (µ)
. (5.10)

As var(Y ) > 0, this derivative is finite for any µ ∈ M, so∫ µ

µ0

1

V (u)
du = θ (µ) − θ (µ0),

and as 0 ∈ N we can choose µ0 ∈ M to give θ (µ0) = 0. Now

κ(θ ) =
∫ θ

0
κ ′(t) dt =

∫ θ

0
µ(t) dt =

∫ µ

µ0

µ
dt

dµ
dµ =

∫ µ

µ0

u

V (u)
du,

where we have used (5.10). Hence

κ

{∫ µ

µ0

1

V (u)
du

}
=

∫ µ

µ0

u

V (u)
du, (5.11)

and given M and V (µ), we have expressed κ in terms of µ; this determines κ(θ )
implicitly. The natural parameter space N is traced out by θ (µ) = ∫ µ

µ0
V (u)−1 du as

µ varies in M.

Example 5.9 (Linear variance function) Let Y be a random variable with V (µ) =
µ and M = (0, ∞). Then∫ µ

µ0

1

V (u)
du =

∫ µ

µ0

du

u
= log(µ/µ0),

∫ µ

µ0

u

V (u)
du = µ − µ0,

and if µ0 = 1, (5.11) gives κ(log µ) = µ − 1. On setting θ = log µ, we have κ(θ ) =
eθ − 1, and asµvaries inM, θ = log µvaries in (−∞,∞). As eθ − 1 is the cumulant-
generating function of the Poisson density with mean eθ and there is a 1–1 correspon-
dence between cumulant-generating functions and distributions, Y is Poisson with
mean µ = eθ . �

5.2.2 Families of order p

To generalize the preceding discussion to models with several parameters, we again
start from a base density f0(y), now supposing that its support Y ⊆ IRd , for d ≥ 1,
is not a subset of any space of dimension lower than d. Let the p × 1 vector s(y) =
(s1(y), . . . , sp(y))T consist of functions of y for which the set {1, s1(y), . . . , sp(y)} is
linearly independent, and define

N =
{
θ ∈ IRp : κ(θ ) = log

∫
es(y)Tθ f0(y) dy < ∞

}
,
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where θ = (θ1, . . . , θp)T. In general θ = θ (ω) may depend on a parameter ω taking
values in � ⊂ IRq , where θ (�) ⊆ N .

An exponential family of order p has density

f (y; ω) = exp {s(y)Tθ (ω) − b(ω)} f0(y), y ∈ Y, ω ∈ �, (5.12)

where b(ω) = κ{θ (ω)}. This is called a minimal representation if the set
{1, θ1(ω), . . . , θp(ω)} is linearly independent. If there is a 1–1 mapping between
N and � the family can be written as a natural exponential family of order p,

f (y; ω) = exp {s(y)Tθ − κ(θ )} f0(y), y ∈ Y, θ ∈ N . (5.13)

Terms such as natural observation, natural parameter space, expectation space,
regular model, and steep family generalize to families of order p and we shall use
them below without further comment. Our proofs that the natural parameter space
N is convex, that the family may be generated by any of its members, that κ(θ ) is
strictly convex, and that s(Y ) has cumulant-generating function κ(θ + t) − κ(θ ) also
generalize with minor changes. The mean vector and covariance matrix of s(Y ) are
now the p × 1 vector and p × p matrix

E{s(Y )} = dκ(θ )

dθ
, var{s(Y )} = d2κ(θ )

dθdθ T
.

Example 5.10 (Beta density) If f0(y) is uniform on (0, 1) and s(y) equals
(log y, log(1 − y))T, then

κ(θ ) = log
∫ 1

0
exp {θ1 log y + θ2 log(1 − y)} dy = log B(1 + θ1, 1 + θ2),

where B(a, b) = �(a)�(b)/�(a + b) is the beta function; see Example 5.4. The re-
sulting model is usually written in terms of a = θ1 + 1 and b = θ2 + 1, giving the
beta density

f (y; a, b) = ya−1(1 − y)b−1

B(a, b)
, 0 < y < 1, a, b > 0. (5.14)

In this parametrization the natural parameter space is N = (0, ∞) × (0, ∞). In
Example 5.4 we took s(y) = log{y/(1 − y)}, thereby generating the one-parameter
subfamily in which b = 2 − a. This subfamily is also obtained by taking s(y) =
(log y, log(1 − y))T and θ (ω) = (ω, −ω)T, but this representation is not minimal be-
cause (1, 1)θ (ω) = 0.

Comparison of Figures 5.4 and 5.3 shows how tilting with two parameters broadens
the variety of densities the family contains. �

Example 5.11 (von Mises density) Directional data are those where the observa-
tions y j are angles — see Table 5.2, which gives the bearings of 29 homing pigeons
30, 60, and 90 seconds after release and on vanishing from sight. Another example is
a wind direction, while the position of a star in the sky is an instance of directional
data on a sphere.
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Table 5.2 Homing
pigeon data (Artes, 1997).
Bearings (degrees) of 29
homing pigeons 30, 60
and 90 seconds after
release, with their
bearings on vanishing
from sight.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30 240 300 225 285 210 265 310 330 325 290 15 330 100 35 340
60 250 290 210 325 205 240 330 315 285 335 10 305 95 65 345
90 270 305 215 295 195 210 335 315 135 10 5 325 90 70 330
van 275 285 185 290 195 225 335 285 120 30 10 85 90 80 350

16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 320 340 355 40 225 50 200 330 325 330 280 180 50 20
60 325 335 25 330 220 50 195 320 315 290 285 155 25 0
90 15 320 30 335 215 55 185 325 345 285 280 160 15 25
van 60 345 35 65 250 60 175 325 330 280 350 185 20 30
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Figure 5.4 Beta
densities for different
values of a and b.
Swapping a and b reflects
the densities about
y = 0.5.

To build a class of densities for circular data we start from the uniform density on
the circle, f0(y) = (2π )−1 for 0 ≤ y < 2π , and take

s(y) = (cos y, sin y)T, θ (ω) = (τ cos γ, τ sin γ )T,

where ω = (τ, γ ) lies in � = [0, ∞) × [0, 2π ). This choice of s(y) ensures the desir-
able property f (y) = f (y ± 2kπ ) for all integer k. Now s(y)Tθ (ω) = τ cos(y − γ )
and

∫
es(y)Tθ (ω) f0(y) dy = 1

2π

∫ 2π

0
eτ cos(y−γ ) dy = 1

2π

∫ 2π

0
eτ cos y dy = I0(τ ),
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Figure 5.5 Circular
data. Left: bearings of 29
homing pigeons at various
intervals after release.
Right: von Mises densities
for different values of γ

and τ . Shown are the
baseline uniform density
(heavy) (2π )−1, and von
Mises densities with
τ = 0.3, γ = 5π/4
(solid), τ = 0.7,
γ = 3π/8 (dots), and
τ = 1, γ = 7π/4
(dashes). In each case the
density f (y; τ, γ ) is given
by the distance from the
origin to the curve, so the
areas do not integrate to
one.

where Iν(τ ) is the modified Bessel function of the first kind and order ν. The resulting
exponential family is the von Mises density Richard von Mises

(1883–1953) was born in
Lvov and educated in
Vienna and Brno. He
became professor of
applied mathematics in
Strasbourg, Dresden and
Berlin, then left for
Istanbul to escape the
Nazis, finishing his career
at Harvard. A man of wide
interests, he spent the
1914–18 war as a pilot in
the Austro-Hungarian
army, gave the first
university course on
powered flight, and made
contributions to
aeronautics, aerodynamics
and fluid dynamics as well
as philosophy, probability
and statistics; he was also
an authority on the
Austrian poet Rainer
Maria Rilke. He is now
perhaps best known for
his frequency theory basis
for probability.

f (y; τ, γ ) = {2π I0(τ )}−1eτ cos(y−γ ), 0 ≤ y < 2π, τ > 0, 0 ≤ γ < 2π ;

see Figure 5.5. The mean direction γ gives the direction in which observations are
concentrated, and the precision τ gives the strength of that concentration. Notice that
τ = 0 gives the uniform distribution on the circle, whatever the value of γ . Here
interest focuses on Y rather than on s(Y ), which is introduced purely in order to
generate a natural class of densities for y.

The estimates and standard errors for the data in Table 5.2 are γ̂ = 320 (15) and
τ̂ = 1.08 (0.32) at 30 seconds, with corresponding figures 316 (15) and 1.05 (0.32)
at 60 seconds, 329 (21) and 0.75 (0.29) at 90 seconds, and 357 (29) and 0.52 (0.28)
on vanishing. Thus as Figure 5.5 shows, the bearings of the pigeons become more
dispersed as they fly away. The likelihood ratio statistics that compare the fitted
two-parameter model with the uniform density are 13.80, 13.34, 7.33, and 3.75. As
the mean direction γ vanishes under the uniform model, the situation is non-regular
(Section 4.6), but the evidence against uniformity clearly weakens as time passes.

�

Curved exponential families

In the examples above, the natural parameter θ = (θ1(ω), . . . , θp(ω))T is a 1–1 function
of ω = (ω1, . . . , ωq )T, so of course p = q . Another possibility is that q > p, in which
case ω cannot be identified from data. Such models are not useful in practice, and it
is more interesting to consider the case q < p. Now θ (ω) varies in the q-dimensional
subspace θ (�) ofN . If θ = a + Bω is a linear function ofω, where a and B are a p × 1
vector and a p × q matrix of constants, then s(y)Tθ (ω) = s(y)Ta + {s(y)T B}ω, and
the exponential family may be generated from f ′

0(y) ∝ eaTs(y) f0(y) by taking s ′(y) =
BTs(y). Hence it is just an exponential family of order q and no new issues arise: the
original representation was not minimal. If θ (ω) is a nonlinear function, however, and
the representation is minimal, we have a (p, q) curved exponential family.
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Example 5.12 (Multinomial density) The multinomial density with denominator
m and probability vector π = (π1, . . . , πp)T is

m!

y1! · · · yp!
π

y1
1 · · · π yp

p ∝ exp {y1 log π1 + · · · + yp log πp}
= exp {y1 log π1 + · · · + yp−1 log πp−1

+ (m − y1 − · · · − yp−1) log(1 − π1 − · · · − πp−1)}
= exp {y1θ1 + · · · + yp−1θp−1 − κ(θ )},

where

πr = eθr

1 + eθ1 + · · · + eθp−1
, κ(θ ) = m log (1 + eθ1 + · · · + eθp−1 ).

This is a minimal representation of a natural exponential family of order p − 1 with
s(y) = (y1, . . . , yp−1)T, N = (−∞, ∞)p−1 and

f0(y) = p−mm!

y1! · · · yp!
, Y =

{
(y1, . . . , yp) : y1, . . . , yp ∈ {0, . . . , m},

∑
yr = m

}
;

Y is a subset of the scaled p-dimensional simplex

C(Y) =
{

(y1, . . . , yp) : 0 ≤ y1, . . . , yp ≤ m,
∑

yr = m
}

.

Now

E{s(Y )} = m

1 + eθ1 + · · · + eθp−1
(eθ1 , . . . , eθp−1 ),

and as E(Yp) = m − E(Y1) − · · · − E(Yp−1), the expectation space in which µ(θ ) =
E(Y ) varies equals int C(Y): the model is steep.

Many multinomial models are curved exponential families. In Example 4.38, for
instance, the ABO blood group data had p = 4 groups with

πA = λ2
A + 2λAλO , πB = λ2

B + 2λBλO , πO = λ2
O , πAB = 2λAλB, (5.15)

where λA + λB + λO = 1. This is a (3, 2) curved exponential family. In the full family
of order p, the probabilities πA, πB and πAB vary in the set

A = {(πA, πB, πAB) : 0 ≤ πA, πB, πAB ≤ 1, 0 ≤ πA + πb + πAB ≤ 1},
shown in Figure 5.6. In the sub-family given by (5.15), when λO is fixed we have
λA + λB = 1 − λO , and as λA varies from 0 to 1 − λO , (πA, πB, πAB) traces a curve
from (0, 1 − λ2

O , 0) to (1 − λ2
O , 0, 0) shown in the figure. As λO varies from 0 to 1,

(πA, πB, πAB) = (
λ2

A + 2pλO , (1 − λA − λO )2 + 2(1 − λA − λO )λO ,

2λA(1 − λA − λO )
)

traces out the intersection of a cone with the set A. Thus although any value of
(πA, πB, πAB) inside the tetrahedron with corners (0, 0, 0), (0, 0, 1), (0, 1, 0) and
(1, 0, 0) is possible under the full model, the curved submodel restricts the probabil-
ities to the hatched surface. �
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Figure 5.6 Parameter
space for four-category
multinomial model. The
full parameter space for
(πA, πB , πAB ) is the
tetrahedron with corners
(0, 0, 0), (0, 0, 1), (0, 1, 0)
and (1, 0, 0), whose outer
face is shaded. The other
parameter πO =
1 − πA − πB − πAB . The
two-parameter sub-model
given by (5.15) is shown
by the hatched surface.

5.2.3 Inference

Let Y1, . . . , Yn be a random sample from an exponential family of order p. Their joint
density is

n∏
j=1

f (y j ; ω) = exp

{
n∑

j=1

s(y j )
Tθ (ω) − nb(ω)

}
n∏

j=1

f0(y j ), ω ∈ �, (5.16)

and consequently the density of S = ∑
s(Y j ) is

f (s; ω) =
∫ n∏

j=1

f (y j ; ω) dy = exp {sTθ (ω) − nb(ω)}
∫ n∏

j=1

f0(y j ) dy

= exp {sTθ (ω) − nb(ω)}g0(s),

say, where the integral is over{
(y1, . . . , yn) : y1, . . . , yn ∈ Y,

n∑
j=1

s(y j ) = s

}
.

Hence S too has an exponential family density of order p. That is, the sum of n
independent variables from an exponential family belongs to the same family, with
cumulant-generating function nκ(θ ) = nb(ω). The factorization criterion (4.15) ap-
plied to (5.16) implies that S is a sufficient statistic for ω based on Y1, . . . , Yn , and if
f (y; ω) is a minimal representation, S is minimal sufficient (Exercise 5.2.12). Thus
inference for ω may be based on the density of S, while the joint density of Y1, . . . , Yn

given the value of S is independent of ω:

f (y1, . . . , yn; ω) = f (y1, . . . , yn | s) f (s; ω). (5.17)

This decomposition allows us to split the inference into two parts, corresponding to
the factors on its right, the first of which may be used to assess model adequacy. If
satisfied of an adequate fit, we use the second term for inference on ω. We now discuss
these aspects in turn.
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Model adequacy

The argument for using the first factor on the right of (5.17) to assess model adequacy
is that the value of ω is irrelevant to deciding if f (y; ω) fits the random sample
Y1, . . . , Yn . Hence we should assess fit using the conditional distribution of Y given
S; see Example 4.10.

Example 5.13 (Poisson density) If Y1, . . . , Yn is a random sample from a Poisson
density with mean µ, their common cumulant-generating function is µ(et − 1) and
the natural observation is s(y j ) = y j . Hence S = ∑

s(Y j ) = ∑
Y j has cumulant-

generating function nµ(et − 1). The joint conditional density of y1, . . . , yn given that
S = s,

f (y1, . . . , yn | s) = f (y1, . . . , yn; θ )

f (s; θ )

=
∏n

j=1 µy j e−µ/y j !

(nµ)se−nµ/s!

=
{

s!
y1!···yn ! n

−s, y1 + · · · + yn = s,
0, otherwise,

is multinomial with denominator s and n × 1 probability vector (n−1, . . . , n−1). This
density is independent of µ by its construction.

The mean and variance of a Poisson variable both equal µ, so Poissonness of a
random sample of counts can be assessed by comparing their average Y and sample
variance (n − 1)−1 ∑

(Y j − Y )2. A common problem with such data is overdisper-
sion, which is suggested if P = ∑

(Y j − Y )2/Y greatly exceeds n − 1. How big is
‘greatly’? As µ̂ = Y is the maximum likelihood estimate of µ, P is Pearson’s statistic
(Section 4.5.3) and has an asymptotic χ2

n−1 distribution. The argument above suggests
that we assess if P is large compared to its conditional distribution given the value
of S = ∑

Y j = nY , so the distribution we seek is that of P conditional on Y . The
conditional mean and variance of P are (n − 1) and 2(n − 1)(1 − s−1)

.= 2(n − 1),
and the conditional distribution of P is very close to χ2

n−1 unless s and n are both
very small. Hence the Poisson dispersion test compares P to the χ2

n−1 distribution,
with large values suggesting that the counts are more variable than Poisson data
would be.

In Table 2.1, for example, the daily numbers of arrivals are 16, 16, 13, 11, 14, 13,
12, so P takes value 1.6, to be treated as χ2

6 , so the counts seem under- rather than
overdispersed. In Example 4.40, by constrast, with counts 1, 5, 3, 2, 2, 1, 0, 0, 2, 1,
1, 7, 11, 4, 7, 10, 16, 16, 9, 15, we have P = 99.92, which is very large compared
to the χ2

19 distribution; and in fact Pr(P ≥ 99.92)
.= 0 to 12 decimal places. As one

might expect, these data are highly overdispersed relative to the Poisson model.
Another possibility is that although all Poisson, the Y j have different means. In

Example 4.40 we compared the changepoint model under which Y1, . . . , Yτ and
Yτ+1, . . . , Yn have different means with the model of equal means. The comparison
involved the likelihood ratio statistic, whose exact conditional distribution was
simulated under the simpler model; see Figure 4.9. �



178 5 · Models

Example 5.14 (Normal model) The normal density may be written

f (y; µ, σ 2) = 1

(2π )1/2σ
exp

{
− 1

2σ 2
(y − µ)2

}

= exp

{
µ

σ 2
y − 1

2σ 2
y2 − µ2

2σ 2
− log σ − 1

2
log(2π )

}
. (5.18)

This is a minimal representation of an exponential family of order 2 with

ω = (µ, σ 2) ∈ � = (−∞, ∞) × (0, ∞),

θ (ω)T = (µ/σ 2, 1/(2σ 2)) ∈ N = (−∞, ∞) × (0, ∞),

s(y)T = (y, −y2),

κ(θ ) = θ2
1 /(4θ2) − 1

2
log(2θ2),

arising from tilting the standard normal density (2π )−1/2e−y2/2.
We now consider how decomposition (5.17) applies for the normal model with n >

2. When Y1, . . . , Yn is a random sample from (5.18), our general discussion implies
that (

∑
Y j , −

∑
Y 2

j ) is minimal sufficient. As this is in 1–1 correspondence with Y ,

S2 = (n − 1)−1 ∑
(Y j − Y )2, our old friends the average and sample variance are also

minimal sufficient. When n > 1 the joint distribution of Y and S2 is nondegenerate
with probability one, and (3.15) states that they are independently distributed as
N (µ, σ 2/n) and (n − 1)−1σ 2χ2

n−1.
In order to compute the conditional density of Y1, . . . , Yn given Y and S, it is

neatest to set E j = (Y j − Y )/S and consider the conditional density of E1, . . . , En .
As

∑
E j = 0 and

∑
E2

j = n − 1, the random vector (E1, . . . , En) ∈ IRn lies on the
intersection of the hypersphere of radius n − 1 and the hyperplane

∑
E j = 0. As this

is a (n − 2)-dimensional subset of IRn , the joint density of E1, . . . , En is degenerate
but that of E3, . . . , En is not.

To find the joint density of T3 = E3, . . . , Tn = En given T1 = Y and T2 = S, we
need the Jacobian of the transformation from y1, . . . , yn to t1, . . . , tn . In order to
obtain this Jacobian, we first note that y j = t1 + t2t j , for j = 3, . . . , n. As

∑
e j = 0

and
∑

e2
j = n − 1, we can write

e1 + e2 = −
n∑

j=3

t j , n − 1 − e2
1 − e2

2 =
n∑

j=3

t2
j ,

implying that there are functions h1 and h2 such that

e1 = h1(t3, . . . , tn), e2 = h2(t3, . . . , tn),

which in turn gives

y1 = t1 + t2h1(t3, . . . , tn), y2 = t1 + t2h2(t3, . . . , tn).
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Let hi j = ∂hi (t3, . . . , tn)/∂t j . The Jacobian we seek is

∣∣∣∣∂(y1, . . . , yn)

∂(t1, . . . , tn)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 h1 t2h13 t2h14 · · · t2h1n

1 h2 t2h23 t2h24 · · · t2h2n

1 t3 t2 0 · · · 0
1 t4 0 t2 · · · 0
...

...
...

...
. . .

...
1 tn 0 0 · · · t2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= tn−2
2 h′(t3, . . . , tn)

= sn−2 H (e), (5.19)

say. Hence

f (e3, . . . , en | y, s) = f (y1, . . . , yn; µ, σ 2)sn−2 H (e)

f (y; µ, σ 2) f (s; σ 2)
∝ H (e)

after a straightforward calculation. As this depends on e1, . . . , en alone, the corre-
sponding random variables E1, . . . , En are independent of Y and S2.

Thus assessment of fit of the normal model should be based on the raw residuals
e1, . . . , en . One simple tool is a normal probability plot of the e j , which should be a
straight line of unit gradient through the origin. Such plots and variants are common
in regression (Section 8.6.1). Further support for use of the e j for model checking is
given in Section 5.3. �

Likelihood

Let Y1, . . . , Yn be a random sample from an exponential family of order p. Inference
for the parameter may be based on the sufficient statistic S = n−1 ∑

s(Y j ), which
also belongs to a natural exponential family of order p, with support S, say. Hence
the log likelihood may be written

�(ω) ≡ n {S
T
θ (ω) − b(ω)} = n[S

T
θ (ω) − κ {θ (ω)}], ω ∈ �,

and the score vector and observed information matrix are given by

U (ω) = ∂�(ω)

∂ω
= ∂θ T

∂ω
n

{
S − ∂κ(θ )

∂θ

}
,

J (ω)rs = − ∂2�(ω)

∂ωr∂ωs
= − ∂2θ T

∂ωr∂ωs
n

{
S − ∂κ(θ )

∂θ

}
+ ∂θ T

∂ωr

{
n
∂2κ(θ )

∂θ∂θ T

}
∂θ

∂ωs
.

The observed information is random unless the family is in natural form, in which
case θ = ω and hence ∂2θ/∂ωr∂ωs = 0; then I (θ ) = E{J (θ )} = J (θ ).

If the family is steep, there is a 1–1 relation between the interior of the closure of S,
int C(S), the expectation space M of S, and the natural parameter space N = θ (�).
Thus if S ∈ int C(S), there is a single value of θ such that S = µ(θ ) and u(θ ) = 0,
and moreover there is a 1–1 map between θ̂ and ω̂. Hence the maximum likelihood
estimators satisfy

µ̂ = µ(̂θ ) = µ{θ (ω̂)} = S.
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Thus the likelihood equation has just one solution, which maximizes the log likeli-
hood. Moreover, as � is open and ω̂ ∈ �, standard likelihood asymptotics will apply,
so ω̂

.∼ N {ω, I (ω)−1} and 2{�(ω̂) − �(ω)} .∼ χ2
p. If the model permits S ∈ M,

standard asymptotics will break down. The same difficulty could arise if the true
parameter lies on the boundary of the parameter space.

Example 5.15 (Uniform density) The average y of a random sample from (5.8)
must lie in the interval (0, 1). Given y, the maximum likelihood estimate θ̂ is read off
from the right panel of Figure 5.3 as the value of θ on the horizontal axis for which
µ(θ ) = y on the vertical axis.

As mentioned in Example 5.7, when θ is restricted to � = [0, ∞) the family is
not steep, because M = [1/2, 1) = (0, 1) = int C(Y). A value y < 1/2 is possible
for any sample size and any θ ∈ �, and as θ̂ = 0 is the maximum likelihood estimate
for any such y, the 1–1 mapping between y and θ̂ is destroyed. Furthermore, this
� is not open, so the limiting distribution of θ̂ and the likelihood ratio statistic are
non-standard if θ = 0; see Example 4.39. �

Example 5.16 (Binomial density) The binomial model with denominator m,
probability 0 < π < 1 and natural parameter θ = log{π/(1 − π )} ∈ (−∞, ∞) has
Y = {0, 1, . . . , m} and int C(Y) = M = (0, m). The average R of a random sample
R1, . . . , Rn lies outside (0, m) with probability

Pr(R1 = · · · = Rn = 0) + Pr(R1 = · · · = Rn = m) = (1 − π )mn + πmn > 0,

so the maximum likelihood estimator θ̂ = log
{

R/(m − R)
}

may not be finite. As
the family is steep, a unique value of θ corresponds to each R ∈ M, so the only
problem that can arise is that θ̂ = ±∞ with small probability. On the other hand
Pr(|̂θ | = ∞) → 0 exponentially fast as n → ∞, so infinite θ̂ is rare in practice,
though not unknown. It corresponds to π̂ = 0 or π̂ = 1.

This difficulty also arises with other discrete exponential families. �

Example 5.17 (Normal density) Example 4.18 gives the score and information
quantities for a sample from the normal model in terms of µ and σ 2; in this
parametrization the observed information is random. In Example 4.22 we saw that
the log likelihood �(µ, σ 2) is unimodal and that the maximum likelihood estimators
are the sole solution to the likelihood equation; this is an instance of the general result
above. �

Derived densities

Various models derived from exponential families are themselves exponential fami-
lies, and this can be useful in inference.

Consider a natural exponential family of order p with ST and θ T partitioned as
(ST

1, ST
2) and (ψT, λT), where S1 and ψ have dimension q < p. The marginal density
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of S2, obtained by integration over the values of S1, is

f (s2; θ ) =
∫

exp
{
sT

1ψ + sT
2λ − κ(θ )

}
g0(s1, s2) ds1

= exp
{
sT

2λ − κ(θ )
} ∫

exp
(
sT

1ψ
)

g0(s1, s2) ds1

= exp
{
sT

2λ − κ(θ ) + dψ (s2)
}
,

say, so for fixed ψ the marginal density of S2 is an exponential family with natural
parameter λ.

The conditional density of S1 given S2 = s2 is

fS1|S2 (s1 | s2; θ ) = exp
{
sT

1ψ + sT
2λ − κ(θ )

}
g0(s1, s2)

exp
{
sT

2λ − κ(θ ) + dψ (s2)
}

= exp
{
sT

1ψ − κs2 (ψ)
}

gs2 (s1),

say. This is an exponential family of order q with natural parameter ψ , but the base
density and cumulant-generating function depend on s2. Such a removal of λ by
conditioning is a powerful way to deal with nuisance parameters.

Example 5.18 (Gamma density) Independent gamma variables Y1, . . . , Yn with
scale parameter λ and shape parameters κ1, . . . , κn have joint density

n∏
j=1

λκ j y
κ j −1
j

�(κ j )
exp(−λy j ) = λ

∑
κ j exp

(
−λ

n∑
j=1

y j

)
n∏

j=1

y
κ j −1
j

�(κ j )
.

As Y j has cumulant-generating function −κ j log(1 − λt), S1 = S = ∑
Y j is gamma

with parameters λ and
∑

κ j . The conditional density of Y1, . . . , Yn given S = s is

�
(∑

κ j
)

∏n
j=1 �(κ j )

s−n
n∏

j=1

( y j

s

)κ j −1
, y j > 0,

n∑
j=1

y j = s.

Thus the joint density of U1 = Y1/S, . . . , Un = Yn/S,

f (u1, . . . , un; κ1, . . . , κn) = �
(∑

κ j
)

∏n
j=1 �(κ j )

n∏
j=1

u
κ j −1
j , u j > 0,

n∑
j=1

u j = 1, (5.20)

lies on the simplex in n dimensions; it is called the Dirichlet density. Hence we may
base inferences for κ1, . . . , κn on the conditional density of Y1, . . . , Yn given their
sum, or equivalently on the observed values of the U j . �

The discussion above suggests that we may write

f (s; θ ) = fS1|S2 (s1 | s2; ψ) fS2 (s2; ψ, λ). (5.21)

If the model can be reparametrized in terms of a (p − q) × 1 vector ρ = ρ(ψ, λ)
which is variation independent of ψ , in such a way that the second term on the right
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of (5.21) depends only on ρ, then S2 is said to be a cut. The log likelihood based
on (5.21) then has form �1(ψ) + �2(ρ), maximum likelihood estimates of ρ and ψ

do not depend on each other, and the observed information matrix is block diagonal.
Inferences on ψ and ρ may be made separately, using the conditional density of S1

given S2 and the marginal density of S2. The cut most commonly encountered in
practice arises with Poisson variables; see Example 7.34 and page 501.

Exercises 5.2

1 Here is a version of Hölder’s inequality: let f (x) be a density supported in [a, b], let
p > 1, and let g(y) and h(y) be any two real functions such that the integrals

∫ b

a
|g(y)|p f (y) dy,

∫ b

a
|h(y)|q f (y) dy,

are finite, where p−1 + q−1 = 1. Then

∫
g(y)h(y) f (y) dy ≤

{∫ b

a
|g(y)|p f (y) dy

}1/p {∫ b

a
|h(y)|q f (y) dy

}1/q

.

If g and h are both non-zero, there is equality if and only if c|g(y)|p = d|h(y)|q for positive
constants c and d.
Show strict convexity of the cumulant-generating function κ(θ ) of an exponential family.

2 What natural exponential families are generated by (a) f0(y) = e−y , y > 0, and (b) f0(y) =
1
2 e−|y|, −∞ < y < ∞?

3 Which of Examples 4.1–4.6 are exponential families? What about the U (0, θ ) density?

4 Show that the gamma density (2.7) is an exponential family. What about the inverse gamma
density, for 1/Y when Y is gamma?

5 Show that the inverse Gaussian density

f (y; µ, λ) =
(

λ

2πy3

)1/2

exp {−λ(y − µ)2/(2µ2 y)}, y > 0, λ, µ > 0,

is an exponential family of order 2. Give a general form for its cumulants.

6 Find the exponential families with variance functions (i) V (µ) = aµ(1 − µ),M = (0, 1),
(ii) V (µ) = aµ2, M = (0, ∞), and (iii) V (µ) = aµ2, M = (−∞, 0).

7 For what values of a is there an exponential family with variance function V (µ) = aµ,
M = (0, ∞)?

8 Show that the N (µ, µ2) model is a curved exponential family and sketch how the density
changes as µ varies in (−∞, 0) ∪ (0, ∞). Sketch also the subset of the natural parameter
space for the N (µ, σ 2) distribution generated by this model.

9 Find a connection between Example 4.11 and (5.20), and hence suggest methods of
checking the fit of the exponential model.

10 Explain how (5.20) may be generated as an exponential family, by showing that it gener-
alizes (5.14).

11 Use Example 5.18 to construct a simulation algorithm for Dirichlet random variables.

12 Show that
∑

s(Y j ) is minimal sufficient for the parameter ω of an exponential family of
order p in a minimal representation.
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5.3 Group Transformation Models

Another important class of models stems from observing that many inferences should
have invariance properties. If, for instance, data y are recorded in degrees Celsius, one
might obtain a conclusion s(y) directly from the original data, or one might transform
them to degrees Fahrenheit, giving g(y), say, obtain the conclusion s{g(y)} in these
terms, and then back-transform to Celsius scale, giving conclusion g−1[s{g(y)}].
It is clearly essential that g−1[s{g(y)}] = s(y). The transformation from Celsius to
Fahrenheit is just one of many possible invertible linear transformations that might
be applied to y, however, any of which should leave the inference unchanged. More
generally we might insist that inferences be invariant when any element g of a group
of transformations acts on the sample space. This section explores some consequences
of this requirement.

A group G is a mathematical structure having an operation ◦ such that:

� if g, g′ ∈ G, then g ◦ g′ ∈ G;
� G contains an identity element e such that e ◦ g = g ◦ e = g for each g ∈ G;

and
� each g ∈ G possesses an inverse g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

A subgroup is a subset of G that is also a group.
A group action arises when elements of a group act on those of a set Y . In the

present case the group elements gθ typically correspond to elements of a parameter
space � and Y is the sample space of a random variable Y . The action of g on y,
g(y), say, is defined for each y ∈ Y and g(y) is an element of Y for each g ∈ G.

Setting y ≈ y′ if and only if there is a g ∈ G such that y = g(y′) gives an equivalence
relation, which partitions Y into equivalence classes called orbits and labelled by an
index a, say. Each y belongs to precisely one orbit, and can be represented by a
and its position on the orbit. Hence we can write y = g(a) for some g ∈ G. If this
representation is unique for a given choice of index, the group action is said to be free.

Example 5.19 (Location model) Let Y = θ + ε, where θ ∈ � = IR and ε is a
scalar random variable with known density f (y), where y ∈ IR. The density of Y
is f (y − θ ) = f (y; θ ), say, and that of θ ′ + Y = θ ′ + θ + ε is f (y; θ + θ ′). Thus
adding θ ′ to Y changes the parameter of the density. Taking θ ′ = −θ gives the baseline
density f (y; 0) = f (y) of ε.

Here group elements may be written gθ , corresponding to the parameters θ , and
the group operation is equivalent to addition. Hence gθ ◦ gθ ′ = gθ+θ ′ , the identity e
is g0 and the inverse of gθ is g−θ . Each element of the group corresponds to a point
in �, but it induces a group action gθ (y) = θ + y on the sample space.

For a random sample Y1, . . . , Yn , we take Y = IRn and interpret expressions such
as gθ (Y ) = θ + Y as vectors, with θ ≡ θ1n and Y = (Y1, . . . , Yn)T. Then y and y′1n is the n × 1 vector of

ones. belong to the same orbit if there exists a gθ such that gθ (y) = y′, that is, there exists
a θ such that θ + y = y′, and this implies that y′ is a location shift of y. On taking
θ = y′ − y we see that y − y = y′ − y′, implying that we can represent the orbit by
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the vector a(y) = y − y, because this choice of index gives a(y) = a(y′). Thus y is
equivalently written as (y − y, y), where the first term indexes the orbit and the second
the position of y within it. In terms of this representation we write y as gy(a) = y +
a = y + y − y = y. The group action is free because gθ (a) = y implies that θ = y.

In geometric terms, a(y) lies on the (n − 1)-dimensional hyperplane
∑

a j = 0,
each point of which determines a different orbit. The orbits themselves are lines
θ + a(y) passing through these points, with θ ∈ IR. When n = 2, each point (y1, y2)
in IR2 is indexed by a point on the line y1 + y2 = 0, which determines the orbit, a
straight line perpendicular to this. �

Two points y and y′ on the same orbit have the same index a = a(y), which is
said to be invariant to the action of the group because its value does not depend on
whether y or g(y) was observed, for any g ∈ G. It is maximal invariant if every other
invariant statistic is a function of it, or equivalently

a(y) = a(y′) implies that y′ = g(y) for some g ∈ G.

The distribution of A = a(Y ) does not depend on the elements of G. In the present
context these are identified with parameter values, so the distribution of A does not
depend on parameters and is known in principle; A is said to be distribution constant. A
maximal invariant can be thought of as a reduced version of the data that represents it as
closely as possible while remaining invariant to the action ofG. In some sense it is what
remains of Y once minimal information about the parameter values has been extracted.

Often there is a 1–1 correspondence between the elements of G and the parameter
space �, and then the action of G onY induces a group action on �. If we can write gθ

for a general element of G, then g ◦ gθ = gθ ′ for some θ ′ ∈ �. Hence g has mapped
θ to θ ′, thereby inducing an action on �. In principle the action of g on � might be
different from its action on Y , and it is clearer to think of two related groups G and G∗,
the second of which acts on �. We use g∗

θ to denote the element of G∗ that corresponds
to gθ ∈ G. In many cases the action of G∗ is transitive, that is, each parameter can be
obtained by applying an element of the group to a single baseline parameter.

Example 5.20 (Permutation group) Permutation of the indices of a random sample
Y1, . . . , Yn should leave any inference unaffected. Hence we may consider the group
of permutations π , with gπ (y) representing the permuted version of y ∈ IRn . Note that
π−1 is also a permutation, as is the operation that leaves the indices of y unchanged.
In the location model we might let G be the group containing all n! of the gπ in
addition to the gθ . Though well-defined on the sample space, gπ has no counterpart
in the parameter space, and so the enlarged group is not transitive.

To check that a(y) = (y(1) − y, . . . , y(n) − y)T is a maximal invariant, note that if
a(y) = a(y′), then permutations π, π ′ exist such that gπ ◦ g−y(y) = gπ ′ ◦ g−y′ (y′).
This in turn implies that g−1

−y′ ◦ g−1
π ′ ◦ gπ ◦ g−y(y) = y′. Hence a is a maximal

invariant.
If permutations are not included in the group, the same argument shows that (y1 −

y, . . . , yn − y)T is a maximal invariant. Thus the maximal invariant depends on the
chosen group. �
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We shall usually ignore permutations of the order of a random sample, because the
discussion below is simpler if the group considered is transitive.

Equivariance

A statistic S = s(Y ) defined on Y and taking values in the parameter space � is said
to be equivariant if s(gθ (Y )) = g∗

θ (s(Y )) for all gθ ∈ G. Often S is chosen to be an
estimator of θ , and then it is called an equivariant estimator. Maximum likelihood
estimators are equivariant, because of their transformation property, that if φ = φ(θ )
is a 1–1 transformation of the parameter θ , then φ̂ = φ (̂θ ), where θ̂ = s(Y ) is the
maximum likelihood estimator of θ . If the transformation φ corresponds to g∗

φ ∈ G∗,
and gφ(Y ) is the transformation of Y whose maximum likelihood estimator is φ̂, then
φ̂ = s(gφ(Y )), while φ (̂θ ) = g∗

φ(s(Y )). Hence s(gφ(Y )) = g∗
φ(s(Y )) for all such gφ ,

which is the requirement for equivariance.
An equivariant estimator can be used to construct a maximal invariant. Note first

that as s(Y ) ∈ �, the corresponding group elements g∗
s(Y ) ∈ G∗ and gs(Y ) ∈ G exist.

Now consider a(Y ) = g−1
s(Y )(Y ). If a(Y ) = a(Y ′), then g−1

s(Y )(Y ) = g−1
s(Y ′)(Y

′), and it
follows that Y ′ = gs(Y ′) ◦ g−1

s(Y )(Y ). Hence A = a(Y ) = g−1
s(Y )(Y ) is maximal invariant.

Example 5.21 (Location-scale model) Let Y = η + τε, where as before ε has a
known density f , and the parameter θ = (η, τ ) ∈ � = IR × IR+. The group action is
gθ (y) = g(η,τ )(y) = η + τ y, so

g(η,τ ) ◦ g(µ,σ )(y) = g(η,τ )(µ + σ y) = η + τµ + τσ y = g(η+τµ,τσ )(y). (5.22)

The set of such transformations is closed with identity g(0,1). It is easy to check that
g(η,τ ) has inverse g(−η/τ,τ−1). Therefore

G = {
g(η,τ ) : (η, τ ) ∈ IR × IR+

}
is indeed a group under the operation ◦ defined above.

The action of g(η,τ ) on a random sample is g(η,τ )(Y ) = η + τY , with η ≡ η1n and
Y an n × 1 vector, as in Example 5.19. Expression (5.22) implies that the implied
group action on � is

g∗
(η,τ )((µ, σ )) = ( η + τµ, τσ ) .

The sample average and standard deviation are equivariant, because with s(Y ) =
(Y , V 1/2), where V = (n − 1)−1 ∑

(Y j − Y )2, we have

s(g(η,τ )(Y )) =
(

η + τY ,
{

(n − 1)−1
∑

(η + τY j − η + τY )2
}1/2

)

=
(

η + τY ,
{

(n − 1)−1
∑

(η + τY j − η − τY )2
}1/2

)

= (
η + τY , τ V 1/2

)
= g∗

(η,τ ) (s(Y )) .
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A maximal invariant is A = g−1
s(Y )(Y ), and the parameter corresponding to g−1

s(Y ) is
(−Y/V 1/2, V −1/2). Hence a maximal invariant is the vector of residuals

A = (Y − Y )/V 1/2 =
(

Y1 − Y

V 1/2
, . . . ,

Yn − Y

V 1/2

)T

, (5.23)

also called the configuration. It can be checked directly that the distribution of A
depends on n and f but not on θ . Any function of A is invariant. If permutations are
added to G, a maximal invariant is A = (Y(·) − Y )/V 1/2, where Y(·) = (Y(1), . . . , Y(n))
represents the vector of ordered values of Y .

The orbits are determined by different values a of the statistic A, and Y has a unique
representation as gs(Y )(A) = Y + V 1/2 A. Hence the group action is free.

The elements of a satisfy the equations
∑

a j = 0 and
∑

a2
j = n − 1, so A lies

on an (n − 2)-dimensional surface in IRn . When n = 3 this is easily visualized; it
is the circle that forms the intersection of the sphere of radius 2 with the plane
a1 + a2 + a3 = 0. The entire space IR3 is generated by first choosing an element of
this circle, then multiplying it by a positive number to rescale it to lie on a ray passing
through the origin, and finally adding the vector y13.

Another equivariant estimator is (Y(1), Y(2) − Y(1)), where Y(r ) is the r th order statis-
tic, and the argument above shows that the vector (Y − Y(1))/(Y(2) − Y(1)) is corre-
sponding maximal invariant. Evidently this is just one of many possible location-scale
shifts of A, which can be thought of as the ‘shape’ of the sample, shorn of information
about its location and scale. �

The group-averse reader may wonder whether the generality of the discussion
above is needed to deal with our motivating example of temperatures in Celsius
and Fahrenheit. In fact we have not yet raised a crucial distinction between invari-
ances intrinsic to a context and those stemming only from the mathematical structure
of the model. Invariances of the first sort are more defensible than are the second,
because not every mathematical expression of a statistical problem successfully pre-
serves aspects such the interpretation of key parameters. Thus the sensible choice of
group in a particular context may not be mathematically most natural. Furthermore
appeal to invariance is not sensible if external information suggests that some pa-
rameter values should be favoured over others. Invariance arguments require careful
thought.

Example 5.22 (Venice sea level data) The straight-line regression model (5.2) can
be expressed as

y = Xβ + ε,

where

y =



y1
...

yn


 , X =




1 x1
...

...
1 xn


 , β =

(
β0

β1

)
, ε =




ε1
...
εn


 .
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If the ε j are independent normal variables then Y ∼ Nn(Xβ, σ 2 In). Hence OY ∼
Np(O Xβ, σ 2 In) for any n × n orthogonal matrix O that preserves the column spaceAn n × n orthogonal

matrix of real numbers O
has the properties that
OT O = O OT = In .

of X , that is, such that X (X T X )−1 X O X = O X . It is straightforward to check that
such matrices form a group. Now E(OY ) = Xγ , where γ = (X T X )−1 X T O Xβ =
A−1β, say, is the result of applying the corresponding group element in the parameter
space.

The transformation giving (5.3), with

(
β0

β1

)
= β = Aγ =

(
a11 a12

a21 a22

)
γ =

(
1 −x
0 1

)
γ =

(
γ0 − γ1x

γ1

)
,

preserves the interpretation of β1 = a22γ1 as a rate of change of E(Y ) with respect
to time, though the time origin is shifted. From a mathematical viewpoint there is no
reason not to take more general invertible transformations β = Aγ , for example with
a21 = 0, but this makes no sense statistically. Moreover even with a21 = 0 not every
choice of a22 makes sense: taking a22 < 0 or such that the units of γ1 were seconds
would have little appeal. �

In some cases the full parameter space does not give a useful group of transforma-
tions, but subspaces of it do. If the parameter space has form � × �, with the same
group of transformations G = {gλ : λ ∈ �} acting on the sample space for each value
of ψ , then we have a composite group transformation model.

Example 5.23 (Location-scale model) In the previous example, suppose that the
density fψ of ε depends on a further parameter ψ . An example is the tψ density.
Then for each fixed ψ we have a location-scale model in terms of λ = (η, τ ), with
gλ(y) = η + τ y, and our previous discussion applies.

For each ψ a maximal invariant based on a random sample Y1, . . . , Yn is
A = (Y − Y )/V 1/2, whose distribution depends on the sample size and on fψ but
not on λ. �

Exercises 5.3

1 Show that ≈ is an equivalence relation.

2 Suppose Y = τε, where τ ∈ IR+ and ε is a random variable with known density f . Show
that this scale model is a group transformation model with free action gτ (y) = τ y. Show
that s1(Y ) = Y and s2(Y ) = (

∑
Y 2

j )1/2 are equivariant and find the corresponding maximal
invariants. Sketch the orbits when n = 2.

3 Suppose that ε has known density f with support on the unit circle in the complex
plane, and that Y = eiθ ε for θ ∈ IR. Show that this is a group transformation model. Is it
transitive? Is the action free?

4 Write the configuration (5.23) in terms of ε1, . . . , εn , where Y j = µ + σε j , and thereby
show that its distribution does not depend on the parameters.

5 Show that the gamma density with shape and scale parameters ψ and λ, is a composite
transformation model under the mapping from Y to τY , where τ > 0.
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functions. Left panel:
Weibull hazards with
θ = 1 and α = 0.5 (dots),
α = 1 (large dashes),
α = 1.5 (dashes), and
bi-Weibull hazard with
θ1 = 0.3, α1 = 0.5,
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panel: Log-logistic
hazards with λ = 1 and
α = 0.5 (solid), α = 5
(dots), gamma hazard
with λ = 0.6 and α = 2
(dashes), and standard
normal hazard (large
dashes).

5.4 Survival Data

5.4.1 Basic ideas

The focus of interest in survival data is the time to an event. An important area of
application is medicine, where, for example, interest may centre on whether a new
treatment lengthens the life of a cancer patient, relative to those who receive existing
treatments. Other common applications are in industrial reliability, where the aim may
be to estimate the distribution of time to failure for a fridge, a computer program,
or a pacemaker. Examples also abound in the social sciences, where for example the
length of a period of unemployment may be of interest. In each case the time Y to
the event is non-negative and may be censored. For example, a patient may be lost to
follow-up for some reason unrelated to his disease, so that it is unknown whether or
not he died from the cause under study. In general discussion we refer to the items
liable to fail as units; these may be persons, widgets, marriages, cars, or whatever.

This section outlines some basic notions in survival analysis, concentrating on
single samples. More complex models are discussed in Section 10.8.

Hazard and survivor functions

A central concept is the hazard function of Y , defined loosely as the probability density
of failure at time y, given survival to then. If Y is a continuous random variable this is

h(y) = lim
δy→0

1

δy
Pr (y ≤ Y < y + δy | Y ≥ y) = f (y)

F(y)
,

where F(y) = Pr(Y ≥ y) = 1 − F(y) is the survivor function of Y . An older term
for h(y) is the force of mortality, and it is also called the age-specific failure rate.
Evidently h(y) ≥ 0; some example hazard functions are shown in Figure 5.7.

The exponential density with rate λ has F(y) = exp(−λy) and constant hazard
function h(y) = λ, and although data are rarely so simple, this model of a constant
failure rate independent of the past is a natural baseline from which to develop more
realistic models.
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The cumulative hazard function isOr integrated hazard
function.

H (y) =
∫ y

0
h(u) du =

∫ y

0

f (u)

1 − F(u)
du = − log {1 − F(y)} ,

as F(0) = 0. Thus the survivor function may be written as F(y) = exp{−H (y)}, and
f (y) = h(y) exp{−H (y)}. If limy→∞ H (y) < ∞, then F(∞) > 0 and the distribu-
tion is defective, putting positive probability on an infinite survival time. This may
arise in practice if, for example, the endpoint for a study is death from a disease, but
complete recovery is possible.

For a discrete distribution with probabilities fi at 0 ≤ t1 < t2 < · · ·, we may write
h(y) = ∑

hiδ(y − ti ), where

hi = Pr(Y = ti | Y ≥ ti ) = fi

fi + fi+1 + · · · .

Thus

Pr(Y > ti | Y ≥ ti ) = 1 − hi , fi = hi

i−1∏
j=1

(1 − h j ), (5.24)

and if ti < y ≤ ti+1 then

F(y) = Pr(Y > ti | Y ≥ ti )Pr(Y > ti−1 | Y ≥ ti−1) · · · Pr(Y > t1)

=
∏

i :ti <y

(1 − hi ). (5.25)

We define the cumulative hazard as H (y) = −∑
i :ti <y log(1 − hi ), again giving

F(y) = exp{−H (y)}. The more natural definition
∑

i :ti <y hi is approximately equal
to H (y) if the individual hi are small.

Mixed discrete-continuous variables are important in a general treatment of survival
data — for example, a patient may die so fast from complications after an operation
that the survival time is effectively zero, but otherwise may live for years — but here
we avoid them and the complications they bring.

Suppose that Y = min(Y1, . . . , Yk), where the Yi are continuous times to failure
from k independent causes, and that their hazard functions are hi (y). Then Y exceeds
y if and only if all the Yi exceed y, so

F(y) =
k∏

i=1

Pr(Yi ≥ y) = exp

{
−

k∑
i=1

∫ y

0
hi (u) du

}
,

and it follows that Y has hazard function h(y) = ∑
hi (y). That is, hazards for inde-

pendent causes of failure are added.

Example 5.24 (Weibull density) The Weibull density (4.4) has survivor function
F(y) = exp{−(y/θ )α}, so its hazard function is αθ−α yα−1. This is constant when
α = 1, decreasing when α < 1, and increasing when α > 1, as shown in the left
panel of Figure 5.7. This flexibility and the tractability of its density and distribution
functions make the Weibull a popular choice in reliability studies.
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This density is the basis of the bi-Weibull model, which corresponds to the minimum
of two independent Weibull variables, shown by the argument above to have hazard
function α1θ

−α1
1 yα1−1 + α2θ

−α2
2 yα2−1. If the shape parameters lie on opposite sides

of unity, so 0 < α1 < 1 < α2, say, h(y) is bathtub-shaped: there is a high early failure
rate during a ‘burn-in period’, then a flattish hazard and an eventual increase in failure
rate; see Figure 5.7. If α1 = α2 the hazard is indistinguishable from the Weibull hazard
and θ1 and θ2 are not identifiable. �

Example 5.25 (Log-logistic density) The log-logistic distribution has survivor and
hazard functions

F(y) = {1 + (λy)α}−1, h(y) = α
λα yα−1

1 + (λy)α
, y > 0, α, λ > 0.

Two examples of h(y) are shown in the right panel of Figure 5.7. It is decreasing for
α ≤ 1 and unimodal otherwise. The log-normal distribution, that is, the distribution
of Y = eZ , where Z has a normal distribution, is similar to the log-logistic, and its
hazard can take similar shapes. The normal hazard, also shown, increases very rapidly
due to the light tails of the normal density. �

Example 5.26 (Gamma density) The gamma survivor and hazard functions are

F(y) =
∫ ∞

y

λαuα−1

�(α)
e−λu du, h(y) = λα yα−1e−λy∫ ∞

y λαuα−1e−λu du
.

Figure 5.7 shows an example of the gamma hazard function. �

Censoring

The simplest form of censoring occurs when a random variable Y is watched until a
pre-determined time c. If Y ≤ c, we observe the value y of Y , but if Y > c, we know
only that Y survived beyond c. This is known as Type I censoring. Type II censoring
arises when n independent variables are observed until there have been r failures, so
the first r order statistics 0 < Y(1) < · · · < Y(r ) are observed, All that is known about For simplicity we assume

no ties.the n − r remaining observations is that they exceed Y(r ). This scheme is typically
used in industrial life-testing.

Under random censoring we suppose that the j th of n independent units has an
associated censoring time C j drawn from a distribution G, independent of its survival
time Y 0

j . The time actually observed is Y j = min(Y 0
j , C j ), and it is known whether

or not Y j = Y 0
j , an event indicated by D j . Thus a pair (y j , d j ) is observed for each

unit, with d j = 1 if y j is the survival time and d j = 0 if y j is the censoring time. This
type of censoring is important in medical applications, where a patient may die of a
cause unrelated to the reason they are being studied, may withdraw from the study or
be lost to follow-up, or the study may end before their survival time is observed.

Figure 5.8 shows the relation between calendar time and time on trial for a medical
study, with censoring both before and at the end of the trial. We assume below that
failure does not depend on the calendar time at which an individual enters the study;
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Figure 5.8 Lexis
diagram showing typical
pattern of censoring in a
medical study. Each
individual is shown as a
line whose x coordinates
run from the calendar time
of entry to the trial to the
calendar time of failure
(blob) or censoring
(circle). Censoring occurs
at the end of the trial,
marked by the vertical
dotted line, or earlier. The
vertical axis shows time
on trial, which starts when
individuals enter the
study. The risk set for the
failure at calendar time
4.5 comprises those
individuals whose lines
touch the horizontal
dashed line; see page 543.

thus we study events on the vertical axis. Calendar time may be used to account for
changes in medical practice over the course of a trial.

In applications the assumption that C j and Y 0
j are independent is critical. There

would be serious bias if the illest patients drop out of a trial because the treatment
makes them feel even worse, thereby inducing association between survival and cen-
soring variables because patients die soon after they withdraw.

The examples above all involve right-censoring. Less common is left-censoring,
where the time of origin is not known exactly, for example if time to death from a
disease is observed, but the time of infection is unknown.

In practice a high proportion of the data may be censored, and there may be a
serious loss of efficiency if they are ignored (Example 4.20). There will also be bias,
as survival probabilities will be underestimated if censoring is not taken into account.
Hence it is crucial to make proper allowance for censoring.

5.4.2 Likelihood inference

Suppose that the survival times are continuous, that data (y1, d1), . . . , (yn, dn) on n
independent units are available, and that there is a parametric model for survival
times, with survivor and hazard functions F(y; θ ) and h(y; θ ). Recall that the density
may be written f (y; θ ) = h(y; θ )F(y; θ ) and that in terms of the integrated hazard
function, F(y; θ ) = exp{−H (y; θ )}. Under random censoring in which the censoring
variables have density and distribution functions g and G, the likelihood contribution
from y j is

f (y j ; θ ){1 − G(y j )} if d j = 1, and F(y j ; θ )g(y j ) if d j = 0.

If the censoring distribution does not depend on θ , then g(y j ) and G(y j ) are constant
and the overall log likelihood is

�(θ ) ≡
∑

u

log f (y j ; θ ) +
∑

c

logF(y j ; θ ),
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Table 5.3
Blalock–Taussig shunt
data (Oakes, 1991). The
table gives survival time
of shunt (months after
operation) for 48 infants
aged over one month at
time of operation,
followed by times for 33
infants aged 30 or fewer
days at operation. Infants
whose shunt has not yet
failed are marked +.

0+ 1+ 1+ 3+ 3+ 7 10+ 11+ 12+ 12+ 15+ 18+
20+ 22+ 22+ 24+ 25+ 26+ 31+ 36+ 36+ 36 38 40
47+ 47+ 49+ 53+ 53+ 55+ 56+ 57+ 61+ 67+ 67+ 70
73 75+ 77+ 83+ 84+ 88+ 89+ 99 121+ 122+ 123+ 141+

0+ 0+ 2+ 2+ 2+ 2+ 3 3+ 4+ 5+ 9+ 10+
11 12+ 13 13+ 18+ 22+ 22+ 24+ 24+ 24+ 25+ 26+
27 28 32+ 35+ 36 40+ 43+ 50+ 54

where the sums are over uncensored and censored units. This amounts to treating the
censoring pattern as fixed, and encompasses Type I censoring, for which G puts all its
probability at c. In terms of the hazard function and its integral, the log likelihood is

�(θ ) =
n∑

j=1

{d j log h(y j ; θ ) − H (y j ; θ )}. (5.26)

Inference for θ is based on this in the usual way. As calculation of expected information
involves assumptions about the censoring mechanism, standard errors for parameter
estimates are based on observed information.

Example 5.27 (Exponential distribution) When f (y; λ) = λe−λy , the hazard is
h(y; λ) = λ, and hence the log likelihood for a random sample (y1, d1), . . . , (yn, dn) is

�(λ) =
n∑

j=1

(d j log λ − λy j ) = log λ

n∑
j=1

d j − λ

n∑
j=1

y j ,

giving maximum likelihood estimate λ̂ = ∑
d j/

∑
y j and observed information

J (λ) = ∑
d j/λ

2; see Example 4.20. Hence the estimate of λ is zero if there are
no failures, and censored data contribute no information about λ.

The expected information I (λ) = E {J (λ)} involves E(D j ), where D j indicates
whether a failure or censoring time is observed for the j th observation, but this
expectation cannot be obtained without some assumption about the censoring dis-
tribution G. Although this is feasible for theoretical calculations such as those in
Example 4.20, in practice the inverse observed information is used to give a standard
error J (̂λ)−1/2 for λ̂.

The mean of the exponential density is θ = λ−1, and its maximum likelihood
estimate is θ̂ = ∑

y j/
∑

d j , with observed information J (̂θ ) = θ̂2/
∑

d j and max-
imized log likelihood �(̂θ ) = −(1 + log θ̂ )

∑
d j . �

Example 5.28 (Blalock–Taussig shunt data) The Blalock–Taussig shunt is an
operative procedure for infants with congential cyanotic heart disease. Table 5.3
contains data from the University of Rochester on survival times for the shunt for
81 infants, divided into two age groups. Many of the survival times are censored,
meaning that the shunt was still functioning after the given survival time; its time to
failure is not known for these children, whereas it is known for the others. There are
just seven failures in each group. The table suggests that the shunt fails sooner for
younger children, and it is of interest to see how failure depends on age.
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A simple model for these data is that the failure times are independent exponential
variables, with common mean θ for both groups. Formulae from Example 5.27 show
that θ̂ = 209.1 and the maximized log likelihood is −88.79. If the means are different,
θ1 and θ2, say, then the maximized log likelihood is −85.98, so the likelihood ratio
statistic for comparing these models is 2 × (88.79 − 85.98) = 5.62, to be compared
with the χ2

1 distribution. As Pr(χ2
1 ≥ 5.62)

.= 0.018, there is strong evidence that
the mean survival time is shorter for the younger group, if the exponential model is
correct.

If the data were uncensored, it would be straightforward to assess the fit of this
model using probabability plots, but the amount of censoring is so high that this
is not sensible. More specialized methods are needed, and they are discussed in
Section 5.4.3.

One way to judge adequacy of the exponential model is to embed it in a larger one.
A simple alternative is to suppose that the data are Weibull, with H (y) = (y/θ )α .
The maximized log likelihoods are −83.72 when this model is fitted separately to
each group, and −83.74 when the same value of α is used for both groups. The
likelihood ratio statistic for comparison of these is 2 × (83.74 − 83.72) = 0.04, which
is negligible, but that for comparison with the best exponential model, 2 × (85.98 −
83.74) = 4.48, suggests that the Weibull model gives the better fit. The corresponding
estimates and their standard errors are θ̂1 = 181.1 (52.7), θ̂2 = 57.6 (15.1), and α̂ =
1.64 (0.35). The value of α̂ corresponds to an increasing hazard. �

Discrete data

Suppose that events could occur at pre-assigned times 0 ≤ t1 < t2 < · · ·, and that
under a parametric model of interest the hazard function at ti is hi = hi (θ ). We adopt
the convention that a unit censored at time ti could have been observed to fail there,
so giving likelihood contribution

lim
y↓ti

F(y) = (1 − h1) · · · (1 − hi ),

from (5.25); one way to think of this is that censoring at ti in fact takes place im-
mediately afterwards. The contribution to the likelihood from a unit that fails at ti
is (1 − h1) · · · (1 − hi−1)hi ; see (5.24). Although the likelihood can be written down
directly, it is more useful to express it in terms of the ri units still in the risk set —
that is not yet failed or censored — at time ti and the number di of units who fail
there. This modifies our previous notation: now di is the sum of the indicators of unit
failures at time ti , and can take one of values 0, 1, . . . , ri . Each of the di failures at ti
contributes hi to the likelihood, and the other units then still in view each contribute
1 − hi . It follows that the log likelihood may be written as

�(θ ) =
∑

i

{di log hi + (ri − di ) log (1 − hi )} , (5.27)

with the interpretation that the probability of failure at ti conditional on survival to ti
is hi , and di of the ri units in view at ti fail then. Thus (5.27) is a sum of contributions
from independent binomial variables representing the numbers of failures di at each
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Table 5.4 Historical
estimates of the force of
mortality (year−1),
averaged for 5-year age
groups (Thatcher, 1999).
The bottom line gives the
estimated number of
deaths at age 30 years and
above, on which the force
of mortality is based.

Age Hungary England Breslau
England & Wales, 1841 England & Wales, 1980–82

group 900–1100 1640–89 1687–91 Males Females Males Females

30–35 0.0235 0.0171 0.0164 0.0108 0.0107 0.0010 0.0006
35–40 0.0291 0.0205 0.0195 0.0123 0.0118 0.0014 0.0009
40–45 0.0337 0.0195 0.0233 0.0140 0.0131 0.0024 0.0016
45–50 0.0402 0.0244 0.0282 0.0159 0.0145 0.0043 0.0028
50–55 0.0696 0.0307 0.0342 0.0181 0.0162 0.0079 0.0047
55–60 0.0814 0.0459 0.0383 0.0254 0.0220 0.0138 0.0076
60–65 0.1033 0.0513 0.0474 0.0375 0.0331 0.0227 0.0119
65–70 0.1485 0.0701 0.0630 0.0553 0.0493 0.0365 0.0187
70–75 0.1877 0.1129 0.0995 0.0815 0.0736 0.0587 0.0308
75–80 0.3008 0.1445 0.1589 0.1201 0.1097 0.0930 0.0527
80–85 0.1974 0.1771 0.1638 0.1432 0.0919
85–90 0.2617 0.2448 0.2110 0.1567
90–95 0.3884 0.3674 0.2900 0.2374

95–100 0.3894 0.3215

Deaths 2300 3133 2675 71,000 74,000 834,000 828,000

time ti , with denominators ri and failure probabilities hi . In fact ri depends on the
history of failures and censorings up to time ti , so the di are not independent, but
it turns out that for large sample inference we may proceed as if they were. This
can be formalized using the theory of counting processes and martingales; see the
bibliographic notes to this chapter and to Chapter 10.

Example 5.29 (Human lifetime data) The virtual elimination of many infectious
diseases due to improved medical care and living conditions have led to increased
life expectancy in the developed world. If the trend continues there are potentially
major consequences for social security systems. Some physicians have asserted that
an upper limit to the length of human life is imposed by physical constraints, and
that the consequence of improved health care is that senesence will eventually be
compressed into a short period just prior to death at or near this upper limit. This view
is controversial, however, and there is a lively debate about the future of old age.

A natural way to assess the plausibility of the hypothesized upper limit is to exam-
ine data on mortality. Table 5.4 contains historical snapshots of the force of mortality,
obtained from census data, records of births and deaths, and other sources. The ear-
liest data were obtained by forensic examination of adult skeletons in Hungarian
graveyards, using a procedure that probably underestimates ages over 60 years and
overestimates those below. The table shows estimates of the average probability of
dying per year, conditional on survival to then, using the following argument. For
continuous-time data with survivor function F(y) and corresponding hazard function
h(y), the probability of failure in the period [ti , ti+1) given survival to ti would be

F(ti ) − F(ti+1)

F(ti )
= 1 − exp

{
−(ti+1 − ti )

1

ti+1 − ti

∫ ti+1

ti

h(y) dy

}
,



5.4 · Survival Data 195

Age (years)

F
or

ce
 o

f m
or

ta
lit

y 
(p

er
 y

ea
r)

40 50 60 70 80 90 100

0.
0

0.
1

0.
2

0.
3

0.
4

Age (years)

F
or

ce
 o

f m
or

ta
lit

y 
(p

er
 y

ea
r)

40 60 80 100 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0Figure 5.9 Force of

mortality for historical
data, in units of deaths per
person-year. Left panel,
from top to bottom: data
for medieval Hungary,
England 1640–89, Breslau
1687–91 (dots), English
and Welsh females 1841
and 1980–82. Right panel:
data for England and
Wales, 1980–82, males
(above) and females
(below) and fitted hazard
functions (dots).

where (ti+1 − ti )−1
∫ ti+1

ti
h(y) dy is the average hazard over the interval. Given dis-

cretized data with ri people alive at time ti , of whom di fail in [ti , ti+1), the corre-
sponding empirical hazard is −(ti+1 − ti )−1 log(1 − di/ri ), and this is reported in the
table; the corresponding di and ri are unavailable to us. For British males dying in
1980 the empirical hazard rose from about 0.001 year−1 at age 30 years to about
0.1 year−1 at 80 years to about 0.4 year−1 at 95 years; for females the probabilities
were slightly lower. Figure 5.9 shows the force of mortality of some of the columns
of the table; it is no surprise that it is lower in later than in earlier periods.

One model for such data is that

h(y; θ ) = λ + αeβy

1 + αeβy
,

where θ = (α, β, λ), corresponding to integrated hazard and survivor functions

H (y; θ ) = λy + 1

β
log

(
1 + αeβy

1 + α

)
, F(y; θ ) = e−λy ×

(
1 + α

1 + αeβy

)
1/β, y ≥ 0.

One interpretation of this model is that there are two competing causes of death, one
with a constant hazard, and the other with a logistic hazard.

In order to use (5.27) to fit this model to the data given in Table 5.4, we must calculate
hi (θ ) and (di , ri ). The probability of dying in [ti , ti+1) conditional on survival to ti is

hi (θ ) = Pr(ti ≤ Y ≤ ti+1 | Y ≥ ti )

= F(ti ; θ ) − F(ti+1; θ )

F(ti ; θ )

= 1 − exp {H (ti ; θ ) − H (ti+1; θ )} ,

and this is calculated using the logistic hazard given above. The empirical values of
the hazard function hi = di/ri , where di is the number of deaths among the ri persons
at risk, can be obtained from the columns of Table 5.4. Some calculation gives

d1 = nh1, di = nhi (1 − h1) · · · (1 − hi−1), i = 2, . . . , k,
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Table 5.5 Maximum
likelihood estimates for
fits of logistic hazard
model to the data in
Table 5.4. Standard errors
given as 0.00 are smaller
than 0.005.

Deaths at age 30
Estimate (standard error)

Data set years and over 104α̂ 102β̂ 102λ̂

Hungary, 900–1100 2300 8.76 (3.78) 7.68 (0.65) 1.27 (0.32)
England, 1640–89 3133 1.87 (0.66) 8.65 (0.48) 1.40 (0.12)
Breslau, 1687–91 2675 1.44 (0.76) 8.88 (0.73) 1.57 (0.15)
England & Wales, 1841, males 71,000 0.50 (0.03) 10.08 (0.08) 0.97 (0.01)
England & Wales, 1841, females 74,000 0.32 (0.02) 10.50 (0.08) 0.97 (0.01)
England & Wales, 1980–82, males 834,000 0.46 (0.00) 9.93 (0.01) −0.04 (0.00)
England & Wales, 1980–82, females 828,000 0.12 (0.00) 10.92(0.01) 0.03 (0.00)

where n = r1 is the number initially at risk, an estimate of which is given at the foot
of the table; once the di are known the ri are given by di/hi . When these pieces are
put together, maximum likelihood estimates of θ may be obtained by numerical max-
imization of (5.27), with standard errors based on the inverse observed information
matrix, also obtained numerically. Table 5.5 shows that α̂ and λ̂ decrease systemati-
cally with time, while the value of β̂ increases slightly but is broadly constant, close
to 0.1. These are consistent with the overall decrease in the hazard function, but no
change in its shape, that we see in the left panel of Figure 5.9. The values of λ̂ are gen-
erally similar to the observed force of mortality at age 30–35, and one interpretation
is that λ̂ represents the danger from the principal risks at this age, namely infectious
diseases and child-bearing, which has sharply reduced over the last 150 years.

The fits for the 1980–82 data are shown in the right panel of Figure 5.9. Although the
fit is good, the extrapolation beyond the range of the data must be treated skeptically.
It shows that although the model imposes no absolute upper limit on lifetimes, for a
person dying in 1980–82 there was an effective limit of about 140 years, well beyond
the limits of 110 or 115 years which have been suggested by physicians. In fact the
longest life for which there is good documentation is that of Mme Jeanne Calment,
who died in 1997 aged 122 years, and there is unlikely ever to be enough data to see
if there is an upper limit well above this.

Example 5.32 gives further discussion of this model. �

5.4.3 Product-limit estimator

Graphical procedures are essential for initial data inspection, for suggesting plausible
models and for checking their fit. One standard tool is a nonparametric estimator of
the survivor function, in effect extending the empirical distribution function (Exam-
ple 2.7) to censored data.

The simplest derivation of it is based on the model for failures at discrete pre-
specified times given above (5.25), though the estimator is useful more widely. We
therefore start with expression (5.27), which gives the log likelihood for such data in
terms of the hazard function h1, h2, . . .. For parametric analysis of a discrete failure
distribution the hi are functions of a parameter θ , but for nonparametric estimation
we treat each hi as a separate parameter and estimate it by maximum likelihood.
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Differentiation of (5.27) with respect to hi gives ĥi = di/ri and hence

F̂(y) =
∏

i :ti <y

(
1 − ĥi

) =
∏

i :ti <y

(
1 − di

ri

)
.

This is known as the product-limit or Kaplan–Meier estimator. Note thatEdward Kaplan and Paul
Meier were former
students of John Tukey
who submitted separate
papers to Journal of the
American Statistical
Association. They were
encouraged to merge them
by the editor. Despite
mixed reviews the editor
decided to publish the
joint paper (Kaplan and
Meier, 1958), which has
become one of the
most-cited articles in
statistics.

− ∂2�

∂hi∂h j
=

{ ri

ĥi (1−ĥi )
, i = j ,

0, otherwise,

implying that that the ĥi are asymptotically independent, with diagonal variance
matrix whose i th element is ĥi (1 − ĥi )/ri .

This derivation extends to continuous failure times by supposing that the y j are
ordered and that there are no ties, giving t1 = y1 < · · · < tn = yn . Then d j simply
indicates whether y j is a failure or a censoring time, and

F̂(y) =
∏

j :y j <y

(
1 − 1

r j

)d j

, (5.28)

so the estimate decreases only at those values of t j with d j = 1. This estimate is
valid also when the y j are not pre-specified, but full justification of this would take
us too far afield. If there is no censoring, then 1 − F̂(y) is the empirical distribution
function.

We find the variance of F̂(y) by arguing that if the di are asymptotically independent
binomial variables with denominators ri , then

var{log F̂(y)} = var

{ ∑
i :yi <y

log(1 − ĥi )

}

.=
∑

i :yi <y

var{log(1 − ĥi )}

.=
∑

i :yi <y

1

(1 − ĥi )2

ĥi (1 − ĥi )

ri

=
∑

i :yi <y

di

ri (ri − di )
, (5.29)

where the first approximation uses the asymptotic independence of the ĥi and the
second uses the delta method. As var{log F̂(y)} .= var{F̂(y)}/F̂(y)2, we obtain

Major Greenwood
(1880–1949) qualified as
a physician before turning
to statistics and
epidemiology under the
influence of Karl Pearson.
He was the first resident
statistician at any medical
research institute, and
worked for the British
Medical Research Council
and the London School of
Hygiene and Tropical
Medicine. He studied
infant mortality,
tuberculosis and hospital
fatality rates, pioneered
clinical trials and
gradually persuaded
sceptical physicians of the
value of statistical
thinking. Major was not
his military rank but his
first name.

Greenwood’s formula,

var{F̂(y)} .= F̂(y)2
∑

i :yi <y

di

ri (ri − di )
,

variants of which are widely used to assess the uncertainty of F̂(y). In practice it is
better to use (5.29) to compute approximate normal confidence intervals for logF(y),
and then to transform these intervals back to the original scale.

The cumulative hazard function can be estimated as Ĥ (y) = ∑
i :yi <y di/ri ; this is

a step function with jumps at failure times and approximate variance (5.29).
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Table 5.6 Product-limit
estimator for older group
of infants in Table 5.3.

Failure time, yi 7 36 38 40 70 73 99
Number in view, ri 43 29 26 25 13 12 5
Number failing, di 1 1 1 1 1 1 1
1 − di /ri 0.977 0.966 0.962 0.960 0.923 0.916 0.8
F̂(yi +) 0.977 0.944 0.908 0.872 0.804 0.737 0.590
Standard error 0.023 0.040 0.052 0.062 0.086 0.102 0.155
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Nonparametric analysis of
shunt data. Left panel:
product-limit estimates of
survivor function for older
(upper heavy line) and
younger infants (lower
heavy line), with 95%
confidence intervals (dots
and light solid). Pluses on
the product-limit
estimates mark times of
censored data. Right
panel: estimated
cumulative hazard
functions for older (solid)
and younger (dots)
infants, using
nonparametric estimate
and fitted Weibull model
(smooth curves).

Example 5.30 (Blalock–Taussig shunt data) Table 5.6 illustrates the calculation
of the product-limit estimator using data from Table 5.3. As the estimator changes
only at times of failures, it need not be calculated at censoring times. The estimate
does not approach zero for large y because the largest observation in the sample is
censored.

Estimated survivor functions for both groups are shown in the left panel of
Figure 5.10, together with approximate 95% confidence intervals. There is a strong
effect of age, with shunts failing appreciably sooner for the younger children. The
right panel compares the cumulative hazard function estimators Ĥ (y) = ∑

i :yi ≤y ĥi

with their parametric counterparts under the best Weibull model of Example 5.28.
The parametric fits overstate the hazards appreciably. The apparent large difference
after 60 months is largely due to a single failure in the younger group that strongly
influences the analysis. �

5.4.4 Other ideas

Competing risks

In some applications there may be different types of failure due to k different causes,
say, and each failure time Y is accompanied by an indicator I showing which type of
failure occurred. We can then define cause-specific hazard functions

hi (y) = lim
δy→0

Pr (y ≤ Y ≤ y + δy, I = i | Y ≥ y)

δy
, y ≥ 0, i = 1, . . . , k,
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corresponding to the rate at which failure of type i occurs, given survival to y. The
overall hazard, cumulative hazard and survivor functions may be written

h(y) =
k∑

i=1

hi (y), H (y) =
k∑

i=1

∫ y

0
hi (u) du, F(y) = exp

{
k∑

i=1

∫ y

0
hi (u) du

}
.

If we imagine observing a population of values of (Y, I ), then each of the hi (y) would
be known, but we would observe no other aspect of the population. Thus without
further assumptions the only estimable quantities are functions of the hi (y) such as
H (y) and F(y).

The likelihood contribution from an uncensored failure of type i is hi (y)F(y),
while provided censoring is independent, that from a censored failure is F(y), be-
cause the corresponding I is unknown. Suppose that we have independent triplets
(y1, i1, d1), . . . , (yn, in, dn), where y j is the j th survival time and d j = 1 if it is un-
censored. If so, i j indicates its failure type, while i j = 0, say, if d j = 0. The likelihood
based on these data is

n∏
j=1

F(y j )
k∏

i=1

hi j (y j )
d j =

k∏
i=1

[
n∏

j=1

exp

{
−

∫ y j

0
hi (y) du

}
hi (y j )

d j I (i j =i)

]
,

so it follows that to estimate hi (y) we treat any failure not of type i as a censoring.
Thus, for example, the survivor function for hi (y) may be estimated by the product-
limit estimator (5.28) with d j replaced by d j I (i j = i). Failures of types other than i
are treated as censorings. Likewise for estimation of a parametric hi .

For simplicity let k = 2. One way to think of competing risks is in terms of latent
or potential failure times Y1, Y2 corresponding to the failure types. The observed
quantities are Y = min(Y1, Y2) and I = {i : Yi = Y }. Here Y1 is interpreted as the
time to failure that would be observed if cause 2 was removed, assuming that the
failure time distribution for cause 1 when both causes of failure operate remains
unchanged if cause 2 is eliminated. This assumption may be plausible in situations
such as a reliability study where different types of failure are due to physically separate
sub-systems and it is possible to imagine that all but one of these have been perfected,
but the elimination of one failure type may alter the risk for others, particularly in
medical contexts, where the assumption is often unsustainable. If it can be justified
by appeal to subject-matter considerations it is very useful — the case for vaccination
against infectious diseases, for example, presumes that removal of their risks increases
overall survival.

An even stronger assertion is that Y1 and Y2 actually exist for each unit under
study, with independence of causes of failure equivalent to independence of Y1 and
Y2. In fact it is impossible to contradict this model. As mentioned above, the only
observable quantities are functions of the cause-specific hazards h1(y) and h2(y). The
joint survivor function

F(y1, y2) = Pr(Y1 > y1, Y2 > y2) = exp

{
−

∫ y1

0
h1(u) du −

∫ y2

0
h2(u) du

}
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Table 5.7 Mouse data
(Hoel and Walburg, 1972).
Age at death (days) of
RFM male mice exposed
to 300 rads of x-radiation
at 5–6 weeks of age. The
causes of death were
thymic lymphoma,
reticulum cell sarcoma
and other. The upper
group of 95 mice were
kept in a conventional
environment; the lower 82
in a germ-free
environment.

Lymphoma 159 189 191 198 200 207 220 235 245 250
256 261 265 266 280 343 356 383 403 414
428 432

Sarcoma 317 318 399 495 525 536 549 552 554 557
558 571 586 594 596 605 612 621 628 631
636 643 647 648 649 661 663 666 670 695
697 700 705 712 713 738 748 753

Other 163 179 206 222 228 249 252 282 324 333
341 366 385 407 420 431 441 461 462 482
517 517 524 564 567 586 619 620 621 622
647 651 686 761 763

Lymphoma 158 192 193 194 195 202 212 215 229 230
237 240 244 247 259 300 301 321 337 415
434 444 485 496 529 537 624 707 800

Sarcoma 430 590 606 638 655 679 691 693 696 747
752 760 778 821 986

Other 136 246 255 376 421 565 616 617 652 655
658 660 662 675 681 734 736 737 757 769
777 800 807 825 855 857 864 868 870 870
873 882 895 910 934 942 1015 1019

is a model for independent failures that yields cause-specific hazard functions h1 and
h2, so whatever the form of these functions, data of form (Y, I ) cannot give evidence
against independent risks. Dependence can only be inferred from data in which both
Y1 and Y2 are observed for certain units, or from subject-matter considerations. This
is important because interest often focuses on the effect of eliminating failures of
one type, say type 2, in which case the survivor function is F(y, 0). As this is not
a function of h1 and h2 it is inestimable unless assumptions, typically unverifiable
ones, are made about the relation between the risks. Some statisticians therefore insist
that the only valid inferences from competing risk data concern the hi and quantities
derived from them.

Example 5.31 (Mouse data) The data in Table 5.7 are from a experiment in which
two groups of RFM strain male mice were exposed to 300 rad of radiation at age
5–6 weeks. The first group lived in a conventional laboratory environment, and the
second group lived in a germ-free environment. After their deaths, a pathologist
ascertained whether the death was due to one of two types of cancer or to other
causes. One purpose of the experiment was to assess the effect of environment on
different causes of death. As irradiation took place when the mice were aged between
35 and 42 days old, it might be better to take age since irradiation as the response,
but its exact value is unknown.

The panels of Figure 5.11 shows the estimated cumulative hazard functions for
death from lymphoma and from other causes. Mortality from the lymphoma arises
early, and seems to depend little on the environment. Deaths from other causes
arise earlier in the conventional environment than in the germ-free one. See also
Example 10.38. �
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Frailty

The discussion above presupposes that all units have the same propensity to fail. In
practice this is unrealistic — some cars are more reliable than others, some persons
healthier than others, and so forth — and it may be important to build heterogene-
ity into models for survival. One reason for this is that allowing the failure rate to
vary across units may greatly change the interpretation of the hazard function. It is
tempting to view the population hazard function as a measure of how the risk for
each unit changes as a function of time. For example, the fact that the divorce rate
typically increases to a maximum a few years after marriage and thereafter decreases
is sometimes interpreted as meaning that the typical marriage experiences increas-
ing difficulties, but that if these are resolved there is eventually a more stable union.
A unimodal divorce rate can be generated, however, by supposing that the hazard
of failure increases with the duration of each marriage, but that the initial value of
this hazard varies randomly from couple to couple. If this second interpretation is
correct, then the population hazard function depends both on hazards for individual
marriages and on variation across them, and reflects a selection process whereby the
marriages most at risk tend to fail quickly, leaving those that were more stable to begin
with. Thus the hazard rate is a more complicated quantity than it might seem at first
sight.

One approach is to represent heterogeneity using the outcome of a positive random
variable, Z , known as a frailty. We suppose that Z varies across units according to
a density fZ (z), and that at time y the hazard function for a unit for whom Z = z is
zh(y); thus the cumulative hazard to that time is zH (y). Units whose z is large have
high hazard functions and tend to fail sooner than those whose frailty is low. If known,
the value of z could be incorporated into the analysis by modifying the likelihood,
but we suppose it is unobserved, perhaps representing unobserveable genetic and
environmental differences among units, and use it to model heterogeneity in the
data.

As the survivor function for a unit with frailty z may be expressed as Pr(Y ≥ y |
Z = z) = exp{−zH (y)}, the survivor function for a unit taken randomly from the
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population is

Pr(Y ≥ y) =
∫ ∞

0
Pr(Y ≥ y | Z = z) fZ (z) dz

=
∫ ∞

0
exp {−zH (y)} fZ (z) dz

= M {−H (y)} ,

where M is the moment-generating function of Z . Thus the cumulative hazard function
for the population is − log M{−H (y)}. The densities of Z conditional on failure at y
and conditional on survival at least to y,

f (z | Y = y) = z fZ (z) exp {−zH (y)}∫ ∞
0 z fZ (z) exp {−zH (y)} dz

,

fZ (z | Y ≥ y) = e−zH (y) fZ (z)∫ ∞
0 exp {−zH (y)} fZ (z) dz

, z > 0,

can be used to see how frailty depends on failure and on survival.

Example 5.32 (Logistic hazard) Let β > 0 and H (y) = eβy − 1, so a unit with
frailty z has hazard zβeβy ; this increases exponentially. Suppose also that Z has the
gamma density with mean αβ−1/(1 + α) and shape parameter β−1. Then M(u) =
{1 − αu/(1 + α)}−1/β , and the population cumulative hazard function,

− log M {−H (y)} = 1

β
log

(
1 + αeβy

1 + α

)
,

is the same as that fitted to the data on old age in Example 5.29. Thus although each
unit has a constant hazard, the effect of frailty is that the population hazard has an S-
shaped logistic form, because of the selective effect of the early failure of the weakest
units.

Simple calculations show that the density of frailties among those units failing
at time y is gamma with mean α(1 + β−1)/(1 + αeβy) and shape parameter 1 +
β−1, while that among those units who have not failed at time y is gamma with
corresponding parameters αβ−1/(1 + αeβy) and β−1. Both of these are decreasing in
y, showing how the tendency for units with high frailties to fail first leads to survival
of the fittest.

Information on unit hazard functions would be needed before such a model could
be regarded as a serious explanation of the good fit of the logistic hazard for the
data on old age. Absent such knowledge, the model is best regarded as suggesting a
possible mechanism for the observed phenomenon, and as indicating the type of data
needed for a more detailed investigation. �

Evidently frailty has the potential to greatly complicate the analysis of population
phenomena. It also complicates group comparisons (Problem 5.15).
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Exercises 5.4

1 Show that if there is no censoring, the product-limit estimator may be written F̂(y) =
n−1#{i : yi > y}, and hence show that in this case 1 − F̂(y) equals the empirical distri-
bution function (2.3). Find Greenwood’s formula, and comment.

If in doubt, think of
failures of your car,
fridge, computer, . . .

2 Suggest physical phenomena that might give increasing, decreasing, and bathtub-shaped
hazard functions. Sketch the corresponding survivor functions.

3 Use the relation F(y) = exp{− ∫ y
0 h(u)du} between the survivor and hazard functions

to find the survivor functions corresponding to the following hazards: (a) h(y) = λ; (b)
h(y) = λyα; (c) h(y) = αyκ−1/(β + yκ ). In each case state what the distribution is.
Show that E{1/h(Y )} = E(Y ) and hence find the means in (a), (b), and (c).

4 The mean excess life function is defined as e(y) = E(Y − y | Y > y). Show that

e(y) = F(y)−1

∫ ∞

y
F(u) du

and deduce that e(y) satisfies the equation e(y)Q ′(y) + Q(y) = 0 for a suitable Q(y).
Hence show that provided the underlying density is continuous,

F(y) = e(0)

e(y)
exp

{
−

∫ y

0

1

e(u)
du

}
.

As a check on this, find e(y) and hence F(y) for the exponential density.
One approach to modelling survival is in terms of e(y). For human lifetime data, let
e(y) = γ (1 − y/θ )β , where θ is an upper endpoint and β, γ > 0. Find the corresponding
survivor and hazard functions, and comment.

5 If F1(y), . . . ,Fk(y) are the survivor functions of independent positive random variables
and β1, . . . , βk > 0, show that

∏
Fi (y)βi is also a survivor function, and find the corre-

sponding hazard and cumulative hazard functions.
Suppose that k = 2 and the survivor functions are (i) log-logistic, (ii) log-normal and (iii)
Weibull. Show that in the first two cases new models are obtained, but that in the third the
parameters are not identifiable.

6 An empirical estimate of the survivor function F(y) when data y1, . . . , yn are not cen-
sored is given by F̂(y) = #{ j : y j > y}/(n + 1). Suggest how plots of log{− log F̂(y j )}
against log y j may be used to indicate if the data have Weibull or exponential distri-
butions. Describe the corresponding plot for the Gumbel distribution function F(y) =
exp[− exp{−(y − η)/α}].

7 Show that the log likelihood (5.26) may be expressed as

�(θ ) =
∫ ∞

0
log h(y; θ ) d D(y) −

∫ ∞

0
R(y) d H (y; θ ),

where D(y) is a step function with jumps of size one at the values of y that are failures
and R(y) is the number of units at risk of failure at time y. Establish that both integrals
are over finite ranges. Such expressions are useful in a general treatment of likelihood
inference for failure data.

5.5 Missing Data

5.5.1 Types of missingness

Missing observations arise in many applications, but particularly in data from living
subjects, for example when frost kills a plant or the laboratory cat kills some experi-
mental mice. They are common in data on humans, who may agree to take part in a
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two-year study and then drop out after six months, or refuse to answer questions about
their salaries or sex-lives. They may occur by accident or by design, for example when
lifetimes are censored at the end of a survival study (Section 5.4).

The central problem they pose is obvious: little can be said about unknown data,
even if the pattern of missingness suggests its cause and hence indicates to what
extent remaining observations can be trusted and lost ones imputed. Loss of data
will clearly increase uncertainty, but a more malign effect is that inferences from the
data are sharply limited unless we are prepared to make assumptions that the data
themselves cannot verify. Thus, if data are missing or might be missing it is essential
to consider possible underlying mechanisms and their potential effect on inferences.
The discussion below is intended to focus thought about these.

Suppose that our goal is inference for a parameter θ based on data that would
ideally consist of n independent pairs (X, Y ), but that some values of Y are missing,
as shown by an indicator variable, I . Thus the data on an individual have form (x, y, 1)
or (x, ?, 0). We suppose that although the missingness mechanism Pr(I = 0 | x, y)
may depend on x and y, it does not involve θ . Then the likelihood contribution from
an individual with complete data is the joint density of X , Y and I , which we write as

Pr(I = 1 | x, y) f (y | x ; θ ) f (x ; θ ),

while if Y is unknown we use the marginal density of X and I ,∫
Pr(I = 0 | x, y) f (y | x ; θ ) f (x ; θ ) dy. (5.30)

There are now three possibilities:

� data are missing completely at random, that is, Pr(I = 0 | x, y) = Pr(I = 0) is
independent both of x and y, and (5.30) reduces to Pr(I = 0) f (x ; θ );

� data are missing at random, that is, Pr(I = 0 | x, y) = Pr(I = 0 | x) depends
on x but not on y, and (5.30) equals Pr(I = 0 | x) f (x ; θ ); and

� there is non-ignorable non-response, meaning that Pr(I = 0 | x, y) depends on
y and possibly also on x .

In the first two of these, which are often grouped as ignorable non-response,
I carries no information about θ and can be omitted for most likelihood infer-
ences. To see why, suppose that we have n independent observations of form
(x1, y1, I1), . . . , (xn, yn, In), let M be the set of j for which y j is unobserved, and
suppose that data are missing at random. Then the likelihood is

L(θ ) =
∏
j∈M

Pr(I j = 0 | x j ) f (x j ; θ ) ×
∏
j ∈M

Pr(I j = 1 | x j ) f (x j , y j ; θ )

∝
∏
j∈M

f (x j ; θ ) ×
∏
j ∈M

f (x j , y j ; θ ),

because the terms involving I j do not depend on θ . Thus the missing data mecha-
nism does not affect maximum likelihood estimates θ̂ , likelihood ratio statistics or
the observed information J (̂θ ). It does affect the expected information, however, so
standard errors for θ̂ should be based on J (̂θ )−1; see the discussion of likelihood
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Figure 5.12 Missing
data in straight-line
regression for Venice
sea-level data. Clockwise
from top left: original
data, data with values
missing completely at
random, data with values
missing at random —
missingness depends on x
but not on y, and data with
non-ignorable
non-response —
missingness depends on
both x and y. Missing
values are represented by
a small dot. The dotted
line is the fit from the full
data, the solid lines those
from the non-missing
data.

inference in Section 5.4 and Problem 5.16. A similar argument applies if data are
missing completely at random. If the non-response is non-ignorable, however, the
density of I is no longer a constant of integration in (5.30). In that case, knowledge
of the observed I j is informative about θ , and likelihood inference is possible only if
Pr(I = 0 | x, y) can be specified.

Example 5.33 (Venice sea level data) The upper left panel of Figure 5.12 shows
the data of Example 5.1. Here x represents a year in the range 1931–1981; in the
absence of sea level it contains no information about any trend. The annual maximum
sea level y is taken to be a normal variable with mean β0 + β1(x j − x) and variance
σ 2; hence θ = (β0, β1, σ

2) and the full data likelihood has form f (y | x ; θ ) f (x), of
which f (x) is ignored.

The upper right panel of Figure 5.12 shows the effect of data missing completely at
random, while in the panel below the probability that a value is unobserved depends
on x but not on y; the data are missing at random, with earlier observations missing
more often than later ones. The lower left panel shows non-ignorable non-response,
because the probability of missingness depends on y and on x ; values of y that are
larger than their means are more likely to be missing. Here the fitted line differs from
those in the other panels due to bias induced by the missingness mechanism.
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Table 5.8 Average
estimates and standard
errors for missing value
simulation based on
Venice data, for full
dataset, with data missing
completely at random
(MCAR), missing at
random (MAR) and with
non-ignorable
non-response (NIN). 1000
samples were taken.
Standard errors for the
averages for β̂0 and β̂1 are
at most 0.16 and 0.01;
those for their standard
errors are at most 0.03 and
0.002.

Average estimate (average standard error)

Truth Full MCAR MAR NIN

β0 120 120 (2.79) 120 (4.02) 120 (4.73) 132 (3.67)
β1 0.50 0.49 (0.19) 0.48 (0.28) 0.50 (0.32) 0.20 (0.25)

To assess the extent of this bias, we generated 1000 samples from a model with
parameters β0 = 120, β1 = 0.5 and σ = 20, close to the estimates for the Venice data
and with the same covariate x . We then computed maximum likelihood estimates for
the full data and for those observations that remain after applying the non-response
mechanisms

Pr(I = 1 | x, y) =



0.5,

� {0.05(x − x)} ,

� [0.05(x − x) + {y − β0 − β1(x − x)} /σ ] ,

to give data missing completely at random, missing at random, and with non-ignorable
non-response. In each case roughly one-half of the observations are missing. Table 5.8
shows that although data loss increases the variability of the estimates, their means
are unaffected, provided the probability of non-response does not depend on y. If the
probability of missingness depends on the response, however, estimates based on the
remaining data become entirely unreliable. �

The message of this example is bleak: when there is non-ignorable non-response
and a non-negligible proportion of the data is missing, the only possible rescue is
to specify the missingness mechanism correctly. In practice it is typically hard to
tell if missingness is ignorable or not, so fully reliable inference is largely out of
reach. Sensitivity analysis to assess how heavily the conclusions depend on plausible
mechanisms for non-response is then useful, and we now outline one approach to this.

Publication bias

Breakthroughs in medical science are regularly reported, offering hope of a new cure
or suggesting that some enjoyable activity has dire consequences. It is unwise to take
them all at face value, however, as some turn out to be spurious. One reason for this
is the publication process to which they are subjected. Once a study is completed, an
article describing it is typically submitted to a medical journal for peer review. If the
study design and analysis are found to be satisfactory, a decision is taken whether the
article should be published. This decision is likely to be positive if the study reports a
significant result or if it involved a large number of patients, but will often be negative
if no association is found — there is no ‘significant finding’ — particularly if the
study is small and hence deemed unreliable. The end-result of this selection process
is publication bias, whereby studies finding associations tend to be the ones published,
even if in fact there is no effect. Recommendations to change medical practice are
usually based not on a single study — unless it is huge, involving many thousands of
patients — but on a meta-analysis that combines results from all published studies.
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As studies finding no effect are more likely to remain unpublished, however, wrong
conclusions can be drawn.

For a simple model of this selection process, suppose that we wish to estimate a
parameter µ that represents the effect of a treatment, subject to possible publication
bias. A study based on n individuals produces an estimate µ̂, normally distributed
with mean µ and variance σ 2/n. The vagaries of the editorial process are represented
by a variable Z , with the study published if Z is positive. We suppose that µ̂ and Z
are related by

µ̂ = µ + σn−1/2U1, Z = γ0 + γ1n1/2 + U2,

withU1 andU2 standard normal variables with correlationρ ≥ 0. One interpretation of
U1 is as the standardized form n1/2(µ̂ − µ)/σ of µ̂, which is used to assess significance
of the treatment effect. If ρ > 0 then publication becomes increasingly likely as
U1 increases, because Z is positively correlated with U1. In terms of our previous
discussion, Y and X correspond to µ̂ and n, but now neither is observed if the study
is unpublished.

The missingness indicator I equals one if Z > 0 and zero otherwise, so the marginal
probability of publication is

Pr(I = 1) = Pr(Z > 0) = Pr
(
U2 > −γ0 − γ1n1/2

) = �
(
γ0 + γ1n1/2

)
. (5.31)

If γ1 > 0 this increases with n: large studies are then more likely to be published,
whatever their outcome. Conditional on the value of µ̂, (3.21) implies that Z is
normal with mean γ0 + γ1n1/2 + ρn1/2(µ̂ − µ)/σ and variance 1 − ρ2. Hence the
conditional probability of publication given µ̂ is

Pr(I = 1 | µ̂) = Pr (Z > 0 | µ̂) = �

{
γ0 + γ1n1/2 + ρn1/2(µ̂ − µ)/σ

(1 − ρ2)1/2

}
. (5.32)

If ρ > 0, this is increasing in µ̂: the probability that a study is published increases
with the estimated treatment effect, at each study size n. Moreover, as µ̂ appears in
(5.32), non-response — non-publication of a study — is non-ignorable. If ρ = 0,
(5.32) reduces to (5.31). Unpublished studies are then missing at random: the odds
that a study is published depend on its size n but not on its outcome µ̂.

Conditional on publication, the mean of µ̂ is

E (µ̂ | Z > 0) = µ + ρσn−1/2ζ
(
γ0 + γ1n1/2

)
, (5.33)

where ζ (u) = φ(u)/�(u) is the ratio of the standard normal density and distribution
functions. If γ1, ρ > 0, then E(µ̂ | Z > 0) > µ, so the mean of a published µ̂ is
always larger than µ, but by an amount that decreases with n. For small γ1, Taylor
expansion gives

E (µ̂ | Z > 0)
.= µ + ρσγ1ζ

′ (γ0) + ρσζ (γ0) n−1/2,

so the conditional mean of µ̂ in published studies is roughly linear in n−1/2. As just
three parameters — intercept, slope and variance — can be estimated from a linear
fit, simultaneous estimation of µ, ρ, σ 2, γ0, and γ1 is infeasible. In order to assess



208 5 · Models

Table 5.9 Data from 11
clinical trials to compare
magnesium treatment for
heart attacks with control,
with n patients randomly
allocated to treatment and
control; there are r deaths
out of m patients in each
group (Copas, 1999). The
estimated log treatment
effect µ̂ will be positive if
treatment is effective;
(v/n)1/2 is its standard
error. The huge ISIS-4
trial is not included in the
meta-analysis.

Magnesium Control
Trial r/m r/m n µ̂ (v/n)1/2

1 1/25 3/23 48 1.18 1.05
2 1/40 2/36 76 0.80 0.83
3 2/48 2/46 94 0.04 0.75
4 1/50 9/53 103 2.14 0.72
5 4/56 14/56 112 1.25 0.69
6 3/66 6/66 132 0.69 0.63
7 2/92 7/93 185 1.24 0.53
8 27/135 43/135 270 0.47 0.44
9 10/160 8/156 316 −0.20 0.41

10 90/1159 118/1157 2316 0.27 0.15

Meta-analysis 3652 0.41 0.11

ISIS-4 2216/29011 2103/29039 58050 −0.05 0.03

the impact of selection in the following example, we fix γ0 and γ1 to give plausible
probabilities of publication for small and large samples, and consider inference for
θ = (µ, ρ, σ ).

Now suppose that we wish to estimate µ based on k independent estimates
µ̂1, . . . , µ̂k from published studies of sizes n1, . . . , nk . As µ̂ j is observed only con-
ditional on its publication, the likelihood contribution from study j is

f (µ̂ j | Z j > 0; θ ) = f (µ̂ j ; θ )Pr(Z j > 0 | µ̂ j ; θ )

Pr(Z j > 0)
.

The marginal density of µ̂ j is normal with mean µ and variance σ 2/n j , and on
recalling (5.31) and (5.32), we see that the overall log likelihood is

�(µ, ρ, σ 2) ≡ −
k∑

j=1

{
1

2
log σ 2 + n j

2σ 2
(µ̂ j − µ)2 + log �(a j ) − log �(b j )

}
,

(5.34)
where a j = γ0 + γ1n1/2

j and b j = (1 − ρ2)−1/2{a j + ρn1/2
j (µ̂ j − µ)/σ }.

The simplest meta-analysis ignores the possibility of selection bias and amounts
to setting ρ = 0, presuming the publication of a study to be unrelated to its result.
If this is so, then a j = b j and the log likelihood is easily maximized, the maximum
likelihood estimate of µ being the weighted average∑

n j µ̂ j∑
n j

. (5.35)

When ρ = 0, this estimator is normal with mean µ and variance σ 2/
∑

n j . If in fact
ρ > 0, then (5.33) implies that µ̂0 will tend to exceed µ; the treatment effect will tend
to be overstated by the published data.

Example 5.34 (Magnesium data) Table 5.9 shows data from clinical trials on the
use of intraveneous magnesium to treat patients with suspected acute myocardial
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Figure 5.13 Likelihood
analysis of magnesium
data. Left: funnel plot
showing variation of µ̂

with trial size n, with 95%
confidence interval for µ

based on each trial. The
vertical dotted line is the
combined estimate of µ

from the ten small trials,
ignoring the possibility of
publication bias; the
vertical solid line shows
no treatment effect. The
solid line is the estimated
conditional mean (5.33).
Right: contours of µ̂ as a
function of γ0 and γ1.

infarction. For each trial, we consider the difference in log proportion of deaths be-Myocardial infarction is
the medical term for heart
attack — death of part of
the heart muscle because
of lack of oxygen and
other nutrients.

tween control and treated groups, the estimated treatment effect µ̂ = log(r2/m2) −
log(r1/m1). Now m1

.= m2 for each trial and the proportion of deaths is small, so
the delta method suggests that an approximate variance for µ̂ is 4/(̂λn), where
λ̂ = 0.097 is the death rate estimated from all the trials and n = m1 + m2 is the size
of each trial. The combined sample is large enough to treat λ̂ and hence σ 2 = 4/̂λ

as constant. Although the estimated treatment effects µ̂ from the ten small trials
are individually inconclusive, the meta-analysis estimate (5.35) is 0.41 with stan-
dard error 0.11; this gives an estimated reduction in the probability of death by
a factor exp(0.41) = 1.51 with 0.95 confidence interval (1.22,1.86). A similar pub-
lished meta-analysis concluded that the magnesium treatment was ‘effective, safe and
simple’.

For a more skeptical view, consider the funnel plot of n and exp(µ̂) in the left panel of
Figure 5.13; note the logarithmic axes. Symmetry about the overall weighted average
(5.35) would show lack of publication bias, but the visible asymmetry suggests that
small studies tend to be published only if µ̂ is sufficiently positive.

The right panel shows how the maximum likelihood estimate of µ from (5.34)
depends on γ0 and γ1. The contours are very roughly parallel with slope −0.05,
suggesting that the maximum likelihood estimate varies mainly as a function of
γ0 + 4001/2γ1, or equivalently the probability �(γ0 + 4001/2γ1) that a study of size
n = 400 is published. For example, if the selection probabilities are 0.9 and 0.1 for
the largest and smallest studies in Table 5.9, then this probability is 0.32, ρ̂ = 0.5
and the estimated treatment effect is 0.27 with standard error 0.12 from observed
information. This estimate is substantially less than the value 0.41 obtained when
ρ = 0, and the significance of the estimated treatment effect is much reduced. The
estimated conditional mean (5.33) in the left panel shows how the selection due to
having ρ > 0 affects the mean of published studies.

The sensitivity of the estimated effect to potential publication bias suggests that
treatment policy conclusions cannot be based on Table 5.9. Indeed, a subsequent
much larger trial — ISIS-4 — found no evidence that magnesium is effective. �
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Publication bias is an example of selection bias, where the mechanism underlying
the choice of data introduces an uncontrolled bias into the sample. This is endemic
in observational studies, for example in epidemiology and the social sciences, and it
can greatly weaken what conclusions may be drawn.

5.5.2 EM algorithm

The fitting of certain models is simplified by treating the observed data as an in-
complete version of an ideal dataset whose analysis would have been easy. The key
idea is to estimate the log likelihood contribution from the missing data by its con-
ditional value given the observed data. This yields a very general and widely used
estimation-maximization or EM algorithm for maximum likelihood estimation.

Let Y denote the observed data and U the unobserved variables. Our goal is to use
the observed value y of Y for inference on a parameter θ , in models where we cannot
easily calculate the density

f (y; θ ) =
∫

f (y | u; θ ) f (u; θ ) du

and hence cannot readily compute the likelihood for θ based only on y. We write the
complete-data log likelihood based on both y and the value u of U as

log f (y, u; θ ) = log f (y; θ ) + log f (u | y; θ ), (5.36)

where the first term on the right is the observed-data log likelihood �(θ ). As the value
of U is unobserved, the best we can do is to remove it by taking expectation of (5.36)
with respect to the conditional density f (u | y; θ ′) of U given that Y = y; for reasons
that will become apparent we use θ ′ rather than θ for this expectation. This yields

E{log f (Y, U ; θ ) | Y = y; θ ′} = �(θ ) + E{log f (U | Y ; θ ) | Y = y; θ ′}, (5.37)

which we express as

Q(θ ; θ ′) = �(θ ) + C(θ ; θ ′). (5.38)

We now fix θ ′ and treat Q(θ ; θ ′) and C(θ ; θ ′) as functions of θ . If the conditional
distribution of U given Y = y is non-degenerate and no two values of θ give the
same model, then the argument at (4.31) applied to f (y | u; θ ) shows that C(θ ′; θ ′) ≥
C(θ ; θ ′), with equality only when θ = θ ′. Hence

Q(θ ; θ ′) ≥ Q(θ ′; θ ′) implies �(θ ) − �(θ ′) ≥ C(θ ′; θ ′) − C(θ ; θ ′) ≥ 0. (5.39)

Moreover under mild smoothness conditions, C(θ ; θ ′) has a stationary point at θ = θ ′.
Hence if Q(θ ; θ ′) is stationary at θ = θ ′, so too is �(θ ).

This leads to the EM algorithm: starting from an initial value θ ′ of θ ,

1. compute Q(θ ; θ ′) = E
{
log f (Y, U ; θ ) | Y = y; θ ′}; then

2. with θ ′ fixed, maximize Q(θ ; θ ′) over θ , giving θ †, say; and
3. check if the algorithm has converged, using �(θ †) − �(θ ′) if available, or |θ † − θ ′|,

or both. If not, set θ ′ = θ † and go to 1.
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Steps 1 and 2 are the expectation (E) and maximization (M) steps of the algorithm. As
the M-step ensures that Q(θ †; θ ′) ≥ Q(θ ′; θ ′), we see from (5.39) that �(θ †) ≥ �(θ ′):
the log likelihood never decreases. Moreover, if �(θ ) has just one stationary point,
and if Q(θ ; θ ′) eventually reaches a stationary value at θ̂ , then θ̂ must maximize �(θ ).
If �(θ ) has more than one stationary point the algorithm may converge to a local
maximum of the log likelihood or to a turning point. As the EM algorithm never
decreases the log likelihood it is more stable than Newton–Raphson-type algorithms,
which do not have this desirable property.

As one might expect, the convergence rate of the algorithm depends on the amount
of missing information. If knowledge of Y tells us little about U , then Q(θ ; θ ′) and �(θ )
will be very different and the algorithm slow. This may be quantified by differentiating
(5.36) and taking expectations with respect to the conditional distribution of U given
Y , to give

−∂2�(θ )

∂θ∂θ T
= E

{
−∂2 log f (y, U ; θ )

∂θ∂θ T

∣∣∣∣ Y = y; θ

}

− E

{
−∂2 log f (U | y; θ )

∂θ∂θ T

∣∣∣∣ Y = y; θ

}
,

or J (θ ) = Ic(θ ; y) − Im(θ ; y), interpreted as meaning that the observed information
equals the complete-data information minus the missing information; this is some-
times called the missing information principle. If U is determined by Y , then the
conditional density f (u | y; θ ) is degenerate and under mild conditions the missing
information will be zero. It turns out that the rate of convergence of the algorithm
equals the largest eigenvalue of the matrix Ic(θ ; y)−1 Im(θ ; y); values of this eigen-
value close to one imply slow convergence and occur if the missing information is a
high proportion of the total.

When the EM algorithm is slow it may be worth trying to accelerate it by replacing
the M-step with direct maximization, assuming of course that �(θ ) is unavailable. It
turns out that (Exercise 5.5.5)

∂�(θ )

∂θ
= ∂ Q(θ ; θ ′)

∂θ

∣∣∣∣
θ ′=θ

,
∂2�(θ )

∂θ∂θ T
=

{
∂2 Q(θ ; θ ′)

∂θ∂θ T
+ ∂2 Q(θ ; θ ′)

∂θ∂θ
′T

}∣∣∣∣
θ ′=θ

. (5.40)

Thus even if �(θ ) is inaccessible, its derivatives may be obtained from those of Q(θ ; θ ′)
and used in a generic maximization algorithm. The second of these formulae also
provides standard errors for the maximum likelihood estimate θ̂ when Q(θ ; θ ′) is
known but �(θ ) is not.

Example 5.35 (Negative binomial model) For a toy example, suppose that con-
ditional on U = u, Y is a Poisson variable with mean u, and that U is gamma with
mean θ and variance θ2/ν. Inference is required for θ with the shape parameter ν > 0
supposed known. Here (5.36) equals

y log u − u − log y! + ν log ν − ν log θ + (ν − 1) log u − νu/θ − log �(ν),
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Figure 5.14 EM
algorithm for negative
binomial example. Left
panel: observed-data log
likelihood �(θ ) (solid) and
functions Q(θ ; θ ′) for
θ ′ = 1.5, 1.347 and 1.028
(dots, from right). The
blobs show the values of θ

that maximize these
functions, which
correspond to the first,
fifth and fortieth iterations
of the EM algorithm.
Right: convergence of EM
algorithm (dots) and
Newton–Raphson
algorithm (solid). The
panel shows how
successive EM iterations
update θ ′ and θ̂ . Notice
that the EM iterates
always increase �(θ ),
while the
Newton–Raphson steps do
not.

and hence (5.37) equals

Q(θ ; θ ′) = (y + ν − 1)E(log U | Y = y; θ ′) − (1 + ν/θ )E(U | Y = y; θ ′) − ν log θ

plus terms that depend neither on U nor on θ .
The E-step, computation of Q(θ ; θ ′), involves two expectations, but fortunately

E(log U | Y = y; θ ′) does not appear in terms that involve θ and so is not required.
To compute E(U | Y = y; θ ′), note that Y and U have joint density

f (y | u) f (u; θ ) = uy

y!
e−u × ννuν−1

θν�(ν)
e−νu/θ , y = 0, 1, . . . , u > 0, θ > 0,

so the marginal density of Y is

f (y; θ ) =
∫ ∞

0
f (y | u) f (u; θ, ν) du = �(y + ν)νν

�(ν)y!

θ y

(θ + ν)y+ν
, y = 0, 1, . . .

Hence the conditional density f (u | y; θ ′) is gamma with shape parameter y + ν and
mean E(U | Y = y; θ ′) = (y + ν)/(1 + ν/θ ′), and we can take

Q(θ ; θ ′) ≡ −(1 + ν/θ )(y + ν)/(1 + ν/θ ′) − ν log θ,

where we have ignored terms independent of both θ and θ ′.
The M-step involves maximization of Q(θ ; θ ′) over θ for fixed θ ′, so we differentiate

with respect to θ and find that the maximizing value is

θ † = θ ′(y + ν)/(θ ′ + ν). (5.41)

In this example, therefore, the EM algorithm boils down to choosing an initial θ ′,
updating it to θ † using (5.41), setting θ ′ = θ † and iterating to convergence.

The log likelihood based only on the observed data y is

�(θ ) = log f (y; θ ) ≡ y log θ − (y + ν) log(θ + ν), θ > 0.

This is shown in the left panel of Figure 5.14 for y = 1 and ν = 15. The panel also
shows the functions Q(θ ; θ ′) on the first, fifth and fourtieth iterations starting at θ ′ =
1.5, which gives the sequence θ ′ = 1.5, 1.45, 1.41, . . .. The functions Q(θ ; θ ′) are
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much more concentrated than is �(θ ), showing that the amount of missing information
is large. The difference in curvature corresponds to the information lost through not
observing U .

Here the unmodified EM algorithm converges slowly. The right panel of Figure 5.14
illustrates this, as successive values of θ † descend gently towards the limiting value
θ = 1: convergence has still not been achieved after 100 iterations, at which point
θ † = 1.00056. The ratio of missing to complete-data information, 15/16, indicates
slow convergence. The Newton–Raphson algorithm (4.25) using the derivatives (5.40)
converges much faster, with θ̂ = 1 to seven decimal places after only five iterations,
so here it pays handsomely to use the derivative information in (5.40). �

Example 5.36 (Mixture density) Mixture models arise when an observation Y
is taken from a population composed of distinct subpopulations, but it is unknown
from which of these Y is taken. If the number p of subpopulations is finite, Y has a
p-component mixture density

f (y; θ ) =
p∑

r=1

πr fr (y; θ ), 0 ≤ πr ≤ 1,

p∑
r=1

πr = 1,

where πr is the probability that Y comes from the r th subpopulation and fr (y; θ ) is its
density conditional on this event. An indicator U of the subpopulation from which Y
arises takes values 1, . . . , p with probabilities π1, . . . , πp. In many applications the
components have a physical meaning, but sometimes a mixture is used simply as a
flexible class of densities. For simplicity of notation below, let θ contain all unknown
parameters including the πr .

If the value u of U were known, the likelihood contribution from (y, u) would be∏
r { fr (y; θ )πr }I (u=r ), giving contribution

log f (y, u; θ ) =
p∑

r=1

I (u = r ) {log πr + log fr (y; θ )}

to the complete-data log likelihood. In order to apply the EM algorithm we must
compute the expectation of log f (y, u; θ ) over the conditional distribution

Pr(U = r | Y = y; θ ′) = π ′
r fr (y; θ ′)∑p

s=1 π ′
s fs(y; θ ′)

, r = 1, . . . , p. (5.42)

This probability can be regarded as the weight attributable to component r if y has
been observed; for compactness below we denote it by wr (y; θ ′). The expected value
of I (U = r ) with respect to (5.42) is wr (y; θ ′), so the expected value of the log
likelihood based on a random sample (y1, u1), . . . , (yn, un) is

Q(θ ; θ ′) =
n∑

j=1

p∑
r=1

wr (y j ; θ
′){log πr + log fr (y j ; θ )}

=
p∑

r=1

{
n∑

j=1

wr (y j ; θ
′)

}
log πr +

p∑
r=1

n∑
j=1

wr (y j ; θ
′) log fr (y j ; θ ).
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Table 5.10 Velocities
(km/second) of 82
galaxies in a survey of the
Corona Borealis region
(Roeder, 1990). The error
is thought to be less than
50 km/second.

9172 9350 9483 9558 9775 10227 10406 16084 16170 18419
18552 18600 18927 19052 19070 19330 19343 19349 19440 19473
19529 19541 19547 19663 19846 19856 19863 19914 19918 19973
19989 20166 20175 20179 20196 20215 20221 20415 20629 20795
20821 20846 20875 20986 21137 21492 21701 21814 21921 21960
22185 22209 22242 22249 22314 22374 22495 22746 22747 22888
22914 23206 23241 23263 23484 23538 23542 23666 23706 23711
24129 24285 24289 24366 24717 24990 25633 26960 26995 32065
32789 34279

The M step of the algorithm entails maximizing Q(θ ; θ ′) over θ for fixed θ ′. As the
πr do not usually appear in the component density fr , the maximizing values π

†
r are

obtained from the first term of Q, which corresponds to a multinomial log likelihood;
see (4.45). Thus π

†
r = n−1 ∑

j wr (y j ; θ ′), the average weight for component r .
Estimates of the parameters of the fr are obtained from the weighted log likelihoods

that form the second term of Q(θ ; θ ′). For example, if fr is normal with mean µr and
variance σ 2

r , simple calculations give the weighted estimates

µ†
r =

∑n
j=1 wr (y j ; θ ′)y j∑n

j=1 wr (y j ; θ ′)
σ 2†

r =
∑n

j=1 wr (y j ; θ ′)(y j − µ
†
r )2∑n

j=1 wr (y j ; θ ′)
, r = 1, . . . , p.

Given initial values of (πr , µr , σ
2
r ) ≡ θ ′, the EM algorithm simply involves computing

the weights wr (y j ; θ ′) for these initial values, updating to obtain (π †
r , µ

†
r , σ

2†
r ) ≡ θ †,

and checking convergence using the log likelihood, |θ † − θ ′|, or both. If convergence
is not yet attained, θ ′ is replaced by θ † and the cycle repeated.

We illustrate these calculations using the data in Table 5.10, which gives the ve-
locities at which 82 galaxies in the Corona Borealis region are moving away from
our own galaxy. It is thought that after the Big Bang the universe expanded very fast,
and that as it did so galaxies formed because of the local attraction of matter. Owing
to the action of gravity they tend to cluster together, but there seem also to be ‘su-
perclusters’ of galaxies surrounded by voids. If galaxies are indeed super-clustered
the distribution of their velocities estimated from the red-shift in their light-spectra
would be multimodal, and unimodal otherwise. The data given are from sections of
the northern sky carefully sampled to settle whether there are superclusters.

Cursory examination of the data strongly suggests clustering. In order to estimate
the number of clusters we fit mixtures of normal densities by the EM algorithm with
initial values chosen by eye. The maximized log likelihood for p = 2 is −220.19,
found after 26 iterations. In fact this is the highest of several local maxima; the global
maximum of +∞ is found by centering one component of the mixture at any of the
y j and letting the corresponding σ 2

r → ∞; see Example 4.42. Only the local maxima
yield sensible fits, the best of which is found using randomly chosen initial values. The
number of iterations needed depends on these and on the number of components, but
is typically less than 40. This procedure gives maximized log likelihoods −240.42,
−203.48, −202.52 and −192.42 for fits with p = 1, 3, 4 and 5. The latter gives a
single component to the two observations around 16,000 and so does not seem very
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sensible. Standard likelihood asymptotics do not apply here, but evidently there is
little difference between the 3- and 4-component fits, the second of which is shown
in Figure 5.15. Both fits have three modes, and the evidence for clustering is very
strong.

An alternative is to apply a Newton–Raphson algorithm directly to the log likeli-
hood �(θ ) based on the mixture density, but if this is to be reliable the model must
be reparametrized so that the parameter space is unconstrained, using log σ 2

r and
expressing π1, . . . , πp in terms of θ1, . . . , θp−1 of Example 5.12. As mentioned in
Example 4.42, the effect of the spikes in �(θ ) can be reduced by replacing fr (y; θ )
by Fr (y + h; θ ) − Fr (y − h; θ ), where h is the degree of rounding of the data, here
50 km/second. �

Exponential family models

The EM algorithm has a particularly simple form when the complete-data log likeli-
hood stems from an exponential family, giving

log f (y, u; θ ) = s(y, u)Tθ − κ(θ ) + c(y, u).

The expected value of this is needed with respect to the conditional density f (u |
y; θ ′). Evidently the final term will not depend on θ and can be ignored, so the M-step
will involve maximizing

Q(θ ; θ ′) = E{s(y, U )Tθ | Y = y; θ ′} − κ(θ ),

or equivalently solving for θ the equation

E{s(y, U ) | Y = y; θ ′} = dκ(θ )

dθ
.

The likelihood equation for θ based on the complete data would be s(y, u) =
dκ(θ )/dθ , so the EM algorithm simply involves replacing s(y, u) by its conditional
expectation E{s(y, U ) | Y = y; θ ′} and solving the likelihood equation. Thus a rou-
tine to fit the complete-data model can readily be adapted for missing data if the
conditional expectations are available.
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Example 5.37 (Positron emission tomography) Positron emission tomography
is performed by introducing a radioactive tracer into an animal or human subject.
Radioactive emissions are then used to assess levels of metabolic activity and blood
flow in organs of interest. Positrons emitted by the tracer annihilate with nearby
electrons, giving pairs of photons that fly off in opposite directions. Some of these
are counted by bands of gamma detectors placed around the subject’s body, but
others miss the detectors. The detected counts are used to form an image of the level
of metabolic activity in the organs based on the estimated spatial concentration of
isotope.

For a statistical model, the region of interest is divided into n pixels or voxels and Pixels and voxels are
picture and volume
elements, in 2 and
3 dimensions respectively.

it is assumed that the number of emissions Ui j from the j th pixel detected at the i th
detector is a Poisson variable with mean pi jλ j ; here λ j is the intensity of emissions
from that pixel and pi j the probability that a single emission is detected at the i th
detector. The pi j depend on the geometry of the detection system, the isotope and
other factors, but can be taken to be known. The Ui j are unknown but can plausibly
be assumed independent. The counts Yi at the d detectors are observed and have
independent Poisson distributions with means

∑n
j=1 pi jλ j .

The complete-data log likelihood,

d∑
i=1

n∑
j=1

{ui j log(pi jλ j ) − pi jλ j },

is an exponential family in which the maximum likelihood estimates of the unknown
λ j have the simple form λ̂ j = ∑

i ui j/
∑

i pi j . The E-step requires only the condi-
tional expectations E(Ui j | Y ; λ′). As Yi = Ui1 + · · · + Uin , the conditional density of
Ui j given Yi = yi is binomial with denominator yi and probability pi jλ

′
j/

∑
h pihλ

′
h .

Thus the M-step yields

λ
†
j =

∑d
i=1 E(Ui j | Y j = y j ; λ′)∑d

i=1 pi j

=
∑d

i=1 y j pi jλ
′
j/

∑n
h=1 pihλ

′
h∑d

i=1 pi j

= λ′
j

1∑d
i=1 pi j

d∑
i=1

yi pi j∑n
h=1 λ′

h pih
, j = 1, . . . , n.

The algorithm converges to a unique global maximum of the observed-data log like-
lihood provided that d > n, with the positivity constraints on the λ j satisfied at each
step.

Though simple, this algorithm has the undesirable property that the resulting images
are too rough if it is iterated to full convergence. The difficulty is that although we
would anticipate that adjacent pixels would be similar, the model places no constraint
on the λ j and so the final image is too close to the data. Some modification is required,
such as adding a smoothing step to the algorithm or introducing a roughness penalty
(Section 10.7.2). �

The EM algorithm is particularly attractive in exponential family problems, but
is used much more widely. In more general situations both E- and M-steps may
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be complicated, and it often pays to break them into smaller components, perhaps
involving Monte Carlo simulation to compute the conditional expectations required
for the E-step. Discussion of this here would take us too far afield, but some of the
recent research devoted to this is mentioned in the bibliographic notes.

Exercises 5.5

1 Data are observed at random if Pr(I = 0 | x, y) = Pr(I = 0 | y), where I is the indicator
that y is missing. Show that if data are observed at random and missing data are missing
at random, then data are missing completely at random.

2 Show that Bayesian inference for θ is unaffected by the model for non-response if data
are missing completely at random or missing at random, but not if there is non-ignorable
non-response. What happens when Pr(I | x, y) depends on θ?

3 In Example 5.33, suppose that y is normal with mean β0 + β1x and variance σ 2, and that
it is missing with probability �(a + by + cx), where a, b and c are unknown. Use (3.25)
to find the likelihood contributions from pairs (x, y) and (x, ?), and discuss whether the
parameters are estimable.

4 When ρ = 0, show that (5.35) is the maximum likelihood estimate of µ and find its
variance.

5 Use the fact that
∫

f (u | y; θ ) du = 1 for all y and θ to show that

0 = E

{
∂ log f (U | Y ; θ )

∂θ

∣∣∣∣ Y = y; θ

}
,

0 = E

{
∂2 log f (U | Y ; θ )

∂θ∂θT
+ ∂ log f (U | Y ; θ )

∂θ

∂ log f (U | Y ; θ )

∂θT

∣∣∣∣ Y = y; θ

}
.

Now use (5.38) to establish (5.40).
Check this in the special case of Example 5.35, and hence give the Newton–Raphson step
for maximization of the observed-data log likelihood, even though �(θ ) itself is unknown.
Write a program to compare the convergence of the EM and Newton–Raphson algorithms
in that example.
(Oakes, 1999)

6 Check the forms of π †
r , µ†

r and σ 2†
r in Example 5.36, and verify that they respect the

constraints σ 2
r > 0, 0 ≤ πr ≤ 1 and

∑
πr = 1 on the parameter values.

7 Check the details of Example 5.37.

8 (a) To apply the EM algorithm to data censored at a constant c, let U denote the underlying
failure time and suppose that Y = min(U, c) and D = I (U ≤ c) are observed. Thus the
complete-data log likelihood is log f (u; θ ). Show thatδ(·) is the Dirac delta

function.

f (u | y, d; θ ) =
{

δ(u − y), d = 1,
f (u;θ )

1−F(c;θ ) , u > c, d = 0.

(b) If f (u; θ ) = θe−θu , show that E(U | Y = y, D = d; θ ′) = dy + (1 − d)(c + 1/θ ′),
and deduce that the iteration for a random sample (y1, d1), . . . , (yn, dn) is

θ † = n∑n
j=1

{
d j y j + (1 − d j )(c + 1/θ ′)

} .

Show that the missing information is
∑

(1 − d j )/θ2 and find the rate of convergence of
the algorithm. Discuss briefly.
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5.6 Bibliographic Notes

Linear regression is discussed in more depth in Chapter 8, and references to the
enormous literature on the topic can be found in Section 8.8. Exponential family
models date to work of Fisher and others in the 1930s, are widely used in applications
and have been intensively studied. Chapter 5 of Pace and Salvan (1997) is a good
reference, while longer more mathematical accounts are Barndorff-Nielsen (1978)
and Brown (1986). The term natural exponential family was introduced by Morris
(1982, 1983), who highlighted the importance of the variance function.

The roots of group transformation models go back to Pitman (1938, 1939), but owe
much of their modern development to D. A. S. Fraser, summarized in Fraser (1968,
1979).

Survival analysis is a huge field with inter-related literatures on industrial and med-
ical problems, though time-to-event data arise in many other fields also. The early
literature is mostly concerned with reliability, of which Crowder et al. (1991) is an
elementary account, while the literature on biostatistical and medical applications
has grown enormously over the last 30 years. Cox and Oakes (1984), Miller (1981),
Kalbfleisch and Prentice (1980), and Collett (1995) are standard accounts at about
this level; see also Klein and Moeschberger (1997). Competing risks are surveyed by
Tsiatis (1998); a helpful earlier account is Prentice et al. (1978). Their nonidentifia-
bility was first pointed out by Cox (1959). Aalen (1994) gives an elementary account
of frailty models, with further references. Keiding (1990) describes inference using
the Lexis diagram.

The formal study of missing data began with Rubin (1976), though ad hoc pro-
cedures for dealing with missing observations in standard models were widely used
much earlier. A standard reference is Little and Rubin (1987). More recently the related
notion of data coarsening, which encompasses censoring, truncation and grouping as
well as missingness, has been discussed by Heitjan (1994).

Although data in areas such as epidemiology and the social and economic sci-
ences are often analyzed as if they were selected randomly from some well-defined
population, the possibility that bias has entered the selection process is ever-present;
publication bias is just one example of this. There is a large literature on selection bias
from many points of view, much of which is mentioned by Copas and Li (1997) and
its discussants. Example 5.34 is taken from Copas (1999). Molenberghs et al. (2001)
give an example of analysis of sensitivity to missing data in contingency tables, with
references to related literature.

Special cases of the EM algorithm were used well before it was crystallized and
named by Dempster et al. (1977), who gave numerous applications and pointed the
way for the substantial further work largely summarized in McLachlan and Krishnan
(1997). A useful shorter account is Chapter 4 of Tanner (1996). One common criticism
of the algorithm is its slowness, and Meng and van Dyk (1997) and Jamshidian
and Jennrich (1997) describe some of the many approaches to speeding it up; they
also contain further references. Oakes (1999) gives references to the literature on
computing standard errors for EM estimates. Modern applications go far beyond the
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simple exponential family models used initially and may require complex E- and
M-steps including Monte Carlo simulation; see for example McCulloch (1997).

Mixture models and their generalizations are widely used in applications, partic-
ularly for classification and discrimination problems; see Titterington et al. (1985)
and Lindsay (1995). The thorny problem of selecting the number of components is
given an airing by Richardson and Green (1997) and their discussants, using methods
discussed in Section 11.3.3.

5.7 Problems

1 In the linear model (5.3), suppose that n = 2r is an even integer and define W j = Yn− j+1 −
Y j for j = 1, . . . , r . Find the joint distribution of the W j and hence show that

γ̃1 =
∑r

j=1(xn− j+1 − x j )W j∑r
j=1(xn− j+1 − x j )2

satisfies E(γ̃1) = γ1. Show that

var(γ̃1) = σ 2

{
n∑

j=1

(x j − x)2 − 1

2

r∑
j=1

(xn− j+1 + x j − 2x)2

}−1

.

Deduce that var(γ̃1) ≥ var(γ̂1) with equality if and only if xn− j+1 + x j = c for some c and
all j = 1 . . . , r .

2 Show that the scaled chi-squared density with known degrees of freedom ν,

f (v; σ 2) = vν/2−1

(2σ 2)ν/2�
(

1
2 ν

) exp
(
− v

2σ 2

)
, v > 0, σ 2 > 0, ν = 1, 2, . . . ,

is an exponential family, and find its canonical parameter and observation and cumulant-
generating function.

3 Show that the geometric density

f (y; π ) = π (1 − π )y, y = 0, 1, . . . , 0 < π < 1,

is an exponential family, and give its cumulant-generating function.
Show that S = Y1 + · · · + Yn has negative binomial density(

n + s − 1

n − 1

)
π n(1 − π )s, s = 0, 1, . . . ,

and that this is also an exponential family.

4 (a) Suppose that Y1 and Y2 have gamma densities (2.7) with parameters λ, κ1 and λ, κ2.
Show that the conditional density of Y1 given Y1 + Y2 = s is

�(κ1 + κ2)

sκ1+κ2−1�(κ1)�(κ2)
uκ1−1(s − u)κ2−1, 0 < u < s, κ1, κ2 > 0,

and establish that this is an exponential family. Give its mean and variance.
(b) Show that Y1/(Y1 + Y2) has the beta density.
(c) Discuss how you would use samples of form y1/(y1 + y2) to check the fit of this model
with known ν1 and ν2.

5 If Y has density (5.7) and Y1 is a proper subset of Y , show the the conditional density of
Y given that Y ∈ Y1 is also a natural exponential family.
Find the cumulant-generating function for the truncated Poisson density given by f0(y) ∝
1/y!, y = 1, 2, . . ., and give the likelihood equation and information quantities.
Compare with Practical 4.3.
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6 Show that the two-locus multinomial model in Example 4.38 is a natural exponen-
tial family of order 2 with natural observation and parameter s(Y ) = (YA + YAB, YB +
YAB)T and (θA, θB)T = (log{α/(1 − α)}, log{β/(1 − β)}) and cumulant-generating func-
tion m log(1 + eθA ) + m log(1 + eθB ). Deduce that the elements of s(Y ) are independent.
Under what circumstances will maximum likelihood estimation of θA, θB give infinite
estimates?

7 Suppose that Y1, . . . , Yn follow (5.2). Show that the joint density of the Y j is a linear
exponential family of order three, and give the canonical statistics and parameters and the
cumulant-generating function. Find the minimal representations in the cases where the x j

(i) are, and (ii) are not, all equal.
Is the model an exponential family when E(Y j ) = β0 exp(x jβ1)?

8 Show that the multivariate normal distribution Np(µ, �) is a group transformation model
under the map Y �→ a + BY , where a is a p × 1 vector and B an invertible p × p matrix.
Given a random sample Y1, . . . , Yn from this distribution, show that

Y = n−1
n∑

j=1

Y j ,

n∑
j=1

(Y j − Y )(Y j − Y )T

is a minimal sufficient statistic for µ and �, and give equivariant estimators of them. Use
these estimators to find the maximal invariant.

9 Show that the model in Example 4.5 is an exponential family. Is it steep? What happens
when R j = 0 whenever x j < a and R j = m j otherwise?
Find its minimal representation when all the x j are equal.

10 Independent observations y1, . . . , yn from the exponential density λ exp(−λy), y > 0,
λ > 0, are subject to Type II censoring stopping at the r th failure. Show that a minimal
sufficient statistic for λ is S = Y(1) + · · · + Y(r ) + (n − r )Y(r ), where 0 < Y(1) < Y(2) < · · ·
are order statistics of the Y j , and that 2λS has a chi-squared distribution on 2r degrees of
freedom.
A Type II censored sample was 0.2, 0.8, 1.1, 1.4, 2.1, 2.4, 2.4+, 2.4+, 2.4+, where + denotes
censoring. On the assumption that the sample is from the exponential distribution, find a
90% confidence interval for λ. How would you check whether the data are exponential?

11 Let X1, . . . , Xn be an exponential random sample with density λ exp(−λx), x > 0, λ > 0.
For simplicity suppose that n = mr . Let Y1 be the total time at risk from time zero to the
r th failure, Y2 be the total time at risk between the r th and the 2r th failure, Y3 the total
time at risk between the 2r th and 3r th failures, and so forth.
(a) Let X (1) ≤ X (2) ≤ · · · ≤ X (n) be the ordered values of the X j . Show that the joint
density of the order statistics is

fX(1),...,X(n) (x1, . . . , xn) = n! f (x1) f (x2) · · · f (xn), x1 < x2 < · · · < xn,

and by writing X (1) = Z1, X (2) = Z1 + Z2, . . ., X (n) = Z1 + · · · + Zn , where the Z j are
the spacings between the order statistics X ( j), show that the Z j are independent exponential
random variables with hazard rates (n + 1 − j)λ.
(b) Hence show that the Y j have independent gamma distributions with means r/λ and
variances r/λ2. Deduce that the variables log Y j are independently distributed with con-
stant variance.
(c) Now suppose that the hazard rate is not constant, but is a slowly-varying smooth
function of time, λ(t). Explain how a plot of log Y j against the midpoint of the time
interval between the (r − 1) j th and the r j th failures can be used to estimate log λ(t).
(Cox, 1979)

12 Let Y1, . . . , Yn be independent exponential variables with hazard λ subject to Type I
censoring at time c. Show that the observed information for λ is D/λ2, where D is
the number of the Y j that are uncensored, and deduce that the expected information is
i(λ | c) = n{1 − exp(−λc)}/λ2 conditional on c.



5.7 · Problems 221

Now suppose that the censoring time c is a realization of a random variable C , whose
density is gamma with index ν and parameter λα:

f (c) = (λα)νcν−1

�(ν)
exp(−cλα), c > 0, α, ν > 0.

Show that the expected information for λ after averaging over C is

i(λ) = n{1 − (1 + 1/α)−ν}/λ2.

Consider what happens when (i) α → 0, (ii) α → ∞, (iii) α = 1, ν = 1, (iv) ν → ∞ but
µ = ν/α is held fixed. In each case explain qualitatively the behaviour of i(λ).

13 In a competing risks model with k = 2, write

Pr(Y ≤ y) = Pr(Y ≤ y | I = 1)Pr(I = 1) + Pr(Y ≤ y | I = 2)Pr(I = 2)
= pF1(y) + (1 − p)F2(y),

say. Hence find the cause-specific hazard functions h1 and h2, and express F1, F2 and p
in terms of them.
Show that the likelihood for an uncensored sample may be written

pr (1 − p)n−r
r∏

j=1

f1(y j )
n∏

j=r+1

f2(y j )

and find the likelihood when there is censoring.
If f( y1 | y2) and f (y2 | y1) be arbitrary densities with support [y2, ∞) and [y1, ∞), then
show that the joint density

f (y1, y2) =
{ p f1(y1) f (y2 | y1), y1 ≤ y2,

(1 − p) f2(y2) f (y1 | y2), y1 > y2,

produces the same likelihoods. Deduce that the joint density is not identifiable.

14 Find the cause-specific hazard functions for the bivariate survivor functions

F(y1, y2) = exp[1 − θ1 y1 − θ2 y2 − exp{β(θ1 y1 + θ2 y2)}],

F∗(y1, y2) = exp

[
1 − θ1 y1 − θ2 y2 −

2∑
i=1

θi

θ1 + θ2
exp {β(θ1 + θ2)yi }

]
,

where y1, y2 > 0, θ1, θ2 > 0 and β > −1. Under what condition doesF yield independent
variables?
Write down the likelihoods based on random samples (y1, i1, d1), . . . , (yn, in, dn) from
these two models. Discuss the interpretation of β̂ � 0 in the absence of external evidence
for F over F∗.
(Prentice et al., 1978)

15 (a) Let Z = X1 + · · · + X N , where N is Poisson with mean µ and the Xi are independent
identically distributed variables with moment-generating function M(t). Show that the
cumulant-generating function of Z is K Z (t) = µ{M(t) − 1} and that Pr(Z = 0) = e−µ.
If the Xi are gamma variables, show that K Z (t) may be written as

α

(α − 1)δ
[{1 − αt/(γ δ)}1−α − 1], γ, δ > 0, (5.43)

where α > 1, show that E(Z ) = γ and var(Z )/E(Z )2 = δ, and find Pr(Z = 0) in terms of
α, δ and γ . Show that as α → 1 the limiting distribution of Z is gamma, and explain why.Z is a continuous variable

for 0 < α < 1, but you
need not show this.

(b) For a frailty model, set γ = 1 and suppose that an individual has hazard Zh(y), y > 0.
Compute the population cumulative hazard HY (y) and show that if α > 1 then

lim
y→∞

HY (y) < ∞.
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Give an interpretation of this in terms of the distribution of the lifetime Y . (Are all the
individuals in the population liable to fail?)
(c) Obtain the population hazard rate hY (y), take h(y) = y2, and graph hY (y) for δ =
0, 0.5, 1, 2.5. Discuss this in relation to the divorce rate example on page 201.
(d) Now suppose that there are two groups of individuals, the first with individual hazards
h(y) and the second with individual hazards rh(y), where r > 1. Thus the effect of trans-
ferring an individual from group 1 to group 2, if this were possible, would be to increase
his hazard by a factor r . If frailties in the two groups have the same cumulant-generating
function (5.43), show that the ratio of group hazard functions is

h2(y)

h1(y)
= r

{
1 + α−1δH (y)

1 + rα−1δH (y)

}α

.

Establish that this is a decreasing function of y, and explain why its limiting value is less
than one, that is, the risk is eventually lower in group 2, if α > 1. What difficulties does
this pose for the interpretation of group differences in survival?
(Aalen, 1994; Hougaard, 1984)

16 (a) Show that when data (X, Y ) are available, but with values of Y missing at random, the
log likelihood contribution can be written

�(θ ) ≡ I log f (Y | X ; θ ) + log f (X ; θ ),

and deduce that the expected information for θ depends on the missingness mechanism
but that the observed information does not.
(b) Consider binary pairs (X, Y ) with indicator I equal to zero when Y is missing; X is
always seen. Their joint distribution is given by

Pr(Y = 1 | X = 0) = θ0, Pr(Y = 1 | X = 1) = θ1, Pr(X = 1) = λ,

while the missingness mechanism is

Pr(I = 1 | X = 0) = η0, Pr(I = 1 | X = 1) = η1.

(i) Show that the likelihood contribution from (X, Y, I ) is

[{
θY

1 (1 − θ1)1−Y
}X {

θY
0 (1 − θ0)1−Y

}1−X
]I

× {
η I

0(1 − η0)1−I
}1−X {

η I
1(1 − η1)1−I

}X × λX (1 − λ)1−X .

Deduce that the observed information for θ1 based on a random sample of size n is

−∂2�(θ0, θ1)

∂θ 2
1

=
n∑

j=1

I j X j

{
Y j

θ2
1

+ 1 − Y j

(1 − θ1)2

}
.

Give corresponding expressions for ∂2�(θ0, θ1)/∂θ2
0 and ∂2�(θ0, θ1)/∂θ0∂θ1.

(ii) Statistician A calculates the expected information treating I1, . . . , In as fixed and
thereby ignores the missing data mechanism. Show that he gets i A(θ1, θ1) = Mλ/{θ1(1 −
θ1)}, where M = ∑

I j , and find the corresponding quantities iA(θ0, θ1) and i A(θ0, θ0). If
he uses this procedure for many sets of data, deduce that on average M is replaced by
nPr(I = 1) = n{λη1 + (1 − λ)η0}.
(iii) Statistician B calculates the expected information taking into account the missingness
mechanism. Show that she gets iB(θ1, θ1) = nλη1/{θ1(1 − θ1)}, and obtain iB(θ0, θ1) and
iB(θ0, θ0).
(iv) Show that A and B get the same expected information matrices only if Y is missing
completely at random. Does this accord with the discussion above?
(c) Statistician C argues that expected information should never be used in data analysis:
even if the data actually observed are complete, unless it can be guaranteed that data
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could not be missing at random for any reason, every expected information calculation
should involve every potential missingness mechanism. Such a guarantee is impossible
in practice, so no expected information calculation is ever correct. Do you agree?
(Kenward and Molenberghs, 1998)

17 (a) In Example 5.34, suppose that n patients are divided randomly into control and treat-
ment groups of equal sizes nC = nT = n/2, with death rates λC and λT . If the numbers
of deaths RC and RT are small, use a Poisson approximation to the binomial to show that
the difference in log rates is roughly µ̂ = log RC − log RT . What would you conclude if
µ̂

.= 0?
(b) Show that if λC

.= λT = λ, then var(µ̂)
.= 4/(nλ), and use the estimates λ̂C = RC/nC ,

λ̂T = RT /nT and λ̂ = (RC + RT )/(nC + nT ) to check a few values of µ̂ and the standard
errors in Table 5.9.
(c) In practice the variance in (b) is typically too small, because it does not allow for
inter-trial variability. Different studies are performed with different populations, in which
the treatment may have different effects. We can imagine two stages: we first choose a
population in which the treatment effect is µ + η, where η is random with mean zero
and variance σ 2; then we perform a trial with n subjects and produce an estimator µ̂ of
µ + η with variance v/n. Show that µ̂ may be written µ + η + ε, give the variance of ε,
and deduce that when both stages of the trial are taken into account, µ̂ has mean µ and
variance σ 2 + v/n.
How would this affect the calculations in Example 5.34?

18 (a) Show that the t density of Example 4.39 may be obtained by supposing that the
conditional density of Y given U = u is N (µ, νσ 2/u) and that U ∼ χ2

ν . Show that
U

D= V/{ν + (y − µ)2/σ 2} conditional on Y , where V ∼ χ2
ν+1, and with θ = (µ, σ 2) de-

duce that

E(U | Y ; θ ) = ν + 1

ν + (y − µ)2/σ 2
.

(b) Consider the EM algorithm for estimation of θ when ν is known. Show that the
complete-data log likelihood contribution from (y, u) may be written

−1

2
σ 2 − 1

2
u(y − µ)2/2(νσ 2),

and hence give the M-step. Write down the algorithm in detail.
(c) Show that the result of the EM algorithm satisfies the self-consistency relation θ = g(θ ),
and given the form of g when σ 2 is both known and unknown.
(d) The Cauchy log likelihood shown in the right panel of Figure 4.2 corresponds to setting
ν = σ 2 = 1. In this case explain why µ† converges to a local or a global maximum or a
local minimum, depending on the initial value for µ.

19 Suppose that U1, . . . , Uq have a multinomial distribution with denominator m and proba-
bilities π1, . . . , πq that depend on a parameter θ , and that the maximum likelihood estima-
tor of θ based on the Us has a simple form. Some of the categories are indistinguishable,
however, so the observed data are Y1, . . . , Yp , where Yr = ∑

s∈Ar
Us ;A1, . . . ,Ap partition

{1, . . . , q} and none is empty.
(a) Show that the E-step of the EM algorithm for estimation of θ involves

E(Us | Y = y; θ ′) = yrπ
′
s∑

t∈Ar
π ′

t

, s ∈ Ar ,

and say how the M-step is performed.
(b) Let (π1, . . . , π5) = (1/2, θ/4, (1 − θ )/4, (1 − θ )/4, θ/4), and suppose that y1 = u1 +
u2 = 125, y2 = u3 = 18, y3 = u4 = 20 and y4 = u5 = 34. These data arose in a genetic
linkage problem and are often used to illustrate the EM algorithm. Show that

θ † = y4 + y1θ
′/(2 + θ ′)

m − 2y1/(2 + θ ′)
,
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and find the maximum likelihood estimate starting with θ ′ = 0.5.
(c) Show that the maximum likelihood estimator of λ̂A in the single-locus model of
Example 4.38 may be written λ̂A = (2u1 + u2 + u5)/m and establish that

E(U1 | Y ; λ′) = y1λ
′
A/(2 − 2λ′

B − λ′
A).

Give the corresponding expressions for λ̂B and E(U2 | Y ; λ′). Hence give the M-step for
this model. Apply the EM algorithm to the data in Table 4.3, using starting-values obtained
from categories with probabilities 2λAλB and λ2

O .
(d) Compute standard errors for your estimates in (b) and (c).
(Rao, 1973, p. 369)



6

Stochastic Models

The previous chapter outlined likelihood analysis of some standard models. Here
we turn to data in which the dependence among the observations is more complex.
We start by explaining how our earlier discussion extends to Markov processes in
discrete and continuous time. We then extend this to more complex indexing sets and
in particular to Markov random fields, in which basic concepts from graph theory play
an important role. A special case is the multivariate normal distribution, an important
model for data with several responses. We give some simple notions for time series, a
very widespread form of dependent data, and then turn to point processes, describing
models for rare events in passing.

6.1 Markov Chains

In certain applications interest is focused on transitions among a small number of
states. A simple example is rainfall modelling, where a sequence . . . 010011 . . . indi-
cates whether or not it has rained each day. Another is in panel studies of employment,
where many individuals are interviewed periodically about their employment status,
which might be full-time, part-time, home-worker, unemployed, retired, and so forth.
Here interest will generally focus on how variables such as age, education, family
events, health, and changes in the job market affect employment history for each
interviewee, so that there are many short sequences of state data taken at unequal
intervals, unlike the single long rainfall sequence. In each case, however, the key
aspect is that transitions occur amongst discrete states, even though these typically
are crude summaries of reality.

Example 6.1 (DNA data) When the double helix of deoxyribonucleic acid (DNA)
is unwound it consists of two oriented linked sequences of the bases adenine (A), cy-
tosine (C), guanine (G), and thymine (T). Just one chain determines a DNA sequence,
because A in one sequence is always linked to T on the other, and likewise with C
and G. An example is Table 6.1, which shows the first 150 bases from a sequence of

225
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Table 6.1 First 150
bases of the first
intervening sequence of
the human
preproglucagon gene
(Avery and Henderson,
1999). To be read across
rows.

GTATTAAATCCGTAGTCTCGAACTAACATA
TCAATATGGTTGGAATAAAGCCTGTGAAAA
CTATGATTAGTGAATAAGGTCTCAGTAATT
TAGAATAAATATTCTGCACAATGATCAAAT
GTTTAAAGTATCCTTGTGATAAAAGCAGAC

Position

A
, C

, G
, T

0 500 1000 1500

0.
0

0.
4

0.
8

Figure 6.1 Estimated
proportions of bases A, C,
G and T in the first
intervening sequence of
the human
preproglucagon gene. At a
point t on the x-axis, the
vertical distances between
the lines above correspond
to the proportions of times
the bases appear in a
window of width 100
centred at t .

1572 bases found in the human preproglucagon gene. Figure 6.1 shows proportions
of the different bases along the sequence, smoothed using a form of moving aver-
age. Roughly speaking, the number of times each base occurs in a window of width
100 centred at t has been counted, giving estimated proportions (π̂A, π̂C, π̂G, π̂T).
These are plotted at t , and then the procedure is repeated at t + 1, and so forth. Al-
though there is local variation, the proportions seem fairly stable along the sequence,
with A occurring about 30 times in every 100, C about 15 times, and so forth.

Certain sequences of bases such as CTGAC — known as words — are of biological
interest. If they occur very often in particular stretches of the entire sequence, it may
be supposed that they serve some purpose. But before trying to see what that purpose
might be, it is necessary to see if they have occurred more often then chance dictates,
for example by comparing the actual number of occurrences with that expected under
a model. It is simplest to suppose that bases occur randomly, but the code of life is not
so simple. Table 6.2 contains observed frequencies for pairs of consecutive bases.
The pair AA occurs 185 times, AC 74 times, and so forth. The lower table shows
corresponding proportions, obtained by dividing the frequencies by their row totals.
About 80% of the bases following a C are A or T, while a G is rare; Gs occur much
more frequently after A, G, or T. The sequence does not seem purely random. �

Example 6.2 (Breast cancer data) Table 6.3 gives data on 37 women with breast
cancer treated for spinal metastases at the London Hospital. Their ambulatory status —
defined as ability to walk unaided or not — was recorded before treatment began, as
it started, and then 3, 6, 12, 24, and 60 months after treatment. The three states are:
able to walk unaided (1); unable to walk unaided (2); and dead (3). Thus a sequence
111113 means that the patient was able to walk unaided each time she was seen, but
was dead five years after the treatment began. She may have been unable to walk
for periods between the times at which her state was recorded. This is illustrated in
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Table 6.2 Observed
frequencies of the 16
possible successive pairs
of bases in the first
intervening sequence of
the human
preproglucagon gene.
There are 1571 such pairs.
The lower table shows the
proportion of times the
second base follows the
first.

Frequencies for second base

First base A C G T Total

A 185 74 86 171 516
C 101 41 6 115 263
G 69 45 34 78 226
T 161 103 100 202 566

Total 516 263 226 566 1571

Proportion for second base

First base A C G T Total

A 0.359 0.143 0.167 0.331 1.0
C 0.384 0.156 0.023 0.437 1.0
G 0.305 0.199 0.150 0.345 1.0
T 0.284 0.182 0.177 0.357 1.0

Overall 0.328 0.167 0.144 0.360 1.0

Table 6.3 Breast cancer
data (de Stavola, 1988).
The table gives the initial
and follow-up status for
37 breast cancer patients
treated for spinal
metastases. The status is
able to walk unaided (1),
unable to walk unaided
(2), or dead (3), and the
times of follow-up are 0,
3, 6, 12, 24, and 60
months after treatment
began. Woman 24 was
alive after 6 months but
her ability to walk was not
recorded.

Initial Follow-up Initial Follow-up Initial Follow-up

1 1 111113 13 2 23 25 1 11113
2 1 1113 14 2 1113 26 2 22223
3 2 23 15 2 2 27 2 12223
4 2 121113 16 2 23 28 2 11113
5 1 111123 17 1 1113 29 2 1223
6 1 1113 18 2 223 30 2 1123
7 1 12113 19 1 13 31 2 1222
8 2 123 20 1 12223 32 1 11223
9 1 1111 21 2 23 33 2 1223

10 2 23 22 2 11111 34 1 1113
11 2 23 23 2 23 35 1 113
12 1 1113 24 1 12?3 36 2 23

37 2 23

the left panel of Figure 6.2, which shows a possible sample path for a woman with
sighting history 111223. Although there is a visit to state 1 between 12 and 24 months,
it is unobserved, and the data suggest that her sojourn in state 2 is uninterrupted. The
number of sightings varies from woman to woman; case 9, for example, was able to
walk when seen after 12 months, but her later history is unknown.

One aspect of interest here is whether inability to walk always precedes death, while
another is whether a woman’s state before treatment affects her subsequent history.
Although no explanatory variables are available here, their effect on the transition
probabilities would often be of importance in practice. �
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Figure 6.2 Markov
chain model for breast
cancer data. Left: possible
sample path (solid) for a
woman with states 111223
observed at 0, 3, 6, 12, 24,
60 months shown by the
dotted lines. Right:
parameters for possible
transitions among the
states.

Let Xt denote a process taking values in the state space S = {1, . . . , S}, where S
may be infinite. For general discussion we call the quantity t on which Xt depends
time, and suppose that our data have form X0 = s0, Xt1 = s1, . . . , Xtk = sk , where
0 < t1 < · · · < tk . In the DNA example t is in fact location, k = 1571, and S =
{1, 2, 3, 4} ≡ {A, C, G, T }. In the breast cancer example there are S = 3 states, k = 5
at most, and t0 = 0, t1 = 3, t2 = 6, t3 = 12, t4 = 24, and t5 = 60 months.

Let X (t j ) = s( j) denote the composite event Xt j = s j , . . . , X0 = s0, for j =
0, . . . , k − 1. Then the joint density of the data may be written

Pr
(
X0 = s0, . . . , Xtk = sk

) = Pr(X0 = s0)
k∏

j=1

Pr
(
Xt j = s j | X (t j−1) = s( j−1)

)
;

using the prediction decomposition (4.7). The conditional probabilities may be com-
plicated, but modelling is greatly simplified if the process has the Markov property

Andrei Andreyevich
Markov (1856–1922)
studied with Chebyshev in
St Petersburg and initially
worked on pure
mathematics. His study of
dependent sequences of
variables stemmed from
an attempt to understand
the Central Limit
Theorem.

Pr
(
Xt j = s j | X0 = s0, . . . , Xt j−1 = s j−1

) = Pr
(
Xt j = s j | Xt j−1 = s j−1

)
.

Thus the ‘future’ Xt j is independent of the ‘past’ Xt j−2 , . . . , X0, given the ‘present’
Xt j−1 — all information available about the future evolution of Xt is contained in its
current state. If so, then

Pr
(
X0 = s0, . . . , Xtk = sk

) = Pr(X0 = s0)
k∏

j=1

Pr
(
Xt j = s j | Xt j−1 = s j−1

)
. (6.1)

Matters simplify further if the process is stationary, for then the conditional proba- Some authors use the term
homogeneous rather than
stationary.

bilities in (6.1) depend only on differences among the t j . Thus

Pr(Xt = s | Xu = r ) = Pr(Xt−u = s | X0 = r ),

and we assume this to be the case below. These simplications yield a rich structure
with many important and interesting models, in which these transition probabilities
play a central role. They determine the likelihood (6.1), apart from the initial term
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Pr(X0 = s0). If k is large this term usually contains little information and can safely
be dropped, but it may be important to include it when k is small; see Example 6.10.

6.1.1 Markov chains

We call a Markov model observed at discrete equally-spaced times a Markov chain.
In this section we consider inference for simple Markov chain models, but in Sec-
tion 11.3.3 we describe the use of Markov chains for inference. As the following
outline of their properties serves both purposes, it is slightly more detailed than im-
mediately required.

A stationary chain Xt on the countable set S of size S observed at equally-spaced
times t = 0, 1, . . . , k has properties determined by the transition probabilitiesIf infinite matrices worry

you, think of S as finite.

prs = Pr(X1 = s | X0 = r ), r, s ∈ S,

which form the S × S transition matrix P whose (r, s) element is prs . The elements
of P are non-negative and the fact that

∑
s prs = 1 implies that P1S = 1S , so P is1S is the S × 1 vector of

ones. a stochastic matrix. If the r th element of the S × 1 vector p is the initial probability
pr = Pr(X0 = r ), then the sth element of pT P is Pr(X1 = s) = ∑

r pr prs . Iteration
shows that the density of Xn is given by pT Pn , so the (r, s) element of Pn is the
n-step transition probability prs(n) = Pr(Xn = s | X0 = r ). Hence properties of Xt

are governed by P . The probability of a run of m ≥ 1 successive visits to state s is
pm−1

ss (1 − pss); this is the geometric density with mean (1 − pss)−1 (Exercise 6.1.8).

Classification of chains

It is useful to classify the states of a chain. A state s is recurrent if

Pr(Xt = s for some t > 0 | X0 = s) = 1,

meaning that having started from s, eventual return is certain; s is transient if this
probability is strictly less than one. If Trs = min{t > 0 : Xt = s | X0 = r} is the
first-passage time from r to s, then E(Tss) is the mean recurrence time of state s; we
set E(Tss) = ∞ if s is transient, and say that a recurrent state is positive recurrent if
E(Tss) < ∞; otherwise it is null recurrent. The period of s is d = gcd{n : pss(n) > 0},Some authors use the

terms persistent and
non-null rather than
recurrent and positive.

the greatest common divisor of those times at which return to s is possible; s is
aperiodic if d = 1, and periodic otherwise.

We now classify chains themselves. We say that r communicates with s, r → s, if
prs(n) > 0 for some n > 0, and that r and s intercommunicate, r ↔ s, if r → s and
s → r . It may be shown that two intercommunicating states have the same period,
while if one is transient so is the other, and similarly for null recurrence. A set C
of states is closed if prs = 0 for all r ∈ C, s �∈ C, and irreducible if r ↔ s for all
r, s ∈ C; a closed set with just one state is called absorbing. It may be proved that
S may be partitioned uniquely as T ∪ C1 ∪ C2 ∪ · · ·, where T is the set of transient
states and the Ci are irreducible closed sets of recurrent states; if S is finite, then
at least one state is recurrent, and all recurrent states are positive. A chain is called
aperiodic, positive recurrent, and so forth if its states all share the corresponding
property. An aperiodic irreducible positive recurrent chain is ergodic.



230 6 · Stochastic Models

Example 6.3 (Breast cancer data) HereT = {1, 2} contains the two transient states
with the patient alive, while C = {3}, death, is absorbing. �

Example 6.4 (DNA data) As transitions occur between every pair of states, C =
{A, C, G, T } is an irreducible aperiodic closed set of states, all recurrent and hence
all positive recurrent. This chain is ergodic. �

Each of the properties of an ergodic chain is important. Irreducibility means that
any state is accessible from any other. Positive recurrence implies that the chain has
at least one stationary distribution with probability vector π such that π T P = π T,
and the mean recurrence time for state s is E(Tss) = π−1

s < ∞. There is a unique
stationary distribution when the chain is both irreducible and positive recurrent. In
this case each state is visited infinitely often as t → ∞, but the chain need not be
stationary because it might oscillate among states. Aperiodicity stops this.

When S is infinite and the chain has all three properties, the transition probabilities
prs(n) → πs as n → ∞: the chain converges to its stationary distribution whatever
the initial state. Moreover, if m(Xt ) is such that Eπ {|m(Xt )|} = ∑

r πr |m(r )| < ∞,
then

Pr

{
n−1

n∑
t=1

m(Xt ) →
S∑

r=1

πr m(r ) as n → ∞
}

= 1 : (6.2)

starting from any X0, the average of m(Xt ) converges almost surely to the mean
Eπ {m(Xt )} of m(Xt ) with respect to π . This ensures the convergence of so-called
ergodic averages n−1 ∑n

t=1 m(Xt ) and is crucial to the use of Markov chains for
inference. When S is finite, an irreducible aperiodic chain is automatically positive
recurrent and hence ergodic.

If S is finite then P is an S × S matrix, whose eigenvalues l1, . . . , lS are roots of
its characteristic polynomial det(P − λIS). If the lr are distinct, then

P = E−1L E, (6.3)

where L = diag(l1, . . . , lS), the r th row eT
r of the S × S matrix E is the left eigenvector

of P corresponding to lr and the r th column e′
r of E−1 is the right eigenvector of P

corresponding to lr . The lr are complex numbers with modulus no greater than unity,
but as P is real, any complex roots of its characteristic polynomial occur in conjugate
pairs a ± ib. For some real r > 0, Here i = √−1.

(a ± ib)n = rn exp(±inω) = rn(cos nω ± i sin nω).

As Pn is a real matrix, it may be better to express its elements in terms of sines and
cosines when P has complex eigenvalues.

If S is finite and the chain is irreducible with period d, then the d complex roots
of unity l1 = exp(2π i/d), . . . , ld = exp{2π i(d − 1)/d} are eigenvalues of P and
ld+1, . . . , lS satisfy |ls | < 1. If the chain is irreducible and aperiodic, then l1 = 1,
and |ls | < 1 for s = 2, . . . , S. Now π T P = π T and P1S = 1S , so if Xt has stationary
distribution π , then π T and 1S are the left and right eigenvectors of P corresponding
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to l1 = 1, that is, e1 = π and e′
1 = 1S . The convergence of an ergodic chain with

distinct eigenvalues is obvious, because

Pn = (E−1L E)n = E−1Ln E =
S∑

r=1

ln
r e′

r eT
r → e′

1eT
1 = 1Sπ

T as n → ∞ :

the (r, s) element of Pn , prs(n), tends to πs . Moreover, if p(0) is the probability
vector of X0 then Xn has distribution p(0)T Pn , which converges to p(0)T1Sπ

T = π T

whatever the initial vector p(0).
If S is infinite and the chain ergodic, its first eigenvalue l1 equals 1 and corresponds

to the unique stationary distribution π , but the second eigenvalue l2 need not exist.
If l2 exists and |l2| < 1, then |l2| controls the rate at which the chain approaches its
stationary distribution. More precisely, the chain is geometrically ergodic if there
exists a function V (·) > 1 such that

∑
s

|prs(n) − πs | ≤ V (r )|l2|n for all n; (6.4)

|l2| is then the rate of convergence of the chain.
An irreducible chain is reversible if there exists a π such that

πr prs = πs psr , for all r, s ∈ S; (6.5)

the chain is then positive recurrent with stationary distribution π . Another way to
express the detailed balance condition (6.5) is

Pr(Xt = r, Xt+1 = s) = Pr(Xt = s, Xt+1 = r ), for all r, s ∈ S,

or �P = P�, where � is the S × S diagonal matrix whose elements are the com-
ponents of the stationary distribution π .

Decomposition (6.3) applies to reversible chains, whose eigenvalues and eigenvec-
tors lr and er are real. Chains that fail to be geometrically ergodic have an infinite
number of eigenvalues in any open interval containing one of ±1, but those that are
geometrically ergodic have all their eigenvalues but l1 uniformly bounded in modulus
below unity.

Example 6.5 (Two-state chain) Consider the chain for which

P =
(

1 − p p
q 1 − q

)
, 0 ≤ p, q ≤ 1.

When p = q = 0, there are two absorbing states C1 = {1} and C2 = {2} and the chain
is entirely uninteresting. When both p and q are positive it is clearly irreducible and
π T P = π T, where π T = (p + q)−1(q, p). The chain is then positive recurrent with
E(T11) = (p + q)/q and E(T22) = (p + q)/p.

When p = q = 1, Xt takes values . . . , 1, 2, 1, 2, 1 . . . and is periodic with period
two, so T11 = T22 = 2 with probability one. If p(0) = π , then Xt has this distribution
for all t , but if not, then the fact that P2 = I2 implies that X0, X1, X2, . . . have dis-
tributions p(0)T, p(0)T P, p(0)T, . . .; the chain cycles among these and never reaches
stationarity.
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The eigenvalues of P are l1 = 1, l2 = 1 − p − q . Its eigendecomposition is
(

1 p
1 −q

)
·
(

1 0
0 1 − p − q

)
· 1

p + q

(
q p
1 −1

)
.

If |l2| < 1, then 0 < p < 1 or 0 < q < 1 or both, the chain is aperiodic and

Pn = 1

p + q

(
q + pln

2 p − pln
2

q − qln
2 p + qln

2

)
→ 1

p + q

(
q p
q p

)
= 12π

T as n → ∞.

�

Example 6.6 (Five-state chain) The state space of the chain with

P =




1
2

1
2 0 0 0

1
4

3
4 0 0 0

0 0 0 1 0
0 0 1 0 0
1
4 0 1

4 0 1
2




decomposes as C1 ∪ C2 ∪ T , where C1 = {1, 2}, C2 = {3, 4} and T = {5}. Evidently
C1 is a special case of the previous example, so it is ergodic. The set C2 is closed and
irreducible, but it is periodic because Xt = Xt+2 = Xt+4 = · · ·. The set T is transient:
at each step the probability of leaving it is 1

2 , with equal probabilities of landing in C1

and C2. Although C1 is ergodic, the chain as a whole is not.
Owing to the presence of two irreducible sets, one with period two, the eigen-

values include l1 = 1, l2 = 1 and l3 = −1. The repeated eigenvalue means that the
eigendecomposition of P is not unique. One version is



1 1 0 0 −1
1 1 0 0 1

2
1 −1 −6 0 0
1 −1 6 0 0
1 0 1 1 1







1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1

2 0
0 0 0 0 1

4







1
6

1
3

1
4

1
4 0

1
6

1
3 − 1

4 − 1
4 0

0 0 − 1
12

1
12 0

1
2 −1 − 1

6 − 1
3 1

− 2
3

2
3 0 0 0


 .

For large n we have approximately

Pn =




1
3

2
3 0 0 0

1
3

2
3 0 0 0

0 0 1
2 {1 + (−1)n} 1

2 {1 + (−1)n+1} 0
0 0 1

2 {1 + (−1)n+1} 1
2 {1 + (−1)n} 0

1
6

1
3

1
3

1
6 2−n


 .

If X0 ∈ C1, the stationary distribution of Xt is ( 1
3 , 2

3 , 0, 0, 0)T and the states have mean
recurrence times 3 and 3

2 . If X0 = 3, then X2 = X4 = · · · = 3 and X1 = X3 = · · · =
4, while the converse is true if X0 = 4; Xt oscillates within C2 but has a stationary
distribution only if the initial probability vector is (0, 0, 1

2 , 1
2 , 0)T. If X0 = 5, the

probability that Xn = 5 is essentially zero for large n and the process is equally likely
to end up in C1 or C2. �
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Likelihood inference

We now consider inference from data s0, s1, . . . , sk at times 0, 1, . . . , k from a sta-
tionary discrete-time Markov chain Xt with finite state space. The likelihood is

Pr(X0 = s0, . . . , Xk = sk) = Pr(X0 = s0)
k−1∏
t=0

Pr (Xt+1 = st+1 | Xt = st )

= Pr(X0 = s0)
k−1∏
t=0

pst st+1

= Pr(X0 = s0)
S∏

r=1

S∏
s=1

pnrs
rs , (6.6)

where nrs is the observed number of transitions from r to s. Apart from the first term
in (6.6), the log likelihood is

�(p) =
S∑

r=1

S∑
s=1

nrs log prs, (6.7)

so the S × S table of transition counts nrs is a sufficient statistic; see Table 6.2.
As

∑
r psr = 1 for each s, (6.7) sums log likelihood contributions from S separate

multinomial distributions (nr1, . . . , nr S) whose denominators nr · equal the row sums
nr1 + · · · + nr S and whose probability vectors (pr1, . . . , pr S) correspond to transi-
tions out of state r ; see (4.45). As

∑
s prs = 1 for each r , this model has S(S − 1)

parameters.
The results of Section 4.5.3 imply that prs has maximum likelihood estimate p̂rs =

nrs/nr ·. Standard likelihood asymptotics will apply if 0 < prs < 1 for all r and s and
if the denominators nr · → ∞ as k → ∞. Now nr · is the number of visits the chain
makes to state r during the period 1, . . . , k, and if the chain is ergodic r is visited
infinitely often as k → ∞. The p̂rs then have an approximate joint normal distribution
with covariances estimated by

cov( p̂rs, p̂tu)
.=




p̂rs(1 − p̂rs)/nr ·, r = t, s = u,
− p̂rs p̂ru/nr ·, r = t, s �= u,
0, otherwise.

The above discussion ignores the first term in (6.6). If k is large it will add only
a small contribution to �(p) and can safely be dropped, but if k is small it might be
replaced by the stationary probability πs0 , found from the elements of P . In general
the log likelihood must then be maximized numerically.

An alternative asymptotic scenario is that m independent finite segments of Markov
chains having the same parameters are observed, and m → ∞. The overall infor-
mation in the initial terms of the segments is then O(m) and retrival of it may be
worthwhile, particularly if the segments are short. Below we continue to suppose that
there is a single chain of length k.

In simpler models the prs might depend on a parameter with dimension smaller
than S(S − 1). For instance, setting p = q in Example 6.5 gives a one-parameter
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Table 6.4 Fit of
independence model to
DNA data: observed and
fitted frequencies of
one-step transitions.

Observed frequency Expected frequency

First base A C G T A C G T

A 185 74 86 171 169.5 86.4 74.2 185.9
C 101 41 6 115 86.4 44.0 37.8 94.8
G 69 45 34 78 74.2 37.8 32.5 81.4
T 161 103 100 202 185.9 94.8 81.4 203.9

model. If the chain is ergodic, likelihood inference for such models will be regular
under the usual conditions on the parameter space.

Thus far transition probabilities have depended only on the current state, so
our chains have been first-order. The simpler independence model posits transi-
tion probabilities independent of the current state, prs ≡ ps ; this zeroth-order chain
has just S − 1 parameters. Row and column classifications in the table of counts
nrs are then independent, (6.7) reduces to

∑
n·s log ps , and p̂s = n·s/n··, where

n·s = n1s + · · · + nSs and n·· = ∑
s n·s . Thus the likelihood ratio statistic for com-

parison of the zeroth- and first-order chains is

W = 2
∑
r,s

nrs log

(
p̂rs

p̂s

)
= 2

∑
r,s

nrs log

(
nrsn··
nr ·n·s

)
;

this is the likelihood ratio statistic for testing row-column independence in the square
table of counts nrs . Under the zeroth-order chain the rows of P all equal (p1, . . . , pS),
row and column classifications are independent, and W is a natural statistic to assess
this; its asymptotic distribution is chi-squared with S(S − 1) − (S − 1) = (S − 1)2

degrees of freedom. As we saw in Section 4.5.3, W approximately equals Pearson’s
statistic P = ∑

(O − E)2/E , where O and E denote the observed count nrs and its
expected counterpart nr ·n·s/n·· under the independence model and the sum is over
the cells of the table. The quantities (O − E)/E1/2 squared give the contribution of
each cell to P .

Example 6.7 (DNA data) The lowest line of Table 6.2 gives maximum like-
lihood estimates for the zeroth-order independence model, while the four previ-
ous lines give estimates for the first-order model. For the independence model we
have p̂A = 516/1571 = 0.328 and p̂C = 263/1571 = 0.167, for example, while un-
der the first-order model p̂AA = 185/516 = 0.359, p̂AC = 74/516 = 0.143, p̂CG =
6/263 = 0.023 and so forth. If the independence model was correct, W =
2

∑
r,s nrs log{nrs/(nr · p̂s}) would have a χ2

9 distribution, but the observed value
w = 64.45 makes this highly implausible. The value of P is 50.3.

Table 6.4 shows the counts nrs and the fitted values nr ·n·s/n·· under the indepen-
dence model. The largest discrepancy is for the CG cell, for which (O − E)/E1/2 =
−5.18, so this cell contributes 26.79 to the value of P . The normal probability plot of
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Figure 6.3 Fit of zeroth-
and first-order Markov
chains to the DNA data.
The panels show normal
probability plots of the
signed contributions
(O − E)/E1/2 made by
the 16 cells of the
two-way table under the
independence model (left)
and the 64 cells of the
three-way table under the
first-order model (right).
The large negative value
on the left is due to the
CG cell. The dots show
the null line x = y.

the (O − E)/E1/2 in the left panel of Figure 6.3 shows that the other cells contribute
much less. The values of W and P remain large even if this cell is dropped from
the table, however, so it is not the sole cause of the poor fit of the independence
model. �

Higher-order models

First-order Markov chains extend to chains of order m, where the probability of
transition into s depends on the m preceding states. One way to think of this is that
the state of the chain is augmented from X j to Y j = (X j , X j−1, . . . , X j−m+1) and the
transition probabilities change to

Pr(Y j = y j | Y j−1 = y j−1) = Pr(X j = s | X j−1 = s j−1, . . . , X j−m = s j−m)

= ps j−m s j−m+1···s j−1s,

say. Thus the ‘current’ state Y j−1 = (s j−1, . . . , s j−m) contains information not only
from time j − 1 but also from the m − 1 previous times. Whereas with m = 1 the
properties of the chain were determined by the S vectors of transition probabilities
(pr1, . . . , pr S), there are now Sm such vectors, so much more data is needed in order to
get reliable estimates of the transition probabilities. A compromise is a variable-order
chain, the simplest example of which is when m = 2 and S = 2, so that the chain
of order two is determined by the probabilities p111, p121, p211 and p221, giving the
transition probabilities πsur from (s, u) to r . A simple variable-order chain is obtained
by specifying π111 = π211, that is, given that u = 1, the transition probabilities do not
depend on s. This chain is first-order when u = 1, but not when u = 2. In this case
the number of parameters only diminishes by one, but in general the reduction might
be much larger.

Likelihood ratio statistics or criteria such as AIC enable systematic comparison of
Markov chains of different orders, but care is needed when computing them. Suppose
that we fit models of orders up to m to a sequence of length k. There are k − 1
successive pairs, k − 2 triplets and so forth, so the fit of the mth-order model is based
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Table 6.5 Observed
transition counts for
second-order Markov
chain for DNA data.

Frequencies for third base

First base Second base A C G T Total

A A 81 22 29 53 185
C 30 7 2 35 74
G 29 18 11 27 86
T 54 23 33 61 171

C A 30 20 15 36 101
C 15 2 1 23 41
G 2 1 0 3 6
T 28 26 20 41 115

G A 30 3 14 22 69
C 18 10 1 16 45
G 12 5 10 7 34
T 27 11 12 27 77

T A 44 29 28 60 160
C 38 22 2 41 103
G 26 21 13 40 100
T 51 43 35 73 202

on the k − m successive (m + 1)-tuples from which the transition probabilities and
maximized log likelihood are computed, treating the last k − m of the k observations
as responses. Standard likelihood methods presuppose that the same responses are
used throughout, so fits for chains of smaller order must also treat only the last k − m
observations as responses.

Example 6.8 (DNA data) We compare models of order up to m = 3. The preceding
discussion implies that as the data in Table 6.1 begin GTAT. . ., the first response is
the second T, so the initial GTA, GT and G should be ignored when fitting the
zeroth-, first- and second-order models respectively. The frequencies for the k −
m = 1572 − 3 = 1569 triplets of transition counts in our sequence are shown in
Table 6.5. The implied numbers of TA and GT transitions, 54 + 28 + 27 + 51 = 160
and 27 + 3 + 7 + 40 = 77, are smaller than the numbers 161 and 78 in Table 6.2
which include such transitions in the initial GTAT.

Estimates under the second-order model are obtained as before, by dividing each
row by its total, giving p̂AAA = 81/185, p̂AAC = 22/185, p̂ACA = 30/74 and so forth.
Evidently estimates such as p̂CGA = 2/6 are very unreliable.

Estimates under the first-order model are computed from the two-way table of
counts obtained by collapsing the table over the first base, giving a 4 × 4 table whose
top left (AA) element is 81 + 30 + 30 + 44 = 185, whose CG element is 2 + 1 +
1 + 2 = 6 and so forth. For estimates under the independence model we use the
1 × 4 table from a further collapse over the second base; both sets of estimates are
essentially unaffected by dropping the first few bases.

The maximized log likelihoods for the zeroth-, first-, second- and third-order mod-
els are −2058.44, −2026.02, −1998.41, and −1923.25 on 3, 12, 48, and 192 degrees
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of freedom, so the AIC values are 4122.9, 4076.0, 4092.8, and 4230.5 and the like-
lihood ratio statistics for comparison of each model with the next are 64.8, 55.2,
and 150.3, on 9, 36, and 144 degrees of freedom. There is strong evidence for
first-order dependence compared to independence, while as Pr(χ2

36 > 55.2)
.= 0.02

and Pr(χ2
144 > 150.3)

.= 0.34 the evidence for second- compared to first-order de-
pendence is weaker, and there is no suggestion of third-order dependence. The AIC
values clearly indicate the first-order model.

The signed contributions (O − E)/E1/2 to Pearson’s statistic under the first-order
model can be obtained using Table 6.5. The contribution for the AAA cell, for example,
is (81 − E)/E1/2, where E = 185 p̂AA, with p̂AA calculated under the first-order
model. The value of Pearson’s statistic is 52.84. The right panel of Figure 6.3 shows
no highly unusual cells and apparently good fit.

The eigenvalues for the observed first-order matrix of transition probabilities P̂ are
1, −0.0147 ± 0.0704i and 0.0524. The small absolute values of the last three suggest
that the chain is close to independence, and indeed the rows of P̂4 are essentially
equal: four steps are (almost) enough to forget the past.

Our earlier discussion suggested that the main departures from independence occur
after C, suggesting taking a model where prs = ψs whenever r �= C and pCs = φs .
That is, for each s we have

Pr(Xt+1 = s | Xt = A) = Pr(Xt+1 = s | Xt = G) = Pr(Xt+1 = s | Xt = T),

but these do not equal pCs. This model has six independent parameters and as its
log likelihood

∑
s(

∑
r �=C nrs) log ψs + ∑

s nCs log φs is of multinomial form, their
estimates are readily obtained. The maximized log likelihood is −2031.0, so AIC =
4074.0 is lower than for the full first-order chain and this model seems marginally
preferable. See Exercise 6.1.7 for further details. �

We have presumed above that Xt is stationary. If instead the transition prob-
abilities are of form prs(t ; θ ), dependent on a parameter θ , then the likelihood
Pr(X0 = s0; θ )

∏k−1
t=0 pst st+1 (t ; θ ) is found by the argument leading to (6.6). In many

cases the initial probability Pr(X0 = s0; θ ) may be unknown, and if the series is long
little will be lost by ignoring it. If the transition probabilities do not share dependence
on a common θ , they can only be estimated if they are repeated. Large amounts of
data will then be needed.

6.1.2 Continuous-time models

We now turn to stationary continuous-time Markov models with finite state space S.
The basic assumption is that over small intervals [t, t + δt), transitions between states
have probabilities

o(δt) is small enough that
o(δt)/δt → 0 as δt → 0.

Pr(Xt+δt = s | Xt = r ) =
{

γrsδt + o(δt), s �= r ,
1 + γrrδt + o(δt), s = r ,

(6.8)
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where γrs is interpreted as the rate at which transitions r → s occur. The transition
probabilities do not depend on t , so Xt is time homogeneous. Note that

∑
s γrs = 0,

for each r , because the probabilities in (6.8) sum to one.
Let p(t) denote the S × 1 vector whose r th element is pr (t) = Pr(Xt = r ); note

that 1T
S p(t) = 1 for all t . Then

ps(t + δt) =
S∑

r=1

Pr(Xt+δt = s | Xt = r )pr (t)
.= ps(t) +

S∑
r=1

γrs pr (t)δt + o(δt),

implying that

dps(t)

dt
= lim

δt→0

ps(t + δt) − ps(t)

δt
=

S∑
r=1

γrs pr (t), s = 1, . . . , S,

written in matrix form as

(
dp1(t)

dt
· · · dpS(t)

dt

)
= ( p1(t) · · · pS(t) )




γ11 · · · γ1S
...

. . .
...

γS1 · · · γSS


 .

In terms of the infinitesimal generator of the chain, the matrix G whose (r, s) element
is γrs , we write

dp(t)T

dt
= p(t)TG, (6.9)

to which the formal solution is

p(t)T = p(0)T exp(tG),

where p(0) is the probability vector for the states of X0, and the matrix exponential
exp(tG) is interpreted as

∑∞
m=0(tG)m/m!, with G0 = IS . If the initial state was

X0 = r , p(0) consists of zeros except for its r th component, implying that Pr(Xt =
s | X0 = r ) = prs(t) is the (r, s) element of exp(tG).

Any stationary distribution π for Xt must be time-independent, so the right-hand
side of (6.9) will be zero when p(0) = π . Hence π T will be a left eigenvector of G
with eigenvalue zero.

The chain is reversible if and only if there is a distribution π satisfying the detailed
balance condition πrγrs = πsγsr .

If G is diagonalizable the eigendecomposition (6.3) is again useful. For if G =
E−1L E then Gm = E−1Lm E , so

exp(tG) = E−1diag{exp(tl1), . . . , exp(tlS)}E .

Hence the sth row of E and column of E−1, eT
s and e′

s , are left and right eigenvectors
of exp(tG) with eigenvalue exp(tls). The fact that

∑
s γrs = 0 for each r implies that

G1S = 0, so e′
1 = 1S is a right eigenvalue of G with eigenvalue l1 = 0, while e1 = π ,
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as we saw above. The remaining eigenvalues of G all have strictly negative real parts.
Hence

exp(tG) = (e′
1 · · · e′

S)




exp(tl1) 0
. . .

0 exp(tlS)







eT
1
...

eT
S




=
S∑

r=1

exp(tlr )e′
r eT

r

→ e′
1eT

1 = 1Sπ
T as t → ∞ :

starting from any X0, the (r, s) element of exp(tG), Pr(Xt = s | X0 = r ) → πs .
This transition probability may be written as a linear combination of exponentials,
crs,1etl1 + · · · + crs,SetlS , where crs,v is the (r, s) element of e′

v eT
v , that is, the product

of the r th element of e′
v and the sth element of ev .

Fully observed trajectory

If Xt had been fully observed during [0, t0], say, we would know exactly when and
between which states transitions occurred. To write down the likelihood we would
need probabilities for events such as Xu = r , 0 ≤ u < t , followed by transition from
r to s at time t , so Xt = s. To obtain this we divide [0, t) into m intervals of length
δt and apply the Markov property to see that

Pr
(
Xδt = X2δt = · · · = X (m−1)δt = r, Xmδt = s | X0 = r

)
equals

Pr
(
Xmδt = s | X (m−1)δt = r

) m−1∏
i=1

Pr
(
Xiδt = r | X (i−1)δt = r

)
,

and this itself is

{1 + γrrδt + o(δt)}m−1 {γrsδt + o(δt)} =
(

1 + γrr t

m

)m−1

γrsδt + o(δt).

On dividing by δt and letting m → ∞, then recalling that γrr = −∑
v �=r γrv , we see

that the density corresponding to observing Xu = r , 0 ≤ u < t , followed by transition
to Xt = s, is

γrs exp (tγrr ) = γrs exp

(
−t

∑
v �=r

γrv

)
.

This has the simple interpretation that the first transition out of r occurs at T =
min{t : Xt �= r} = minv �=r {Trv}, where the Trv are independent exponential variables
with parameters γrv , that is, with means γ −1

rv . This suggests an algorithm for simulating
data from such a process (Exercise 6.1.11).

The probability of a trajectory fully observed for the period [0, t0] and with transi-
tions at t1 < · · · < tk is calculated by using the Markov property to express

Pr (Xt = s0, 0 ≤ t < t1, Xt = s1, t1 ≤ t < t2, . . . , Xt = sk, tk ≤ t ≤ t0)
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as

Pr (X0 = s0) Pr(Xt = s0, 0 < t < t1, Xt1 = s1 | X0 = s0)

×
k−1∏
j=1

Pr
(
Xt = s j , t j < t < t j+1, Xt j+1 = s j+1 | Xt j = s j

)

×Pr
(
Xt = sk, tk < t ≤ t0 | Xtk = sk

)
.

Thus the likelihood for the γrs based on such data is

Pr(X0 = s0) × γs0s1 et1γs0s0 ×
k−1∏
j=1

γs j s j+1 e(t j+1−t j )γs j s j × e(t0−tk )γsk sk . (6.10)

The initial probability Pr(X0 = s0) might be replaced by the s0th element of the
stationary distribution of Xt , or dropped from the likelihood. In either case (6.10) may
be maximized with respect to the γrs , s �= r , if enough transitions have occurred —
in general, no inferences can be made about transitions from r to s if none have been
observed.

Partially observed trajectory

In practice trajectories may not be fully observed. One possibility is that the states
s0, s1, . . . , sk of Xt at times 0 < t1 < · · · < tk are known, as are the numbers and
types of transitions between the s j , but that the times of these intervening transi-
tions are unknown. A less informative possibility is that nothing is known about
transitions, so that only the s j and t j are known. The likelihood is then (6.1) with
Pr

(
Xt j = s j | Xt j−1 = s j−1

)
equal to the (s j−1, s j ) element of exp{(t j − t j−1)G}, that

is, ps j−1s j (t j − t j−1), and Pr(X0 = s0) chosen according to context.

Example 6.9 (Two-state Markov chain) The simplest case has S = 2 states with
transition intensities given by

G =
( −γ12 γ12

γ21 −γ21

)
, γ12, γ21 > 0.

Its eigendecomposition is

G =
(

1 γ12

1 −γ21

) (
0 0
0 −(γ21 + γ12)

)
1

γ12 + γ21

(
γ21 γ12

1 −1

)
,

so the limiting distribution is π T = (γ12 + γ21)−1(γ21, γ12), and

exp(tG) = 1

γ12 + γ21

(
γ21 + γ12el2t γ12(1 − el2t )
γ21(1 − el2t ) γ12 + γ21el2t

)
,

where l2 = −(γ12 + γ21) < 0 except in the trivial case γ12 = γ21 = 0, when the chain
stays forever in its initial state.

The holding time in state r is exponential with parameter γrs , so the likelihood based
on a trajectory fully observed on the interval [0, t0] with transitions 1 → 2 → 1 → 2
at t1 < t2 < t3 is

γ21

γ12 + γ21
× γ12e−t1γ12 × γ21e−(t2−t1)γ21 × γ12e−(t3−t2)γ12 × e−(t0−t3)γ21 ,
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the first and last terms being the stationary probability Pr(X0 = 1) and the probability
that no transition occurs in (t3, t0]. Apart from the first term, the log likelihood is
n12 log γ12 − γ12t ′

1 + n21 log γ21 − γ21t ′
2, where nrs is the number of r → s transitions

and t ′
r the total time spent in state r .

Each row of exp(tG) tends to π T as t → ∞. One effect of this is that if the process is
observed so intermittantly that X0, Xt1 , . . . are essentially independent, the transition
probabilities prs(t j − t j−1) will almost equal elements of π T, because exp{l2(t j −
t j−1)} .= 0. If so, then although γ21/(γ12 + γ21) will be estimable — it will be roughly
the proportion of occasions that Xt = 1 — the individual rates γ12 and γ21 will not. The
implication for design of studies involving such models is that Xt must be observed
often enough that its successive values are correlated; otherwise only the stationary
distribution is estimable. If several transitions occur every week, data obtained at
monthly intervals will be essentially uninformative. �

Example 6.10 (Breast cancer data) A model for these data has

G =

 −γ12 − γ13 γ12 γ13

γ21 −γ21 − γ23 γ23

0 0 0


 ;

of course γ31 = γ32 = 0 because death is absorbing. A simpler model sets γ13 =
0, so a woman with the disease cannot die without first being unable to walk.
Appropriate asymptotics take the number of women, rather than the number of
observations on each, large; below we suppose that large-sample approximations
are applicable with just 37 women. In practice it would be wise to check this by
simulation.

The overall likelihood L is the product of independent contributions of form (6.1),
one for each woman. Appreciable information might be lost by ignoring the terms
Pr(X0 = s0), which comprise 37 of the 135 terms of L . Owing to the absorbing state,
we cannot replace Pr(X0 = s0) with its stationary value

lim
t→∞ Pr(Xt = 1) = lim

t→∞ Pr(Xt = 2) = 0,

and we use limt→∞ Pr(Xt = s0 | Xt �= 3) instead, because only living women entered
the study. Now for s = 1, 2,

Pr(Xt = s | X0 = r ) = crs,1etl1 + crs,2etl2 + crs,3etl3 ,

where l3 < l2 < l1 = 0, and as this probability has limit zero we must have crs,1 = 0.
As t → ∞, therefore,

Pr(Xt = s | Xt �= 3, X0 = r ) = crs,2el2t + crs,3el3t

cr1,2el2t + cr1,3el3t + cr2,2el2t + cr2,3el3t

→ crs,2

cr1,2 + cr2,2

= e2,s

e2,1 + e2,2
,
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independent of r , where e2,v is the vth element of eT
2, the left eigenvector of G

corresponding to l2.
The missing value complicates the likelihood contribution for woman 24,

which is
e2,1

e2,1 + e2,2
× p12(3) × {p21(3)p13(6) + p22(3)p23(6)} .

The maximized log likelihoods for the three- and four-parameter models are
−107.43 and −107.39. As γ13 = 0 lies on the boundary of the parameter space, the
asymptotic distribution of the likelihood ratio statistic is 1

2 + 1
2χ2

1 ; see Example 4.39.
Its value, 2{−107.39 − (−107.43)} = 0.08, supports the simpler model, for which
maximum likelihood estimates and standard errors are γ̂12 = 0.116 (0.025), γ̂21 =
0.057 (0.035) and γ̂23 = 0.238 (0.043). The transition rate γ21 is poorly determined,
and taking the 95% confidence interval based on its profile likelihood, (0.014, 0.170),
is preferable to using its standard error. The estimated mean times spent in states 1 and
2 are γ̂ −1

12 = 8.6 and (γ̂21 + γ̂23)−1 = 3.4 months, with death then occurring with es-
timated probability γ̂23/(γ̂21 + γ̂23) = 0.81. Confidence intervals for these quantities
should be based on profile likelihoods.

The non-zero eigenvalues of Ĝ are −0.33 and −0.08, and examination of the
estimated transition matrices between the later follow-up times suggests that there is
some information in the small number of later transitions.

A more thorough analysis would assess the effect of initial status, for example by
seeing if the likelihood increases significantly when the three-parameter model is fitted
separately to each of the two initial groups. Of particular concern is the stationarity
assumption, which is hard to justify here. The data are too sparse, however, for much
further modelling to be conclusive. �

Inhomogeneous chains

If the transition rates γrs(t) depend on time then the fundamental equation (6.9) be-
comes dp(t)T/dt = p(t)TG(t). This is a system of first-order ordinary differential
equations, whose solution may be written formally as p(t)T = p(0)T exp{∫ t

0 G(s) ds}.
Typically this will not be available explicitly, and the transition probabilities must
be obtained using packages for solving systems of ordinary differential equa-
tions, or by discretizing time and fitting suitable models to the resulting transition
probabilities.

Exercises 6.1

1 Classify the states of Markov chains with transition matrices

(
0 1 0
0 0 1
1
2

1
2 0

)
,




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 ,




1
2

1
2 0 0 0 0

1
4

3
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0

1
4 0 1

4
1
4 0 1

4

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2




.
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2 Find the eigendecomposition of

P =
( 0 1 0

0 1
2

1
2

1
2 0 1

2

)

and show that p11(n) = a + 2−n {b cos(nπ/2) + c sin(nπ/2)} for some constants a, b and
c. Write down p11(n) for n = 0, 1 and 2 and hence find a, b and c.

3 In Example 6.5, sketch how p11(n) depends on n when l2 < 0, l2 > 0 and l2 = 0. Find
E(T11) by first showing that

Pr(T11 = k) =
{ 1 − p, k = 1,

pq(1 − q)k−2, k = 2, 3, . . .

4 Say when

P =
(

1 − p p 0
0 1 − p p
p 0 1 − p

)
, 0 ≤ p ≤ 1,

has an equilibrium distribution, and write it down. Show that P has eigenvalues 1, (2 −
3p ± i31/2 p)/2, and use them to say when the chain is ergodic.

5 Let Xt be a stationary first-order Markov chain with state space {1, . . . , S}, S > 2, and
let It indicate the event Xt = 1. Is {It } a Markov chain?

6 Consider a sequence 0100 . . . 10 of variables I j and let It = (2k + 1)−1
∑k

j=−k It+ j be the
average of the 2k + 1 variables centred at t .
(a) Verify the calculations in Example 6.5.
(b) Let the stationary first-order chain {It } have state space {0, 1} and transition probability
matrix P . In the notation of Example 6.5, show that

cov(It , It+ j ) = Pr(It = It+ j = 1) − Pr(It = 1)Pr(It+ j = 1) = pql j
2 /(p + q)2,

and deduce that with m = 2k + 1,

var(It ) = 2

m2

m−1∑
j=0

(m − j)cov(I0, I j ) − var(I0)

m
.

Give an expression for var(It ), and show that it is roughly (2 − p − q)/(p + q) times theIt may be useful to know
that for large n,∑n

j=0 j p j .= p/(1 − p)2.
corresponding expression for independent I j .

7 Check the log likelihood for the six-parameter model given at the end of Example 6.8,
obtain the maximum likelihood estimates and the fitted counts, and calculate Pearson’s
statistic. Give its degrees of freedom and assess the fit of the model.

8 A run of length m of a stationary Markov chain occurs when there is a sequence of form
Xt �= s, Xt+1 = · · · = Xt+m = s, Xt+m+1 �= s. Show that this has probability pm−1

ss (1 −
pss) for m = 1, 2, . . . : the geometric density with mean (1 − pss)−1. Show that in a first-
order chain the lengths of separate runs are independent. Is this true in higher-order chains?
Can you construct a non-trivial 3 × 3 transition matrix for which it is impossible to use
runs to falsify the independence model, whatever the length of the chain?

9 Recall that Trs denotes the first-passage time from state r to state s. For the three-parameter
model in Example 6.10, show that E(T23) = (g12 + g23)−1(1 + g12)E(T13) and find the
corresponding equation for E(T13). Hence give expressions for E(T13) and E(T23) and
show that their maximum likelihood estimates are 17 and 8.4 months respectively.
What additional information do you need to compute standard errors for these estimates?

10 Modify the argument from the preceding question to find the moment-generating functions
of T13 and T23 in terms of γ12, γ21, and γ23. Hence check your formulae for E(T13) and
E(T23).
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11 Let X1, . . . , Xn be independent exponential variables with rates λ j . Show that Y =
min(X1, . . . , Xn) is also exponential, with rate λ1 + · · · + λn , and that Pr(Y = X j ) =
λ j/(λ1 + · · · + λn). Hence write down an algorithm to simulate data from a continuous-
time Markov chain with finite state space, using exponential and multinomial random
number generators.

12 Observations s0, . . . , sk on a discrete-time Markov chain with one-step transition matrix
P are obtained at times 0 < t1 < . . . < tk , where not all the t j − t j−1 equal unity. Write
down the likelihood in terms of elements prs(n) of Pn , n = 1, 2, . . .. Give explicitly the
the likelihood when the states 12311 of a three-state chain with stationary distribution π
are observed at times 0, 1, 3, 4, 6.
Explain how you would calculate the likelihood L for the data in Table 6.3, with three-
month transition probability matrix

P =
(

1 − p12 p12 0
p21 1 − p21 − p23 p23

0 0 1

)
.

What value has L under this model? How could P be made more plausible? Look carefully at the data.

13 Check the eigendecomposition of G in Example 6.9. Calculate the stationary distribution
when γ12 = 0. Is this a surprise?

6.2 Markov Random Fields

6.2.1 Basic notions

The previous section described simple models for random variables indexed by a
scalar, often time, so the variables can be visualized at points along an axis. Many
applications require variables associated to points in space or in space-time, however,
and then more general indexing sets are needed. Think, for example, of the colours
of pixels in an image, the fertility of parts of a field or the occurrence of cancer cases
at points on a map. This section outlines how our earlier ideas extend to some more
complex settings. There is a close connection to notions of statistical physics, from
which some of the terminology is derived.

Our earlier discussion owed its relative simplicity to the Markov property — that the
‘future’ is independent of the ‘past’, conditional on the ‘present’ — whose importance
suggests that we should seek its analogy here. The notions of ‘past’, ‘present’, and
‘future’ have no obvious spatial counterparts, but another formulation does generalize
in a natural way. A sequence Y1, . . . , Yn satisfies the Markov property if

Pr(Y j+1 = y j+1 | Y1 = y1, . . . , Y j = y j ) = Pr(Y j+1 = y j+1 | Y j = y j )

for j = 1, . . . , n − 1 and all y. This is equivalent to having each Y j depend on the
remaining variables Y− j = (Y1, . . . , Y j−1, Y j+1, . . . , Yn) only through the adjacent
variables Y j−1 and Y j+1 (Exercise 6.2.1). To prepare for our generalization, let N j

denote the set of neighbours of j , given by N j = { j − 1, j + 1} for j = 2, . . . , n −
1, with N1 = {2} and Nn = {n − 1}; hence YN j = (Y j−1, Y j+1) for j �= 1, n, while
YN1 = Y2 and YNn = Yn−1. Then the Markov property for variables along an axis is
equivalent to

Pr(Y j = y j | Y− j = y− j ) = Pr
(
Y j = y j | YN j = yN j

)
, (6.11)
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Figure 6.4 Markov
random fields. Left:
neighbourhood structure
for first-order Markov
chain and its cliques and
their subsets. Right:
first-order neighbourhood
structure, cliques and their
subsets for rectangular
grid of sites.

for all values of j and y. Thus Y j depends on the other variables only through the
neighbouring variables YN j . The probability densities on the left of (6.11) are known
to statisticians as full conditional densities, while those on the right are called local
characteristics in statistical physics.

For more complicated settings, let J = {1, . . . , n} be a finite set of sites, each with
a random variable Y j attached. In many applications each Y j takes the same finite
number k of values, and then Y1, . . . , Yn may have at most kn possible configurations;
though finite, this number may be very large indeed. For any subset A ⊂ J , let
YA denote the corresponding subset of Y ≡ YJ , and let Y−A indicate YJ−A, with
Y j = Y{ j} and Y− j defined as above. We impose a topology on J by defining a
neighbourhood system N = {N j , j ∈ J }. The neighbours of j are the elements of
N j ⊂ J , the neighbourhoods N j having the properties that

� j �∈ N j and
� i ∈ N j if and only if j ∈ Ni .

We visualize this as a graph (J ,N ) whose nodes correspond to sites, with two nodes
joined by an edge if the sites are neighbours. We denote the union of { j} and its
neighbourhood by Ñ j = N j ∪ { j}. A subset C ⊂ J is complete if there are edges
between all its nodes, and a maximal complete subset is a clique of (J ,N ); every pairSome authors do not insist

that cliques be maximal. of distinct elements of C are then neighbours, but C cannot be enlarged and retain this
property. Let C denote the set of cliques and their subsets; in particular, C contains all
singletons { j} and the empty set ∅.

Example 6.11 (Markov chain) For the graph on the left of Figure 6.4, each interior
variable has just two neighbours, and the end variables have just one. Hence C =
{∅, {1}, . . . , {n}, {1, 2}, . . . , {n − 1, n}}; the cliques are the n − 1 adjacent pairs. �

Example 6.12 (Pixillated image) Let J be an m × m rectangular array of sites,
with neighbourhood structure shown on the right of Figure 6.4. Here n = m2. Interior
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sites have four neighbours, while boundary sites have two or three neighbours. The
cliques are horizontal or vertical pairs of adjacent sites.

This neighbourhood system is said to be first-order. It is easy to envisage enlarging
the neighbourhoods, for example by adding adjacent diagonal sites to give a second-
order neighbourhood system. �

Having defined a neighbourhood system analogous to that implicit in a Markov
chain, the extension of the Markov property is clear: a probability distribution for Y
is said to be a Markov random field with respect to N if Y j is independent of Y−Ñ j

Or sometimes a Markov
field or a locally
dependent Markov
random field.

given YN j , or equivalently, if (6.11) holds: the conditional distribution of Y j depends
on the other variables only through those at the neighbouring sites.

Although the local characteristics of Y are determined by its joint density, it is not
true that any collection Pr(Y1 | YN1 ), . . . , Pr(Yn | YNn ) of local characteristics yields a
proper joint density. This is awkward, because in practice the local characteristics are
much easier to deal with than the full joint density. Hence we ask which collections
of Pr(Y j | YN j ) = Pr(Y j | Y− j ) give well-defined joint distributions. It turns out that
a positivity condition is needed, that for any y1, . . . , yn ,

Pr(Y j = y j ) > 0 for j = 1, . . . , n implies Pr(Y1 = y1, . . . , Yn = yn) > 0 : (6.12)

if values of Y j can occur singly they can occur together. In this case

Pr(Y = y)

Pr(Y = y′)
=

n∏
j=1

Pr(y j | y1, . . . , y j−1, y′
j+1, . . . , y′

n)

Pr(y′
j | y1, . . . , y j−1, y′

j+1, . . . , y′
n)

(6.13)

for any two possible realizations y and y′ of Y (Exercise 6.2.5). Hence (6.13) may
be found for every possible y simply by taking a baseline y′ and using the full
conditional densities, the value of Pr(Y = y′) being found by summing the ratios.
Under the positivity condition, therefore, the full conditional densities determine a
unique joint density for Y . This density must be unaffected by the labelling of the sites
of J , any change to which will leave (6.13) unaltered. This is a severe restriction,
and we shall see at the end of this section that the joint density must have form

Pr(Y = y) ∝ exp {−ψ(y)} , (6.14)

where

ψ(y) =
∑
C∈C

φC (y), (6.15)

is a sum over all complete subsets C associated with the graph (J ,N ); this result,
the Hammersley–Clifford theorem, is proved at the end of this section. Hence the
only contributions to the joint density come from cliques of (J ,N ) and their sub-
sets. Moreover the functions φC can be arbitrary, provided the total probability of
(6.14) is finite. Many standard models have functions φC chosen so that (6.14) is
an exponential family, but though convenient this is not essential. The sum in (6.15)
could involve only cliques, as contributions from other complete subsets could be sub-
sumed into those from the cliques. The collection of functions {φC : C ∈ C} is called a
potential.
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The representation given by (6.14) and (6.15) is powerful because it enables systems
whose global behaviour is very complex to be built from simple local components,
namely the local characteristics determined by the φC . This is analogous to the notion
that the transition probabilities of a Markov chain entirely determine its behaviour.

Example 6.13 (Markov chain) In Example 6.11 C contains the empty set, single-
tons, and pairs of adjacent sites, and hence

ψ(y) = a +
n∑

j=1

b j (y j ) +
∑
i∼ j

ci j (yi , y j ),

where the second sum is over all distinct pairs of neighbours, or equivalently all edges
of the graph. The proportionality in (6.14) means that we can set a = 0, while setting
b j ≡ b and ci j (·, ·) = c(·, ·) for all i and j gives a homogeneous field.

If the field is homogeneous and the Y j take only values 0 and 1, we may write

ψ(y) =
n∑

j=1

by j +
n−1∑
j=1

(c10 y j + c01 y j+1 + c11 y j y j+1),

and a little algebra gives

Pr(Y j+1 = y j+1 | Y1 = y1, . . . , Y j = y j ) = e(β+γ y j )y j+1

1 + e(β+γ y j )
,

where β and γ are functions of b, c10, c01 and c11. As expected, this conditional
probability depends on y1, . . . , y j only through y j and does not depend upon j
directly. Hence it corresponds to a stationary first-order Markov chain with transition
probabilities Pr(0 | 0) = (1 + eβ)−1 and Pr(0 | 1) = (1 + eβ+γ )−1.

If the Y j take values in the real line and we set

b(y j ) = τ
(
y2

j − 2µy j
)
/(2σ 2), c(yi , y j ) = (yi − y j )

2/(2σ 2),

then ψ(y) = (yTV y − 2µyTV 1n)/(2σ 2), where

V =




τ + 1 −1 0 · · · 0 0
−1 τ + 2 −1 · · · 0 0
0 −1 τ + 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · τ + 2 −1
0 0 0 · · · −1 τ + 1




,

and 1n is an n × 1 vector of ones. It follows that

exp {−ψ(y)} ∝ exp

{
− 1

2σ 2
(y − µ1n)T V (y − µ1n)

}
,

which corresponds to the multivariate normal distribution with mean vector µ1n and
covariance matrix V/(2σ 2).

If τ = 0, the rows of V sum to zero and the distribution is degenerate. Moreover
(6.14) is integrable only if σ 2 > 0. This underlines the fact that although any choice
of b j and ci j yields a proper joint density when each Y j takes only a finite number



248 6 · Stochastic Models

of values, restrictions may be needed to ensure this when any of the Y j has infinite
support.

Example 11.27 gives an application of this. �

Example 6.14 (Ising model) Let J be an m × m grid of pixels, the j th of which
can take values 0 and 1, corresponding to the colours white and black. As n = m2,
the sample space has size 2m2

, about 104932 even for a small image with m = 128.
Under a first-order neighbourhood system the cliques are horizontal and vertical pairs
of adjacent pixels; see Figure 6.4. Hence if b j and ci j are homogeneous, we can take

ψ(y) =
∑

j

b(y j ) +
∑
i∼ j

c(yi , y j )

the second sum being over all distinct cliques. The resulting probability distribu-
tion is the Ising model of statistical physics, which is important in investigations of Ernst Ising (1900–1998)

was one of the generation
of German scientists
whose careers were
destroyed by the rise of
Nazism. After a period of
forced labour during the
war he emigrated to the
USA in 1949. The Ising
model described in his
1924 PhD thesis was later
used to account for the
phase transition between
the ferromagnetic and
paramagnetic states.

ferromagnetism.
The conditional probability that Y j = 0 given Y− j is

Pr(Y j = 0, Y− j = y− j )

Pr(Y j = 0, Y− j = y− j ) + Pr(Y j = 1, Y− j = y− j )
,

and on using (6.14) and cancelling all terms not involving y j , we obtain

exp
{
−b(0) − ∑

i∈N j
c(yi , 0)

}

exp
{
−b(0) − ∑

i∈N j
c(yi , 0)

}
+ exp

{
−b(1) − ∑

i∈N j
c(yi , 1)

} ;

thus the full conditional densities have form

Pr(Y j = 0 | Y− j ) = 1

1 + exp
{

b(0) − b(1) + ∑
i∈N j

c(yi , 0) − c(yi , 1)
} .

Let n1 denote
∑

i∈N j
I (Yi = 1), the number of neighbours of site j that equal one,

and define n0 similarly; note that n0 = |N j | − n1. Now |A| is the cardinality of
the set A.∑

i∈N j

c(yi , 0) − c(yi , 1) = n0c(0, 0) + n1c(1, 0) − n0c(0, 1) − n1c(1, 1)

= n0 {c(0, 0) + c(1, 1) − c(0, 1) − c(1, 0)}
+ |N j | {c(1, 0) − c(1, 1)} ,

from which it follows that we can write

Pr(Y j = 0 | Y− j ) = Pr(Y j = 0 | YN j ) = 1

1 + exp(β + γ |N j | + δn0)
. (6.16)

We interpret β + |N j |γ as controlling the overall size of the probability and δ its
dependence on the number of its white neighbours: γ = 0 means that the colour
of cell j is independent of the colours around it, while (6.16) increases to one as
γ → −∞.

Images with more colours may be dealt with by letting Y j take k > 2 values, with
an analogous argument giving the local characteristics. More complex neighbourhood
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Figure 6.5 A small
geneology. Females are
shown as circles, males as
squares, and marriages
leading to offspring as
dots. Thus the male shown
by the solid square has
two parents and three
children by two
marriages. This would be
his neighbourhood in
potentially a much larger
pedigree.

structures will introduce more parameters into the model, while these ideas can be
extended to fields that allow lines, textures and other features of real images. �

Example 6.15 (Genetic pedigree) In the analysis of a genealogy, the sites typically
correspond to individuals and Y j to the genotype at a particular locus on the j th
individual’s DNA. Typically the genotype cannot be observed, but the phenotypes of
some of the individuals are known. A simple example is in the ABO blood group
system, where the observable phenotype blood group ‘A’ arises with genotypes AA
and AO which are harder to observe; see Example 4.38. Two individuals in a pedigree
are said to be spouses if they have mutual offspring in the pedigree, and each such
pairing constitutes a marriage. A pedigree may be represented as a graph in which both
individuals and marriages correspond to nodes, while the edges link each individual
to his or her marriages and each marriage to the resulting offspring. See Figure 6.5.

The laws of genetic inheritance are Markovian. Genes are passed from parents
to offspring in such a way that conditional on their parents’ genotypes, individuals
are independent of their earlier direct ancestors. It turns out that this dependence
imposes a neighbourhood structure on the genotypes, with the neighbourhood for any
individual defined to contain his parents, children and spouses. However distributions
defined on this structure need not satisfy the positivity condition. A simple example
is the ABO blood system: a person whose parents are both of type AB cannot be of
type O. The fact that genetic models usually do not satisfy the positivity condition
complicates statistical analysis of pedigree data. �

Statistical inference for Markov random fields is generally based on the iterative
simulation methods discussed in Section 11.3.3.

6.2.2 Directed acyclic graphs

Thus far we have supposed that all the Y j have the same support and that the neigh-
bourhood structure of the random field is known. The idea of expressing dependencies
among variables as a graph is useful in more general settings, however, and it is then
necessary to read off neighbourhoods from the joint distribution of Y1, . . . , Yn . Often



250 6 · Stochastic Models

Figure 6.6 Directed
acyclic and moral graphs.
Left: directed acyclic
graph representing (6.17).
Right: moral graph,
formed by moralizing the
directed acyclic graph,
that is, ‘marrying’ parents
and dropping arrowheads.

the dependence structure is specified hierarchically, for example by stating the condi-
tional distributions of Y1 given Y2 and of Y2 given Y3, Y4 and so forth. The hierarchy
may then be expressed using a directed graph, in which dependence of Y1 on Y2 is
shown by an arrow from the parent Y2 to the child Y1, and Y1 is a descendent of Y3

if there is a sequence of arrows from Y3 to Y1. Such a graph is directed because each
edge is an arrow, and acyclic if it is impossible to start from a node, traverse a path
by following arrows, and return to the starting-point. The left of Figure 6.6 shows the
directed acyclic graph for a model in which the joint density of Y1, . . . , Y6 factorizes as

f (y) = f (y1 | y2, y5) f (y2 | y3, y6) f (y3) f (y4 | y5) f (y5 | y6) f (y6). (6.17)

For any directed acyclic graph we have ⊥ means ‘is independent
of’.

Y j ⊥ non-descendents of Y j | parents of Y j , for all j,

and (6.17) generalizes to

f (y) =
∏
j∈J

f (y j | parents of y j ). (6.18)

The density is then said to be recursive with respect to the directed acyclic graph.
Acyclicity prevents a variable from introducing a degenerate density by being its own
descendent.

A directed acyclic graph does not display all the neighbourhoods of the resulting
Markov random field, but its moral graph does. This is obtained by moralizing the Also called a conditional

independence graph.directed acyclic graph — ‘marrying’ or putting edges between any parents that share
A moral graph contains no
unmarried parents.a child and then cutting off the arrowheads. In Figure 6.6, for example, the directed

acyclic graph on the left shows us that Y2 and Y5 are parents of Y1, so they are joined
in the moral graph on the right. This shows us that

N1 = {2, 5}, N2 = {1, 3, 5, 6}, N3 = {2, 6},
N4 = {5}, N5 = {1, 2, 4, 6}, N6 = {2, 3, 5}.

In general the full conditional density of y j is

f (y j | y− j ) = f (y)∫
f (y) dy j

=
∏

i∈J f (yi | parents of yi )∫ ∏
i∈J f (yi | parents of yi ) dy j

∝ f (y j | parents of y j )
∏

i : yi is child of y j

f (yi | parents of yi ),
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because the integral only affects terms where y j appears. In order for the denominator
to be positive for any y− j , the positivity condition must hold. If so, we see that N j

comprises the parents and children of Y j , and any parents of Y j ’s children, precisely
those variables joined to Y j in the moral graph. Thus the distribution of Y satisfies
(6.11), also called the local Markov property.

Consider a directed acyclic graph, let the family F j consist of j and its parents,
if any, and let C denote the cliques of the corresponding moral graph. Then as the
families F j yield cliques C ∈ C, we may write

f (y) =
∏

j

g(yF j ) =
∏
C∈C

hC (y), (6.19)

taking g(yF j ) = f (y j | parents of y j ). Thus we may write the joint density in terms
of the cliques of an moral graph, analogous to (6.14) and (6.15). Let A and B be
disjoint subsets of J that are separated by D, that is, any path from an element
of A to an element of B must pass through D. Then under the positivity condition
the distribution on the moral graph has the global Markov property, that YA and YB
are independent conditional on YD. To see this in the case where all the variables are
discrete, suppose for now that A ∪ B ∪ D = J , and note that as no clique can contain
elements of both A and B, (6.19) implies that the joint density can be written as

f (y) = f (yA, yB, yD) = g1(yA, yD)g2(yB, yD).

Thus

f (yA, yB | yD) = g1(yA, yD)g2(yB, yD)∑
yA

∑
yB

g1(yA, yD)g2(yB, yD)
,

which factorizes in terms of yA and yB, showing that any subset of YA is independent
of any subset of YB, conditional on YD. The positivity condition ensures that the
denominator here is positive for any yD. We now have only to note that ifA ∪ B ∪ D �=
J , then A, B can be enlarged to give sets A′, B′ which together with D partition J
such that D separates A′, B′. Then Y ′

A ⊥ Y ′
B | YD, implying that YA ⊥ YB | YD, which

is the global Markov property. The moral graph in Figure 6.6, for example, shows
that

Y1 ⊥ Y3, Y4 | Y2, Y5,

as can be verified from (6.17).
Markov properties of this sort are useful because they enable the computation of

f (y) or derived quantities to be broken into practicable steps. Sometimes the moral
graph must be triangulated by adding edges to ensure that every cycle of length four
or more contains an edge between two nodes that are not adjacent in the cycle itself.
Triangulation can accelerate computation of f (y) by making closed-form calculations
possible for some model classes.

Example 6.16 (Belief network) Graphs may be used to represent supposed logical
or causal relationships among variables and play an important role in probabilistic
expert systems. Figure 6.7, for instance, shows a directed acyclic graph that represents
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Figure 6.7 Directed
acyclic graph representing
the incidence and
presentation of six
possible diseases that
would lead to a ‘blue’
baby (Spiegelhalter et al.,
1993). LVH means left
ventricular hypertrophy.

the incidence and presentation of six diseases that would lead to a ‘blue’ baby. Early
appropriate treatment is essential when such a child is born, and this expert system
was developed to increase the accuracy of preliminary diagnoses. The graph shows,
for example, that the level of oxygen in the lower body (node 16) is thought to be
directly related to hypoxia distribution (node 10) and to its level when breathing
oxygen (node 11). This last variable depends on the degree of mixing of blood in the
heart (node 6) and the state of the blood vessels (parenchyma) in the lungs (node 7),
and these two variables are directly influenced by which of the six possible levels the
variable disease (node 2) has taken. Links such as those between nodes 6 and node
11 might be regarded as causal if poor cardiac mixing was known to contribute to
hypoxia.

Each variable in such a network is typically treated as discrete, so the joint distri-
bution of the variables is determined by a large number of multinomial distributions
giving the terms on the right of (6.18). These are often obtained by eliciting opin-
ions from experts and then updating these opinions, and perhaps the structure of the
graph, as data become available. Table 6.6, for example, shows the expert view that
left ventricular hypertrophy (LVH) would be present in 10% of cases of persistent
foetal circulation, and that if present, it would be correctly reported in 90% of cases.
The full distribution is given by specifying such tables for each of the 20 nodes of the
graph, giving a sample space with more than one billion elements.

Now imagine that the LVH report for a baby is positive. In the light of this evidence
the probabilities for the other variables will need updating, for example to ascribe new
probabilities to the diseases or to determine which other diagnostic report will be most
informative. Thus evidence must be propogated through the network to give the joint
distribution of the other variables conditional on a positive LVH report. This involves
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Table 6.6 Subjective
expert assessments of
conditional probability
tables for links node 2 →
node 4 and node 4 →
node 15 in Figure 6.7
(Spiegelhalter et al.,
1993).

Node 4: LVH

Node 2: Disease Yes No

Persistent foetal circulation 0.10 0.90
Transposition of the great arteries 0.10 0.90
Teralogy of Fallot 0.10 0.90
Pulmonary atresia with intact ventricular septum 0.90 0.10
Obstructed total anomalous pulmonary venous connection 0.05 0.95
Lung disease 0.10 0.90

Node 15: LVH report

Node 4: LVH Yes No

Yes 0.90 0.10
No 0.05 0.95

the cliques of the triangulated moral graph of Figure 6.7. Details are given in the
references in the bibliographic notes. �

Directed acyclic and their moral graphs play a useful role in the iterative simulation
methods described in Section 11.3.3.

Hammersley–Clifford theorem
This can be omitted at a
first reading. We now show that if the positivity condition (6.12) holds when all the Y j take values

in {0, . . . , L}, then the most general form that their joint density f (y) can take is
given by (6.14) and (6.15). Conversely these equations entail the Markov property
(6.11) and positivity condition (6.12).

Let Y = {0, . . . , L}n denote the sample space for Y1, . . . , Yn , and for any y ∈ Y
let y0

j denote the vector (y1, . . . , y j−1, 0, y j+1, . . . , n). Under the positivity condi-
tion every element of Y occurs with positive probability, so we can define ψ(y) =
log{ f (y)/ f (0)}, where 0 represents a vector of n zeros. Now

exp
{
ψ(y) − ψ

(
y0

j

)} = f (y)

f
(
y0

j

) = f (y j | y1, . . . , y j−1, y j+1, . . . , yn)

f (0 | y1, . . . , y j−1, y j+1, . . . , yn)
= f (y j | yN j )

f (0 | yN j )
,

because the joint density satisfies the local Markov property, so knowing ψ will
determine the full conditional densities and therefore the local characteristics of f (y).
Note that this implies that ψ(y) − ψ(y0

j ) depends only on y j and yN j .
Now any function ψ(y) has an expansion

ψ(y) =
n∑

j=1

y j a j (y j ) +
∑

1≤ j<k≤n

y j yka jk(y j , yk)

+
∑

1≤ j<k<l≤n

y j yk yla jkl(y j , yk, yl) + · · · + y1 · · · yna1···n(y1, . . . , yn),
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because we can set y j a j (y j ) = ψ(0, . . . , 0, y j , 0, . . . , 0) − ψ(0), with analogous for-
mulae for the other a-functions. We must now show that for any subset C of {1, . . . , n},
the corresponding a-function may be non-null if and only if C is a clique of the graph.
Consider y1 without loss of generality, and recall that owing to (6.11), ψ(y) − ψ(y0

1 )
depends only on y1 and yN1 . Now ψ(y) − ψ(y0

1 ) equals

y1

{
a1(y1) +

∑
2≤ j≤n

y j a1 j (y1, y j ) +
∑

2≤ j<k≤n

y j yka1 jk(y1, y j , yk)

+ · · · + y2 · · · yna1···n(y1, . . . , yn)

}
,

and this must be free of yl for any l �∈ N1. On setting y j = 0 for j �= 1, l, we see that
a1l(y1, yl) = 0 for every possible yl . Suitable choices of y show in like wise that every
other a-function involving yl must be identically zero. As the same is true for every
other node, the Markov property (6.11) implies that the only non-zero functions a j1··· jk

are those in which j1, . . . , jk are all neighbours, that is, form a subset of a clique, and
this entails (6.14) and (6.15).

For the converse, note that any set of a-functions gives a density f (y) that sat-
isfies the positivity condition (6.12). Now ψ(y) − ψ(y0

j ) depends on xl only if
there is a non-null a-function containing both y j and yl , so the local characteristic
f (y j | y1, . . . , y j−1, y j+1, . . . , yn) also depends only on those yl that are neighbours
of y j . Thus (6.14) and (6.15) together imply (6.11) and (6.12).

Exercises 6.2

1 Show that the Markov property for a sequence Y1, . . . , Yn is equivalent to (6.11).

2 Give the cliques for the second-order neighbourhood system in Example 6.12.

3 Give the cliques for a second-order Markov chain, and hence write down the form of the
most general density for it, under the positivity condition.

4 Consider two binary random variables with local characteristics

Pr(Y1 = 1 | Y2 = 0) = Pr(Y1 = 0 | Y2 = 1) = 1,

Pr(Y2 = 0 | Y1 = 0) = Pr(Y2 = 1 | Y1 = 1) = 1.

Show that these do not determine a joint density for (Y1, Y2). Is the positivity condition
satisfied?

5 Let the density of a random variable Y = (Y1, . . . , Yn) satisfy (6.12), and let the sample
space be the set Y = {y : f (y) > 0}. If (y1, . . . , yn) and (x1, . . . , xn) are two elements
of Y , use the identity

f (y1, . . . , yn) = f (yn | y1, . . . , yn−1) f (y1, . . . , yn−1)

to show that

f (y1, . . . , yn) = f (yn | y1, . . . , yn−1)

f (xk | y1, . . . , yn−1)
f (y1, . . . , yn−1, xn),

and then that

f (y1, . . . , yn−1, xn) = f (yn−1 | y1, . . . , yn−2, xn)

f (xn−1 | y1, . . . , yn−2, xn)
f (y1, . . . , yn−2, xn−1, xn),
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Hence establish (6.13).
(Besag, 1974)

6 Use induction on the number of variables to prove (6.18).

7 Let Gm be the graph obtained by moralizing a finite directed acyclic graph G. Show that
every family of G is a clique of Gm but that the converse is false (consider the moral graph
for Figure 6.7).

8 A subset A of the nodes of a graph G is ancestral if A contains the parents and neighbours
of a whenever a ∈ A. Show that if the density of Y is recursive with respect to G, the
marginal density of YA is recursive with respect to to subgraph induced onA. Now consider
the moral graph G ′

m of the smallest ancestral set containing A ∪ B ∪ D, and suppose that
D separates A from B in G ′

m . Show that YA ⊥ YB | YD.

9 Are the moral graphs for Figures 6.6 and 6.7 triangulated?

10 Write down the directed acylic and moral graphs for X , Y , and I under the missing data
models described in Section 5.5. Use them to give an equation-free explanation of the
differences among the models and of their consequences.

11 Give the form of the a-functions of page 253 when L = 1 and n = 3, and hence verify
the Hammersley–Clifford theorem when (i) none of 1, 2, and 3 are neighbours; (ii) 1 ∼ 2
only; (iii) 1 ∼ 2 ∼ 3 only; and (iv) 1 ∼ 2 ∼ 3 ∼ 1, where ∼ means ‘is a neighbour of’.
In each case give (6.15).

12 Suppose that the variables U1, . . . , Un of a Markov random field have joint density

f (u; θ ) = c(θ ) exp

[
−1

2

{
θ1

∑
j∼ j ′

(u j − u j ′ )
2 + θ2

n∑
j=1

u2
j

}]
, θ1 > 0, θ2 ≥ 0,

where the first sum is over all pairs of neighbours, each pair being taken only once. Let
N j denote the neighbours of node j .
(a) Show that their joint distribution is normal with covariance matrix determined by
θ1 In + θ2 A, where the j th diagonal element of the n × n adjacency matrix A is the number
of neighbours of node j , and its off-diagonal elements are

a j j ′ =
{ −1, j ∼ j ′

0, otherwise.

(b) Show that the density is degenerate when θ2 = 0, but that otherwise c(θ ) =
(2π )−n/2

∏
j (θ2 + θ1a′

j ), where the a′
j are the eigenvalues of A.

(c) Suppose that conditional on the values u of unseen variables U , Y1, . . . , Yn are indepen-
dent with Y j | U ∼ N (u j , σ

2). Show that the joint density of U given Y is well-defined
even if θ2 = 0 provided that σ 2 > 0, and that the density of U j | Y, U− j involves on y j

and uN j .
(d) Work out the details using the matrix V in Example 6.13.

6.3 Multivariate Normal Data

6.3.1 Multivariate dependence

When there is a single response variable, analysis is relatively simple, the crucial
aspect being how the distribution of that variable depends on any covariates. Problems
with just one response variable are common in practice and typically are readily
interpretable, but cases arise where relations among two or more responses are to
be modelled, and to these we now briefly turn. We motivate our discussion by an
example.
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Table 6.7 Marks out of
100 in five mathematics
examinations for the first
and last five of 88 students
(Mardia et al., 1979,
pp. 3–4). Some of the
examinations were
closed-book (C), and
others were open-book
(O).

Mechanics (C) Vectors (C) Algebra (O) Analysis (O) Statistics (O)

77 82 67 67 81
63 78 80 70 81
75 73 71 66 81
55 72 63 70 68
63 63 65 70 63
...

...
...

...
...

15 38 39 28 17
5 30 44 36 18

12 30 32 35 21
5 26 15 20 20
0 40 21 9 14

Example 6.17 (Maths marks data) Table 6.7 gives marks out of 100 for the first
and last five students out of 88 who took five mathematics examinations. As we would
anticipate, the top students tend to do best in all the exams, and the worst dismally in
all, so the marks for each student are related. This is shown by the modified scatterplot
matrix in Figure 6.8, the below-diagonal part of which contains scatterplots of the
marks for each examination against those for every other one, for all 88 students.
Each column of marks has been centred at zero for comparison with the panels above
the diagonal, which are discussed in Example 6.20. The original marks are shown
by the light histograms along the diagonal. The average marks in mechanics and in
vectors were about 40 and 50, but the panel in the second row and first column shows
that one candidate got about 40 more marks than this in mechanics and about 30
more in vectors; this is the first person in Table 6.7. The below-diagonal panels show
generally positive association between marks for different subjects, but its strength
varies. For example, algebra is strongly associated with all the other subjects, whereas
the first column suggests that while mechanics is related to vectors and algebra, its
association with analysis and statistics is weaker.

We could rank students by their overall averages, but this would not be useful if
the question of interest is how the marks for different exams relate to one another.
We would then have five response variables, and we would need to model the forms
of dependence that might arise. �

Simpson’s paradox

The easiest way to deal with the multitude of potential dependencies in such situations
is to ignore as many of them as possible. For example, if the response is bivariate,
(Y1, Y2), and there is a single explanatory variable, x , one might just model Y1 as
a function of x , regardless of Y2. Unfortunately this can be badly misleading, as
Figure 6.9 illustrates. Its left panel shows how a continuous variable Y1 depends on
x for two values of the discrete variable Y2. For each value of y2, the mean of Y1,
E(Y1 | Y2 = y2, x), increases with x , as shown by the positive slope of the regression
of Y1 on x . However, the right panel shows that when Y2 is ignored the mean of Y1
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Figure 6.8 Modified
scatterplot matrix for the
full maths marks data.
Below the diagonal are
scatterplots (and sample
correlation coefficient) for
the centred pairs of marks;
for example, the lower left
panel shows results for
statistics plotted against
those for mechanics.
Above the diagonal are
scatterplots of residuals
(and sample partial
correlation coefficients):
for example, the top right
panel shows the
dependence remaining
between mechanics and
statistics after adjusting
for the other variables.
The diagonal shows
histograms of the
variables (light) and of the
residuals from regression
on all other variables,
centred at the variable
mean (dark), with the
marginal and partial
standard deviations.
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Figure 6.9 Artificial
data illustrating
Simpson’s paradox. The
left panel shows how Y1

depends on x for each of
two values of Y2, with
observations with y2 = 0
shown by blobs and those
with y2 = 1 shown as
circles. The lines are from
separate straight-line
regression fits of y1 on x
for each value of y2 and
show positive association.
The right panel shows the
fit to the data ignoring Y2,
for which the association
is negative.

decreases with x , that is, E(Y1 | x) has negative slope as a function of x . This effect —E. H. Simpson called
attention to this effect in
1951, although it was
known to G. U. Yule
almost 50 years earlier.

Simpson’s paradox — is due to the fact that marginalization of the joint distribution
of (Y1, Y2) over Y2 has reversed the sign of the association between Y1 and x . Here a
plot at once reveals that it is a bad idea to fit a common line to both groups, but the
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Table 6.8 Twenty-year
survival and smoking
status for 1314 women
(Appleton et al., 1996).
The smoker and
non-smoker columns
contain number dead/total
(% dead).

Age (years) Smokers Non-smokers

Overall 139/582 (24) 230/732 (31)

18–24 2/55 (4) 1/62 (2)
25–34 3/124 (2) 5/157 (3)
35–44 14/109 (13) 7/121 (6)
45–54 27/130 (21) 12/78 (15)
55–64 51/115 (44) 40/121 (33)
65–74 29/36 (81) 101/129 (78)
75+ 13/13 (100) 64/64 (100)

paradox arises also in contexts where it is not obvious what to plot, and association
may be strengthened or weakened as well as reversed.

Example 6.18 (Smoking and the Grim Reaper) Table 6.8 shows data on smoking
and survival for 1314 women in Whickham, near Newcastle upon Tyne in the north
of England. In 1972–1974 data were collected by surveying people on the town
electoral register, and among the many variables collected were age and smoking
habits at that time. Twenty years later a follow-up survey was conducted and it was
determined if each woman in the original survey had yet died. Just 162 women
had smoked before the first survey but were non-smokers at that time, and there
were only 18 whose smoking habits were not recorded; these 180 women have been
excluded.

The first line of the table shows a surprising apparent health bonus of smoking:
the death rate for smokers, 24%, is lower than that for non-smokers, 31%. However
a breakdown of the overall figures by age shows that the death rate for smokers is
higher for every age category except 25–34 and over 75 years. On inspection the
reason for this discrepancy is obvious: in the early 1970s there were many more non-
smokers than smokers in the age range 65–74, and as old age makes death even more
likely than does smoking, most of these did not survive until the follow-up survey. To
learn about the effect of smoking on health, we should compare women of the same
age. Thus the appropriate analysis involves comparisons within age groups, not after
merging the data across them. �

These cautionary examples show that it is unwise to collapse data by ignoring
variables without first examining the full dependence structure to ensure that it is safe
to do so. Data with several responses are common in the social sciences, psychology,
epidemiology, and public health, where outcomes may depend on numerous variables
that are related in a complicated way. The modelling of such data has been extensively
studied, and we only scratch its surface here, confining our discussion to the most
basic models for continuous data. Discrete data such as those in Table 6.8 arise in
many applications; see Chapter 10.
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6.3.2 Multivariate normal distribution

Let Y1, . . . , Yn be a random sample from the Np(µ, �) density. That is, Y j =
(Y1 j , . . . , Ypj )T has the multivariate normal distribution with mean vector µ =
(µ1, . . . , µp)T and p × p nonsingular covariance matrix �, whose (r, s) element
is ωrs . As each of the Y j has density (3.20), the log likelihood is

�(µ, �) ≡ −1

2

{
n log |�| +

n∑
j=1

(Y j − µ)T�−1(Y j − µ)

}

= −1

2

{
n log |�| +

n∑
j=1

(Y j − Y + Y − µ)T�−1(Y j − Y + Y − µ)

}

= −1

2

{
n log |�| + n(Y − µ)T�−1(Y − µ) +

n∑
j=1

(Y j − Y )T�−1(Y j − Y )

}

= −1

2
{n log |�| + n(Y − µ)T�−1(Y − µ) + (n − 1)tr(�−1S)} (6.20)

where the p × 1 vector and p × p matrix

Y = n−1
∑

Y j , S = (n − 1)−1
∑

(Y j − Y )(Y j − Y )T,

are the sample average and covariance matrix. These are minimal sufficient statistics
for µ and �. The second and third equalities before (6.20) rest on the identities∑

(Y j − Y )�−1(Y − µ) = 0,∑
(Y j − Y )T�−1(Y j − Y ) =

∑
tr{(Y j − Y )T�−1(Y j − Y )}

=
∑

tr{�−1(Y j − Y )(Y j − Y )T}

= tr
{
�−1

∑
(Y j − Y )(Y j − Y )T

}
.

As � is a positive definite matrix, so is � = �−1, and it follows that for any �, the
maximum of (6.20) with respect to µ is at µ̂ = Y , the maximum likelihood estimator.
In order to maximize �(µ̂, �), we make the 1–1 transformation from � to �, in terms
of which �(µ̂, �) = 1

2 {n log |�| − (n − 1)tr(�S)}. Differentiation with respect to �

shows that the maximum likelihood estimate of �−1 = � is �̂ = n−1(n − 1)S; withExercise 6.3.1 gives the
details. probability one this has rank p if n > p. Otherwise its rank is n − 1.

As in the scalar case S is unbiased. We let ω̂rs denote the (r, s) element of S;
this is the sample covariance between the r th and sth components of Y . The sample
variances lie on the diagonal of S. The sample correlations are ω̂rs/(ω̂rr ω̂ss)1/2, the
(r, s) elements of D−1/2SD−1/2, where D is the diagonal matrix diag(ω̂1,1, . . . , ω̂p,p)
(Exercise 6.3.2).

Example 6.19 (Maths marks data) Table 6.9 shows the averages, variances, and
correlations for the maths marks data. The best results are on vectors and algebra,
and the worst on mechanics and statistics. The numbers below the diagonal show
positive correlations among the variables, with the strongest those between algebra
and the other subjects. The most variable marks are for mechanics and statistics, with
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Table 6.9 Summary
statistics for maths marks
data. The sample
correlations between
variables are below the
diagonal, and the sample
partial correlations are
above the diagonal. The
diagonal contains sample
standard deviation/ sample
partial standard deviation.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 17.5/13.8 0.33 0.23 −0.00 0.03
Vectors 0.55 13.2/9.8 0.28 0.08 0.02
Algebra 0.55 0.61 10.6/6.1 0.43 0.36
Analysis 0.41 0.49 0.71 14.8/10.1 0.25
Statistics 0.39 0.44 0.66 0.61 17.3/12.5

Average 39.0 50.6 50.6 46.7 42.3

sample standard deviations ω̂
1/2
rr of 17.5 and 17.3 respectively, while that for algebra

is smallest, at 10.6. Although the averages for mechanics and statistics are smallest,
there is a wider spread of results for these subjects. The values above the diagonal are
discussed in Example 6.20. �

Extensions of the arguments for univariate data show that

Y ∼ Np(µ, n−1�), independent of (n − 1)S ∼ Wp(n − 1, �), (6.21)

where Wp(ν, �) denotes the p-dimensional Wishart distribution with p × p para-
meter matrix � and ν degrees of freedom. In fact, if Z1, . . . , Zν is a random sample
from the Np(0, �) distribution, then Z1 Z T

1 + · · · + Zν Z T
ν ∼ Wp(ν, �); when p = 1

and � = 1, the Wishart distribution reduces to the chi-squared.
The multivariate extension of the t statistic is Hotelling’s T 2 statistic,

T 2 = n(Y − µ)T S−1(Y − µ) ∼ p(n − 1)

n − p
Fp,n−p,

which can be used to test hypotheses and form confidence regions for elements of µ.

6.3.3 Graphical Gaussian models

The structure of the multivariate normal density means that variables depend on
each other in a particularly simple way. Before getting into details, we need some
notation. Let S be a subset of the integers {1, . . . , p}, of cardinality |S|, and let YS
and Y−S be the sets of variables {Ys, s ∈ S} and {Ys, s �∈ S}. If S = {r}, we write
YS = Yr and Y−S = Y−r . For two such subsets A and B, let �A,B be the |A| × |B|
matrix with elements ωab = cov(Ya, Yb), and let �A|B = cov(YA | YB) be the |A| ×
|A| conditional covariance matrix of YA given the value of YB; we write its elements
as ωa1,a2|B.

Equation (3.21) establishes that the conditional distribution of YS given Y−S = y−S
is normal with mean vector and covariance matrix

µS + �S,−S�−1
−S,−S (y−S − µ−S ), �S,S − �S,−S�−1

−S,−S�−S,S . (6.22)

Thus the conditional mean depends linearly on the values of the known variables,
and the conditional variance is independent of them. If S = {r} and the conditional
variance of Yr , ωrr |−r , is much smaller than the unconditional variance ωrr , then
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knowing Y−r is highly informative about the distribution of Yr . Thus it will be useful
to compare estimates of these variances. It is also useful to learn how knowledge
of the other variables affects the covariance of Yr and Ys . Their 2 × 2 conditional
covariance matrix is given by (6.22), with S = {r, s}, and their partial correlation,

ρrs|−S = ωrs|−S
(ωrr |−S ωss|−S )1/2

,

represents the correlation between Yr and Ys conditional on the remaining variables.
The quantities on the right are sometimes called the partial variances and partial
covariance. On page 264 we show that the partial correlation equals minus one
times the (r, s) element of the correlation matrix constructed from �−1. Thus partial
variances, correlations and covariances of Y are readily computed from �, and we
can use the transformation property of maximum likelihood estimators to estimate
ρrs|−S and so forth by the same functions of �̂.

Example 6.20 (Maths marks data) The second diagonal elements in Table 6.9
give the sample partial standard deviations ω̂

1/2
rr |−r for each subject. According to

the normal model, our best guess of a student’s mark in algebra without knowledge
of his other marks would be 50.6, with standard deviation 10.6: a 95% confidence
interval is 51 ± 1.96 × 11 = (29, 73), which is virtually useless. If we knew y and
�̂ and his marks y−r for the other four subjects, however, we could replace the
components of µ and � in (6.22) with S = {r} by estimates, giving estimated score
yr + �̂r,−r �̂

−1
−r,−r (y−r − y−r ). The estimated conditional standard deviation ω̂

1/2
rr |−r =

6.1 is appreciably smaller than the unconditional value.
The above-diagonal part of Table 6.9 shows the sample partial correlations. A

good mark at algebra is correlated positively with each of the other variables, given
the remainder. Given the other variables, however, mechanics seems to be unrelated
to analysis or statistics, and likewise for vectors: the upper right corner of the matrix
is essentially zero. Thus the subjects split into three groups: vectors and mechanics;
analysis and statistics; and algebra. Variables in the first two pairs are partially cor-
related with each other and with algebra, which itself is partially correlated with all
four other variables.

This information is displayed more fully in the above-diagonal panels of Figure 6.8.
Set S = {r, s}, and let y denote the n × p data matrix whose j th row is yT

j , yr the
r th column of y, and y−S the n × (p − 2) array comprising all columns of y but the
r th and sth. Then the vertical axes show the n × 1 vectors of sample values

yr |−S = yr − yr − �̂r,−S�̂−1
−S,−S (y−S − y−S )

of the scalar random variable

Yr |−S = Yr − µr − �r,−S�−1
−S,−S (Y−S − µ−S ),

while the horizontal axes show the ys|−S ’s. The quantities Yr |−S are normal with
means zero and variances �r,−S�−1

−S,−S�−S,r , and partial correlation

corr(Yr , Ys | Y−S ) = corr(Yr |−S , Ys|−S ) = ρrs|−S ,
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while the correlation coefficient between the sample versions is the corresponding
sample quantity ρ̂rs|−S . Thus the scatterplot in the first row and third column shows
the association between mechanics on the vertical axis and algebra on the horizontal
axis after adjusting for dependence on the other variables. The partial correlation
of 0.23 shows that some positive correlation remains after allowing for the other
variables. Summary in terms of partial correlations seems reasonable, as none of the
panels shows much nonlinearity, but there is a possible outlier in the lower left corner
of panels (1, 2) and (2, 1). This is a person whose marks yT

81 = (3, 9, 51, 47, 40) are
dire for applied mathematics but not for pure mathematics or statistics. Dropping him
makes little change to the correlations or partial correlations.

The diagonal of the scatterplot matrix compares histograms of the raw marks yr

and the marks yr |−r + yr after adjusting for all the other variables, with the sample
standard deviations of these vectors. �

Conditional independence graphs

As their third and higher-order joint cumulants are identically zero (Section 3.2.3),
dependence among normal variables is expressed through their correlations, calcu-
lated from �, or equivalently their partial correlations, calculated from �−1. Consider
the graph with p nodes corresponding to the variables Y1, . . . , Yp. Now Yr and Ys are
independent conditional on all the other variables if and only if their partial correla-
tion is zero, and we encode this by the absence of an edge between the corresponding
nodes. Thus two nodes are neighbours — joined by an edge — if and only if the cor-
responding partial correlation is non-zero and hence if and only if the corresponding
element of � is non-zero. This yields a conditional independence graph for Y1, . . . , Yp

(Section 6.2.2).
If the density of Y1, . . . , Yp is non-degenerate, then the global Markov property

holds. To see this, letA,B, andD be any disjoint nonempty subsets ofJ = {1, . . . , p}
such that D separates A from B and A ∪ B ∪ D = J . As there are no edges between
A and B, the density of Y has exponent

−1

2
(y − µ)T�−1(y − µ) = −1

2
(y − µ)T


 �AA �AD 0

�DA �DD �DB
0 �BD �BB


 (y − µ),

with quadratic term in yA and yB identically zero. Hence

f (y) = f (yA, yB, yD) = g1(yA, yD)g2(yB, yD),

for some positive functions g1 and g2, implying that YA and YB are conditionally
independent given yD; of course this property is inherited by any subsets of YA and
YB. As any disjoint subsets of J separated by D can be augmented to give sets A, B
which are separated by D and which together with D partition J , the global Markov
property holds.

In graphical terms it is natural to restrict the degree of dependence among
components of Y by deleting edges from its graph, and this means setting ele-
ments of �−1 to zero. Suppose that the inverse covariance matrix resulting from
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such deletions is �−1
0 = �0, for which the profile log likelihood is �(µ̂, �0) ≡

1
2 {n log |�0| − (n − 1)tr(�0�̂

−1)}. For an idea of the difficulties involved in max-
imizing this with respect to the non-zero elements of �0, we consider the simplest
non-trivial case, with p = 3 variables and δ32 = 0, implying that Y2 and Y3 are inde-
pendent given Y1. In this case the log likelihood may be written down and differentiated
directly, giving five simultaneous equations to be solved for the non-zero components
of �̂0. We lay these equations out as

1

|�̂0|


 δ̂22̂δ33

−̂δ21̂δ33 δ̂11̂δ33 − δ̂2
31

−̂δ31̂δ22 ? δ̂11̂δ22 − δ̂2
21


 = n − 1

n


 ω̂11

ω̂21 ω̂22

ω̂31 ? ω̂33


 ,

where there is a missing equation ?=? corresponding to δ32, which does not appear in
the likelihood. The structure of these equations shows that in general we must solve
a system of polynomial equations of degree p, and the properties of the graph of �0

play a crucial role in determining the character of the solution. Here it turns out that
if the missing equation is replaced by δ̂21̂δ31/|�̂0| = (n − 1)ω̂21ω̂31/(nω̂11) and the
matrices are completed by symmetry, the δ̂rs can be found explicitly in terms of
the ω̂rs .

Comparisons between two nested graphical models may be based on likelihood
ratio statistics, though large-sample asymptotics can be unreliable. Exact comparison
of the full model with the one with a single edge missing may be based on the
corresponding partial correlation coefficient (Exercise 6.3.6).

Example 6.21 (Maths marks data) The above-diagonal part of Table 6.9 suggests
a graphical model in which the upper right 2 × 2 corner of � is set equal to zero.
The likelihood ratio statistic for comparison of this model with the full model is
0.90, which is not large relative to the χ2

4 distribution. This suggests strongly that the
simpler model fits as well as the full one, an impression confirmed by comparing the
original and fitted partial correlations,

0.33 0.23 −0.00 0.03
0.28 0.08 0.02

0.43 0.36
0.25

0.33 0.24 0.00 0.00
0.33 0.00 0.00

0.45 0.37
0.26

Figure 6.10 shows the graphs for these two models. In the full model every variable
is joined to every other, and there is no simple interpretation. The reduced model has
a butterfly-like graph whose interpretion is that given the result for algebra, results
for mechanics and vectors are independent of those for analysis and statistics. Thus a
result for mechanics can be predicted from those for algebra and vectors alone, while
prediction for algebra requires all four other results. �

The graphs described above have the drawback of taking no account of the logical
status of the variables. For example, it may be known that Y1 influences Y2 but not
vice versa, but this is not reflected in an undirected graph. In applications, therefore, it
is useful to have different types of edges, with directed edges representing supposed
causal effects and undirected edges linking variables that are to be put on an equal
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Algebra

Analysis

Vectors

Algebra

Analysis Mechanics

Statistics Vectors

Mechanics

Statistics

Figure 6.10 Graphs for
the full model (left) and a
reduced model (right) for
the maths marks data. The
interpretation of the
reduced model is that
given the result for
algebra, results for vectors
and mechanics are
independent of those for
analysis and statistics.

footing. This important topic is beyond the scope of this book; see the bibliographic
notes.

Calculation of partial correlation
This may be skipped on a
first reading.Let S = {r, s}, where without loss of generality r < s. Then the conditional variance

matrix for Yr and Ys given Y−S is �S,S − �S,−S�−1
−S,−S�−S,S , and hence their partial

correlation is

ρrs|−S = ωrs − �r,−S�−1
−S,−S�−S,s{(

ωrr − �r,−S�−1
−S,−S�−S,r

)(
ωss − �s,−S�−1

−S,−S�−S,s
)}1/2 .

The (r, s) element of �−1 is (−1)r+s�rs/|�|, where �rs is the (r, s) mi-
nor of �. Thus the (r, s) element of the ‘correlationized’ version of �−1 is
(−1)r+s�rs/(�rr�ss)1/2. To show how this is related to ρrs|−S , we use the formula

∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A11 − A12 A−1
22 A21| · |A22| (6.23)

for the determinant of a partitioned matrix for which A−1
22 exists. On making the row

and column interchanges that bring ωss to the (1, 1) position of �−r,−r , we see that

�rr = (−1)2(s−1)

∣∣∣∣ ωss �s,−S
�−S,s �−S,−S

∣∣∣∣ = (
ωss − �s,−S�−1

−S,−S�−S,s
)|�−S,−S |,

with a similar expression for �ss , while �rs equals

(−1)r+(s−1)

∣∣∣∣ ωsr �s,−S
�−S,r �−S,−S

∣∣∣∣ = (−1)r+s−1
(
ωrs − �s,−S�−1

−S,−S�−S,r
)|�−S,−S |,

as ωrs = ωsr by symmetry of �. On substituting the expressions for �rr , �ss , and �rs

into (−1)r+s�rs/(�rr�ss)1/2, we see that the (r, s) element of the ‘correlationalized’
version of �−1 equals −ρrs|−S , as was to be proved.
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Exercises 6.3

1 If A is a p × p matrix, all of whose elements are distinct and if Ai j denotes the cofactor
of the (i, j) element ai j of A, then ∂|A|/∂ai j = Ai j , whereas if A is symmetric, then

∂|A|
∂ai j

=
{

Aii , i = j ,
2Ai j , i �= j .

If A and B have dimensions p × q and q × p, then

∂tr(AB)

∂ A
=

{
BT, all elements of A distinct,
B + BT − diag(B), A symmetric.

Use these identities to verify that n−1(n − 1)S solves the likelihood equations for � for
the multivariate normal model on page 259. Check that this maximizes the likelihood
when p = 2.

2 Show that the (r, s) element of �̂ is ω̂rs = (n − 1)−1
∑

j (yr j − yr )(ys j − ys), where yr is
the r th element of the p × 1 vector y, and that although ω̂rs is not the maximum likelihood
estimate of ωrs , the maximum likelihood estimate of the correlation between Yr and Ys

equals ω̂rs/(ω̂rr ω̂ss)1/2.

3 Let � be the variance matrix of a p-dimensional normal variable Y . Use Cramer’s rule to
show that the r th diagonal element of �−1 is var(Yr | Y−r ).

4 Let Y T = (Y1, . . . , Y3) be a multivariate normal variable with

� =

 1 m−1/2 1

2

m−1/2 2
m m−1/2

1
2 m−1/2 1


 .

Find �−1 and hence write down the moral graph for Y .
If m → ∞, show that the distribution of Y becomes degenerate while that of (Y1, Y3)
given Y2 remains unchanged. Is the graph an adequate summary of the joint limiting
distribution? Is the Markov property stable in the limit?

5 Suppose that W1, . . . , Wn may be written W j = µ + σ Z j + τ X , where Z1, . . . , Zn and
X are independent standard normal variables. Obtain the correlation matrix � of Y T =
(X, W1, . . . , Wn), write down the moral graph for Y , and hence obtain �−1.

6 Let y1, . . . , yn be a Np(µ, �) random sample and let � = �−1 have elements δrs . Show
that apart from constants, the value of (6.20) maximized over both µ and � is − 1

2 n log |�̂|,
and deduce that the likelihood ratio statistic for comparison of the full model and a sub-
model obtained by constraining elements of � (or �) may be written n log |�̂−1�̂0|, in
an obvious notation.
(a) Show that the likelihood ratio statistic for testing if all the components of Y are
independent is a function of the determinant of the sample correlation matrix.
(b) Use (6.23) to show that the likelihood ratio statistic to test if δ12 = 0 may be written
−n log(1 − ρ̂2

1,2|−S ), whereS = {1, 2}, and check for what values of the partial correlation
ρ̂12|−S this is large.

7 In the discussion on page 263, verify that if δ32 = 0, then the likelihood equations are
equivalent to

�̂−1
0 = n − 1

n

(
ω̂11

ω̂21 ω̂22

ω̂31 ω̂21ω̂31/ω̂11 ω̂33

)
,

and hence find �̂0 in terms of the ω̂rs .
Find also the maximum likelihood estimate of �̂0 when δ31 = δ32 = 0 and when δ31 =
δ32 = δ21 = 0.
Give the graphs corresponding to each of these models.
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Figure 6.11 Example
time series. Left: body
temperatures (◦C) of a
female Canadian beaver
measured at 10-minute
intervals (Reynolds,
1994). The vertical line
marks where she left her
lodge. Right: FTSE
closing prices,
1991–1998.

6.4 Time Series

A time series consists of data recorded in time order. Examples are monthly inflation
rate, weekly demand for electricity, daily maximum temperature, number of packets
of information sent per second over a communication network, and so forth. The
measurements may be instantaneous, such as the daily closing prices of some stock,
or may be an average, such as annual temperature averaged over the surface of the
globe. Typically such data show variation on several scales. Data on internet traffic, for
example, show strong diurnal variation as well as long-term upward trend. Time series
are ubiquitous and their analysis is well-developed, with many techniques specific to
particular areas of application. In many cases the goal of time series modelling is the
forecasting of future values, while in others the intention is to control the underlying
process. Here we simply introduce a few basic notions in the most common situation,
where the observations are continuous and arise at regular intervals. Irregular and
discrete time series also occur — see Example 6.2 — but their modelling is less well
explored.

Example 6.22 (Beaver body temperature data) The left panel of Figure 6.11
shows 100 consecutive telemetric measurements on the body temperature of a female
Canadian beaver, Castor canadensis, taken at 10-minute intervals. The animal re-
mains in its lodge for the first 38 recordings and then moves outside, at which point
there is a sustained temperature rise. This is likely to be of main interest in such an
application, with the dependence structure of the series regarded as secondary. The de-
pendence must be accounted for, however, if confidence intervals for the rise are to be
reliable. �

Example 6.23 (FTSE data) The right panel of Figure 6.11 shows the closing prices
of the Financial Times Stock Exchange index of London closing prices from 1991–
1998. Prices are available only for days on which the exchange was open so there
are many fewer than 365 observations per year. The dominant feature is the strong
upward trend. Here interest would typically focus on short-term forecasting, though
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portfolio managers will also wish to understand the relationship between this and
other markets. In either case the dependence structure is of crucial importance. �

Stationarity and autocorrelation

Statistical inference cannot proceed without some assumption of stochastic regularity,
and in time series this is provided by the notion of stationarity.

Consider data y1, . . . , yn , supposed to be a realization of the random variables
Y1, . . . , Yn , themselves forming a contiguous stretch of a stochastic process {Yt } =
{. . . , Y−1, Y0, Y1, . . .}. Then {Yt } is said to be second-order stationary if its first and{Yt } is also called

covariance stationary,
weakly stationary, or
stationary in the wide
sense.

second moments are finite and time-independent, so that the mean E(Ys) = µ is
constant and the covariances cov(Ys, Ys+t ) = γt do not depend on s. Finiteness of
γ0 = var(Yt ) guarantees that |µ|, |γt | < ∞ for all t . The first and second moments
of a second-order stationary series do not depend on the point at which they are
calculated. Neither panel of Figure 6.11 looks stationary, though it is plausible that
the temperature data to the right of the vertical line are.

A series is said to be strictly stationary if the joint distribution of any finite subset
YA does not depend on the origin; thus the distributions of Ys+A and of YA are the
same for any s. This is a stronger condition than second-order stationarity, because
it constrains the entire distribution of the series. In particular it implies that the joint
cumulants of Ys+A are independent of s, if they exist. Evidently strict stationarity
yields more powerful theoretical results, but as it is impossible to verify from data,
they are less useful in practice. The definitions coincide if {Yt } has a multivariate
normal distribution, as this is determined by its first and second moments. The term
stationary used without qualification in this section means second-order stationary.

The second-order structure of a stationary process is summarized in its autocorre-
lation function ρt = corr(Y0, Yt ), t = ±1, ±2, . . . , where ρt = γt/γ0; γ0 = var(Y0)
is the marginal variance of the process {Yt }. Note that

ρ−t = corr(Ys, Ys−t ) = corr(Ys+t , Ys) = ρt

by stationarity. A related function is the partial autocorrelation function ρ ′
t =

corr(Y0, Yt | Y1, . . . , Yt−1), which summarizes any correlation between observations
t lags apart after conditioning on the intervening data; see Section 6.3.3.

A white noise process {εt } is an uncorrelated sample from some distribution with
mean zero and variance σ 2; evidently it has ρt = ρ ′

t ≡ 0. We shall use the term normal
white noise when εt

iid∼ N (0, σ 2).
Plots of estimated ρt and ρ ′

t against positive values of t are called the correlo-
gram and partial correlogram. Under mild conditions their ordinates are asymptotic
independent N (0, n−1) variables for a white noise series of length n, from which
significance can be assessed; see Figure 6.12.

Example 6.24 (Autoregressive process) About the simplest time series model is
the autoregressive process of order one, or AR(1) model

Yt − µ = α(Yt−1 − µ) + εt , t = . . . , −1, 0, 1, . . . , (6.24)
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where the innovation series {εt } is normal white noise and εt is independent
of . . . , Yt−2, Yt−1. Taking variances in (6.24) yields γ0 = α2γ0 + σ 2. Hence γ0 =
σ 2/(1 − α2), so a necessary condition for stationarity is |α| < 1. This condition is
also sufficient, and if it is satisfied then E(Yt ) = µ and ρt = α−|t | (Exercise 6.4.1).

This is a Markov process, because Yt depends on the previous observations only
through Yt−1, and hence the only non-zero partial autocorrelation is ρ ′

1 = α. If the εt

are normal, then Yt is a linear combination of normal variables and so Y1, . . . , Yn are
jointly normal with mean vector µ1n and covariance matrix

� = σ 2

1 − α2




1 α α2 · · · αn−1

α 1 α · · · αn−2

α2 α 1 · · · αn−3

...
...

...
. . .

...
αn−1 αn−2 αn−3 · · · 1


 .

One can verify directly that �−1 is the tridiagonal matrix (Example 6.13)

σ−2




1 −α 0 · · · 0 0
−α 1 + α2 −α · · · 0 0
0 −α 1 + α2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + α2 −α

0 0 0 · · · −α 1




.

The autoregressive process of order p or AR(p) model satisfies

Yt − µ =
p∑

j=1

α j (Yt− j − µ) + εt , t = . . . , −1, 0, 1, . . . ,

and is therefore a Markov process of order p. Constraints on α1, . . . , αp are needed
for this process to be stationary, but if they are satisfied, there is a sharp cut-off in the
partial autocorrelations: ρ ′

t = 0 when t > p. This should be reflected in the partial
correlogram of AR(p) data. The constraints are discussed after Example 6.26. �

Example 6.25 (Beaver body temperature data) Figure 6.12 shows the correlo-
gram and partial correlogram for the apparently stationary observations 39–100 of
the beaver temperature data. The correlogram shows positive correlations at lags 1–3.
Any further evidence of structure must be treated very cautiously, as the values around
lag 15 are not very significant, and as each panel of the figure shows 20 correlations es-
timated from only 62 observations. The partial correlogram is suggestive of an AR(1)
model with α

.= 0.75, consistent with the geometric decrease in the correlogram at
short lags.

The change in level evident in Figure 6.11 suggests that we take

Yt =
{

β0 + ηt , t = 1, . . . , 38,
β0 + β1 + ηt , t = 39, . . . , 100,

(6.25)

while the partial correlogram suggests that the ηt follow (6.24) with µ = 0. This
yields a Markov model with parameters (β0, β1, α, σ 2). If we assume normal white
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Correlogram and partial
correlogram for
observations 39–100 of
the beaver body
temperature data. The
dotted horizontal lines at
±2n−1/2 show 95%
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the data are white noise.
Strong systematic
departures from these are
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noise and initial N {β0, σ
2/(1 − α2)} distribution for y1 then the log likelihood is

readily obtained from (4.8); see Exercise 6.4.3. The log likelihood can be maximized
numerically and standard errors obtained from the inverse observed information
matrix, giving β̂0 = 37.19 (0.119), β̂1 = 0.61 (0.138), α̂ = 0.87 (0.068), and
σ̂ 2 = 0.015 (0.002). Body temperature rises by about 0.6◦C when the beaver is
active, and successive measurements are quite highly correlated. Treating the data
as independent gives standard error 0.044 for β̂1, so the autocorrelation greatly
increases the uncertainty for β1.

Residuals can be constructed by estimating the scaled innovations εt/σ . In the
inactive period we define residuals rt = {yt − β̂0 − α̂(yt−1 − β̂0)}/σ̂ , with a similar
expression in the active period. Then the correlogram, partial correlogram, and prob-
ability plots of r2, . . . , r100 help assess model adequacy. Judged by these criteria, the
model seems to fit well, though (6.25) does not account for the gradual rise in body
temperature before the beaver left the lodge. �

Example 6.26 (Moving average process) A moving average process of order q or
MA(q) model satisfies the equation

Yt − µ =
q∑

j=1

β jεt− j + εt , t = . . . , −1, 0, 1, . . .

where {εt } is white noise. Here E(Yt ) = µ and var(Yt ) = σ 2(1 + β2
1 + · · · + β2

q ) for
all t , and it is easy to check that this process is stationary and that ρt = 0 for t > q
(Exercise 6.4.2). Thus the correlogram of such data should show a sharp cut-off after
lag q . �

Stationary autoregressive and moving average processes are linear processes, as
the current observation Yt may be expressed as an infinite moving average of the
innovations,

Yt =
∞∑
j=0

c jεt− j , t = . . . , −1, 0, 1, . . . , with
∞∑
j=0

|c j | < ∞. (6.26)
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This expresses the current Yt in terms of past innovations, provides useful models in
many applications, and leads to simple computations. For example, var(Yt ) = ∑

c2
j <

∞ and γt = ∑
c j c j+t .

Evidently an MA(q) model with zero mean has a representation (6.26). To see
when this is true for an AR(p) model, it is useful to introduce the backshift
operator B such that BYt = Yt−1 and BdYt = Yt−d , with B0 = I the identity
operator. Then an AR(p) process is expressible as a(B)Yt = εt , where the poly-
nomial a(z) = 1 − ∑p

j=1 α j z j corresponds to the autoregression, and we can for-
mally write Yt = a(B)−1εt = ∑∞

i=0 ciεt−i , say, which is stationary if and only if∑
c2

i < ∞. Now a(z) = ∏p
j=1(1 − a j z), where a−1

j are the possibly complex roots
of a(z), and provided that no two of the a j are equal, a(z)−1 may be written us-
ing partial fractions as

∑p
j=1 b j/(1 − a j z) for some b j . If we take z sufficiently

small then a(z)−1 can be expressed as a sum of geometric series with coefficients
ci = ∑p

j=1 b j ai
j , giving the infinite moving average (6.26). For this to be sta-

tionary we must have
∑

c2
i < ∞, which occurs if and only if |a j | < 1 for each

j , or equivalently all the roots of a(z) lie outside the unit disk in the complex
plane. Thus properties of the polynomial a(z) are intimately related to those of the
process {Yt }.

Example 6.27 (ARMA process) The autoregressive process is formed as a linear
combination of previous observations, while a moving average process is based on
a weighted combination of the innovations at previous steps. An obvious general-
ization is to combine the two, giving the autoregressive moving average process or
ARMA(p, q) model

Yt − µ =
p∑

j=1

α j (Yt− j − µ) +
q∑

i=1

βiεt−i + εt , t = . . . , −1, 0, 1, . . . .

As in the preceding examples, the Yt will have a joint normal distribution if the process
is stationary and the εt represent normal white noise. Let µ = 0 for simplicity.

In terms of the backshift operator we have a(B)Yt = b(B)εt , where the polynomials
a(z) = 1 − ∑p

j=1 α j z j and b(z) = 1 + ∑q
i=1 βi zi represent the autoregressive and

moving average components. Thus Yt = a(B)−1b(B)εt = ∑∞
j=−∞ c jεt− j , where the

coefficients c j are those of the infinite series a(z)−1b(z). Once again, properties of
these polynomials determine those of {Yt }.

The class of ARMA processes is typically regarded as a useful ‘black box’ for
fitting and forecasting, though fitted models sometimes have a substantive interpre-
tation. For instance, the values of AIC when (6.25) is fitted to the beaver data and
the ηt follow an ARMA(p, q) process with (p, q) equal to (1, 1), (0, 1), (1, 2), and
(2, 0) are −128.34, −90.06, −126.54, and −128.78, compared with −127.55 for the
AR(1) model, which therefore seems a good compromise between quality of fit and
simplicity of interpretation, the latter following from its Markov structure. It is con-
siderably harder to explain the ARMA(1,2) model in simple terms, despite its slightly
better fit. �
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Trend removal

In practice data are rarely stationary, and trends or periodic changes must be removed
before fitting standard models. One simple approach to removing polynomial trends
is differencing. Suppose that Yt = γ0 + γ1t + εt , so there is linear trend with possibly
correlated noise superimposed. Then

Xt = Yt − Yt−1 = (γ0 + γ1t + εt ) − {γ0 + γ1(t − 1) + εt−1} = γ1 + ηt ,

say, where ηt = εt − εt−1. Thus differencing removes linear trend but complicates the
error structure: if {εt } had been white noise, then the differenced process {ηt } follows
an MA(1) model with β1 = −1. It is straightforward to show that d-fold differencing
will remove a polynomial trend of order d (Exercise 6.4.4). Over-differencing does
little harm: if there had been no trend originally present then {Xt } merely has a more
complicated error structure than had {Yt }. Differencing can also be used to remove
seasonal components.

If an ARMA(p, q) model fits the d-fold difference of {Yt }, then we have a(B)(I −
B)dYt = b(B)εt , and this is known as an integrated autoregressive-moving average
or ARIMA(p, d, q) process. This generalizes the class of ARMA models to allow
non-stationarity.

Example 6.28 (FTSE data) Trends such as that in the right panel of Figure 6.11
are generally removed by differencing the log closing prices, and the upper panel of
Figure 6.13 shows yt = 100 log(xt/xt−1), where xt is the original series. Thus yt is
proportional to the differences of the log xt and represents daily percentage returns to
investors. Differencing has removed the trend, but it is not clear that the yt are station-
ary — their variability seems to increase from time to time. Such changes in volatility
cannot be mimicked by linear processes and much effort has been expended in mod-
elling them. Probability plots show that the yt are somewhat asymmetric with heavier
tails than the normal distribution, so the marginal distribution of {Yt } is non-normal.

The partial correlogram of yt shows small but significant autocorrelation at lag one,
suggestive of slight autoregressive behaviour. Its value, ρ̂1 = 0.09, is too small to be
of much use in predicting movements of yt . This makes sense: high correlation could
be exploited by everyone for gain, but there must be both winners and losers when
shares are traded. The partial correlogram of the (yt − y)2 shows generally positive
autocorrelations to about lag 20.

The yt have average 0.043 with standard error 0.018, so if the data were independent
there would be evidence that E(Yt ) > 0, corresponding to an average daily increase
of about 0.043% in the FTSE over 1991–1998. �

Other approaches to trend removal can involve local smoothing by methods like
those to be described in Section 10.7; very roughly the idea is to use weighted averages
of the data to estimate changes in the process mean. Such averaging can be applied
on different scales, for example giving separate estimates of systematic decadal,
annual, and monthly variation. Robust versions of these smoothers exist and are often
preferable in practice.



272 6 · Stochastic Models

Time

D
ai

ly
 r

et
ur

ns
 (

%
)

1992 1994 1996 1998

-6
-4

-2
0

2
4

6

Lag

P
ar

tia
l c

or
re

lo
gr

am
 fo

r 
y

0 20 40 60 80 100

-0
.2

-0
.1

0.
0

0.
1

0.
2

Lag

P
ar

tia
l c

or
re

lo
gr

am
 fo

r 
y^

2

0 20 40 60 80 100

-0
.2

-0
.1

0.
0

0.
1

0.
2

Figure 6.13 Daily
returns (%) from the
FTSE, 1991–1998. The
lower panels show the
partial correlograms of the
yt and their squares. The
95% confidence bands
shown by the dotted
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narrower than in
Figure 6.12 because there
are many more data.

Volatility models

A key feature of financial time series such as that in the top panel of Figure 6.13
is their changing volatility, which leads to periods of high variability interspersed
with quieter periods. A standard model for this in the financial context is the linear
autoregressive conditional heteroscedastic model of order one or linear ARCH(1)
process, which sets

Yt = σtεt , σ 2
t = β0 + β1Y 2

t−1, t = . . . , −1, 0, 1, . . . , (6.27)

where {εt } is normal white noise with unit variance with εt independent of Yt−1,
β0 > 0 and β1 ≥ 0. The current variance σ 2

t is increased if the previous observation
was far from zero, giving bursts of high volatility when this occurs. A necessary
condition for stationarity is E(Y 2

t ) = E(σ 2
t )E(ε2

t ) < ∞, implying that γ0 = β0 + β1γ0

or equivalently that β1 < 1. In this case {Yt } is zero-mean white noise, but as we can
write Y 2

t = σ 2
t + (Y 2

t − σ 2
t ) = β0 + β1Y 2

t−1 + ηt , where ηt = σ 2
t (ε2

t − 1) has mean
zero, we see that {Y 2

t } follows an autoregressive process, albeit with non-constant
variance. In order for the process {Y 2

t } to be stationary E(Y 4
t ) must be finite, and

this occurs when β2
1 < 1/3. Then Yt has fatter tails than the normal distribution.
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Thus ARCH models mimic two important features of financial time series: volatility
clustering and fat-tailed marginal distributions.

The assumption of normal innovations can be replaced by other distributions, a
popular choice being to set νεt/(ν − 2)

iid∼ tν ; the scaling ensures that var(εt ) = 1.
ARCH models can be extended to allow dependence on Y 2

t−2, . . . and on σ 2
t−1, . . . , a

particularly widely-used case being the generalized ARCH or GARCH(1,1) process
in which σ 2

t = β0 + β1Y 2
t−1 + δσ 2

t−1.

Example 6.29 (FTSE data) Example 6.28 suggests that an unadorned ARCH model
is unlikely to fit these data because it cannot account for the non-zero mean and non-
zero correlations. Inspired by (6.27), we therefore let Yt − µ = α(Yt−1 − µ) + σtεt

with σ 2
t = β0 + β1(Yt−1 − µ)2. This combines autoregressive structure for the means

of the Yt with ARCH structure for their variance. The result is a Markov process,
and with normal εt the log likelihood contribution from the conditional density
f (yt | yt−1) is

−1

2
log{β0 + β1(yt−1 − µ)2} − {yt − µ − α(yt−1 − µ)}2

2{β0 + β1(yt−1 − µ)2} .

The overall log likelihood is a sum of such terms for t = 2, . . . , n plus log f (y1),
but the series is so long that this initial term, which involves knowing the stationary
density of Yt , can safely be ignored.

The log likelihood is readily maximized numerically, but a correlogram suggests
that structure remains in the squares of the residuals

rt = yt − µ̂ − α̂(yt−1 − µ̂)

{β̂0 + β̂1(yt−1 − µ̂)2}1/2
,

so this model is not adequate. As an alternative, we retain the AR mean structure but
use GARCH structure σ 2

t = β0 + β1(Yt−1 − µ)2 + δσ 2
t−1 for the variances. A crude

way to fit this is to estimate σ 2
m by the variance of y1, . . . , ym , and then to com-

pute σ 2
t = β0 + β1(yt−1 − µ)2 + δ1σ

2
t−1 for t = m + 1, . . . , n. The likelihood based

on f (ym+1, . . . , yn | y1, . . . , ym) is then readily obtained and may be maximized.
Here n is large so little information is lost by conditioning on y1, . . . , ym . With
m = 30 the maximized log likelihood is −2100.27, and both the residuals and their
squares look like white noise, so the structure of the model seems correct. How-
ever a normal probability plot of the residuals suggests that slightly heavier-tailed
innovations may be needed. We therefore let the εt have tν distributions, scaled so
that var(εt ) = 1. The resulting log likelihood is −2075.64, an appreciable improve-
ment. The maximum likelihood estimates and standard errors are µ̂ = 0.051 (0.018),
α̂ = 0.070 (0.024), β̂0 = 0.006 (0.004), β̂1 = 0.036 (0.011), δ̂ = 0.955 (0.016) and
ν̂ = 9.7 (1.86). Thus µ and α seem necessary for successful modelling. Over the
period of these data the return on investment was on average 100µ̂

.= 5% every
100 trading days, but little would be gained from using the estimated correlation
α̂ = 0.07 between Yt and Yt+1 for short-term prediction. The value of δ̂ shows the
strong dependence of σ 2

t on σ 2
t−1 that leads to volatility persistence. A condition for
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stationarity of a GARCH process {Yt } is that β1 + δ < 1, and this is satisfied by the
estimates. The value of ν̂ indicates innovations somewhat heavier than normal, in
agreement with the residual plot. Overall the model seems to fit surprisingly well.

�

Time series is a large and important topic, whose surface has barely been scratched
above. The bibliographic notes give some points of entry to the literature.

Exercises 6.4

1 Consider (6.24) for t = 1, . . . , n, and suppose that Y0 has a known distribution with finite
variance, independent of ε1, . . . , εn . Deduce that

Yn − µ =
n∑

j=1

αn− jε j + αn(Y0 − µ)

and establish that a limiting distribution for Yn as n → ∞ exists only when
limn→∞

∑n
j=1 α2 j < ∞.

Hence show that a condition for stationarity is |α| < 1, in which case the limiting distri-
bution for Yn is normal with mean µ and variance σ 2/(1 − α2). Show also that if Y0 has
this distribution, so too do all the Y j . Show that the covariance matrix � of Y1, . . . , Yn is
then that given in Example 6.24, and write down the corresponding moral graph.

2 Consider the MA(1) process; see Example 6.26. Show that its covariances are

cov(Yt , Yt+s) =



σ 2
(
1 + β2

1

)
, s = 0,

σ 2β1, s = 1,
0 otherwise,

find the autocorrelation function and use the matrices in Example 6.24 to deduce that there
is no cut-off in the partial autocorrelations.
Generalize this to the MA(q) model.

3 Give an expression for the log likelihood in Example 6.25.

4 Suppose that Yt = ∑k
j=0 ξ j t j + εt , where {εt } is a stationary process. Show by induction

that d-fold differencing yields a series that is stationary for any d ≥ k.
Let Yt = s(t) + εt , where s(t) = s(t + kp), for a fixed integer p and all integers t and k.
Show that (I − B p)Yt is stationary, and discuss the implications for removal of seasonality
from a monthly time series.

5 Give a formula for the residual rt when σ 2
t = β0 + β1(Yt−1 − µ)2 + δσ 2

t−1 in
Example 6.29.

6.5 Point Processes

Data that can be summarized by points in a continuum arise in many applications.
Examples are the epicentres of earthquakes, the locations of cases of leukaemia,
and the times are which emails are sent. The ‘point’ may be merely a convenient
representation of something small compared to its surroundings, and other information
may be available, such as the strength of the earthquake, but here we assume that
summary as a point is sensible and ignore other aspects.

6.5.1 Poisson process

The Poisson process in the line is the simplest point process and the basis for many
more complex models. Suppose that we observe points in a time interval [0, t0].
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Let N (w, w + t) denote how many fall into the subinterval (w, w + t]; we write
N (t) = N (0, t), t > 0, and N (A) for the number of points in the set A. Let λ(t) be
a well-behaved non-negative function whose integral is finite on [0, t0], and suppose
that

� events in disjoint subsets of [0, t0] are independent, that is, N (A1) is independent
of N (A2) whenever A1 ∩ A2 = ∅;

� Pr{N (t, t + δt) = 0} = 1 − λ(t)δt + o(δt) for small δt ; ando(δt) is small enough that
o(δt)/δt → 0 as δt → 0. � Pr{N (t, t + δt) = 1} = λ(t)δt + o(δt) for small δt .

The last two properties imply that Pr{N (t, t + δt) > 1} = o(δt), so the process is
orderly: multiple occurrences at the same t may not occur. The intensity λ(t) is
interpreted as the rate at which points occur in a small interval at t , so more points
fall where λ(t) is relatively high. Finiteness of

∫ t0
0 λ(u) du ensures that N (t0) < ∞

with probability one, as we shall see below.
We find the probability that there are no points in the interval (w, w + t] by dividing

it into k subintervals of length δt = t/k, and then letting δt → 0. Then the properties
above imply that

Pr {N (w, w + t) = 0} =
k−1∏
i=0

Pr [N {w + iδt, w + (i + 1)δt} = 0]

.=
k−1∏
i=0

{1 − λ(w + iδt)δt + o(δt)}

= exp

[
k−1∑
i=0

log {1 − λ(w + iδt)δt + o(δt)}
]

= exp

{
−

k−1∑
i=0

λ(w + iδt)δt + o(kδt)

}

→ exp

{
−

∫ w+t

w
λ(u) du

}
, (6.28)

where the limit follows because as δt → 0 with t fixed, o(kδt) = t o(δt)/δt → 0. As
the length of the random time T from w to the next point exceeds t if and only if
N (w, w + t) = 0, T has probability density function

fT (t) = −dPr {N (w, w + t) = 0}
dt

= λ(w + t) exp

{
−

∫ w+t

w
λ(u) du

}
, t > 0,

and hazard function fT (t)/Pr(T ≥ t) = λ(w + t).
Now suppose that points in (0, t0] have been observed at times t1, . . . , tn , where

0 < t1 < · · · < tn < t0. As events in non-overlapping sets are independent, the joint
probability density of the data is

λ(t1)e− ∫ t1
0 λ(u) du × λ(t2)e− ∫ t2

t1
λ(u) du × · · · × λ(tn)e− ∫ tn

tn−1
λ(u) du × e− ∫ t0

tn
λ(u) du,
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where the final term is the probability of no events in (tn, t0]. This joint density
reduces to

exp

{
−

∫ t0

0
λ(u) du

} n∏
j=1

λ(t j ), 0 < t1 < · · · < tn < t0. (6.29)

Given a parametric form for λ(t), (6.29) gives the likelihood on which inferences may
be based. In practice the integral is usually unavailable in closed form and a numerical
approximation must be used.

The probability of n events occurring in the interval [0, t0] is obtained by integrating
(6.29) with respect to t1, . . . , tn and is (Exercise 6.5.2)

Pr {N (t0) = n} = �(t0)n

n!
exp {−�(t0)} , n = 0, 1, . . . , (6.30)

where we have written �(t0) = ∫ t0
0 λ(u) du. Thus N (t0) is a Poisson variable with

mean �(t0). As events in disjoint subsets are independent and sums of independent
Poisson variables are Poisson (Example 2.35), we see that in a Poisson process, the
number of events in a subset A is a Poisson variable whose mean �(A) = ∫

A λ(u) du
is the integral of the rate function λ over A. Moreover these counts are independent
for disjoint subsets.

Division of (6.29) by (6.30) gives the probability that points arise at t1, . . . , tn
conditional on there being n points, namely

n!
n∏

j=1

λ(t j )

�(t0)
, 0 < t1 < · · · < tn < t0.

This is the joint density of the order statistics of a random sample of size n with
density λ(t)/�(t0) on the interval [0, t0]; see (2.25). As we shall see, this result is
useful in model-checking.

Example 6.30 (Exponential trend) Let λ(t) = exp(β0 + β1t), so �(t0) =
eβ0 (eβ1t0 − 1)/β1. When β1 = 0 this yields a constant intensity. The log likelihood
corresponding to (6.29) equals

�(β0, β1) = nβ0 + β1

n∑
j=1

t j − eβ

0 (eβ1t0 − 1)/β1

and is of exponential family form.
The ratio λ(t)/�(t0) equals β1eβ1t/(eβ1t0 − 1), corresponding to an exponential tilt

of the uniform density on [0, t0], so when β1 > 0 events tend to pile up toward the
right end of the interval, and conversely. �

There is an intimate connection between two ways to think about such data, in
terms of the counts in subsets of the region of observation and in terms of the spacings
between points. Although the second approach is natural in one dimension, the count
representation is generally simpler in several dimensions. To see how it extends, let S
be a subset of IRd and suppose that an integrable non-negative function λ(t) is defined
such that �(S) = ∫

S λ(u) du is finite. Then under conditions that extend those for
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the univariate case, the numbers of events in disjoint subsets A1, . . . ,Am of S have
independent Poisson distributions with means �(A1), . . . , �(Am). The probability
density for points observed at {t1, . . . , tn} ⊂ S is

n∏
j=1

λ(t j ) × exp {−�(S)} , (6.31)

from which a likelihood can again be constructed. Such models play in important role
in event history and survival data, as described in Sections 5.4 and 10.8. In terms of
Figure 5.8, the idea is to treat failures as events of an inhomogeneous Poisson process
in the region of the plane bounded by the line x = y, the horizontal axis, and the
vertical line marking the end of the trial; see Section 10.8.2. Another application, to
statistics of extremes, will be described shortly.

Homogeneous Poisson process

The simplest situation is when the intensity function λ(t) is a constant λ. Then �(A) =
λ|A| and �(t0) = λt0. The number of points in [0, t0] is then Poisson with mean λt0,|A| is the length

(Lebesgue measure) of the
set A.

and intervals between them are independent exponential variables with density λe−λy .
The log likelihood from (6.29) is

�(λ) ≡ n log λ − λt0,

from which the maximum likelihood estimate λ̂ = n/t0 and information quantities
may be derived; see Example 4.19.

Whenλ(t) is constant, the densityλ(t)/�(t0) = t−1
0 is uniform on the interval [0, t0],

and hence the n points u j = t j/t0 are distributed as order statistics of a random sample
from the uniform distribution on [0, 1]; see Section 2.3. A graphical check of this is to
plot the empirical distribution function of the u j , F̂(u). Departures from the uniform
distribution F(u) = u, 0 ≤ u ≤ 1 suggest that the intensity is not constant. Formal
tests of fit using this are discussed in Section 7.3.1.

Data often exhibit clustering relative to a Poisson process. If so, there will
tend to be an excess of short intervals between points, relative to the exponen-
tial distribution. Under the Poisson process model the spacings y1 = t1 − 0, y2 =
t2 − t1, . . . , yn+1 = t0 − tn form a (non-independent) sample from the exponen-
tial distribution with mean λ−1, so a plot of ordered spacings against exponential
order statistics should be a straight line, departures from which will suggest model
failure.

Example 6.31 (Danish fire data) Figure 6.14 shows data on the times and amounts
of major insurance claims due to fire in Denmark from 1980–1990. The upper left
panel shows the original 2492 claims; the original amounts have been rescaled. The
data are dominated by a few large claims, shown in more detail in the upper right
panel, which gives the logarithms of the 254 claims that exceed 5 units. This is
a two-dimensional point process of times and log amounts, which reduces to the
one-dimensional data shown as a rug at the foot of the panel if the amounts are
ignored.
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Figure 6.14 Data on
major insurance claims
due to fires in Denmark,
1980–1990 (Embrechts
et al., 1997, pp. 298–303).
The upper left panel
shows the original data
and the upper right panel
the logs of the 254 losses
exceeding five units, with
the rug below showing
their times. The lower
right panel shows the
empirical distribution of
the 254 u j = t j /t0, and
the lower left panel an
exponential probability
plot of spacings between
these t j . In each case the
dotted line shows the
expected pattern under a
homogeneous Poisson
process. The lower right
panel suggests that the
rate of the process may be
non-uniform, with an
excess of early points
followed by a deficiency.
The solid diagonal lines in
the lower right panel show
significance for a
Kolmogorov–Smirnov
statistic at levels 0.05 and
0.01 and are explained in
Example 7.23. The lower
left panel suggests that the
spacings are close to
exponentially distributed.

We consider only the times of these 254 largest claims. The lower right panel shows
the empirical distribution function of the corresponding u j = t j/t0, with t1, . . . , tn the
rug in the panel above. Relative to the uniform distribution there is a slight excess of
claims up to about 1983, followed by a deficiency from 1984 to 1990. Example 7.23
gives further discussion of the fit.

The exponential probability plot of the spacings in the lower left panel of the figure
suggests that the times between claims are fairly close to exponential, though perhaps
with a slightly longer tail. The value of λ̂ is roughly 254/(11 × 365) = 0.063 days−1.
Thus the rate of arrival of claims per day is about 0.06, corresponding to a mean time
between claims of λ̂−1 = 15.8 days; this has standard error 1.0 calculated from the
observed information.

We return to these data in Examples 6.34 and 7.23. �

6.5.2 Statistics of extremes

An important application of Poisson processes is to rare events — high sea levels,
low temperatures, record times to run a mile, large insurance claims, and so forth.
To see how, we make a detour and consider properties of the maximum of a random
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sample X1, . . . , Xm from a continuous distribution function F(x) with upper support
point x0. As m → ∞, independence of the Xi implies that for any fixed x < x0,The upper support point is

the smallest x0 such that
limx↗x0 F(x) = 1;
possibly x0 = +∞. Pr {max(X1, . . . , Xm) ≤ x} = Pr(Xi ≤ x, i = 1, . . . , m)

= Pr(X1 ≤ x) × · · · × Pr(Xm ≤ x)

= F(x)m → 0,

so in order to obtain a non-degenerate limiting distribution for the maximum, we
must rescale the Xi . We consider Ym = a−1

m (maxi Xi − bm) for sequences of constants

{am} > 0 and {bm}, and ask under what conditions Ym
D−→ Y as m → ∞ for some

non-degenerate random variable Y . As m → ∞,

Pr (Ym ≤ y) = Pr
[
a−1

m {max(X1, . . . , Xm) − bm} ≤ y
]

= F(bm + am y)m

=
[

1 − m {1 − F(bm + am y)}
m

]m

(6.32)

can be shown to possess a limit if and only if limm→∞ m {1 − F(bm + am y)} exists. As
m {1 − F(bm + am y)} is the number of the X1, . . . , Xm expected to exceed bm + am y,
suitable sequences {am} and {bm} exist for most, but not all, continuous distributions.
If they do exist, a remarkable result is that the only possible non-trivial limit is of
form(a)+ = a if a > 0 and

otherwise equals zero.

lim
m→∞ m {1 − F(bm + am y)} =

(
1 + ξ

y − η

τ

)−1/ξ

+
, (6.33)

with the right-hand side taken to be exp{−(y − η)/τ } if ξ = 0. The parameters τ

and η control the scale and location of the limit, and account for the effect of minor
changes to {am} and {bm} — for example, replacing am by 1

2 am would rescale any
limit, but would not affect its existence or its shape.

On putting together (6.32) and (6.33), we see that if a limiting distribution for the
maximum exists, it must be the generalized extreme-value distributionEmil Julius Gumbel

(1891–1966) was born
and studied in Munich.
His radical pacifist views
and Jewish background
caused conflict with his
university colleagues and
authorities in Heidelberg,
and led to his exile in
France in 1932 and later in
the USA. He highlighted
the importance of
statistical extremes, on
which he wrote an
important book (Gumbel,
1958), and through his
consulting strongly
influenced hydrologists,
meteorologists, and
engineers.

H (y; η, τ, ξ ) = exp

{
−

(
1 + ξ

y − η

τ

)−1/ξ

+

}
, −∞ < ξ, η < ∞, τ > 0, (6.34)

where the range of y is such that 1 + ξ (y − η)/τ > 0. The parameter ξ controls the
shape of the density, which has a heavy right tail and finite lower support point if
ξ > 0, and a finite upper support point if ξ < 0. The Gumbel distribution

H (y; η, τ, 0) = exp[− exp{−(y − η)/τ }], −∞ < y < ∞,

arises as ξ → 0; see Problem 6.11. Expression (6.34) gives the only possible limiting
distribution for maxima. Minima are dealt with by noting that any limit distribution
for mini (Xi ) = − maxi (−Xi ) must have form 1 − H (−y; η, τ, ξ ).
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Convergence for sample
maxima. Left panel:
distributions of maxima of
m = 1, 7, 30, 365, 3650
standard normal variables
(from left to right). Right
panel: distributions of
renormalized maxima of
m = 1, 7, 30, 365, 3650
standard normal variables.
The distributions on the
right converge to the
Gumbel distribution
(heavy).

Example 6.32 (Normal distribution) For the standard normal distribution, in-
tegration by parts gives 1 − F(x) = ∫ ∞

x φ(x) dx
.= φ(x)/x as x → ∞. Hence

m {1 − F(bm + am y)} approximately equals

exp

{
−1

2
(bm + am y)2 − log(bm + am y) + log m − 1

2
log 2π

}
, (6.35)

and some tedious algebra shows that with am = (2 log m)−1/2 and bm = a−1
m −

1
2 am(log log m + log 4π ), (6.35) converges to exp(−y) as m → ∞. However the con-
vergence is very slow. With y = 4 the probabilities �(bm + am y)m are 0.9907, 0.9871,
0.9859, 0.9855 for m = 30, 365, 1825, 3650, while the target Gumbel probability is
0.9819. These values of m are chosen to correspond to random sampling of a normal
distribution daily for periods of one month, and one, five, and ten years. Even with
this amount of daily data the limiting probability is not attained, because the right tail
of the normal distribution is so light compared to that of the Gumbel distribution that
enormous samples are needed for the limit to work well.

Figure 6.15 shows the convergence graphically. The left panel shows the distribu-
tions of maxima of m standard normal variables, with m = 1, 7, 30, 365, and 3650,
corresponding to maxima over a day, a week, a month, a year and ten years of daily
normal data. The distribution becomes increasingly concentrated as m increases, and
does not converge to a useful limit. The right panel shows how the distribution of
a−1

m {max(X1, . . . , Xm) − bm} does converge to a limiting Gumbel distribution, given
by the heavy solid line. As mentioned above, the convergence is rather slow. Fortu-
nately the generalized extreme-value distribution usually gives a better approximation
for sample maxima than this example might suggest. �

The upshot is that the generalized extreme-value distribution provides the natural
model to fit to sample maxima or minima. For example, if a series of annual maximum
sea levels y1, . . . , yn is available, we suppose that they are a random sample from
(6.34) and fit it by maximum likelihood. Often the parameter of interest is the p
quantile of the distribution, that is yp = η + τ {(− log p)−ξ − 1}/ξ , which is known in 1/(1 − p) is known as the

return period.this context as the (1 − p)−1-year return level: it is the level exceeded once on average
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Figure 6.16 Annual
maximum sea levels (m)
at Yarmouth, 1899–1976.
Lower left: Gumbel
probability plot of the
data. Lower right: fitted
(solid) and empirical
exceedance probabilities
(points), with inference
tools for 100-year return
level y0.99. The vertical
line shows the value of
ŷ0.99, while its profile
likelihood and 95%
confidence interval are
shown by the dotted and
dashed lines. Note the
strong asymmetry of the
confidence interval.

every (1 − p)−1 years. This would be important if the data were being analyzed in
order to suggest how high coastal defenses should be built. Of course quantities such
as the expected insurance loss should flooding occur are also of interest.

Maximum likelihood estimation is regular if ξ > −1/2, as seems common in appli-
cations. When ξ ≤ −1/2, the likelihood derivatives do not have their usual properties
and Example 4.43 is relevant, as the upper support point of the density can be estimated
with rate faster than the usual n−1/2.

The return level is estimated by replacing η, τ , and ξ by their maximum likelihood
estimates. Its standard error may be obtained using the delta method (page 122),
though the profile log likelihood for yp gives a more reliable confidence set. In practice
n is often substantially smaller than (1 − p)−1 and the return level is estimated well
outside the range of the data. Then it is important to consider whether there are enough
data underlying the y1, . . . , yn for the generalized extreme-value model to give a good
approximate distribution for the maxima, and to check whether n is large enough for
large-sample likelihood theory to be a good basis for inference. The crucial aspect
is however the extent to which extrapolation to high quantiles of the distribution is
sensible based on limited data, and this bears careful consideration.

Example 6.33 (Yarmouth sea level data) The upper panel of Figure 6.16 shows a
time series of annual maximum sea levels at Yarmouth on the east coast of England for
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1899–1976. As is typical with such data, the largest value is considerably greater than
the rest; it arose in 1953 when there was widespread flooding. The correlogram and
partial correlogram show no serial dependence, so we treat the values as independent.

The lower left panel of the figure shows a probability plot of the data against Gumbel
plotting positions. Upward curvature would here suggest that ξ > 0, and downward
curvature that ξ < 0. In fact the plot is close to straight, indicating that ξ

.= 0. The
large value from 1953 does not appear outlying, because of the heavy right tail of the
density.

The maximum likelihood estimates and standard errors are η̂ = 1.90 (0.034), τ̂ =
0.26 (0.025), and ξ̂ = 0.04 (0.096); the latter give no evidence against the Gumbel
model, in agreement with the probability plot. The location and scale parameters are
well determined compared to ξ .

The lower right panel of Figure 6.16 compares the estimated survivor function
Pr(Y > y) with its empirical counterpart, obtained by plotting 1 − j/(n + 1) against
y( j). The vertical line indicates the estimated 100-year return level, ŷ0.99, while the
broken lines show the profile likelihood for y0.99 and the corresponding 95% confi-
dence interval. This is highly asymmetric, so this interval is much preferable to using
normal approximation. In practice 1000- or even 10,000-year return levels may be
needed, and then of course the statistical uncertainty is very large indeed. �

Point process approximation �a� and �a� are
respectively the smallest
integer larger than a and
the largest integer smaller
than a.

If more extensive data are available it is potentially wasteful to use only the annual
maxima, and we now show how a Poisson process model can overcome this. Let
X1, . . . , X�mt0� be a random sample from F(x) and consider the pattern of points
(i/m, a−1

m (Xi − bm)), i = 1, . . . , �mt0� that fall into the subset S = [0, t0] × [u, ∞)
of the plane. The event a−1

m (Xi − bm) > y occurs if and only if Xi > bm + am y, so
the number of points that fall into A = [t1, t2] × [y, ∞) may be expressed as the sum
of indicator random variables

Nm(A) =
�mt2�∑

i=�mt1�
I (Xi > bm + am y) , 0 ≤ t1 < t2 ≤ t0, y ≥ u.

The Xi are independent and identically distributed, so Nm(A) is binomial with de-
nominator �mt2� − �mt1� + 1 and probability 1 − F(bm + am y) that satisfies (6.33).
Hence the Poisson limit for the binomial distribution (Problem 2.3) gives

lim
m→∞ Pr {Nm(A) = n} = �(A)n

n!
exp {−�(A)} , n = 0, 1, . . . ,

where �(A) equals

� {[t1, t2] × [y, ∞)} = (t2 − t1)

(
1 + ξ

y − η

τ

)−1/ξ

+
, 0 ≤ t1 < t2 ≤ t0, y ≥ u,

(6.36)
with the second term on the right replaced by exp{−(y − η)/τ } if ξ = 0. That is,

Nm(A)
D−→ N (A), where N (A) is Poisson with mean �(A).
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a
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0
2Figure 6.17 Poisson

process limit for rare
events. The panels show
the values of
a−1

m (Xi − bm ) plotted
against i/m for random
samples of size m = 10,
100, 1000 and 10,000
from the exponential
distribution. The pattern
of points above the
threshold at u = −2 tends
to a bivariate Poisson
process with intensity
given by (6.36).

More sophisticated techniques reveal that as m → ∞, the limiting joint distribu-
tions of counts Nm(A1), Nm(A2), . . . in any collection of disjoint subsets A1,A2, . . .

of S is that of independent Poisson variables with means �(A1), �(A2), . . .. Hence
as m → ∞, the limiting positions of random values Xi , suitably rescaled, have the
joint distribution of points of a Poisson process N in S with intensity (6.36), with
arbitrary u. Figure 6.17 illustrates this for exponential samples.

To see the connection to extremes, suppose we have daily data for t0 years and
that t2 − t1 = 1 year. Then if we apply the Poisson limit to these data with A =
[t1, t2] × [y, ∞), effectively assuming that the limit has set in when m = 365 days,
and let Y 1 ≥ · · · ≥ Y r denote the r largest values for that year, we see that in an
obvious shorthand notation,

Pr(Y 1 ≤ y) = Pr {N (A) = 0}

= exp

{
−

(
1 + ξ

y − η

τ

)−1/ξ

+

}
,

Pr(Y r ≤ yr , . . . , Y 1 ≤ y1) = Pr{N (yr , yr−1) = 1, . . . , N (y2, y1) = 1}.
The first of these identities recovers (6.34), while the joint density of Y 1 ≥ · · · ≥ Y r at
y1 ≥ · · · ≥ yr is obtained either by differentating the second identity or from (6.31),
with S replaced by [t1, t2) × [yr , ∞). Both routes show that the limiting joint density
of the r largest values is

r∏
i=1

τ−1

(
1 + ξ

yi − η

τ

)−1/ξ−1

+
× exp

{
−

(
1 + ξ

yr − η

τ

)−1/ξ

+

}
. (6.37)

Independence of counts in disjoint subsets implies that data for different years may
be treated as independent, so an overall likelihood based on the r largest values for
each year is simply the product of such terms for all t0 years.

In many ways a more satisfactory approach to inference starts by noticing that
(6.36) has form �1{[t1, t2]}�2{[y, ∞)}, implying that the points result from two
independent Poisson processes, one giving the random ‘times’ T at which Xi >

u, and the other giving the rescaled sizes a−1
m (Xi − bm) of these Xi . The times of
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exceedances fall according to a homogeneous Poisson process of intensity λ1(t) =
{1 + ξ (u − η)/τ }−1/ξ

+ ≡ λ, say, while their sizes follow an inhomogeneous Poisson
process whose intensity is

λ2(y) = −d�2{[y, ∞)}
dy

= τ−1

(
1 + ξ

y − η

τ

)−1/ξ−1

+
, y > u.

This implies that the number of exceedances over level u has a Poisson distribution
with mean λt0, and conditional on nu exceedances, their sizes W j = X j − u are a
random sample of size nu from the generalized Pareto distribution (Problem 6.15)

G(w) =
{

1 − (1 + ξw/σ )−1/ξ
+ , ξ �= 0,

1 − exp(−w/σ ), ξ = 0.
(6.38)

The log likelihood (6.31) may be written as

�(λ, σ, ξ ) ≡ nu log λ − t0λ − nu log σ −
(

1

ξ
+ 1

) nu∑
j=1

log
(

1 + ξ
w j

σ

)
. (6.39)

We apply this discussion by taking a threshold u over which the Poisson approxi-
mation seems to hold; then the exceedance times should be a homogeneous Poisson
process, and their sizes should follow (6.38), as typically assessed by a probability
plot. If the fit is satisfactory, estimates and standard errors are obtained by our usual
likelihood methods. As with the generalized extreme-value distribution, estimation
of σ and ξ is not regular if ξ ≤ −1/2, and Example 4.43 is again relevant.

We now briefly discuss the choice of u. If it is chosen so that the number of
exceedances is small, then the Poisson process approximation to the extremes may
be good, but the parameter estimators will have large variance. The variance can be
reduced by lowering u, but at the cost of bias because the Poisson approximation for
extremes cannot be expected to give good inferences when applied to the bulk of the
data. Formal procedures for choosing u attempt to trade off these two aspects, but in
practice graphical approaches are more common. These rest on the threshold stability
property of a random variable W following (6.38), that is,

Pr(W > w | W > u) = {1 + ξ (w − u)/σu}−1/ξ , w ≥ u ≥ 0,

where σu = σ + ξu. The operation of thresholding by considering only the tail of
W above u yields another random variable Wu = W − u, say, following (6.38) but
transforms the parameters as (σ, ξ ) �→ (σ + ξu, ξ ). When ξ = 0 this is the lack-of-
memory property of the exponential distribution.

One graphical approach uses the fact that E(W ) = σ/(1 − ξ ) provided ξ < 1, so
E(Wu | W > u) = (σ + ξu)/(1 − ξ ), for u ≥ 0. Thus if the generalized Pareto ap-
proximation is adequate for the upper tail of a random sample X1, . . . , Xn , a graph
against u of the empirical version of this conditional mean, given by

n−1
u

n∑
j=1

(X j − u)I (X j > u), where nu =
n∑

j=1

I (X j > u), (6.40)
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Figure 6.18 Analysis of
Danish fire data. Upper
left: mean residual life
plot, with 95% confidence
band (dots) and number of
exceedances nu at the foot
of the panel. Upper right
and lower left: plots of
σ̂u − ξ̂u u and ξ̂u against
threshold u, with 95%
confidence bands. Lower
right: exponential
probability plot of
residuals
ξ̂−1 log(1 + ξ̂w j /σ̂ ).

should be a straight line of gradient ξ/(1 − ξ ). The idea is to take the threshold to be
the smallest u above which this mean residual life plot appears linear.

Another approach to choosing u uses the fact that if ξ̂u and σ̂u are maximum
likelihood estimators based on the nu positive exceedances X j − u over u, and if
the generalized Pareto approximation holds, then ξ̂u and σ̂u − ξ̂uu should estimate ξ

and σ for all u. Thus graphs of ξ̂u and σ̂u − ξ̂uu against u should be constant above a
certain point, and this is the minimum threshold for which it is reasonable to apply the
approximation. Interpretation of such graphs is aided by adding confidence intervals.

Example 6.34 (Danish fire data) In Example 6.31 we saw that exceedance times
for the data in the upper right panel of Figure 6.14 seem to follow a homogeneous
Poisson process with rate about 0.06 days−1. For threshold modelling we first choose
the threshold u. Figure 6.18 shows the mean residual life plot and values of σ̂u − ξ̂uu
and ξ̂u plotted against u. The mean residual life plot is roughly linear from u = 7
onwards, and its positive slope suggests that ξ > 0. The other two plots do not tend
to constants, but in each case the confidence intervals are wide enough to contain a
constant above about u = 5. For illustration we take u = 5, let w j = y j − u denote
the 254 claims that exceed u = 5 units, and fit the generalized Pareto distribution
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(6.38) to the w j . The maximum likelihood estimates are σ̂ = 3.809 and ξ̂ = 0.632,
with standard errors 0.464 and 0.111 from observed information. The value of ξ̂

corresponds to a very heavy upper tail for W = Y − u.
The form of (6.38) shows that ξ−1 log(1 + ξW/σ ) has a standard exponential

distribution, so the fit of the model for exceedances can be assessed by an exponen-
tial probability plot of the residuals ξ̂−1 log(1 + ξ̂w j/σ̂ ), shown in the left panel of
Figure 6.18. The distribution fits fairly well but not perfectly.

Estimates and confidence regions for quantities of interest such as return levels
are found in ways analogous to Example 6.33. In practice it is important to vary the
threshold to see if the conclusions depend strongly on u. �

In applications the underlying variables are typically neither identically distributed
nor independent. For concreteness, consider using daily temperature data to model
the occurrence of hot days at a site in England. These will occur in the summer
months, so one way to proceed is to retain only the data for June, July, and August,
to suppose that over this period the temperature distribution is roughly constant, and
then to hope that about 90 rather than 365 days of data will suffice for the point
process paradigm to be applicable. However, even if the summer data are roughly
stationary, they will display short-term correlation owing to clustering of hot days.
Some detailed mathematics establishes that if extremes far apart are asymptotically
independent and the data are stationary — so that in particular all the Xi have the same
marginal distribution — then the Poisson process representation with intensity (6.36)
still applies, but now to the largest value in a cluster. Clusters then occur at the times
of a homogeneous Poisson process, but the cluster size is random and its distribution
depends on the local dependence of the Xi . This leads to the practical issues of
identifying clusters from data, and of modelling their properties, which are topics of
current research.

6.5.3 More general models

In a Poisson process events in disjoint intervals are independent. In practice point
process data can show complex dependencies, so this property must be weakened for
realistic modelling. This weakening can be done in many ways and below we merely
sketch a few possibilities. We continue to suppose that the process is orderly, so events
cannot coincide.

Let Ht denote the entire history of the process up to time t , that is, the positions of
all the points in (−∞, t], and define the complete intensity function to be

λH(t) = lim
δt→0

(δt)−1Pr {N (t, t + δt) > 0 | Ht } ;

this is the intensity of arrival of points just after t , given the history to t . It is akin
to the hazard function of Section 5.4, but here potentially dependent on the entire
history of the process. The requirement of orderliness is that

Pr {N (t, t + δt) > 1 | Ht } = o(δt)
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for all t and all possibleHt . The complete intensity must be uniquely defined and well-
behaved for any possible Ht and must moreover determine the probabilistic structure
of the process. We shall take this for granted here, though a careful mathematical
argument is needed in a formal discussion.

Now consider the probability of no event in (w, w + t] conditional on Hw .
We divide (w, w + t] into disjoint subintervals Ii = (w + iδt, w + (i + 1)δt], i =
0, . . . , k − 1, where δt = t/k, and note that

Pr {N (w, w + t) = 0 | Hw } .=
k−1∏
i=0

Pr {N (Ii ) = 0 | Hw+iδt }

=
k−1∏
i=0

{1 − λH (w + iδt) δt + o(δt)} ,

where Hw+iδt represents Hw followed by no events up to time w + iδt . The argument
leading to (6.28) applies with λ(u) replaced by λH(u), so

Pr {N (w, w + t) = 0 | Hw } = exp

{
−

∫ w+t

w
λH(u) du

}
,

and the probability density that the first point subsequent to w is at t , given Hw , is
−dPr {N (w, w + t) = 0 | Hw } /dt . At least in principle, this enables the likelihood
for points in an interval (0, t0], conditional on H0, to be written down by extending
our arguments for the Poisson process, giving

n∏
j=1

λH(t j ) exp

{
−

∫ t0

0
λH(u) du

}
(6.41)

as the likelihood based on events at t1, . . . , tn when the process is observed over
(0, t0]. In practice it is often hard to specify a tractable but realistic form for λH(t).

A useful implication is that if events are observed at times 0 < T1 < · · · < Tn < t0
and we write �H(t) = ∫ t

0 λH(u) du, then the transformed times �H(T1), . . . , �H(Tn)
form a Poisson process of unit rate on (0, �H(t0)], the transformation �H being
random. Thus our earlier tools may be used to check the adequacy of an esti-
mated �̂H.

Example 6.35 (Poisson process) The complete intensity function for a Poisson
process may depend on t , but not on the history of the process. Thus λH(t) = λ(t),
which is a constant λ for a homogeneous process. �

Example 6.36 (Renewal process) The inter-event intervals in a homogeneous
Poisson process are independent exponential variables. The renewal process gener-
alizes this to possibly non-exponential intervals and is a standard model in reliability
studies, where failing components in a system may be immediately replaced by ap-
parently identical ones, thereby renewing the system. If system failure is identified
with failure of the component and the process is stationary then the complete intensity
function depends only on the time since the last event. Thus if previous events have
taken place at times ti , the complete intensity at time t depends only on v = min(t − ti )
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and has form λ(v). This is the hazard function corresponding to the density of interval
lengths, f . Statistical analysis for such a process is straightforward. Time series tools
such as the correlogram and partial correlogram can be used to find serial dependence
among successive intervals between events, though it may be clear from the context
that these are independent. If independent and stationary, they can be treated as a
random sample from f and inference performed in the usual way. �

Example 6.37 (Birth process) In a birth process the intensity at time t depends on
the number of previous events. Assuming that the number n of events up to t is finite,
then λH(t) = β0 + β1n, where β0 > 0, β1 ≥ 0. The complete intensity function is a
step function which jumps β1 at each event; if β1 = 0 the process is a homogeneous
Poisson process. �

Before giving a numerical example, we briefly describe two functions useful for
model checking and exploratory analysis of stationary processes.

The variance-time curve is defined as V (t) = var{N (t)}, for t > 0. A homoge-
neous Poisson process of intensity λ has V (t) = λt , comparisons with which may be
informative. Estimation of V (t) is described in Problem 6.12.

The conditional intensity function is defined as

m f (t) = lim
δs,δt→0

(δt)−1Pr {N (t, t + δt) > 0 | N (−δs, 0) > 0} , t > 0,

which gives the intensity of events at t conditionally on there being an event at the
origin. Evidently m f (t) = λ for a homogeneous Poisson process. An event at time t
need not be the first event after that at the origin.

Example 6.38 (Japanese earthquake data) Figure 6.19 shows the times and mag-
nitudes of earthquakes with epicentre less than 100km deep in an offshore region west
of the main Japanese island of Honshū and south of the northern island of Hokkaidō.
The figure shows all 483 earthquakes of magnitude 6 or more on the Richter scale
in the period 1885–1980, about 5 tremors per year, in one of the most seismically
active areas of Japan. A cumulative plot of the times rises fairly evenly and suggests
that the data may be regarded as stationary; we shall assume this below. We take days
as the units, giving t0 = 35,175.

This is a marked point process, as in addition to the event times there is a mark —
the magnitude — attached to each event. If we let the times be 0 < t1 < · · · < tn < t0
and the associated magnitudes m1, . . . , mn , their joint density may be written

n∏
j=1

f (m j | m( j−1), t( j))
n∏

j=1

f (t j | m( j−1), t( j−1)), (6.42)

where t( j−1) and m( j−1) represent t1, . . . , t j−1 and m1, . . . , m j−1. Here we concen-
trate on inference for the times using the second term, leaving the magnitudes to
Examples 10.7 and 10.31. The lower panels of Figure 6.19 show the estimated
variance-time curve and conditional intensity function for the times, which are are
clearly far from Poisson. The variance-time curve grows more quickly than for
a Poisson process, indicating clustering of events, and this is confirmed by the
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Figure 6.19 Japanese
earthquake data (Ogata,
1988). The upper panel
shows the times and
magnitudes (Richter
scale) of 483 shallow
earthquakes. Lower left:
estimated variance-time
curve for earthquake
times, with theoretical line
for a Poisson process
(solid) and two-sided 95%
and 99% pointwise
confidence limits (dots).
Lower right: estimated
conditional intensity, with
baseline for Poisson
process (solid) and
two-sided 95% pointwise
confidence limits (dots).

conditional intensity: for about 2–3 months after each shock the probability of another
is increased.

One possible model for such data is a self-exciting process in which

λH(t) = µ +
∑
j :t j <t

w(t − t j ),

where µ is a positive constant and w(u) is non-negative for u > 0 and otherwise zero.
Here the intensity at any time is affected by the occurrence of previous events; often
w(u) is monotonic decreasing, so recent events affect the current intensity more than
distant ones. This may be interpreted as asserting that events occur in clusters, whose
centres occur as a Poisson process of rate µ. Subsidiary events are then spawned
by the increase in intensity that occurs due to the superposition of the w(t − t j ) for
previous events. Seismological considerations suggest letting this function depend on
m j also, taking

w(t − t j ; m j ) = κeβ(m j −6)

(t − t j + γ )ρ
, t > t j ,

where ρ, γ, κ, β, µ > 0, with β
.= 2. Under this formulation the increase in intensity

depends not only on the time since an event but also on its magnitude.
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Figure 6.20 Japanese
earthquake data fit. The
upper panel shows the
estimated intensity λ̂H(t)
events/day with µ̂ (dots)
and the mean intensity
(dashes). The tick marks
at the top of panel show
the event times. Lower
left: estimated cumulative
number of events �̂H(t j )
(solid) and two-sided 95%
and 99% overall
confidence limits (solid
diagonal), based on the
Kolmogorov–Smirnov
statistic; the dotted line
shows perfect fit of the
model. Lower right:
variance-time function for
transformed process
�̂H(t j ) (blobs), with
baseline for Poisson
process (solid) and
two-sided 95% and 99%
pointwise confidence
limits (dots)

The log likelihood (6.41) corresponding to the second term of (6.42) with the
self-exciting model is readily obtained. Its maximized value is −2232.01, but this
changes only to −2232.25 on fixing ρ = 1. With this restriction the estimates and
standard errors are µ̂ = 0.0049 (0.0007) events/day, κ̂ = 0.020 (0.003) events/day,
γ̂ = 0.054 (0.024) days, and β̂ = 1.61 (0.14). These imply that after an earthquake
of size m j = 6, λH (t) jumps by κ̂/γ̂

.= 0.37 events/day, while a shock of size m j = 8
induces a jump of κ̂e2β̂/γ̂

.= 9.2 events/day. The rate at which clusters arise is about
365µ̂

.= 1.8 events/year, so each gives rise to a further 3.2 shocks on average.
The top panel of Figure 6.20 shows the fitted intensity λ̂H(t), with the value of µ̂

and the mean intensity; note the logarithmic scale. The fitted value is initially low
perhaps because of the lack of data before t = 0, and it would be preferable to use
only a portion of the likelihood, as in Example 6.29. The lower panels show the
cumulative intensity for the transformed process �̂H(t j ), which would be a straight
line of unit gradient if the model fitted perfectly. The cumulative intensity lies within
overall 95% confidence limits and gives no evidence against the model. However the
variance-time curve of the transformed times shows clear overdispersion relative to
a Poisson process. The data include an unusual series of about 25 large earthquakes
in November–December 1938, all occurring in the same region. When these are
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removed, the remainder have variance-time curve falling within the Poisson limits
and the model then seems adequate. �

Exercises 6.5

1 For a Poisson process on [0, t0] of constant rate λ, show directly that N (t0) has a Poisson
distribution of mean λt0 by showing thatRecall that

(1 + a/k)k → ea as
k → ∞. Pr {N (t0) = m} .= k!

m!(k − m)!
{λδt + o(δt)}m {1 − λδt + o(δt)}k−m ,

where δt = t0/k, and letting k → ∞.

2 Check that ∫ t0

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
dt1 λ(t1) · · · λ(tn)e−�(t0)

equals (6.30).

3 Consider a Poisson process of intensity λ in the plane. Find the distribution of the area of
the largest disk centred on one point but containing no other points.

4 Show that the time to the r th event in a Poisson process of rate λ has the gamma distribution.

5 If T is the time to the first event in a one-dimensional Poisson process of positive intensity
λ(t), show that �(T ) has a standard exponential distribution.
Write down an algorithm to generate the points 0 < T1 < · · · < TN < t0 of a Poisson
process of rate λ(t) on [0, t0]. Test it.

6 Over the centuries natural disasters in a particular country have occurred as a PoissonDeletion of points of a
process is known as
thinning.

process of rate λ(t). Any disaster at time t is known to have occurred only with proba-
bility π (t), due to the patchiness of historical records. If records of different disasters are
preserved independently, show that the point process of known disasters is Poisson with
intensity λ(t)π (t).

7 Find sequences {am} > 0 and {bm} such that (6.33) holds in the following cases: (i)
1 − F(x) = e−x for x > 0; (ii) the distribution has a power-law upper tail, 1 − F(x) ∼
x−γ , γ > 0, with x0 = ∞; and (iii) F(x) = x for 0 ≤ x ≤ 1.
In each case give the value of κ and sketch the limiting distribution.

8 Let Mn be the maximum of the random sample X1, . . . , Xn from a distribution F , and
suppose that the limit

lim
n→∞

Pr

(
Mn − bn

an
≤ y

)

is a nondegenerate distribution function, H (y), for some sequences of constants an > 0
and bn . Show that

Pr

(
Mn − an

bn
≤ y

)
= Pr

(
Mm − an

bn
≤ y

)l

,

where n = ml, and deduce that H must be max-stable, that is, for any l there must exist
constants cl and dl such that H (y)l = H (cl + dl y). Verify that the generalized extreme-
value distribution (6.34) is max-stable.

9 Show that the Fisher information for an observation from (6.38) is

i(σ, ξ ) = (1 + 2ξ )−1
( 1 (1 + ξ )−1

(1 + ξ )−1 2(1 + ξ )−1

)
, ξ > −1/2.

What happens if ξ ≤ −1/2?

10 (a) If W follows (6.38) and u > 0, show that conditional on W > u, W − u follows (6.38)
with parameters ξ and σu = σ + ξu. Show also that E(W − u | W > u) = σ/(1 − ξ ),
provided ξ < 1. What happens if ξ ≥ 1? And if ξ ≥ 1/2?
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(b) Derive a standard error for (6.40). For what values of ξ is it valid? Explain the saw-tooth
form of the mean residual life plot.
(c) Discuss how confidence bands in plots of ξ̂u and σ̂u − ξ̂uu against u might be
constructed.

11 By reparametrizing (6.38) in terms of ζ = ξ/σ and ξ , show how to obtain maximum
likelihood estimates of ξ and σ based on a random sample w1, . . . , wn from G, using only
a one-dimensional maximization.

6.6 Bibliographic Notes

A useful general account of stochastic modelling dealing with several of the topics in
this chapter is Isham (1991).

There are many books on Markov chains. Cox and Miller (1965), Grimmett and
Stirzaker (2001) and Norris (1997) give standard accounts of their probabilistic as-
pects, while Billingsley (1961) describes inference for them. Guttorp (1995) has a nice
blend of probabilistic and statistical considerations. Multi-state modelling, including
the use of Markov processes, is discussed in Chapters 5 and 6 of Hougaard (2000).
MacDonald and Zucchini (1997) and Künsch (2001) describe inference for hidden
Markov processes. Prum et al. (1995) describe a systematic approach to finding words
in DNA sequences, with further references to this area.

Markov random fields emerged around 1970 as a natural generalization of Markov
chains to more complex phenomena, though the Ising and related models had been
known to physicists since the 1920s. The key result relating Markov random fields
and Gibbs distributions was proved in 1971 by J. M. Hammersley and P. Clifford but
not published at that time; Clifford (1990) describes its history and some more recent
ideas and gives their version of the proof. A simpler proof was given in the important
paper of Besag (1974), which discusses a wide range of topics related to spatial
modelling; see Smith (1997). Applications to image analysis were described in Geman
and Geman (1984) and Besag (1986), which strongly influenced later work on image
analysis; see for example Chellappa and Jain (1993). Applications to point processes
are reviewed by Isham (1981), while Kinderman and Snell (1980) give a gentle
introduction oriented towards problems of classical physics; see also Brémaud (1999).
Sheehan (2000) and Thompson (2001) discuss applications in statistical genetics, with
numerous further references.

Graphical models have played an increasingly important role in statistics since
about 1980, though similar ideas were used in other fields decades earlier. Edwards
(2000) gives an applied account of graphical models with many examples, and in-
cludes a description of the software package MIM with which certain families of
models can be fitted. Lauritzen (1996) is more mathematical, with details of the nec-
essary graph theory and its statistical application. Whittaker (1990) lies between the
two, with a blend of applications and theory, while Cox and Wermuth (1996) give a
general view of the subject with some substantial applications. All these books con-
tain references to the primary literature. Those by Lauritzen and Cox and Wermuth
describe graphs in which different types of edges appear; see also Wermuth and
Lauritzen (1990) and Lauritzen and Richardson (2002).
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Graphical representations of probabilistic expert systems are described by
Lauritzen and Spiegelhalter (1988) and Spiegelhalter et al. (1993), from which
Example 6.16 is taken. Pearl (1988), Neopolitan (1990), Almond (1995), Castillo
et al. (1997), Cowell et al. (1999) and Jensen (2001) provide fuller accounts.

There are books on multivariate statistics at all levels and in all styles. Accounts
of classical models for multivariate data are Anderson (1958), Mardia et al. (1979),
and Seber (1985). Chatfield and Collins (1980) is more practical, but all predate the
emergence of graphical Gaussian modelling. The bibliographic notes for Chapter 10
give references for discrete multivariate data.

Chatfield (1996), Diggle (1990) and Brockwell and Davis (1996) are standard ele-
mentary books on time series, while Brockwell and Davis (1991) is a more advanced
treatment. Beran (1994) and Tong (1990) describe respectively series with long-range
dependence and nonlinearity. With the growth of financial markets over the last two
decades financial time series has become an area of major research effort summa-
rized by Shephard (1996); for longer accounts see Gouriéroux (1997) and Tsay (2002).
These references primarily describe modelling in the so-called time domain, in which
relationships among the observations themselves are central, but a complementary
approach based on frequency analysis is the main focus of Bloomfield (1976), Priest-
ley (1981), Brillinger (1981), and Percival and Walden (1993). This second approach
is particularly useful in physical applications.

The Poisson process is a fundamental stochastic model and its probabilistic aspects
are described in any of the large number of excellent introductory books on stochastic
processes; see for example Grimmett and Stirzaker (2001). There are also various
more specialised accounts such as in Rolski et al. (1999). Accounts of point process
theory are by Cox and Isham (1980) and Daley and Vere-Jones (1988). Cox and
Lewis (1966) is a thorough account of inference for one-dimensional data, while
spatial point processes are the focus of Diggle (1983). Karr (1991) gives a theoretical
account of inference for point processes. Ripley (1981, 1988) and Cressie (1991) are
more general accounts of the analysis of spatial data. Point processes based on notions
allied to Markov random fields are reviewed by Isham (1981), and a fuller treatment
is given by van Lieshout (2000).

Statistics of extremes may be said to have started with Fisher and Tippett (1928), but
the first systematic book-length treatment of the subject was Gumbel (1958). Modern
accounts from roughly the viewpoint taken here are Smith (1990) and Coles (2001),
while Embrechts et al. (1997) is a systematic mathematical treatment emphasising
applications in finance and insurance. The approach using point processes is described
by Smith (1989a). Davison and Smith (1990) give a thorough treatment of threshold
methods. Books on probabilistic aspects include Leadbetter et al. (1983) and Resnick
(1987).

6.7 Problems

1 Dataframe alofi contains three-state data derived from daily rainfall over three years at
Alofi in the Niue Island group in the Pacific Ocean. The states are 1 (no rain), 2 (up to
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Table 6.10 Counts for
rainfall data at Alofi
(Avery and Henderson,
1999). States are 1 (no
rain), 2 (up to 5mm rain)
and 3 (over 5mm). Upper:
transition counts for
successive triplets for the
entire data. Lower:
transition counts for
successive pairs for four
sub-sequences of length
274.

To To To

From 1 2 3 From 1 2 3 From 1 2 3

11 247 86 29 21 86 27 23 31 29 13 8
12 70 32 24 22 29 35 26 32 37 35 18
13 13 16 31 23 17 17 34 33 20 45 59

To To To To

From 1 2 3 1 2 3 1 2 3 1 2 3

1 106 34 14 97 29 17 60 24 16 98 39 12
2 41 27 10 32 21 13 27 27 25 36 13 18
3 8 16 15 13 17 32 13 27 52 15 15 25

5mm rain) and 3 (over 5mm). Triplets of transition counts for all 1096 observations are
given in the upper part of Table 6.10; its lower part gives transition counts for successive
pairs for sub-sequences 1–274, 275–548, 549–822 and 823–1096.
(a) The maximized log likelihoods for first-, second-, and third-order Markov chains fitted
to the entire dataset are −1038.06, −1025.10, and −1005.56. Compute the log likelihood
for the zeroth-order model, and compare the four fits using likelihood ratio statistics and
using AIC. Give the maximum likelihood estimates for the best-fitting model. Does it
simplify to a varying-order chain?
(b) Matrices of transition counts {nirs} are available for m independent S-state chains
with transition matrices Pi = (pirs), i = 1, . . . , m. Show that the maximum likelihood
estimates are p̂irs = nirs/ni ·s , where · denotes summation over the corresponding index.
Show that the maximum likelihood estimates under the simpler model in which
P1 = · · · = Pm = (prs) are p̂rs = n·rs/n··s . Deduce that the likelihood ratio statistic to
compare these models is 2

∑
i,r,s nirs log( p̂irs/ p̂rs) and give its degrees of freedom.

(c) Consider the lower part of Table 6.10. Explain how to use the statistic from (b) to test
for equal transition probabilities in each section, and hence check stationarity of the data.

2 The nematode Steinername feltiae is a tiny worm used for biological control of mushroom
fly larvae. Once one has found and penetrated a larva, it kills it by releasing bacteria, but
death is not immediate and other nematodes may also penetrate the larva before it dies. In
experiments to assess their effectiveness, m nematodes challenged a single healthy larva.
Let Xt ∈ {0, . . . , m} denote the number of nematodes that have invaded the larva at time
t , and let pr (t) = Pr(Xt = r ), with initial condition p0(0) = 1.
(a) If the invasion process is modelled as a continuous-time Markov process with transition
probabilities independent of t , explain why we may write

Pr(Xt+δt = r + 1 | Xt = r ) = λrδt + o(δt), t ≥ 0, r = 0, . . . , m − 1,

where λm = 0, and give an interpretation of λr . Deduce that

dp0(t)

dt
= −λ0 p0(t),

dpr+1(t)

dt
= −λr+1 pr+1(t) + λr pr (t), r = 0, . . . , m − 1.

If λr = (m − r )β for some β > 0, verify that these equations have solution

pt (r ) =
(

m

r

)
{1 − exp(−βt)}r exp(−βt)m−r ,

and give its interpretation.
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Table 6.11 Numbers of
nematodes invading
individual fly larvae for
various initial numbers of
challengers (Faddy and
Fenlon, 1999).

Number of fly larvae with r = 0, . . . , 10 invading nematodes

Challengers m 0 1 2 3 4 5 6 7 8 9 10 Total

10 1 8 12 11 11 6 9 6 6 2 0 72
7 9 14 27 15 6 3 1 0 75
4 28 18 17 7 3 73
2 44 26 6 76
1 158 60 218

Table 6.12 Numbers of
sites showing differences
between introns of human
and owl monkey insulin
genes (Li, 1997, p. 83).

Owl monkey

Human A C G T

A 20 0 0 2
C 0 24 5 1
G 1 5 45 0
T 2 2 0 56

(b) A total of n independent experiments performed with t = 1 (in arbitrary units) gave data
(m1, r1), . . . , (mn, rn) shown in Table 6.11. Thus, for example, of the 72 larvae challenged
by 10 nematodes, 1 was not penetrated, 8 were penetrated by just one nematode, 12 were
penetrated by two nematodes, and so forth. Show that the corresponding log likelihood
may be written as

�(β) = (sm − sr )β + sr log(1 − e−β ),

and deduce that β has maximum likelihood estimate β̂ = log{sm/(sm − sr )} with standard
error [sr/{sm(sm − sr )}]1/2.
(c) Find the values of β̂ and their standard errors for models in which the value of β is
(i) the same for all m and (ii) different for each m. Discuss which fits the data better, given
that the likelihood ratio statistic to compare them equals 11.2.
(d) A different model has λr = (m − r ) exp(γ0 + γ1r ), so the larva’s resistance to penetra-
tion changes each time it is invaded. What feature of Table 6.11 suggests that this model
might be better? What difficulties would arise in fitting it?

3 One way to estimate the evolutionary distance between species is to identify sections of
their DNA which are similar and so must derive from a common ancestor species. If such
sections differ at very few sites, the species are closely related and must have separated
recently in the evolutionary past, but if the sections differ by more, the species are further
apart. For example, data from the first introns of human and owl monkey insulin genes
are in Table 6.12. The first row means that there are 20 sites with A on both genes, 0 with
A on the human and C on the monkey, and so on. If all the data lay on the diagonal,
this section would be identical in both species. Note that even if sites on both genes have
the same base, there could have been changes such as (ancestor) A→G→T (human) and
(ancestor) A→C→A→T (monkey).
Here is a (greatly simplified) model for evolutionary distance. We suppose that at a time
t0 in the past the two species we now see began to evolve away from a common ancestor
species, which had a section of DNA of length n similar to those we now see. Each site on
that section had one of the four bases A, C, G, or T, and for each species the base at each
site has since changed according to a continuous-time Markov chain with infinitesimal
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generator

G =




−3γ γ γ γ
γ −3γ γ γ
γ γ −3γ γ
γ γ γ −3γ


 ,

independent of other sites. That is, the rate at which one base changes into, or is substituted In fact substitutions can be
of various types, but we do
not distinguish them here.

by, another is the same for any pair of bases.
(a) Check that G has eigendecomposition

1

4




1 −1 −1 −1
1 −1 −1 3
1 −1 3 −1
1 3 −1 −1







0 0 0 0
0 −4γ 0 0
0 0 −4γ 0
0 0 0 −4γ







1 1 1 1
−1 0 0 1
−1 0 1 0
−1 1 0 0


 ,

find its equilibrium distribution π , and show that the chain is reversible.
(b) Show that exp(tG) has diagonal elements (1 + 3e−4γ t )/4 and off-diagonal elements
(1 − e−4γ t )/4. Use this and reversibility of the chain to explain why the likelihood for γ
based on data like those above is proportional to

(1 + 3e−8γ t0 )n−R(1 − e−8γ t0 )R,

where R is the number of sites at which the two sections disagree. Hence find an estimate
and standard error for γ t0 for the data above.
(c) Show that for each site, the probability of no substitution on either species in period
t is 1 − exp(−6γ t), deduce that substitutions occur as a Poisson process of rate 6γ , and
hence show that the estimated mean number of substitutions per site for the data above is
0.120.
Discuss the fit of this model.

4 Let Y1, . . . , Yn represent the trajectory of a stationary two-state discrete-time Markov
chain, in which

Pr(Y j = a | Y1, . . . , Y j−1) = Pr(Y j = a | Y j−1 = b) = θba, a, b = 1, 2;

note that θ11 = 1 − θ12 and θ22 = 1 − θ21, where θ12 and θ21 are the transition probabilities
from state 1 to 2 and vice versa.
Show that the likelihood can be written in form θ

n12
12 (1 − θ12)n11θ

n21
21 (1 − θ21)n22 , where nab

is the number of a → b transitions in y1, . . . , yn . Find a minimal sufficient statistic for
(θ12, θ21), the maximum likelihood estimates θ̂12 and θ̂21, and their asymptotic variances.

5 Let Y(1) < · · · < Y(n) be the order statistics of a sample from the exponential density, λe−λy ,
y > 0, λ > 0. Show that for r = 2, . . . , n,

Pr
(
Y(r ) > y | Y(1), . . . , Y(r−1)

) = exp
{−λr (y − y(r−1))

}
, y > y(r−1),

and deduce that the order statistics from a general continuous distribution form a Markov
process.

6 Let G denote an undirected graph with nodes J and for any A ⊂ J let cl(A) denote the
set

⋃
a∈A({a} ∪ Na). Then we can write the local, global and pairwise Markov properties

as
(G) if A, B, D is a triple of disjoint sets such that D separates A from B in G, then

YA ⊥ YB | YD;
(L) for any node a, Ya ⊥ YJ−cl({a}) | YNa ;
(P) if a, b are non-adjacent nodes, then Ya ⊥ Yb | YJ−{a,b}.

(a) Show that (G) ⇒ (L) ⇒ (P).
(b) We say that Y satisfies (F) if the density factorizes according to (6.14) and (6.15).
Show that (F) ⇒ (G). Interpret the Hammersley–Clifford theorem as showing that if in
addition (6.12) holds, then (P) ⇒ (F).

7 Consider a rectangular grid of pixels with a first-order neighbourhood structure, and
denote its random variables by ui j , i, j = 1, . . . , m. Suppose that the observed data are
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yi j = ui j + εi j where εi j
iid∼ N (0, σ 2). Thus the ui j are observed with noise. Give the moral

graph for the ui j and yi j . Hence show that the local characteristics f (ui j | y, u−i j ) depends
on the neighbouring us and yi j and find f (ui j | y, u−i j ) when the ui j follow an Ising model.

8 (a) Suppose that conditional on U = u, Y ∼ Np(µ, νu−1�), where u ∼ χ2
ν . Show that

the marginal density of Y is multivariate t ,

f (y; µ, �) = �
( p+ν

2

) |�|−1/2

(πν)p/2�
(

ν

2

) {1 + (y − µ)T�−1(y − µ)/ν}−(p+ν)/2,

and establish that E(U | Y = y) = (ν + p)/{ν + (y − µ)T�−1(y − µ}.
(b) Use this as the basis for an EM algorithm for estimation of µ and �, extending that of
Problem 5.18.
(c) The density of Y is called elliptical because of the shape of its contours. Other such
densities may be produced by supposing that Y ∼ Np(µ, u−1�) conditional on U = u
and letting U ∼ g, where g has support in the positive half-line. What changes to the
algorithm in (b) are then needed to produce an EM algorithm for estimation of µ and �?
(Section 5.5.2)

9 Show that the MA(1) models Yt = εt + βεt−1 and Yt = εt + β−1εt−1 have the same cor-
relations and deduce that they are indistinguishable from their correlograms alone. If
Yt = (1 + β B)εt in terms of the backshift operator B, show that εt may be expressed as a
linear combination of Yt , Yt−1, . . . in which the infinite past has no effect only if |β| < 1.
The ARMA process a(B)Yt = b(B)εt is said to be invertible if the zeros of the polynomial
b(z) all lie outside the unit disk. Show that the MA(1) process is invertible only if |β| < 1.
Compare this with the condition for stationarity of the AR(1) model. Discuss.

10 Show that strict stationarity of a time series {Y j } means that for any r we have

cum(Y j1 , . . . , Y jr ) = cum(Y0, . . . , Y jr − j1 ) = κ j2− j1,..., jr − j1 ,

say. Suppose that {Y j } is stationary with mean zero and that for each r it is true that∑
u |κu1,...,ur−1 | = cr < ∞.This condition applies to

many common models,
but excludes those where
variables far apart are
highly correlated.

The r th cumulant of T = n−1/2(Y1 + · · · + Yn) is

cum{n−1/2(Y1 + · · · + Yn)} = n−r/2
∑

j1,..., jr

cum(Y j1 , . . . , Y jr )

= n−r/2
n∑

j1=1

∑
j2,..., jr

κ j2− j1,..., jr − j1

= n × n−r/2
∑

j2,..., jr

κ j2− j1,..., jr − j1

≤ n1−r/2
∑

j2,..., jr

|κ j2− j1,..., jr − j1 | ≤ n1−r/2cr .

Justify this reasoning, and explain why it suggests that T has a limiting normal distribution
as n → ∞, despite the dependence among the Y j .
Obtain the cumulants of T for the MA(1) model, and convince yourself that your argument
extends to the MA(q) model.
Can you extend the argument to arbitrary linear combinations of the Y j ?

11 (a) Check that the Gumbel distribution arises from (6.34) in the limit as ξ → 0.
(b) Derive the densities for (6.34) and the Gumbel distribution, and plot them for ξ = −1,
−0.5, 0, 0.5, and 1. Which do you think is most plausible for extreme rainfall, for high
tides, and for the fastest times to run a mile?
(c) Write a function that generates random samples from (6.34) by inversion.
(d) Show that the Gumbel plotting positions are − log[− log{1 − i/(n + 1)}] and use these
and your simulation routine to see how easy it is to detect departures from ξ = 0 in random
samples of size n = 40 with ξ = −0.3, 0.3. Try varying ξ and n, and write a brief account
of your conclusions.
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12 Consider a stationary point process and denote the numbers of counts in successive inter-
vals (kτ, (k + 1)τ ] of length τ by Nk , where k = . . . , −1, 0, 1, . . .. Let var(N0) < ∞ and
set γ j = cov(N0, N j ).
(a) Show that {N j } is a stationary time series and deduce that

var {N (mτ )} = mγ0 + 2
m−1∑
j=1

(m − j)γ j , m = 1, 2, . . . .

Hence explain how the variance-time curve V (t) for t = τ, 2τ, . . . may be estimated
using the empirical covariances γ̂ j of counts of data observed over (0, t0]. Call the
estimator V̂ (t).
(b) If kτ = t0 and the data follow a Poisson process of rate λ, then

E(γ̂ j )
.=

{
(k − 1)λτ/k,
0,

var(γ̂ j ) =
{

λτ (2λτ + 1)/k + o(k−1), j = 0,
(λτ )2/k + o(k−1), otherwise,

while cov(γ̂i , γ̂ j ) = o(k−1) when i �= j . Hence show that in this case E{V̂ (t)} .= (1 −
t/t0)V (t) and

var
{

V̂ (t)
} = {2/3 + 4/(3m)} (λt)2(t/t0) + (λt)(t/t0) + o(τ/t0),

where t = mτ .
(c) Explain the construction of the lower left panel of Figure 6.19.

13 Sampling of point processes is not straightforward. If the process is running already
and sampling begins at an arbitrary time origin, then this origin is likely to fall into
an interval that is longer than is typical, and this length-biased sampling has knock-
on effects for subsequent intervals unless their lengths are independent. Suppose that a
very long stretch of n intervals is available from a stationary process with mean interval
length µ and marginal density f (y) for times between events, into which the origin falls
randomly. Of the total length nµ of the intervals, a length n f (y) × y will be taken by
intervals of length y. Explain why the probability that the origin falls into one of these
is g(y)dy = ny f (y)dy/(nµ), and hence show that the length of the selected interval has
probability density g.
Now consider the forward recurrence time to the next event starting from the origin. The
origin having fallen uniformly at random into an interval of length y, the conditional
density of its position within that interval is y−1. Show that the forward recurrence time
has density ∫ ∞

x
y−1g(y) dy = µ−1F(x),

where F is the survivor function of f , and find the density of the backward recurrence
time to the point before the origin.
Show that in a homogeneous Poisson process of rate λ the interval into which the origin
falls has density λ2 ye−λy , y > 0, and that the forward and backward recurrence times are
both exponential variables. Explain why these results are obvious intuitively.

14 A Poisson process of rate λ(t) on the set S ⊂ IRk is a collection of random points with
the following properties (among others):
� the number of points NA in a subset A of S has the Poisson distribution with mean

�(A) = ∫
A λ(t) dt ;

� given NA = n, the positions of the points are sampled randomly from the density
λ(t)/

∫
A λ(s) ds, t ∈ A.

(a) Assuming that you have reliable generators of U (0, 1) and Poisson variables, show
how to generate the points of a Poisson process of constant rate λ on the interval [0, t0].
(b) Let t = (x, y) ∈ IR2, η, ξ ∈ IR, τ > 0, λ(x, y) = τ−1 {1 + ξ (y − η)/τ }−1/ξ−1. Give an
algorithm to generate realisations from the Poisson process with rate λ(x, y) on

S = {(x, y) : 0 ≤ x ≤ 1, y ≥ u, λ(x, y) > 0} .
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Table 6.13 Times (days)
between successive
failures of a piece of
software developed as part
of a large data system
(Jelinski and Moranda,
1972). The software was
released after the first 31
failures. The last three
failures occurred after
release. The data are to be
read across rows.

9 12 11 4 7 2 5 8 5 7 1 6 1 9 4 1 3
3 6 1 11 33 7 91 2 1 87 47 12 9 135 258 16 35

15 Show that the likelihood for data (t1, y1), . . . , (tn, yn) observed in [0, t0] × [u, ∞) and
with intensity (6.36) is

n∏
j=1

τ−1

(
1 + ξ

y j − η

τ

)−1/ξ−1

× exp

{
−t0

(
1 + ξ

u − η

τ

)−1/ξ
}

.

Show that this may be reparametrized to give (6.39) and that this is the log likelihood
corresponding to a decomposition

Pr(N = n; λ) ×
n∏

j=1

g(w j ; ξ, σ ).

Give the distributions of N , of the W j , and of Y = max(W1, . . . , WN ). Surprised?

16 A computer program has an unknown number of bugs m. Each bug causes the program
to crash, and is then located and (instantaneously!) removed. If the times at which the m
failures occur are independent exponential variables with common mean β−1, and if m is
Poisson with mean µ/β, then show that

Pr {N (t) = 0} = exp
{−µ(1 − e−βt )/β

}
, t ≥ 0.

(a) Deduce that the times of crashes follow a Poisson process of rate µe−βt . Show that the
likelihood when failures occur at times 0 ≤ t1 < · · · < tn ≤ t0 is

L(µ, β) = µn exp

{
−β

n∑
j=1

t j − µβ−1
(
1 − e−βt0

)}
,

and that this is an exponential family model.
(b) Reliability growth occurs if β > 0. Show that a test for this may be based on the
conditional distribution of S = ∑

Tj given that n failures have occurred in [0, t0], and
that if β = 0, E(S) = nt0/2 and var(S) = nt2

0 /12. Suggest how to perform such a test.
(c) We now treat m as a unknown parameter and aim to estimate it. Show that

L(m, β) = m!

(m − n)!
βn exp {−βt0(m + s/t0 − n)} , β > 0, m = n, n + 1, . . . ,

and hence find the profile log likelihood �p(m) for m.
(d) The code below plots �p(m) after the first r failures of the data in Table 6.13. Try
varying r up to 30, and observe the shapes taken by the profile log likelihood.

y <- c(9,12,11,4,7,2,5,8,5,7,1,6,1,9,4,1,3,3,
6,1,11,33,7,91,2,1,87,47,12,9,135,258,16,35)
L <- function(m,n,s) lgamma(m+1)-lgamma(m-n+1) - n*log(m-n+s)
r <- 20 # just take data up to time of rth failure
y <- cumsum(y[1:r])
s <- sum(y)/y[r]
x <- r:(r+100)
plot(x,L(x,r,s)) # plot log likelihood

What problems do you see with likelihood inference for this model?
The software was released after 31 failures. Give the maximum likelihood estimate of m
at that point, and its confidence interval, if possible.
(Section 6.5.1, Jelinski and Moranda, 1972)
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Estimation and Hypothesis Testing

Chapter 4 introduced likelihood and explored associated concepts such as likelihood
ratio statistics and maximum likelihood estimators, which were then extensively used
for inference in Chapters 5 and 6. In this chapter we turn aside from the central theme
of the book and discuss some more theoretical topics. Estimation is a fundamental
statistical activity, and in Section 7.1 we consider what properties a good estimator
should have, including a brief discussion of nonparametric density estimators and the
mathematically appealing topic of minimum variance unbiased estimation. One of
the most important approaches to constructing estimators is as solutions to systems of
estimating equations. In Section 7.2 we discuss the implications of this, showing how
it complements minimum variance unbiased estimation, and seeing its implications
for robust estimation and for stochastic processes. We then give an account of some of
the main ideas underlying another major statistical activity, the testing of hypotheses,
discussing the construction of tests with good properties, and making the connection
to estimation.

7.1 Estimation

7.1.1 Mean squared error

Suppose that we wish to estimate some aspect of a probability model f (y). In principle
we might try and estimate almost any feature of f , but we largely confine ourselves to
estimation of the unknown parameter θ or a function of it ψ(θ ) in a parametric model
f (y; θ ). Suppose that our data Y comprise a random sample Y1, . . . , Yn from f , and
let the statistic T = t(Y ) be an estimator of ψ(θ ). We say that T is unbiased for ψ(θ )
if E(T ) = ψ(θ ) for all θ , and define the bias of T to be E(T ) − ψ(θ ). Large bias
means that the long-run average value of T lies far from ψ(θ ), and this is undesirable.
The mean squared error of T is the expected squared distance between T and its
estimand, which turns out to equal the sum of the variance and squared bias:

E[{T − ψ(θ )}2] = E[{T − E(T ) + E(T ) − ψ(θ )}2]

= var(T ) + {E(T ) − ψ(θ )}2, (7.1)

300
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because E [{T − E(T )} {E(T ) − ψ(θ )}] = 0. Mean squared error is a common mea-
sure of how well T estimates ψ(θ ). The decomposition (7.1) is useful because in
practice it helps to know if a large mean squared error is due to a large bias or large
variance or both.

Example 7.1 (Normal variance) Let Y1, . . . , Yn be a random sample from the
normal distribution with mean µ and variance σ 2. Then σ 2 has maximum likelihood
estimator σ̂ 2 = n−1 ∑

j (Y j − Y )2 D= n−1σ 2V , where V has a χ2
n−1 distribution, by

(3.15). As E(V ) = (n − 1) and var(V ) = 2(n − 1),

E(σ̂ 2) = n−1(n − 1)σ 2, var(σ̂ 2) = n−22(n − 1)σ 4.

Hence σ̂ 2 has a negative bias of

E(σ̂ 2) − σ 2 = n − 1

n
σ 2 − σ 2 = −σ 2

n

and mean squared error

2
n − 1

n2
σ 4 +

(
−σ 2

n

)2

= 2n − 1

n2
σ 4.

The usual estimator is S2 = (n − 1)−1 ∑
j (Y j − Y )2 D= (n − 1)−1σ 2V , so

E(S2) = (n − 1)−1σ 2(n − 1) = σ 2, var(S2) = 2(n − 1)σ 4(n − 1)−2 = 2

n − 1
σ 4.

Hence S2 is unbiased, but its mean squared error is greater than that of σ̂ 2 because
(2n − 1)/n2 < 2/(n − 1) for all n > 1. �

Both bias and variance are O(n−1) in this example, so at least for large n the
contribution that bias squared makes to mean squared error is negligible compared
to that of variance. This often occurs with parametric estimators, as the following
argument suggests. Suppose that the data are a random sample from a distribution with
mean µ, variance σ 2, third cumulant κ3, and well-behaved higher cumulants. Then
(2.32) implies that their average Y has mean µ, variance σ 2/n, and third cumulant
κ3/n3/2. Suppose also that the estimator of a scalar parameter ψ = t(µ) may be
written as ψ̂ = t(Y ), as is true for natural exponential family models, for example;
see Section 5.2. Then under mild conditions, Taylor series expansion of t(Y ) about µ

gives

ψ̂ = t(µ) + (Y − µ)t ′(µ) + 1

2
(Y − µ)2t ′′(µ) + 1

6
(Y − µ)3t ′′′(µ) + · · · ,

so

E(ψ̂) = t(µ) + 1

2
n−1σ 2t ′′(µ) + 1

6
n−3/2κ3t ′′′(µ) + · · · ,

showing that the bias of ψ̂ is of order n−1. Thus for asymptotic purposes we can
typically compare two parametric estimators in terms of their variances, as squared
bias is of smaller asymptotic order. In finite samples the issue is less clear, because it
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is not useful to be told that E(T ) − ψ
.= a/n and var(T )

.= b/n without some idea of
a and b: if a2/n2 � b/n for all values of n likely to be met in a particular application,
then the bias term in (7.1) predominates and comparison purely in terms of variances
is unhelpful. Nonetheless it is natural to ask if there is a lower bound to the variance
of estimators of ψ .

Cramér–Rao lower bound Harald Cramér
(1893–1985) worked all
his life at the University of
Stockholm, researching in
biochemistry and number
theory before turning to
probability and statistics.
He was the first Swedish
professor of mathematical
statistics and actuarial
science, and made
fundamental contributions
to both subjects. His
masterpiece,
Mathematical Methods of
Statistics, was written
during World War II,
when he was largely
scientifically isolated.
Calyampudi
Radhakrishnan Rao
(1920–) works at
Pennsylvania State
University. See DeGroot
(1987b) for an account of
his life and work.

Suppose that the density f (y; θ ) is regular for maximum likelihood estimation of the
scalar parameter θ . If T is an unbiased estimator of a scalar ψ = ψ(θ ), then under
mild conditions and for all θ ,

var(T ) ≥ (dψ/dθ )2

I (θ )
, (7.2)

where I (θ ) is the expected information in the sample. The right-hand side of (7.2)
is the Cramér–Rao lower bound. It follows that if we can find an unbiased estimator
that attains equality or near-equality in (7.2), we need search no further: no unbiased
estimator could do better. We might also hope that when T has a small bias and its
variance is close to the lower bound, it will be difficult to ameliorate.

To establish (7.2), note that as T is unbiased and f (y; θ ) is a density,

E(T ) =
∫

t(y) f (y; θ ) dy = ψ(θ ),
∫

f (y; θ ) dy = 1,

for all θ . If the order of integration and differentation can be interchanged, differenta-
tion of these equations with respect to θ gives

dψ

dθ
=

∫
t(y)

d f (y; θ )

dθ
dy =

∫
t(y)

d log f (y; θ )

dθ
f (y; θ ) dy = E(T U ),

where U = d log f (Y ; θ )/dθ is the score statistic, and

0 =
∫

d f (y; θ )

dθ
dy =

∫
d log f (y; θ )

dθ
f (y; θ ) dy = E(U ).

Hence cov(T, U ) = E(T U ) − E(T )E(U ) = dψ/dθ . Moreover

var(U ) = E(U 2) = E

{
−d2 log f (Y ; θ )

dθ2

}
= I (θ )

by (4.33). But the Cauchy–Schwarz inequality (Exercise 2.2.3) gives

cov(T, U )2 ≤ var(T )var(U ),

or (dψ/dθ )2 ≤ var(T )I (θ ), which entails (7.2). This will apply if maximum likeli-
hood estimation is regular, for example. Equality in (7.2) only occurs when there is
linear dependence between T and U , so that T = b1(θ ) + b2(θ )U for all θ and some
constants b1(θ ) and b2(θ ) �= 0.

The inverse Fisher information for ψ is I (ψ)−1 = (dψ/dθ )2 I (θ )−1, which equals
the right-hand side of (7.2) (Problem 4.2). Hence the Cramér–Rao lower bound for
estimation of ψ is I (ψ)−1, for any sample size. However (4.26) implies that in regular
cases, the large-sample distribution of the maximum likelihood estimator, ψ̂ , is normal
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Table 7.1 Cramér–Rao
lower bound for
estimation of mean of a
log-normal sample of size
n, when µ = 0 and
σ = 1.5, with properties
of estimators T = Y and
ψ̂ = exp(σ̂ 2/2).

n 5 10 20 40 80 160 320

Cramér–Rao lower bound 4.80 2.40 1.20 0.60 0.30 0.15 0.08
var(T ) 16.11 8.05 4.03 2.01 1.01 0.50 0.25
var(ψ̂) 296.36 7.08 1.91 0.75 0.33 0.16 0.08
Bias of ψ̂ (×10−2) 137.73 49.66 21.83 10.30 5.01 2.47 1.23
Mean squared error of ψ̂ 298.26 7.32 1.96 0.76 0.34 0.16 0.08

with mean ψ and variance I (ψ)−1. Thus ψ̂ is asymptotically unbiased and attains
the Cramér–Rao lower bound as n → ∞: it has asymptotically the smallest possible
variance among unbiased estimators. Such an estimator is said to be efficient. This
suggests that the asymptotic relative efficiency of T be defined as

var(ψ̂)

var(T )
= (dψ/dθ )2

I (θ )var(T )
,

generalizing (4.19).
In regular cases var(ψ̂) = O(n−1), where n is sample size, and it is impossible to

find an unbiased estimator of ψ with variance of smaller order than this. If in addition
the observations are identically distributed, the Cramér–Rao lower bound for θ is
1/{ni(ψ)}, where i(ψ) is the information in a single observation.

Example 7.2 (Log-normal mean) A log-normal random variable Y may be ex-
pressed as exp(µ + σ Z ), where Z is a standard normal variable; thus X = log Y has
the N (µ, σ 2) distribution. The mean and variance of Y are (Problem 3.5)

ψ = eµ+σ 2/2, e2µ+σ 2(
eσ 2 − 1

)
.

If it is known that µ = 0, then the maximum likelihood estimator of σ 2 based on a
random sample Y1, . . . , Yn is σ̂ 2

0 = n−1 ∑
X2

j , where X j = log Y j , and two possible
estimators for ψ are T = Y and ψ̂ = exp(σ̂ 2

0 /2). Now σ̂ 2
0

D= σ 2V/n, where V has a
chi-squared distribution on n degrees of freedom, so

E(ψ̂r ) = E{exp(rσ 2V/2n)} = (1 − rσ 2/n)−n/2, n = 1, 2, . . . ,

because V has moment-generating function (1 − 2t)−n/2. This enables exact calcu-
lation of the bias, variance and mean squared error of ψ̂ .

Evidently T is an unbiased estimator of ψ with variance and mean squared error
both equal to n−1 exp(σ 2){exp(σ 2) − 1}. As I (σ 2) = σ 4/(2n) and dψ/dσ 2 = 1

2ψ ,
the Cramér–Rao lower bound for ψ is σ 4 exp(σ 2)/(2n).

The first three lines of Table 7.1 give values of the lower bound, var(T ) and var(ψ̂)
for various n when σ = 1.5, so ψ = exp(σ 2/2) = 9.49. For n ≥ 80 the bound is
effectively attained by ψ̂ , whose bias is always small compared to its variance. For
n < 80 the bias and variance of ψ̂ decrease rather faster than their asymptotic rate
n−1. Even when n = 5 the contribution to mean squared error from bias is very small.
The unbiased estimator T is much more efficient when n = 5, but otherwise is beaten
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by ψ̂ ; its asymptotic relative efficiency is

var(ψ̂)

var(T )
= σ 4eσ 2

2eσ 2
(
eσ 2 − 1

) = σ 4

2
(
eσ 2 − 1

) .= 0.3

when σ = 1.5, close to the variance ratio in the last columns. �

Example 7.3 (Uniform distribution) Let Y1, . . . , Yn be a random sample from the
uniform distribution on (0, θ ). The likelihood for θ is

L(θ ) =
{

θ−n, 0 ≤ Y1, . . . , Yn ≤ θ ,
0, otherwise,

or equivalently and in terms of the largest order statistic Y(n),

L(θ ) =
{

θ−n, 0 ≤ Y(n) ≤ θ ,
0, otherwise,

a sketch of which shows that θ̂ = Y(n). Hence θ̂ has distribution

Pr(̂θ ≤ u) =



0, u < 0,
(u/θ )n, 0 ≤ u < 1,
1, 1 ≤ u,

and it is straightforward to see that

E(̂θ ) = nθ

n + 1
, var(̂θ ) = nθ2

(n + 1)2(n + 2)
.

This variance is O(n−2), suggesting a potential problem with the Cramér–Rao lower
bound. In fact in this case

d

dθ

∫
t(y) f (y; θ ) dy = d

dθ

∫ θ

0

t(y)

θ
dy = t(θ )

θ
−

∫ θ

0

t(y)

θ2
dy �=

∫
t(y)

d f (y; θ )

dθ
dy,

because the limit of the integral depends on θ . Here the model is non-regular and the
lower bound does not apply. �

The lower bound extends to the case where θ has dimension p and ψ = ψ(θ ) has
dimension q ≤ p. Suppose that the q × 1 statistic T is an unbiased estimator of ψ ,
with q × q covariance matrix var(T ). Then E(T ) = ψ(θ ) for all θ , so ∂ψ/∂θ T is a
q × p matrix. An argument analogous to that on page 302 shows that the q × q matrix

var(T ) − ∂ψ

∂θ T
I (θ )−1 ∂ψT

∂θ

is positive semi-definite. If ψ is scalar, it follows that

var(T ) ≥ ∂ψ

∂θ T
I (θ )−1 ∂ψT

∂θ
, (7.3)

which extends (7.2).

Example 7.4 (Log-normal mean) Expression (4.18) implies that the inverse Fisher
information for the parameters of a normal distribution with parameters θ = (µ, σ 2)T
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Figure 7.1 Unbiased
(left) and maximum
likelihood estimates
(right) of log-normal
mean based on samples of
size n when µ = 0,
σ = 1.5. The horizontal
lines show the target
parameter ψ . The white
band in the centre of the
boxplots indicates the
median of the simulated
values.

based on a random sample X1, . . . , Xn is

I (µ, σ 2)−1 =
(

σ 2/n 0
0 2σ 4/n

)
.

The maximum likelihood estimators are µ̂ = X and σ̂ 2 = n−1 ∑
(X j − X )2. Let ψ =

exp(µ + σ 2/2) denote the mean of the log-normal variable Y = exp(X ). Then

∂ψ

∂θ
=

(
eµ+σ 2/2

1
2 eµ+σ 2/2

)

and the Cramér–Rao lower bound (7.3) for ψ is n−1(σ 2 + σ 4/2)e2µ+σ 2
; this is also

the asymptotic variance of the maximum likelihood estimator ψ̂ = exp(µ̂ + σ̂ 2/2).
As in Example 7.2, the exact bias and variance of ψ̂ may be obtained explicitly
(Problem 7.1).

Figure 7.1 shows 1000 simulated values of T and ψ̂ for various n. Their appreciable
skewness when n is small shows that their distributions are then far from normal and
calls into question our use of bias and variance to compare them. As ψ > 0, a measure
of relative error such as E{(T − ψ)2}/ψ2 might be preferable. �

Mean squared error is a useful measure with which to compare estimators, but it
has the disadvantage of being tied to a particular scale. Thus even if T is preferable
to T ′ as an estimator of ψ , g(T ) need not be better than g(T ′) when estimating g(ψ).
In particular, if T is unbiased, then g(T ) is unbiased only when g is linear. This is not
critical when interest focuses on a quantity for which transformations are irrelevant,
but is awkward otherwise.

7.1.2 Kernel density estimation

The examples above suggest that estimators in parametric problems can often be com-
pared in terms of their variances, bias being relatively unimportant. Bias and variance
play more balanced roles in other contexts, as we now illustrate with a discussion
of nonparametric density estimation. We also take the opportunity of introducing
cross-validation, which plays a role later.

The elementary estimator of an unknown density f (y), the histogram, has a number
of drawbacks. In addition to often looking rather rough due to the use of bins with
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sharp edges, its appearance depends heavily on the placing of the bin boundaries and
on bin width. Slight changes to the boundaries can give strikingly different histograms
for the same data, particularly with small samples, and this is clearly undesirable.

An alternative approach is based on a kernel function w(y), which is a symmetric
probability density with mean zero and unit variance, descending smoothly to zero
as |y| → ∞. An example is the standard normal density, but there are many other
possibilities. The kernel density estimator based on a random sample Y1, . . . , Yn

from f is

f̂ h(y) = 1

nh

n∑
j=1

w

(
y − Y j

h

)
, (7.4)

where h > 0 is a bandwidth. Figure 7.2 shows how this is constructed for the data
in the rightmost column of Table 1.1: the value of f̂ h at y is obtained by summing
contributions from densities with standard deviations h and centred at each of the Y j ,
with those closest to y contributing most. The estimate depends on both bandwidth
and kernel, but the choice of h is much the more important. When n is large, a smaller
bandwidth can be chosen, so that the contributions are more localized. Such estimators
are commonly available in statistical packages and are widely used in applications.

To find the mean and variance of f̂ h(y), note that

E

{
1

nh

n∑
j=1

w

(
y − Y j

h

)}
= E

{
h−1w

(
y − Y

h

)}
.

Symmetry of the kernel gives

h−1
∫

w

(
y − x

h

)
f (x) dx = h−1

∫
w

(
x − y

h

)
f (x) dx =

∫
w(u) f (y + hu) du,

and Taylor series expansion for small h gives Here f ′(y) = d f (y)/dy,
and so forth.∫

w (u)

{
f (y) + hu f ′(y) + 1

2
h2u2 f ′′(y) + · · ·

}
du = f (y) + 1

2
h2 f ′′(y) + O(h4),

(7.5)
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because of the symmetry and moment properties of w .Thus f̂ h(y) has bias 1
2 h2 f ′′(y)+

O(h4). The variance of f̂ h(y) is

var{ f̂ h(y)} = 1

nh2
var

{
w

(
Y − y

h

)}

= 1

nh2

[
E

{
w

(
Y − y

h

)2
}

− E

{
w

(
Y − y

h

)}2
]

,

which depends on

E

{
h−2w

(
Y − y

h

)2
}

, E

{
h−1w

(
Y − y

h

)}
.

An argument similar to that above shows that the first of these is

h−1
∫

w (u)2 { f (y) + hu f ′(y) + · · ·} du = h−1 f (y)
∫

w(u)2 du + O(h), (7.6)

while we have already seen that the second is O(1). Thus as h → 0, the variance of
f̂ h(y) is of order (nh)−1.

If both the bias obtained from (7.5) and the variance obtained from (7.6) are to
vanish as n → ∞ we must choose h so that h → 0 and nh → ∞, for example taking
h ∝ n−1/2. But does this give the best bias-variance tradeoff? The leading terms of
the asymptotic mean squared error of f̂ h(y) are

h4

4
f ′′(y)2 + 1

nh
f (y)

∫
w(u)2 du. (7.7)

Differentiation shows that this is minimized as a function of h at

hopt (y, f ) = n−1/5

{∫
w(u)2 du f (y)/ f ′′(y)2

}1/5

,

giving an optimal bandwidth that varies with y. Choosing h ∝ n−1/5 gives bias of
order n−2/5 and variance of order n−4/5, and then bias squared and variance contribute
terms of equal order to (7.7). As far as variance is concerned, the effective local sample
size is n−4/5, so if n = 1000, say, the number of observations contributing to a local
estimator will be roughly 250, considerably fewer than the sample size applicable for
parametric estimation; this is typical of local problems, for which larger samples are
needed.

The bandwidth plays a key role in kernel density estimation. In exploratory work a
good strategy is to try several values, in the hope that different amounts of smoothing
will reveal different interesting features of the data. However automatic rules for
selection of h can be valuable, both to suggest starting-points for exploration and for
use when density estimation plays a minor role in a larger analysis. The key difficulty
is that as we saw above, an optimal choice such as hopt (y, f ) depends on the unknown
f as well as on y. Dependence on y can be removed by minimizing an overall measure
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of the distance between f̂ h and f , such as the integral of (7.7) over y,

h4

4

∫
f ′′(y)2 dy + 1

nh

∫
w(u)2 du, (7.8)

but the dependence on f remains. Many proposals have been made to sidestep it, of
which we outline only two.

One simple approach is to find the bandwidth that would be optimal if f were
known. If it is normal with variance σ 2, for example, and w(u) = φ(u), then the
choice minimizing (7.8) is h = 1.06σn−1/5. In practice σ is replaced by its sample
counterpart s, but as this is sensitive to outliers it may be better to use a rule of thumb
such as IQR is the sample

interquartile range.

h′
opt = 0.9 min {s, IQR/1.35} n−1/5.

This choice is very simple but tends to oversmooth for non-normal data, thereby
obscuring multimodality and other features of potential interest.

A better approach is to minimize an estimate of the exact mean integrated squared
error of f̂ h(y),

E
∫

{ f̂ h(y) − f (y)}2 dy = E
∫

f̂ h(y)2 dy − 2E
∫

f̂ h(y) f (y) dy +
∫

f (y)2 dy,

(7.9)
whose true value involves expectation with respect to f and so is unknown. The third
term of this does not depend on h, so it suffices to estimate the first two terms. The
awkward term is the second, an obvious estimator of which may be expressed in terms
of the empirical distribution function f̂ as∫

f̂ h(y) d f̂ (y) = 1

n

n∑
j=1

f̂ h(y j ),

but this is biased because y j appears twice in f̂ h(y j ), once implicitly. The bias can
be removed by using the cross-validation estimator given by

1

n

n∑
j=1

f̂ h,− j (y j ), where f̂ h,− j (y) = 1

(n − 1)h

∑
i �= j

w

(
y − yi

h

)

is based on all observations except y j and so is called a leave-one-out estimator.
The term cross-validation means that each datum is compared with the rest. Cross-
validation is widely used and has many variants. It is related to AIC; in both cases
the complexity of a set of models would ideally be assessed using the accuracy of
their predictions for data sets like the original. As a new dataset is unavailable, we
manufacture one with just one datum, assess how well that datum can be predicted
using the remainder, and average all n possible such comparisons.

It is easily shown that apart from a constant factor the first two terms of (7.9) are
estimated unbiasedly by

CV(h) = 1

n

n∑
j=1

∫
f̂ h,− j (y)2 dy − 2

n

n∑
j=1

f̂ h,− j (y j ),
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so it seems reasonable to hope that the value ĥCV
opt that minimizes this will be close

to the value hopt ( f ) which minimizes (7.9). If the kernel is normal, then CV(h) is
readily computed using results on convolutions of normal densities. Care is needed
when minimizing CV(h), as it may have several local minima.

Although close to unbiased, ĥCV
opt is rather variable. Other formulations of cross-

validation can be used to derive more stable bandwidth estimators, but typically at
the expense of increased bias. Section 7.4 gives further reading.

Example 7.5 (Maize data) The maize data have IQR = 34 and s = 37.74, so
1.06sn−1/5 = 23.2 and h′

opt = 13.3. The effect of these choices may be seen in
Figure 7.2, where using h′

opt makes the two negative observations more promi-
nent, perhaps too much so, and h = 30 seems rather large. Cross-validation gives
ĥCV

opt = 19.5, again over-emphasizing the two negative y j .
Here n = 15 and it is unreasonable to hope for a useful nonparametric density

estimate. �

7.1.3 Minimum variance unbiased estimation

Other things being equal, bias is undesirable. A badly biased estimator has expected
value far from the parameter it is supposed to estimate, so it seems a good idea to
minimize bias so far as possible. This has motivated a careful study of unbiased
estimators, for which there is a rather complete theory in a limited class of models.

Rao–Blackwell theoremDavid Harold Blackwell
(1919–) works at the
University of California,
Berkeley. See DeGroot
(1986a) for an account of
his life and work.

Suppose that data Y arise from a statistical model f (y; θ ) and that we want to estimate a
scalar function ψ = ψ(θ ) of θ . Suppose also that the statistic S = s(Y ) is sufficient for
θ , and that T = t(Y ) is an unbiased estimator of ψ . Then subject to suitable regularity
conditions, W = w(S) = E(T | S) is an unbiased estimator of ψ with variance no
larger than that of T :

var(T ) ≥ var(W ) for all θ . (7.10)

This is the Rao–Blackwell theorem. It is a non-asymptotic result, applicable to samples
of any size.

To establish (7.10), first note that W is indeed a statistic:

W = w(S) = E(T | S) =
∫

t(y) f (y | s)dy

does not depend on θ because of the sufficiency of S. Therefore W can be calculated
from Y alone. Secondly,

E(W ) = ES{E(T | S)} = E(T ) = ψ,

so W is unbiased for ψ . Thirdly,

var(T ) = E{(T − ψ)2}
= E[{T − E(T | S) + E(T | S) − ψ}2]
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= E[{T − E(T | S)}2] + 2E{(T − W )(W − ψ)} + E{(W − ψ)2}
= E{(T − W )2} + var(W ), (7.11)

because the middle term is

EY {(T − W )(W − ψ)} = ESEY |S{(T − W )(W − ψ)}
= ES{(W − W )(W − ψ)}
= 0.

Evidently (7.11) implies (7.10), giving E{(T − W )2} = 0, that is, T = W with prob-
ability one, so T and W are effectively the same estimator. The process of replacing
an unbiased estimator T with another E(T | S) with smaller variance is called Rao–
Blackwellization.

Example 7.6 (Poisson mean) Let Y1, . . . , Yn be a Poisson random sample whose
mean θ we intend to estimate. Now E(Y1) = θ , so Y1 is an unbiased estimator of θ .
As the Poisson density is an exponential family, S = ∑

Y j is minimal sufficient for θ

(Section 5.2.3). Therefore W = E(Y1 | S) is an unbiased estimator for θ with variance
at most that of Y1.

To find W , we argue by symmetry. Evidently E(Y1 | S) = · · · = E(Yn | S), because
the Y j were independent and identically distributed unconditionally and the condi-
tioning statistic S is symmetric in the Y j . Therefore

E(Y1 | S) = n−1
n∑

j=1

E(Y j | S) = E

(
n−1

n∑
j=1

Y j

∣∣∣∣∣ S

)
= E(n−1S | S) = S/n.

This estimator has variance θ/n, whereas Y1 has variance θ . �

Paul Adrien Maurice
Dirac (1902–1984) was
born in Bristol and studied
there and at Cambridge,
where he later held the
professorship of
mathematics once held by
Newton. His unifying
work on the basis of
quantum mechanics and
relativity led to his
receiving the 1933 Nobel
Prize in physics. An
intensely private man, he
had to be persuaded that
the publicity would be
greater if he refused it, as
he originally intended.

Example 7.7 (Dirac comb) A random sample of pairs (X, Y ) from a bivariate
density f (x, y) is available, and we wish to estimate some feature of the unknown
marginal density f (y) of Y . Suppose that the conditional density f (y | x) is available.
This may seem unrealistic, but in fact this situation often arises when using simulation
to estimate a density; see Section 11.3.3.

The likelihood based on data (x1, y1), . . . , (xn, yn) is
n∏

j=1

f (y j | x j ) f (x j ),

and as f (y | x) is known, X1, . . . , Xn is sufficient for f (x, y) and hence for f (y).
Suppose that we wish to estimate f (y) itself. We might use a kernel density esti-

mator (7.4) with bandwidth h > 0, but this would be biased. We can remove the bias
by letting h → 0, thus obtaining the Dirac comb δ(u) is the Dirac delta

function.

f̂ (y) = 1

n

n∑
j=1

δ(y − Y j ).

The comb, which places an infinite spike at each Y j and can be regarded as the
derivative of the empirical distribution function (2.3), gives terrible estimates of f (y),
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but it is unbiased because ∫
δ(y − u)g(u) du = g(y)

for any function g. To apply the Rao–Blackwell theorem, note that

E( f̂ (y) | X1, . . . , Xn) = 1

n

n∑
j=1

∫
δ(y − y′) f (y′ | X j ) dy′ = 1

n

n∑
j=1

f (y | X j ).

(7.12)
This is a kernel estimator for which the kernel is the conditional density of Y given
X ; it is much smoother than the comb. As the first two moments of f (y | X j ) are

EX { f (y | X )} =
∫

f (y | x) f (x) dx = f (y),

EX { f (y | X )2} =
∫

f (y | x)2 f (x) dx =
∫

f (y | x) f (x, y) dx, (7.13)

we see that (7.12) is unbiased, with finite variance when (7.13) is finite, as will usually
be the case.

A similar argument applies to the cumulative distribution function of Y and may
be preferred by those wary of delta functions (Exercise 7.1.8). �

Completeness

Given an unbiased estimator T of ψ and a sufficient statistic, S, the Rao–Blackwell
theorem enables us to find an unbiased estimator with variance at most that of T .
However there may be many unbiased estimators, each of which could be Rao–
Blackwellized. Is there one with lowest variance?

To answer this question we need the notion of completeness. A statistic S is complete
if for any function h,Strictly speaking h = 0

almost everywhere with
respect to the density of S. E {h(S)} = 0 for all θ implies that h ≡ 0, (7.14)

and is boundedly complete if (7.14) is true provided h is bounded. Evidently a complete
statistic is also boundedly complete. If S is complete, we say that its density f (s; θ ) is
complete. As completeness must hold for all θ , it is a property of a family of densities
rather than of a single density.

Completeness of minimal sufficient statistics is used to establish uniqueness of min-
imum variance unbiased estimators. Note the qualification here: sufficient statistics
that are not minimal are not in general complete.

Example 7.8 (Poisson density) Suppose that Y is Poisson with mean θ > 0, and that
h(Y ) satisfies E {h(Y )} = 0 for every value of θ . Then its expectation is proportional
to a power series which is identically zero on the positive half-line:

0 = E {h(Y )} =
∞∑

y=0

h(y)
θ y

y!
e−θ ∝

∞∑
y=0

θ y h(y)

y!
, θ > 0.

Hence h(0) = h(1) = · · · = 0, and Y is complete.
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Now consider a Poisson sample of size n. Then S = (Y1, . . . , Yn) is sufficient for θ ,
and h(S) = Y1 − Y2 has expectation zero for all θ . This does not imply that Y1 = Y2,
however, so S is not complete. The corresponding minimal sufficient statistic

∑
Y j

has a Poisson density, and is complete. �

Example 7.9 (Uniform density) Suppose that Y is uniformly distributed on (−θ, θ).
Then E(Y ) = 0 for every θ > 0, but as h(y) = y is not identically zero, Y is not
complete. �

Example 7.10 (Exponential family) Suppose that Y belongs to an exponential
family of order p,

f (y; ω) = exp{s(y)Tθ − κ(θ )} f0(y), y ∈ Y, θ ∈ N .

If Y is continuous and E{h(Y )} = 0, then provided thatN contains an open set around
the origin,

E{h(Y )} =
∫

h(y) exp{s(y)Tθ − κ(θ )} f0(y) dy = 0

is proportional to the Laplace transform of h(y) f0(y). Then the uniqueness of Laplace
transforms implies that h(y) f0(y) = 0 except on sets of measure zero and thus h(Y ) ≡
0: Y is complete. When Y is discrete the corresponding argument involves series or
polynomials, as in Example 7.8.

The same argument applies to any subfamily whose parameter space contains an
open set around the origin, and in particular to all the standard exponential family
models. �

To see how completeness is used, suppose that we have a parametric model f (y; θ )
with complete minimal sufficient statistic S, and two unbiased estimators of ψ =
ψ(θ ), namely T = t(Y ) and T ′ = t ′(Y ). Let W = E(T | S) and W ′ = E(T ′ | S). Now
E(W − W ′) = 0 for all θ , and both W and W ′ are functions of the data only through
S. But S is complete, so W = W ′ except on sets of measure zero, that is, W and W ′ are
identical for all practical purposes. Thus Rao–Blackwellization of an unbiased estima-
tor using a complete sufficient statistic always leads to W , and no unbiased estimator
of ψ has smaller variance. For suppose T ′ is an unbiased estimator of ψ with smaller
variance than W . Then by the Rao–Blackwell theorem, W ′ = E(T ′ | S) satisfies

var(W ′) ≤ var(T ′) < var(W ),

which is impossible because W ′ ≡ W .

Example 7.11 (Normal density) Let Y1, . . . , Yn be a N (µ, σ 2) random sample,
where n ≥ 2. We saw in Example 5.14 that S = (Y ,

∑
(Y j − Y )2) is minimal suf-

ficient, and as its density is an exponential family of order 2 in which we can take

 = (−∞, ∞) × (0, ∞), S is complete.

Now Y is an unbiased estimator of µ that is a function of S, and therefore it is the
minimum variance unbiased estimator of µ. Likewise the minimum variance unbiased
estimator of σ 2 is (n − 1)−1 ∑

(Y j − Y )2. �
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Although of theoretical interest, minimum variance unbiased estimators are not
widely used in practice. One difficulty is that the restriction to exact unbiasedness can
exclude every interesting estimator.

Example 7.12 (Poisson density) Let Y1, . . . , Yn be a Poisson random sample with
mean λ, and let ψ = exp(−2nλ). Then an unbiased estimator h(S) of ψ based on the
minimal sufficient statistic S = ∑

Y j must satisfy

exp(−2nλ) =
∞∑

s=0

h(s)
(nλ)s

s!
e−nλ,

and completeness of S implies that the unique minimum variance unbiased estimator
of ψ is the unacceptable

h(S) =
{ −1, S odd,

1, S even.

The maximum likelihood estimator exp(−2S) is preferable despite its bias. �

A further difficulty is that minimum variance unbiased estimators do not transform
in a simple way. Moreover, as will be evident from the discussion above, there is
no easy recipe that gives unbiased estimators, and once found, it may be awkward to
Rao–Blackwellize them. For these and other reasons, maximum likelihood estimators
are generally preferable.

7.1.4 Interval estimation

Our focus so far has been on point estimates of a parameter and their variances.
Although these are useful when estimator is approximately normal, their relevance
is much less obvious when its distribution is non-normal or the sample size is small.
Furthermore it is often valuable to express parameter uncertainty in terms of an
interval, or more generally a region. The notion of a pivot, which we met in Section 3.1,
then moves to centre stage.

Consider a model f (y; θ ) for data Y . Then a pivot Z = z(Y, θ ) is a function of Y
and θ that has a known distribution independent of θ , this distribution being invertible
as a function of θ for each possible value of Y . That is, given a region A such that
Pr{z(Y, θ ) ∈ A} = 1 − 2α, we can find a region Rα(Y,A) of the parameter space
such that

1 − 2α = Pr {z(Y, θ ) ∈ A} = Pr {θ ∈ Rα(Y ; A)} .

If θ is scalar then z(Y,A) is typically a strictly monotonic function of θ for each
Y . Given data y and a suitable pivot, we find a (1 − 2α) confidence region for the
true value of θ by arguing that under repeated sampling Rα(y;A) is the realization
of a random region Rα(Y ;A) that contains the true θ with probability (1 − 2α). An
important exact pivot is the Student t statistic, and we have extensively used an ap-
proximate pivot, the likelihood ratio statistic. For reasons to be given in Section 7.3.4,
pivots such as these based on the likelihood tend to be close to optimal in the sense
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of providing the shortest possible confidence intervals for given α, at least in large
samples.

Example 7.13 (Exponential density) Suppose we wish to base a (1 − 2α) confi-
dence interval for λ on a single observation from the exponential density λe−λy , y > 0,
λ > 0. Then Z = Yλ is pivotal, since Pr(λY ≤ z) = 1 − e−z , z > 0, independent of
λ. Its upper (1 − α) quantile is z1−α = − log α. As

1 − α = Pr(Z ≤ z1−α) = Pr(λY ≤ z1−α) = Pr(λ ≤ z1−α/Y ),

an upper (1 − α) confidence limit is − log α/y. Similarly an α lower confidence limit
for λ is − log(1 − α)/y, and an equi-tailed (1 − 2α) confidence interval is (− log(1 −
α)/y, − log α/y). This is not symmetric about the maximum likelihood estimate
λ̂ = 1/y, nor is it the shortest possible such interval.

To find the shortest (1 − 2α) confidence interval for λ based on y, we choose the
upper tail probability γ , 0 < γ ≤ 2α, to minimize the interval length

y−1{− log γ + log(1 − 2α + γ )},
giving γ = 2α and confidence interval (0, − log(2α)/y). This is obvious from the
shape of the exponential density and, not coincidentally, the likelihood. �

Exercises 7.1

1 Let R be binomial with probability π and denominator m, and consider estimators of π
of form T = (R + a)/(m + b), for a, b ≥ 0. Find a condition under which T has lower
mean squared error than the maximum likelihood estimator R/m, and discuss which is
preferable when m = 5, 10.

2 Let T = a
∑

(Y j − Y )2 be an estimator of σ 2 based on a normal random sample. Find
values of a that minimize the bias and mean squared error of T .

3 When T is a biased estimator of the scalar ψ(θ ), with bias b(θ ), show that under the usual
regularity conditions, the mean squared error of T is no smaller than

{dψ/dθ + db(θ )/dθ}2 /I (θ ) + b(θ )2.

If b(θ ) = b1(θ )/n + b2(θ )/n3/2 + · · · , where bi (θ ) is O(1), then show that the Cramér–
Rao lower bound applies, at least in large samples.

4 Suppose that T is a q × 1 unbiased estimator of ψ = ψ(θ ). Show that cov(T, U ) =
dψ/dθT, and compute the variance matrix of T − dψ/dθT I (θ )−1U , where U is p × 1
score vector. Hence establish (7.3).

5 Consider a kernel density estimator (7.4).
(a) Verify the choice of h that minimizes (7.7). If f (y) = σ−1φ{(y − µ)/σ } and w(u) = Note that

φ(z)2 = (2π )−1/2φ(
√

2z).φ(u), find hopt . Discuss.
(b) Show that h = 1.06σn−1/5 minimises (7.8) using the densities in (a).
(c) Instead of using a constant bandwidth, we might take

f̂ (y) = 1

nh

n∑
j=1

1

λ j
w

(
y − y j

hλ j

)

for local bandwidth factors λ j ∝ { f̃ (y j )}−γ based on a pilot density estimate f̃ (y). Show
that if the pilot estimate is exact and γ = − 1

2 , then f̂ has bias o(h2).

6 Find the expected value of CV(h), and show to what extent it estimates (7.9).
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7 Find minimum variance unbiased estimators of λ2, eλ, and e−nλ based on a random sample
Y1, . . . , Yn from a Poisson density with mean λ. Show that no unbiased estimator of log λ
exists.

8 In Example 7.1.3, suppose we wish to estimate ψ = Pr(Y ≤ y) using the empirical
distribution function n−1

∑
I (Y j ≤ y). Show that this is unbiased and that its Rao–

Blackwellized form is

1

n

n∑
j=1

Pr(Y j ≤ y | X j ).

Hence obtain an unbiased estimator of f (y).

9 Let Y ∼ N (0, θ ). Is Y complete? What about Y 2? And |Y |?
10 Let R1, . . . , Rn be a binomial random sample with parameters m and 0 < π < 1, where m

is known. Find a complete minimal sufficient statistic for π and hence find the minimum
variance unbiased estimator of π (1 − π ).

11 Let Y be the average of a random sample from the uniform density on (0, θ). Show that
2Y is unbiased for θ . Find a sufficient statistic for θ , and obtain an estimator based on it
which has smaller variance. Compare their mean squared errors.

7.2 Estimating Functions

7.2.1 Basic notions

Our discussion of the maximum likelihood estimator in Section 4.4.2 stressed its
asymptotic properties but said little about its finite-sample behaviour. By contrast our
treatment of unbiased estimators showed their finite-sample optimality under certain
conditions, but suggested that the class of such estimators is often too small to be of
real interest for applications. Furthermore both types of estimator can behave poorly if
the data are contaminated or if the assumed model is incorrect, making it worthwhile to
consider other possibilities. In this section we explore some consequences of shifting
emphasis away from estimators and towards the functions that often determine them.

Suppose that we intend to estimate a p × 1 parameter θ based on a random sample
Y1, . . . , Yn from a density f (y; θ ), assumed to be regular for likelihood inference.
Then in most cases the maximum likelihood estimator θ̂ is defined implicitly as the
solution to the p × 1 score equation

U (θ ) = u(Y ; θ ) =
n∑

j=1

u(Y j ; θ ) =
n∑

j=1

∂ log f (Y j ; θ )

∂θ
= 0.

Key properties of the score statistic U (θ ) are

E {U (θ )} = 0, var {U (θ )} = E

{
−dU (θ )

dθ T

}
= I (θ ),

for all θ , where the p × p Fisher information matrix I (θ ) = ni(θ ) and

i(θ ) = var{u(Y j ; θ )} =
∫

u(y; θ )u(y; θ )T f (y; θ ) dy = −
∫

∂u(y; θ )

∂θ T
f (y; θ ) dy.
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The implicit definition of θ̂ suggests that we study properties of estimators θ̃ that
solve a p × 1 system of estimating equations of form

g(Y ; θ ) =
n∑

j=1

g(Y j ; θ ) = 0. (7.15)

We call g(y; θ ) an estimating function and say it is unbiased if Or sometimes an
inference function.

E {g(Y ; θ )} = n
∫

g(y; θ ) f (y; θ ) = 0 for all θ.

This formulation encompasses many possibilities.

Example 7.14 (Logistic density) The logistic density ey−θ /(1 + ey−θ )2 has score
function

u(y; θ ) = 2ey−θ /(1 + ey−θ ) − 1, −∞ < y < ∞, −∞ < θ < ∞.

The left panel of Figure 7.3 shows the construction of the corresponding estimating
function based on a sample of size three. �

Example 7.15 (Moment estimators) If g(y; µ) = y − µ, then the solution to (7.15)
is the sample average µ̃ = Y , which is an unbiased estimator of the mean of f , if this
exists. The estimating function y − µ is shown in the right panel of Figure 7.3, with
other estimating functions discussed later.

This can be extended to several parameters. The moment estimators of the mean Or method of moments
estimators.and variance of Y are found by simultaneous solution of

n−1
n∑

j=1

Y j − µ = 0, n−1
n∑

j=1

Y 2
j − µ2 − σ 2 = 0,

and these are of form (7.15) with g(y; θ ) = (y − µ, y2 − µ2 − σ 2)T and θ = (µ, σ 2)T.
Although themselves unbiased, these estimating equations produce the biased esti-
mator n−1 ∑

(Y j − Y )2 of σ 2.
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Estimators of functions of the mean and variance may be defined similarly. For
example, the Weibull density

f (y; β, κ) = κβ−1(y/β)κ−1 exp{−(y/β)κ}, y > 0, β, κ > 0,

has E(Y r ) = βr�(1 + r/κ). Hence the moment estimator of θ = (β, κ)T can be de-�(u) is the gamma
function. termined as the solution to (7.15) with

g(y; θ ) = ( y − β� (1 + 1/κ) , y2 − β2� (1 + 2/κ) )T . (7.16)

The parameters µ and σ 2 have the same interpretations for any model that possesses
two moments, whereas (β, κ) are specific to the Weibull case. �

Example 7.16 (Probability weighted moment estimators) Moment estimators
may be poor or even useless with data from long-tailed densities, whose moments
may not exist. An alternative is use of probability weighted moment estimators, defined
as solutions to equations of form

n−1
n∑

j=1

Y r F(Y ; θ )s {1 − F(Y ; θ )}t −
∫

yr F(y; θ )s {1 − F(y; θ )}t f (y; θ ) dy = 0.

Even if the ordinary moments, which correspond to taking s = t = 0, do not exist,
the integrals here may be finite for positive values of s or t or both.

An example is the generalized Pareto distribution (6.38), for which we set θ =
(ξ, σ )T. In this case it is convenient to take r = 1 and s = 0, giving

gt (y; θ ) = y(1 + ξ y/σ )−t/ξ − σ

(t + 1)(t + 1 − ξ )
,

which has finite expectation provided ξ < t + 1. Estimators may be obtained by set-
ting g(y; θ ) = (g1(y; θ ), g2(y; θ ))T and solving (7.15) simultaneously, though equiv-
alent more convenient forms of the equations are preferred in practice.

As with moment estimators, the choice of r , s, and t introduces an arbitrary element,
because different choices will lead to different estimators. �

Example 7.17 (Linear model) The scalar β in the simple linear model

Y j = βx j + ε j , j = 1, . . . , n,

where the ε j have mean zero, can be estimated by the solution to (7.15) with
g(y; θ ) = y − βx , giving β̃ = ∑

Y j/
∑

x j . This estimator is unbiased whatever the
distributions of the ε j ; in particular we have made no assumptions about their vari-
ances, requiring the ε j only to have zero mean. In fact, they need not be independent,
or even uncorrelated. �

In general discussion we shall suppose that θ is scalar and that for every value
of y, we deal with an unbiased estimating function g(y; θ ) that is strictly monotone
decreasing in θ . It is then easy to show that θ̃ is consistent for θ . Note first that θ̃ ≤ a
if and only if g(Y ; a) ≤ 0. As g(y; θ ) is decreasing in θ for each y, n−1g(Y ; θ − ε)
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converges to

n−1E {g(Y ; θ − ε)} = n−1E {g(Y ; θ − ε) − g(Y ; θ )} = c(θ − ε) > 0

as n → ∞ for any ε > 0, by virtue of the weak law of large numbers. Hence

Pr(θ̃ ≤ θ − ε) = Pr{n−1g(Y ; θ − ε) ≤ 0} → 0, as n → ∞.

Likewise Pr(θ̃ > θ + ε) → 0, so Pr(|θ̃ − θ | ≤ ε) → 1: θ̃ is a consistent estimator.
Technical difficulties arise with non-monotone or discontinuous estimating func-

tions, to which most of the discussion below does not apply directly. In such cases it
is necessary to show that there is a consistent solution to the estimating equation, to
which the arguments below can be applied.

Optimality

Having defined the class of unbiased estimating functions, the question naturally
arises which of them we should use. To answer this we must find a finite-sample
optimality criterion analogous to mean squared error. To motivate a suitable criterion,
suppose that θ is scalar and consider its estimator θ̃ . Taylor series expansion of g(Y ; θ̃ )
gives

0
.= g(Y ; θ ) + (θ̃ − θ )

dg(Y ; θ )

dθ
,

so

θ̃ − θ
.=

∑n
j=1 g(Y j ; θ )

− ∑n
j=1

dg(Y j ;θ )
dθ

=
∑n

j=1 g(Y j ; θ )

E
{ − dg(Y ;θ )

dθ

} + Op(n−1), (7.17)

using the same argument as applied to the maximum likelihood estimator. This implies
that θ̃ has asymptotic variance

var(θ̃ )
.= var{g(Y ; θ )}[

E
{ − dg(Y ;θ )

dθ

}]2 = n−1

∫
g(y; θ )2 f (y; θ ) dy{ − ∫ dg(y;θ )

dθ
f (y; θ ) dy

}2 .

A measure of finite-sample performance of g(y; θ ) should not conflict with asymptotic
properties of θ̃ , suggesting that we regard an estimating function as optimal in the
class of unbiased estimating functions if it minimizes

var{g(Y ; θ )}[
E
{ − dg(Y ;θ )

dθ

}]2 (7.18)

for all θ . This quantity is unaffected by one-one reparametrization.
Another motivation for (7.18) rests on noting that although variance is a natural

basis for comparing estimating functions, a g(Y ; θ ) is also unbiased, with variance
a2 times greater than that of g(Y ; θ ). Hence fair comparison is possible only after
removing this arbitrary scaling. Multiplication of g(Y ; θ ) by a changes the slope
of the estimating function, so it is natural to choose a to ensure that the expected
derivative of g(Y ; θ ) equals one, leading to (7.18).
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It can be shown that any unbiased estimating function must satisfy

I (θ )−1 ≤ var{g(Y ; θ )}[
E
{ − dg(Y ;θ )

dθ

}]2 , (7.19)

so there is a lower bound on (7.18), analogous to the Cramér–Rao lower bound.
If (7.18) is evaluated with g(Y ; θ ) = u(Y ; θ ), the result is I (θ )−1. Hence the score
function minimizes (7.18), and is in this sense optimal in finite samples. This ties in
with asymptotic properties of the maximum likelihood estimator, and may be extended
to the case where θ is a p × 1 vector. Then

E

{
−∂g(Y ; θ )

∂θ T

}−1

var {g(Y ; θ )} E

{
−∂g(Y ; θ )T

∂θ

}−1

≥ I (θ )−1 (7.20)

in the sense that the difference of these p × p matrices is positive semi-definite,
provided E{−∂g(Y ; θ )/∂θ T} is invertible. The left-hand side of this inequality is the
asymptotic covariance matrix of θ̃ , and its sandwich form generalizes that of a maxi-
mum likelihood estimator under a wrong model; see Section 4.6. Standard errors for
θ̃ are obtained by replacing the matrices in (7.20) by sample versions, giving{

n∑
j=1

∂g(y j ; θ̃ )

∂θ T

}−1 n∑
j=1

g(y j ; θ̃ )g(y j ; θ̃ )T

{
n∑

j=1

∂g(y j ; θ̃ )T

∂θ

}−1

,

from which confidence sets for elements of θ may be obtained, generally by normal
approximation.

Example 7.18 (Weibull model) An estimating function for the Weibull parameters
β and κ is given by (7.16), for which elementary calculations give

E

{
−∂g(Y ; θ )T

∂θ

}
= n

(
�(1 + 1/κ) 2β�(1 + 2/κ)

−β�′(1 + 1/κ)/κ2 −2β2�′(1 + 2/κ)/κ2

)

and�′(u) = d�(u)/du, and so
forth.

I (θ ) = n

(
κ2/β2 −�′(2)/β

−�′(2)/β {1 + �′′(2)}/κ2

)
,

while var{g(Y ; θ )} is easily found in terms of the moments E(Y r ). In analogy to the
discussion of efficiency on page 113, the overall efficiency of g(Y ; θ ) relative to the
score is taken to be the square root of the ratio of the determinants of the matrices on
either side of the inequality in (7.20), while the efficiency for estimation of β is the
ratio of their (1, 1) coefficients, with (2, 2) coefficients used for κ . These efficiencies,
plotted in the left panel of Figure 7.4, show that the moment estimating functions are
fairly efficient when κ > 2, but are poor when κ is small. �

7.2.2 Robustness

Finite-sample optimality of the score function is not the whole story, for several
reasons. First, we may be unwilling or unable to specify the model fully, and then
the score is unavailable. Second, even if we can be fairly sure of f (y; θ ), there is
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always the possibility of bad data — tryping errors, wild observations and so forth.
In principle all data should be carefully scrutinized for these, but with big or complex
datasets or where data are collected automatically this is impracticable. Estimating
functions that are robust, that is, perform well under a wide range of potential models
centred at an ideal model may be preferred, even if they are somewhat sub-optimal
when that model itself holds.

Robustness entails insensitivity to departures from assumptions, but this has many
aspects. Perhaps the most common usage relates to contamination by outliers. If bad
values are present then we might optimistically hope to identify and delete them,
or more realistically aim to downweight them. Thus we ignore or play down some
‘bad’ portion of the data and hope to extract useful information from the ‘good’
part, even if we are unsure where the boundary lies. A related usage concerns the
need for procedures that perform well when assumptions underlying the ideal model
are relaxed. An essential requirement is then that estimands have the same inter-
pretation under all the potential models. In Example 7.15 the first and second mo-
ments µ and σ 2 have this property of robustness of interpretation but the Weibull
parameters κ and β do not, because they are meaningless for models other than the
Weibull.

Outliers are perhaps the most obvious form of departure from the model, but the as-
sumed dependence structure is usually more crucial in applications. In Example 6.25,
for instance, a confidence interval was three times too short when dependence was un-
accounted for. Although independence is often assumed, not only is mild dependence
often difficult to detect, but also it may be hard to formulate a suitable alternative.
In applications independence may be assured by the design of the investigation, but
often it must be checked empirically, for example using time series tools such as the
correlogram.

One way to view an estimating function is that it defines a parameter t(F) implicitly
as the solution to the population equation∫

g {y; t(F)} d F(y) = 0,
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where F is any member of the class of distributions under consideration. The require-
ment that t(F) be robust of interpretation imposes restrictions on g. If, for instance,
the density f (y) = d F(y)/dy is symmetric about θ and we require t(F) = θ for any
such density, then g(y; θ ) must be odd as a function of y − θ , with g(θ ; θ ) = 0. In
many cases the requirement of robustness of interpretation indicates taking t(F) to be
a moment or related quantity, which will retain its meaning for all models possessing
the necessary moments.

One approach to downweighting bad data stems from observing that (7.17) implies
that the effect of Y j on θ̃ is proportional to g(Y j ; θ ). If this is large, then θ̃ will tend
to be far from its estimand θ . This suggests that the sensitivity of θ̃ to an observation
y be measured by the influence function of θ̃ ,

L(y; θ ) = g(y; θ )

− ∫ dg(u;θ )
dθ

f (u; θ ) du
;

this is simply a rescaling of the estimating function. Our earlier discussion implies
that var(θ̃ )

.= n−1var{L(Y ; θ )} in terms of a single observation Y .
Expression (7.17) suggests that the impact of outliers can be reduced by using esti-

mating functions and hence influence functions that are bounded in y. One possibility
is a redescending function such as (y − θ )/{1 + (y − θ )2}, which tends to zero as
|y − θ | → ∞. Another possibility is to truncate a standard function such as y − θ ,
so that values of y distant from θ have limited impact on θ̃ . See Figure 7.3.

Peter Johann Huber
(1934–) has been
professor of statistics at
ETH Zürich,
Massachusetts Institute of
Technology, and Harvard
and Bayreuth universities,
and is now retired.

Example 7.19 (Huber estimator) The effect of outliers on the estimation of a mean
may be reduced by using

gc(y; θ ) =



−c, y ≤ θ − c,
y − θ, −c < y − θ < c,
c, θ + c ≤ y,

where the constant c > 0 is chosen to balance robustness and efficiency. Robustness
to outliers is increased but efficiency at the normal model is reduced by decreasing
c; when c = ∞ we have g∞(y; θ ) = y − θ and θ̃ = Y . The estimator corresponding
to gc(y; θ ) is sometimes called the Huber estimator of location. The parameter t(F)Or Huber’s Proposal 2.

is the centre of an underlying symmetric density and equals its mean when c = ∞
and its median when c = 0. These are not the same when the underlying density is
asymmetric, and then t(F) has no simple direct interpretation, though it may depend
only weakly on c for certain choices of F .

The finite-sample efficiency of gc(y; θ ) as a function of c for various symmetric
densities is shown in the right panel of Figure 7.4. The quantity plotted is (7.18)
divided by the variance of g∞(Y ; θ ) = Y − θ , as this rather than the score function
for the true density would usually be used in practice. Under the normal model the
efficiency of gc is essentially one when c = 2, dropping to the value 2/π = 0.637 for
the median when c → 0. Overall a good choice seems to be c = 1.345, which is often
the default in software packages; it has efficiency 0.95 for normal data, but beats g∞
in the other cases shown. �
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The discussion above presupposes that the scale of the underlying density is known,
even if the location is not. In practice estimation of scale has little effect on the effi-
ciency of location estimators, and the results above apply with little change provided
scale is estimated robustly, for example using the median absolute deviation.

To illustrate optimality under weak conditions on the underlying model, suppose
that we intend to estimate θ using the weighted combination of unbiased linear esti-
mating functions

m∑
j=1

w j (θ ){Y j − µ j (θ )},

where var(Y j ) = Vj (θ ) may be a function of θ . We suppose that the mean and variance
functions µ j (θ ) and Vj (θ ) for each of the Y j are known, but make no assumption about
their distributions. Notice that our argument for consistency of θ̃ will apply under mild
conditions on the weights and the moments. Suppose also that the Y j are uncorrelated.
Then (7.18) is ∑

j w2
j (θ )Vj (θ ){∑

j w j (θ )µ′
j (θ )

}2 ,

where µ′
j (θ ) = dµ j (θ )/dθ , and our earlier discussion suggests that we seek the

weights w j (θ ) that minimize this. This is equivalent to the problem

min
w1,...,wn

n∑
j=1

w2
j Vj subject to

n∑
j=1

w jµ
′
j = c,

for some constant c. Use of Lagrange multipliers gives w j (θ ) ∝ µ′
j (θ )/Vj (θ ), so the

optimal estimating equation is

n∑
j=1

µ′
j (θ )

1

Vj (θ )
{Y j − µ j (θ )} = 0. (7.21)

An exponential family variable Y j with log likelihood contribution y jθ − κ j (θ ) has
mean κ ′

j (θ ) and variance κ ′′
j (θ ), so µ′

j (θ ) = Vj (θ ) and (7.21) reduces to the score
equation,

∑{Y j − κ ′
j (θ )} = 0, which is optimal.

Example 7.20 (Straight-line regression) Let the Y j have means µ(β) = x jβ,
with x j known. Then µ′

j (β) = x j , and g(Y j , β) = Y j − x jβ. If var(Y j ) = Vj (β)
is constant, (7.21) becomes

∑
x j (Y j − βx j ), and the corresponding estimator is

β̃ = ∑
Y j x j/

∑
x2

j . This is the least squares estimator of β, corresponding to a
normal distribution for Y j , but it has much wider validity.

If var(Y j ) = x jβ, as would be the case if Y j were Poisson with mean x jβ, then the
optimal estimating function is

∑
(Y j − βx j ), and β̃ = ∑

Y j/
∑

x j . As in the normal
case, β̃ is optimal more widely. �

Estimating equations of form similar to (7.21) are very important in the regression
models encountered in Chapters 8 and 10.
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7.2.3 Dependent data
This may be omitted at a
first reading. In earlier discussion, for example in Section 6.1, we used the fact that standard likeli-

hood asymptotics also apply to some types of dependent data. For some explanation
of this, consider the more general context of unbiased estimating functions for a scalar
θ . Suppose that θ̃ is defined as the solution to the equation

n∑
j=1

g j (Y ; θ ) = 0, (7.22)

where g j (Y ; θ ) depends only on Y1, . . . , Y j and is such that for all θ ,

E{g1(Y )} = 0, E{g j (Y ; θ ) | Y1, . . . , Y j−1} = 0, j = 2, . . . , n,

so that the unconditional expectation E{g j (Y ; θ )} = 0 for all j . If j > k, then

cov{g j (Y ; θ ), gk(Y ; θ )} = E{g j (Y ; θ )gk(Y ; θ )}
= E[gk(Y ; θ )E{g j (Y ; θ ) | Y1, . . . , Y j−1}] = 0,

so

var

{
n∑

j=1

g j (Y ; θ )

}
=

n∑
j=1

var{g j (Y ; θ )}.

The left of (7.22) is a zero-mean martingale, and under mild regularity conditions a
martingale central limit theorem as n → ∞ gives

V −1/2(θ̃ − θ )
D−→ Z , where V =

∑n
j=1 var{g j (Y ; θ ) | Y1, . . . , Y j−1}[ ∑n

j=1 E{dg j (Y ; θ )/dθ | Y1, . . . , Y j−1}
]2 ,

(7.23)
and Z is standard normal. Thus provided the random variable V is used to estimate
the variance of θ̃ , confidence intervals for θ can be set in the usual way.

Two main possibilities arise for the limiting behaviour of V . In an ergodic
model a deterministically rescaled version of V converges to a constant as n → ∞,
such as nV

P−→ v > 0. This occurs, for instance, with independent data, ergodic
Markov chains, and many time series models. Under regularity conditions the usual
arguments then apply to the rescaled estimator, whose limiting distribution is normal,
and the argument starting from (7.17) yields (7.18). The second possibility is that
when rescaled, V converges to a nondegenerate random variable D. The model is
then said to be non-ergodic, and as the limiting distribution of the rescaled estimator
is D−1/2 Z , standard large-sample theory does not apply.

As with independent data, we can find the optimal finite-sample choice of weighting
functions within the class of linear combinations of the g j (Y ; θ ),

n∑
j=1

W j (θ )g j (Y ; θ ),

where the W j (θ ), now random variables, can depend on Y1, . . . , Y j−1 and θ . This
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turns out to be

W j (θ ) = −E{dg j (Y ; θ )/dθ | Y1, . . . , Y j−1}
var{g j (Y ; θ ) | Y1, . . . , Y j−1} . (7.24)

This finite-sample result is independent of the asymptotic properties of θ̃ .

Example 7.21 (Branching process) The branching process was first used to model
the survival of surnames, it being supposed that a surname would die out if all every
male bearing it had no sons, but it has applications in epidemic modelling and else-
where. Each of the Y j−1 individuals in generation j − 1 independently gives birth to a
random number of individuals, so Y j = ∑Y j−1

i=1 Ni , where the Ni are independent with
mean θ and variance σ 2. We take Y0 = 1. Here g j (Y ; θ ) = Y j − θY j−1 is unbiased
whatever the distribution of the Ni , while

var{g j (Y ; θ ) | Y1, . . . , Y j−1) = Y j−1σ
2, E

{
−dg j (Y ; θ )

dθ

∣∣∣∣ Y1, . . . , Yn−1

}
= Y j−1.

The optimal weights are W j (θ ) = 1/σ 2, here non-random, and the corresponding
estimating equation is

∑n
j=2(Y j − θY j−1) = 0, whatever the distribution of the Ni .

Thus θ̃ = ∑n−1
j=1 Y j+1/

∑n−1
j=1 Y j is optimal and V = σ 2/

∑n
j=1 Y j−1.

Extinction is certain if θ ≤ 1 but not if θ > 1. If extinction occurs then no estimator
of θ can be consistent. When θ > 1 and given that extinction does not occur, (7.23)
implies that V −1/2(θ̃ − θ )

D−→ σ Z . In this case θ−n V converges to a nondegenerate
random variable and the asymptotics are nonstandard. Confidence intervals for θ are
best constructed using V .

Other growth models such as birth processes and non-stationary diffusions can
also be non-ergodic. As the discussion above suggests, inference for θ is then best
performed using observed information or its generalization V −1. �

The argument leading to (7.23) applies in particular to maximum likelihood estima-
tors. We write f (y1, . . . , yn; θ ) = f (y1; θ )

∏n
j=2 f (y j | y1, . . . , y j−1; θ ) and express

the score as

d�(θ )

dθ
= d log f (Y1; θ )

dθ
+

n∑
j=2

d log f (Y j | Y1, . . . , Y j−1; θ )

dθ
=

n∑
j=1

g j (Y ; θ ).

Here W j (θ ) ≡ 1, so the unweighted score is optimal in finite samples. In the ergodic
case, Taylor series arguments establish the usual properties of maximum likelihood
estimators and likelihood ratio statistics, subject to regularity conditions like those
needed for independent data.

Exercises 7.2

1 Show that if an estimating function undergoes a smooth 1–1 reparametrization by writing
g(y; θ ) = g{y; θ (ψ)} = g′(y; ψ), then θ̃ = θ (ψ̃). Establish also that (7.18) is unchanged.

2 Show that the sample median of a continuous density solves (7.15) with H (u) is the Heaviside
function.

g(y; θ ) = H (y − θ ) − H (θ − y),
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giving g(Y ; θ ) = ∑{I (θ ≤ Y j ) − I (Y j ≤ θ )}, a descending staircase, with a unique so-
lution only when n is odd. Find (7.18). Surprised?

3 Find the form of estimating function for an exponential family model.

4 To verify (7.17), show that the numerator and denominator in the first ratio may be written
as n1/2εn and nζ + n1/2ηn , where ζ �= 0 and εn and ηn are Op(1) random variables. Deduce
that the ratio is n−1/2εnζ

−1(1 − n−1/2ηnζ
−1 + · · ·), and hence find the desired result.

5 Reread the proof of the Cramér–Rao lower bound, and then establish (7.19).

6 To establish (7.20), let C and G denote the p × p matrix E{−∂g(Y ; θ )T/∂θ} and the p × 1
vector g(Y ; θ ), note that C = cov{G, U (θ )} and, assuming that C is invertible, compute
the variance matrix of C−1G − I (θ )−1U (θ ).

7 Let Fν represent the gamma distribution with unit mean and shape parameter ν. Investigate
how the quantity t(Fν) determined by the Huber estimating function gc(y; θ ) depends on
c and ν.

8 To establish (7.24), note that (7.18) depends on

E

{
n∑

j=1

w2
j E j−1

(
G2

j

)}
, E

{
n∑

j=1

w2
j E j−1

(
dG j

dθ

)}
,

where E j−1 denotes expectation conditional on Y1, . . . , Y j−1 and G j = g j (Y ; θ ). Call the
sums here A2 and B, so that (7.18) has inverse {E(B)}2/E(A2).
(a) Use the fact that E{(B/A − cA)2} ≥ 0 to show that E(B)2/E(A2) ≤ E(B2/A2).
(b) Deduce that E(B2/A2) is maximized by (7.24), and show that this choice gives
E(B)2/E(A2) = E(B2/A2).
(c) Hence show that (7.18) is minimized among the class of estimating functions∑

w j (θ )g j (Y ; θ ) by taking (7.24).
(Godambe, 1985)

9 Find the optimal estimating function based on dependent data Y1, . . . , Yn with g j (Y ; θ ) =
Y j − θY j−1 and var{g j (Y ; θ ) | Y1, . . . , Y j−1} = σ 2. Derive also the estimator θ̃ . Find the
maximum likelihood estimator of θ when the conditional density of Y j given the past is
N (θy j−1, σ

2). Discuss.

7.3 Hypothesis Tests

7.3.1 Significance levels

A scientific theory or hypothesis leads to assertions that are testable using empirical
data. Such data may discredit the hypothesis, as when the Michelson–Morley exper-
iment demolished the nineteenth-century notion of an aether in which the earth and
planets move, or they may lead to elaboration or development of it, just as quantum
theory supercedes Newtonian mechanics but does not make Newton’s laws of mo-
tion useless for daily life. One way to investigate the extent to which an assertion is
supported by the data Y is to choose a test statistic, T = t(Y ), large values of which
cast doubt on the assertion and hence on the underlying theory. This theory, the null
hypothesis H0, places restrictions on the distribution of Y and is used to calculate a
significance level or P-value

pobs = Pr0(T ≥ tobs), (7.25)
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where tobs is the value of T actually observed. A distribution computed under the
assumption that H0 is true is called a null distribution, and then we use Pr0, E0, . . .

to indicate probability, expectation and so forth. Small values of pobs correspond to
values tobs unlikely to arise under H0, and signal that theory and data are inconsistent.
The rationale for calculating the probability that T ≥ tobs in (7.25) is that any value t ′ >

tobs would cast even greater doubt on H0. A hypothesis that completely determines
the distribution of Y is called simple; otherwise it is composite.

If there is a precise idea what situation will hold if the null hypothesis is false,
then there is a clearly specified alternative hypothesis, H1, and we can choose a test
statistic that has high probability of detecting departures from H0 in the direction of
H1. Otherwise the alternative may be very vague. In either case calculation of (7.25)
involves only H0.

For many standard tests the null distribution of T is tabulated, available in statisti-
cal packages, or readily approximated. If not, (7.25) can be estimated by generating
R independent sets of data Y ∗

r from the null distribution of Y , calculating the corre-
sponding values T ∗

r = t(Y ∗
r ), and then setting

p̂obs = 1 + ∑R
r=1 I (T ∗

r ≥ tobs)

1 + R
; (7.26)

the added 1s here arise because under H0 the original value tobs is a realization
of T and trivially tobs ≥ tobs. The indicators I (T ∗

r ≥ tobs) are independent Bernoulli
variables with probability pobs under H0, and this enables a suitable R to be determined
(Exercise 7.3.1).

Example 7.22 (Exponential density) Consider an exponential random sample
Y1, . . . , Yn with parameter λ. We wish to test λ = λ0 against the alternative λ = λ1,
with both λ0 and λ1 known, using the likelihood ratio

T ′ = λn
1 exp

( − λ1
∑

Y j
)

λn
0 exp

( − λ0
∑

Y j
) = exp

{
(λ0 − λ1)

n∑
j=1

Y j + n log(λ1/λ0)

}
.

We declare that doubt is cast on λ0 if T ′ or equivalently (λ0 − λ1)
∑

Y j is large. If
λ1 < λ0, the value of pobs is Pr0(

∑
Y j > tobs), where tobs = ∑

y j . Under the null
hypothesis,

∑
Y j has a gamma distribution with index n and rate λ0, so if λ1 < λ0,

the P-value is

pobs =
∫ ∞

tobs

λn
0un−1

�(n)
e−λ0u du =

∫ ∞

λ0tobs

vn−1

�(n)
e−v dv = Pr(V ≥ λ0tobs),

where V has a gamma distribution with index n; pobs can be calculated exactly because
λ0 and tobs are known. �

Examples of situations with a vague alternative hypothesis are given below.

Interpretation

The significance level may be written as pobs = 1 − F0(tobs), where F0 is the null
distribution function of T , supposed to be continuous. One interpretation of pobs
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stems from the corresponding random variable, P = 1 − F0(T ). For 0 ≤ u ≤ 1, its
null distribution is

Pr0 {1 − F0(T ) ≤ u} = Pr0
{

F−1
0 (1 − u) ≤ T

}
= 1 − F0

{
F−1

0 (1 − u)
} = u,

that is, uniform on the unit interval. Hence if we regard the observed tobs as being just
decisive evidence against H0, then this is equivalent to following a procedure which
rejects H0 with error rate pobs: if we tested many different hypotheses and rejected
them all, the same tobs having arisen in each case, then a proportion pobs of our
decisions would be incorrect. This interpretation applies exactly if F0 is known, and
the test is then called exact; otherwise it will typically apply only as an approximation
in large samples.

A common misinterpretation of the P-value is as the probability that the null hy-
pothesis is true. This cannot be the case, because alternative hypotheses play no
direct role in its calculation. Bayesian P-values account for alternatives and do have
this more direct interpretation; see Section 11.2.2.

Hypothesis testing is very useful in certain contexts but has important limitations.
A first is that statistical significance of a result may be quite different from its practical
importance, because even a very small pobs may correspond to an uninteresting depar-
ture from the null hypothesis. For example, a test for lack of fit of a parametric model
may be highly significant even though the model is satisfactory, simply because the
fit is poor only in an unimportant part of the distribution or because the sample size
is so large that no simple parametric model can be expected to fit well. On the other
hand a large value of pobs may arise when effects of real importance are undetectable
because the sample size is too small. Computer models of climate change suggest that
rare weather events may be occuring more frequently, for example, but most daily
temperature series are too short to detect such small changes.

A second limitation is that even a very small P-value may sometimes indicate
more support for the null than for an alternative hypothesis. A simple test of the
null hypothesis µ = 0 based on a single N (µ, 1) random variable with value y = 3
against the alternative hypothesis µ = 20 has significance level 1 − �(y)

.= 0.001,
but µ = 0 is clearly more plausible than µ = 20.

A third limitation is that a P-value simply gives evidence against the null hypothesis
and does not indicate which of a family of alternatives is best supported by the data.
For this reason the use of confidence intervals for model parameters is generally
preferable, when it is feasible.

Goodness of fit tests

In earlier chapters we used graphs such as probability plots to assess model fit. We
now briefly discuss how to supplement such informal procedures with more formal
ones. Suppose initially that the null hypothesis is that a random sample Y1, . . . , Yn

has issued from a known continuous distribution F(y). Then we can compare F with
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the empirical distribution function

F̂(y) = n−1
n∑

j=1

I (Y j ≤ y),

whose mean and variance are F(y) and F(y){1 − F(y)}/n under H0.
Standard measures of distance between F and F̂ include the Kolmogorov–Smirnov,

Cramér–von Mises and Anderson–Darling statistics

sup
y

|F̂(y) − F(y)| = max
j

{
j/n − U( j), U( j) − ( j − 1)/n

}
,

∫ ∞

−∞
{F̂(y) − F(y)}2 d F(y) = 1

12n2
+ 1

n

n∑
j=1

(
U( j) − 2 j − 1

2n

)2

,

n
∫ ∞

−∞

{F̂(y) − F(y)}2

F(y){1 − F(y)
d F(y) = −n −

n∑
j=1

2 j − 1

n
log

{
U( j)(1 − U(n+1− j))

}
,

where the U j = F(Y j ) have a uniform null distribution and the U( j) are their or-
der statistics; see Section 2.3. The first of these is simple and widely used, while
the second and third put more weight on the tails; by allowing for the dependence
of the variance of F̂(y) on y, the third makes it easier to detect lack of fit for ex-
treme values of y. All three statistics converge rapidly to their limiting distribu-
tions as n → ∞, but simulation can be used to estimate P-values if tables are not at
hand. The Kolmogorov–Smirnov statistic has 0.95 and 0.99 quantiles 1.358n−1/2 and
1.628n−1/2 for large n; significance is declared if the empirical distribution function of
the U( j) passes confidence bands defined in terms of these quantiles. See Figures 6.14
and 6.20.

Example 7.23 (Danish fire data) In Section 6.5.1 we saw that the rescaled times
u1 = t1/t0, . . . , un = tn/t0 of the events of a homogeneous Poisson process observed
on [0, t0] may be regarded as the order statistics of n uniform random variables. In this
case, therefore, we can take F̂(y) = n−1 ∑

H (y − u j ) and F(y) = y, for 0 ≤ y ≤ 1, H (u) is the Heaviside
function.and use the above tests to assess the adequacy of the Poisson process.

The lower right panel of Figure 6.14 shows F̂(y) for the 254 largest Danish fire
claims, for which the Kolmogorov–Smirnov, Cramér–von Mises, and Anderson–
Darling statistics equal 0.095, 0.002, and 2.718 respectively. To assess the significance
of these values we computed the three statistics for 10,000 samples of 254 independent
variables generated from the U (0, 1) distribution. Just 207 of the simulated
Kolmogorov–Smirnov statistics exceeded the observed value, giving significance
level 0.0208. The solid diagonal lines show the regions within which F̂ would have
to fall in order for significance not to be achieved at the 0.05 and 0.01 levels, the inner
0.05 lines are breached but the outer 0.01 ones are not, consistent with significance
at the 0.02 level. The significance levels for the Cramér–von Mises and Anderson–
Darling statistics were 0.0348 and 0.0397, so the rate function for the claims does
seem to vary. This illustrates one drawback of generic tests of fit such as these, which
can suggest that the model is inadequate, but not how. �
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Figure 7.5 Analysis of
maize data. Left:
empirical distribution
function for height
differences, with fitted
normal distribution (dots).
Right: null density of
Anderson–Darling
statistic T for normal
samples of size n = 15
with location and scale
estimated. The shaded part
of the histogram shows
values of T ∗ in excess of
the observed value tobs.

This example is atypical, because F generally depends on unknown parameters.
An exact test may be available anyway, for example using the maximal invariant of
a group transformation model. An observation from a location-scale model may be
written as Y = η + τε, where ε has known distribution G, and F(y) = G{(y − η)/τ }.
Most useful estimators are equivariant, with

η̂(Y1, . . . , Yn) = η + τh1(ε1, . . . , εn), τ̂ (Y1, . . . , Yn) = τh2(ε1, . . . , εn).

Then the joint distribution of the residuals

Y j − η̂

τ̂
= η + τε j − η + τh1(ε1, . . . , εn)

τh2(ε1, . . . , εn)
= ε j − h1(ε1, . . . , εn)

h2(ε1, . . . , εn)
, j = 1, . . . , n,

depends only on G, h1, and h2 and not on the parameters. Thus the form of G
may be tested by comparing the empirical and fitted distribution functions F̂(y) and
G{(y − η̂)/̂τ }.
Example 7.24 (Maize data) Under the matched pair model for the maize data of
Table 1.1, the pairs of plants are independent and their height differences Y j have
mean η and variances τ = 2σ 2. Our discussion in Section 3.2.2 presupposed that the
Y j are normally distributed, but the left panel of Figure 7.5 suggests that this may not
be the case. To assess this we take η̂ and τ̂ 2 to be the sample average and variance, and
compute the Anderson–Darling statistic based on the (Y j − η̂)/̂τ . Its value is 0.618,
with significance level p̂obs = 0.0874 computed from the 10,000 simulations shown
in the right panel of the figure. The assumption of normality seems reasonable. �

Similar ideas can be applied to other group transformation models. Among other
goodness of fit tests are those based on the chi-squared statistics described in Sec-
tion 4.5.3.

One- and two-sided tests

Often large and small values of T suggest different departures from the null hypothesis.
Large values of goodness of fit statistics, for instance, imply that the model fits badly,
but extremely small values might in some circumstances lead one to suspect that the
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data had been faked, the fit being too good to be true. With departures of two types it
may be appropriate to use T 2 or equivalently |T | as the test statistic, with significance
level Pr0(T 2 ≥ t2

obs). This is not useful in a case like Figure 7.5, however, owing to
the asymmetry of the null density of T , and then we regard the test as having two
possible implications, measured by

p+
obs = Pr0(T ≥ tobs), p−

obs = Pr0(T ≤ tobs),

corresponding to one-sided tests. Note that p+
obs + p−

obs = 1 + Pr0(T = tobs), which
equals unity if the distribution of T is continuous. Let P+ and P− represent the random
variables corresponding to these two-sided significance levels. If both large and small
values of T may be regarded as evidence against H0 we use P = min(P+, P−) as the
overall test statistic, and take Pr0{P ≤ min(p+

obs, p−
obs)} as the significance level. When

the test is exact and T is continuous the density of P is uniform on the interval (0, 1
2 ),

and the two-sided significance level equals 2 min(p+
obs, p−

obs). This is the P-value for
a two-sided test.

Example 7.25 (Student t test) Let Y1, . . . , Yn be a normal random sample with
mean µ and variance σ 2. Suppose that the null hypothesis is µ = µ0, and the two-
sided alternative is that µ takes any other real value, with no restriction on σ 2 under
either hypothesis. Both hypotheses are composite.

The likelihood ratio statistic is (Example 4.31)

Wp(µ0) = 2
{

max
µ,σ 2

�(µ, σ 2) − max
σ 2

�(µ0, σ
2)

} = n log

{
1 + T (µ0)2

n − 1

}
,

where the null distribution of T (µ0) = (Y − µ0)/(S2/n)1/2 is tn−1. As Wp(µ0) is a
monotone function of T (µ0)2, the significance level is

pobs = Pr0{Wp(µ0) ≥ wobs} = Pr0
{
T 2(µ0) ≥ t2

obs

}
,

where wobs and tobs are the observed values of Wp(µ0) and T (µ0). Large values of
wobs arise when tobs is distant from zero, suggesting that the population mean is
not µ0.

The results of Section 4.5 tell us that the null distribution of Wp(µ0) is approxi-
mately χ2

1 . We could use this to approximate to pobs, but an exact value is available,
because

pobs = Pr0
{
T (µ0)2 ≥ t2

obs

} = Pr
(
T 2 ≥ t2

obs

) = 2Pr(T ≥ |tobs|), (7.27)

where T ∼ tn−1. This is the P-value for the two-sided test.
If we suspect that µ > µ0 but not that µ < µ0, then large positive values of T (µ0)

will cast doubt on H0, and the corresponding one-sided P-value is

p+
obs = Pr0{T (µ0) ≥ tobs} = Pr(T ≥ tobs),

while p−
obs = Pr(T ≤ tobs) measures evidence against H0 in the direction µ < µ0.

These differ slightly from the P-values for the one-sided likelihood ratio tests. The
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two-sided significance level

2 min(p−
obs, p+

obs) = 2Pr(|T | ≥ |tobs|)
equals (7.27). �

Nonparametric tests

The examples above concern tests in parametric models, where hypotheses typically
determine values of the parameters, the form of the density being supposed known.
Nonparametric tests presuppose that the data are independently sampled from an
unspecified underlying model.

Example 7.26 (Sign test) A random sample Y1, . . . , Yn arises from an unknown
distribution F . The null hypothesis H0 asserts that F has median µ equal to µ0, while
the alternative is that µ > µ0. Both hypotheses are composite, but neither specifies a
parametric model, and we argue as follows.

If the median is µ0, the probability that an observation Y falls on either side of µ0

is 1/2, and if the median is greater than µ0, then Pr(Y > µ0) > 1/2. This suggests
that we base a test on S = ∑n

j=1 I (Y j > µ0), large values of which cast doubt on
H0. Under the null hypothesis, S has a binomial distribution with denominator n and
probability 1/2, so its mean and variance are n/2 and n/4. Hence the P-value is

pobs = Pr0(S ≥ sobs) =
n∑

r=sobs

(
n

r

)
1

2n

.= 1 − �

{
2(sobs − n/2)

n1/2

}
,

by normal approximation to the binomial null distribution of S. �

Example 7.27 (Wilcoxon signed-rank test) A random sample Y1, . . . , Yn has been
drawn from a density that is symmetric about µ but otherwise unspecified. We wish
to test the hypothesis that µ = 0. The sign test is one possibility, but as it does not
use the symmetry of the density, a better test can be found.

Let R j denote the rank of |Y j | among |Y1|, . . . , |Yn|, and let Z j = sign(Y j ). The
Wilcoxon signed-rank statistic is W = ∑

j Z j R j . Large positive values of W suggest
µ > 0, while large negative values suggest µ < 0.

To find the null mean and variance of W , note that when µ = 0 the ranks, R j , are
independent of the signs, Z j , by symmetry about zero, and that

var0(Z j ) = (−1)2 1

2
+ 12 1

2
= 1, E0(Z j R j ) = n−1

n∑
k=1

{
k

1

2
+ (−k)

1

2

}
= 0,

implying that E0(W ) = 0. To find var0(W ), we argue conditionally on the ranks
R1, . . . , Rn , finding

var0

(
n∑

j=1

Z j R j

∣∣∣∣∣ R1, . . . , Rn

)
=

n∑
j=1

R2
j var0(Z j ) =

n∑
j=1

R2
j =

n∑
j=1

j2,

and this equals n(n + 1)(2n + 1)/6. Thus W has mean zero and variance n(n + 1)
(2n + 1)/6 under the null hypothesis, and as its distribution is then symmetric, a
normal approximation to the exact P-value may be useful. �
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Table 7.2 Analysis of
differences for maize data.Difference d 49 −67 8 16 6 23 28 41 14 29 56 24 75 60 −48

Sign z + − + + + + + + + + + + + + −
Rank r 11 14 2 4 1 5 7 9 3 8 12 6 15 13 10

Example 7.28 (Maize data) Under the model for the maize data of Table 1.1,
the height differences between cross- and self-fertilized plants may be written as
D j = η + σ (ε2 j − ε1 j ), where the εi j are independent random variables with mean
zero and some common variance. If the εi j have the same distribution, the D j will be
symmetically distributed around η, while η = 0 under the null hypothesis H0 of no dif-
ference between the effects of the different types of fertilization. If cross-fertilization
increases height, then η > 0, as is suggested by the observed d j in Table 7.2.

If the D j were normally distributed, we would perform a Student t test based on
the average and variance of the observed differences, d = 20.95 and s2 = 1424.6,
giving tobs = n1/2(d − 0)/s = 2.15; see Example 7.25. Under H0 this is the realized
value of a t14 variable, so pobs = Pr(T ≥ tobs) = 0.025, where T ∼ t14. Though low,
this is not overwhelming evidence against the null hypothesis.

If we wish to avoid the assumption of normality, a nonparametric test is preferable.
Under the null hypothesis, the D j come from density symmetric about zero but not
necessarily normal. Thirteen of them are positive, so the sign test statistic takes value
sobs = 13, with exact significance level

Pr0(S ≥ sobs) = 1

215

15∑
r=13

(
15

r

)
= 1

215
(1 + 15 + 105) = 0.0037;

normal approximation gives 1 − �{2(13 − 15/2)/
√

15} = 0.0023. Both give much
stronger evidence against H0 than does the t test.

Table 7.2 shows the quantities needed for the Wilcoxon signed-rank test. The
observed value of W = ∑

Z j R j is 72, and its null distribution when n = 15 is ap-
proximately normal with mean zero and variance 1240. Therefore the P-value is
roughly

pobs = Pr0(W ≥ 57)
.= 1 − �

(
57/12401/2

) = 0.053,

to be compared with the values for the t and sign tests. �

We shall see in Section 7.3.2 that likelihood considerations lead to tests that are
‘best’ in a certain sense when there is a parametric model. But if the model is not
credible, nonparametric tests that make make fewer assumptions may be preferable,
and often they perform nearly as well as parametric tests. Some situations are so ill-
specified that parametric models are inappropriate, and the independence assumptions
that underlie most nonparametric tests are doubtful also. Then only rough-and-ready
methods can be applied and conclusions are correspondingly weaker.
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7.3.2 Comparison of tests

We now consider how to compare different test statistics for the same problem. Having
chosen a test statistic T = t(Y ) and a probability α, suppose we decide to reject the
null hypothesis H0 in favour of an alternative H1 at level α if and only if the data Y
fall into the subset Yα = {y : t(y) ≥ tα} of the sample space, where tα is chosen so
that

Pr0(T ≥ tα) = Pr0 (Y ∈ Yα) = α.

The size of the test is the probability α of rejecting H0 when it is actually true, and
Yα is called a size α critical region. This construction implies that as α decreases,
tα increases and that Yα1 ⊂ Yα2 whenever α1 ≤ α2, as is essential if we are to avoid
imbecilities such as ‘H0 is rejected when α = 0.01 but not when α = 0.05’. Choosing
a test statistic and values of tα is equivalent to specifying a system of critical regions
for the different values of α, so we can discuss the test in terms of its critical regions
if convenient.

By using a fixed α we have moved from regarding the significance level as a measure
of evidence against H0 to using the test to decide which of the two hypotheses is better
supported by the data. Two wrong decisions are then possible, committing a Type I
error by rejecting H0 when it is true, or a Type II error by accepting H0 when H1 is
true. The power of the test is the probability of detecting that H0 is false,Pr1, E1 and so forth

indicate probability,
expectation and so forth
computed under H1. Pr1(T ≥ tα) = Pr1(Y ∈ Yα).

Example 7.29 (Normal mean) Let Y1, . . . , Yn be a random sample from the
N (µ, σ 2) distribution with known σ 2, and suppose that H0 specifies that µ = µ0,
whereas µ > µ0 under H1. Suppose we decide to reject H0 if Y exceeds some con-
stant tα . Under H0, Y ∼ N (µ0, σ

2/n), so this test has size

Pr0(Y ≥ tα) = Pr0

{
n1/2 (Y − µ0)

σ
≥ n1/2 (tα − µ0)

σ

}

= 1 − �

{
n1/2(tα − µ0)

σ

}
= �

{
n1/2(µ0 − tα)

σ

}
,

using the symmetry of the normal distribution. For a test of size α, we must choose
tα such thatzα is the α quantile of the

N (0, 1) distribution.

n1/2(µ0 − tα)

σ
= zα,

giving tα = µ0 − n−1/2σ zα . Thus the size α critical region is

Yα = {
(y1, . . . , yn) : y ≥ µ0 − n−1/2σ zα

}
,

and we can decide if Y falls into this because σ 2 and µ0 are known under H0.
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whether the mean of a
N (µ, σ 2) random sample
of size n equals µ0 against
the alternative µ = µ1, as
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The test size is α = 0.05.
The solid curve is the
power function for a test
of µ1 > µ0 based on y,
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power function for the
sign test. Both critical
regions are of form
y > tα . The dotted curve
is the power function for y
when the critical region is
y < tα .

If in fact µ equals µ1 > µ0, then Y ∼ N (µ1, σ
2/n), and the test has power

Pr1

(
Y ≥ µ0 − σ zα

n1/2

)
= Pr1

(
n1/2 (Y − µ1)

σ
≥ n1/2 (µ0 − µ1)

σ
− zα

)

= 1 − �(−δ − zα) = �(zα + δ), (7.28)

where δ = n1/2(µ1 − µ0)/σ measures the distance between the means under the two
hypotheses, standardized by var(Y )1/2 = σ/n1/2. The power is plotted in Figure 7.6,
with α = 0.05. For fixed n, σ , and µ0, it increases with µ1. When σ , µ0, and µ1 are
fixed, the power increases with n.

Power can be used to choose the sample size when planning an experiment. Suppose
we desire to perform a test of size α and that power of at least β is sought for detecting
whether µ1 = µ0 + σγ , where γ is known. Then we require �(zα + n1/2γ ) ≥ β and
hence zα + n1/2γ ≥ �−1(β) or equivalently n ≥ (zβ − zα)2/γ 2.

If, for instance, µ0 = 0 and σ = 1, and we desire to detect whether a test of size
0.05 could detect µ1 = 0.5 with power 0.8 or more, then γ = 0.5, zα = −1.645,
zβ = 0.842 and hence we would need n ≥ 24.7

.= 25. �

Example 7.30 (Sign test) Example 7.26 describes a test for the median of a dis-
tribution to equal a specified value µ0, using S = ∑n

j=1 I (Y j > µ0) as test statistic.
Under H0 the distribution of S is binomial, and if a normal approximation applies, a
size α critical region is determined by the value sα such that Pr0(S ≥ sα) = α, giving
sα = n/2 − n1/2zα/2.

For an illustrative power calculation for this test, let Y1, . . . , Yn
iid∼ N (µ, σ 2), with

null hypothesis µ = µ0 and alternative H1 that µ = µ1 > µ0. The normal density is
symmetric, so its mean equals its median. Now

Pr1(Y j ≥ µ0) = Pr1{(Y j − µ1)/σ ≥ (µ0 − µ1)/σ } = �
(
n−1/2δ

)
,

where again δ = n1/2(µ1 − µ0)/σ . Under H1, therefore, S is approximately normal
with mean n�(n−1/2δ) and variance n�(n−1/2δ){1 − �(n−1/2δ)}, and the probability
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that H0 is rejected is

Pr1(S ≥ sα) = Pr1
(
S ≥ n/2 − n1/2zα/2

)
.= �

{
n�

(
n−1/2δ

) − n/2 + n1/2zα/2[
n�

(
n−1/2δ

) {
1 − �

(
n−1/2δ

)}]1/2

}
,

using the normal approximation to the binomial distribution. For n large, �(n−1/2δ)
.=

1
2 + n−1/2δφ(0) = 1

2 + (2πn)−1/2δ, and after simplifying,

Pr1(S ≥ sα)
.= �

{
zα + δ(2/π )1/2

}
. (7.29)

As (2/π )1/2 < 1, the sign test has lower power than does the test using Y in Exam-
ple 7.29. That test has power �(zα + δ), so it requires smaller samples to attain a
given power than does the test based on S. Figure 7.6 compares the power functions
with α = 0.05. Sign tests have rather low power, and better tests are almost always
possible. �

Although power is important in planning an experiment, in giving a basis for
choosing the sample size required, and in assessing the size of effects that could
reasonably be detected from a given set of data, it plays no role in conducting the test
itself, which simply requires a tail probability computed under the null distribution.

Neyman–Pearson lemma
Egon Sharpe Pearson
(1895–1980), the second
child of Karl Pearson, was
very unlike his combative
father. After school in
Oxford and Winchester
his studies in Cambridge
were interrupted by illness
and the 1914–18 war. He
took his degree in 1920
and began work at
University College
London, where he stayed
the rest of his life. Apart
from broad contributions
to statistical theory, he
pioneered industrial
quality control and was
editor of the statistical
journal Biometrika from
1936–1966.

Other things being equal, a test with high power is preferable to one with low power.
But in order for a comparison of two tests to be fair, they must compete on an equal
footing. This leads us to compare them in terms of their power for fixed size. That is,
out of all possible tests with a given size, we aim to find the one with highest power.

Let f0(y) and f1(y) denote the probability densities of Y under the null and alter-
native hypotheses. Then the Neyman–Pearson lemma states that the most powerful
test of size α has critical region

Y =
{

y :
f1(y)

f0(y)
≥ tα

}
, tα ≥ 0,

determined by the likelihood ratio, if such a region exists. To explain this, suppose
that such a region does exist and let Y ′ be any other critical region of size α or less.
Then for any density f , ∫

Y
f (y) dy −

∫
Y ′

f (y) dy,

equalsY is the complement of Y
in the sample space. ∫

Y∩Y ′
f (y) dy +

∫
Y∩Y ′

f (y) dy −
∫
Y ′∩Y

f (y) dy −
∫
Y ′∩Y

f (y) dy,

and this is ∫
Y∩Y ′

f (y) dy −
∫
Y ′∩Y

f (y) dy. (7.30)
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If f = f0, this expression is non-negative, because Y ′ has size at most that of Y .
Suppose that f = f1. If y ∈ Y , then tα f0(y) > f1(y), while f1(y) ≥ tα f0(y) if y ∈ Y .
Hence when f = f1, (7.30) is no smaller than

tα

{∫
Y∩Y ′

f0(y) dy −
∫
Y ′∩Y

f0(y) dy

}
≥ 0.

Thus the power of Y is at least that of Y ′, and the result is established.
It may happen that H0 is simple and the alternative is composite, but that the

likelihood ratio critical region is most powerful for each component of the alternative
hypothesis. Then Y is said to be uniformly most powerful.

Example 7.31 (Exponential family) Consider testing the null hypothesis θ = θ0

against the one-sided alternative θ = θ1 > θ0 based on a random sample Y1, . . . , Yn

from the one-parameter exponential family

f (y; θ ) = exp {s(y)θ − κ(θ ) + c(y)} .

The likelihood ratio is

exp

{
(θ1 − θ0)

n∑
j=1

s(Y j ) + κ(θ0) − κ(θ1)

}
,

so for each θ1 > θ0 the most powerful size α critical region is

Yα =
{

(y1, . . . , yn) :
∑

s(y j ) ≥ t ′
α

}
,

if a t ′
α can be found such that Pr0(Y ∈ Yα) = α. This test is therefore uniformly most

powerful against this one-sided alternative. When θ1 < θ0, the same argument shows
that a uniformly most powerful critical region is obtained by replacing ≥ by ≤ in the
above definition of Yα .

A special case of this is the exponential density of Example 7.22, where the uni-
formly most powerful critical region of size α against one-sided alternatives λ1 < λ0

is Yα = {(y1, . . . , yn) :
∑

y j > t ′
α}, with λ0t ′

α the (1 − α) quantile of the gamma dis-
tribution with unit scale and shape parameter n.

In discrete models uniformly most powerful tests of every size do not exist. In the
Poisson case, for example, the null distribution of

∑
s(Y j ) = ∑

Y j is Poisson with
mean nθ0, so Yα has possible sizes

Pr0

(
n∑

j=1

Y j ≥ t ′
α

)
=

∞∑
u=t ′

α

(nθ0)u

u!
exp(−nθ0), tα = 0, 1, . . . .

Setting nθ0 = 5, for example, gives sizes 1.00, 0.993, . . . , 0.068, 0.032, . . . , so a
likelihood ratio critical region of size 0.05 does not exist. This does not affect the
computation of a significance level, whose value is not pre-specified. �

This last example shows that construction of a likelihood ratio critical region of
exact size α may be impossible. If so, a randomized test may be used to obtain the
exact size required. Suppose that critical regions of size α1 and α2 are available,
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where α1 < α < α2. Then if I is a Bernoulli variable with success probability p =
(α2 − α)/(α2 − α1), the test with region

Y =
{Yα1 , I = 1,
Yα2 , I = 0

has size α. In the previous example we might take α = 0.05, α1 = 0.032 and α2 =
0.068, giving p = 0.5. Then each time the test was conducted, we would flip a coin
to decide whether to use Yα1 or Yα2 as the critical region. Although this trick is useful
in theoretical calculations, it introduces a random element unrelated to the data. In
applications it is preferable to compute a significance level and weigh the evidence
accordingly.

Example 7.32 (Normal mean) In Example 7.29 the likelihood ratio for testing
µ = µ0 against µ = µ1 with σ known is

f1(Y )

f0(Y )
= (2πσ 2)−n/2 exp

{ − 1
2σ 2

∑n
j=1(Y j − µ1)2

}
(2πσ 2)−n/2 exp

{ − 1
2σ 2

∑n
j=1(Y j − µ0)2

}

= exp

[
1

2σ 2

{
2nY (µ1 − µ0) − µ2

1 + µ2
0

}]
.

If µ1 > µ0, this is monotone increasing in Y for any fixed µ1 and µ0, and so the
critical region rejects H0 when Y ≥ t ′

α , with t ′
α chosen to give a test of size α. Hence

the size α critical region is

Y+
α = {

(y1, . . . , yn) : n1/2(y − µ0)/σ ≥ z1−α

}
;

this is most powerful for any µ1 > µ0 and so is uniformly most powerful. The region

Y−
α = {

(y1, . . . , yn) : n1/2(y − µ0)/σ ≤ zα

}
is likewise uniformly most powerful against alternatives µ1 < µ0.

Suppose that we wish to test the same null hypothesis against the two-sided alter-
native that µ �= µ0. The null distribution of Y is symmetric about µ0, so it is natural
to use

Yα = {
(y1, . . . , yn) : n1/2|y − µ0|/σ ≥ zα/2

}
. (7.31)

This critical region has size α but is not uniformly most powerful against the two-sided
alternative. When µ1 > µ0,Y+

α has size α and has higher power, while when µ1 < µ0,
Y−

α has size α and has higher power. The power of a uniformly most powerful two-
sided critical region would equal those of Y+

α for alternatives µ1 > µ0 and of Y−
α for

µ1 < µ0, but its size would have to be α, whereas Y−
α ∪ Y+

α has size 2α. In fact no
uniformly most powerful test exists for this two-sided alternative. This difficulty can
also arise in other contexts. �

This last example highlights a problem with two-sided tests. One approach to
dealing with it is to say that a critical region Y is unbiased if

Pr1(Y ∈ Y) ≥ Pr0(Y ∈ Y)
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for all alternative hypotheses under consideration. This implies that the probability
of rejecting H0 is higher under any H1 than under H0, and would rule out using the
critical regionsY+

α andY−
α for two-sided tests in the previous example. If µ1 < µ0, for

example, then Pr1(Y ∈ Y+
α ) = �(zα + δ) < α because δ < 0, and hence Y+

α would
be biased. There is a well-developed mathematical theory of such tests, but they are of
little practical interest. To see why, suppose that the two-sided unbiased regionYα had
been used in the previous example, and that doubt had been cast on the null hypothesis
µ = µ0. The test being two-sided, it would then be natural to ask whether the data
suggest that µ > µ0 or µ < µ0, leading to use of one-sided regions such as Y−

α and
Y+

α . It seems more sensible to perform two one-sided tests and obtain an overall
P-value by combining the individual significance levels, as outlined in Section 7.3.1.
This amounts to using two one-sided tests each of size α, and in general this is not
the same as an unbiased test of size 2α.

Local power

We now consider how the likelihood ratio behaves under a local alternative, when the
null and alternative models f0(y) = f (y; θ0) and f1(y) = f (y; θ1) depend on a scalar
parameter θ , and θ1 = θ0 + ε for some small ε. Then

f1(Y )

f0(Y )
= f (Y ; θ0 + ε)

f (Y ; θ0)
= 1

f (Y ; θ0)

{
f (Y ; θ0) + ε

d f (Y ; θ0)

dθ0
+ · · ·

}

.= 1 + εU (θ0),

where U (θ ) = d log f (Y ; θ )/dθ is the score statistic. As ε → 0, this expansion shows
that the likelihood ratio and score statistics are equivalent, so the Neyman–Pearson
lemma implies that a locally most powerful test against H0 may be based on large
values of the score statistic. This is a score test.

In large samples from regular models the null distribution of U (θ0) is approximately
normal with mean zero and variance equal to the Fisher information I (θ0), so a locally
most powerful critical region has form

{
(y1, . . . , yn) : u(θ0) ≥ I (θ0)1/2z1−α

}
.

Under the alternative hypothesis, U (θ0) has mean∫
u(θ0) f (y; θ0 + ε) dy =

∫
u(θ0) { f (y; θ0) + εu(θ0) f (y; θ0) + · · ·} dy

.= ε

∫
u(θ0)2 f (y; θ0) dy = ε I (θ0),

while its variance is I (θ0) + O(nε). Hence the local power of the score test is

Pr1
{
U (θ0) ≥ I (θ0)1/2z1−α

} .= � (zα + δ) ,

analogous to (7.28), with δ = I (θ0)1/2(θ1 − θ0) = n1/2(θ1 − θ0)/ i(θ0)−1/2 playing the
role of n1/2(µ1 − µ0)/σ in Example 7.29. Thus the power of the test is increased when
the null Fisher information per observation i(θ0) is large, when n is large, or when θ1

is distant from θ0.
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Example 7.33 (Gamma density) Suppose that Y1, . . . , Yn is a random sample from
the gamma density

f (y; µ, ν) = νν yν−1

�(ν)µν
exp(−νy/µ), y > 0, ν, µ > 0.

We consider testing if ν = 1, that is, that the density is in fact exponential. Initially we
suppose that µ is known. The log likelihood contribution from a single observation
is ν log ν + (ν − 1) log y − ν log µ − νy/µ − log �(ν), so

U (ν) =
n∑

j=1

{
log

(
Y j

µ

)
− Y j

µ
+ 1 − log ν − d log �(ν)

dν

}
,

I (ν) = n

{
d2 log �(ν)

dν2
− 1

ν

}
.

An asymptotic test of ν = 1 therefore consists in comparing U (1)/I (1)1/2 with the
standard normal distribution.

In practice an unknown µ is replaced by its maximum likelihood estimator under the
null hypothesis, µ̂ = Y . Then the large-sample distribution of the score is given by
(4.48) with ψ = ν and λ = µ. In this case the off-diagonal element of the Fisher
information matrix is Iλψ = E(−∂2�/∂µ∂ν) = 0, so the test involves replacing
µ by Y . �

7.3.3 Composite null hypotheses

Thus far we have supposed that the null hypothesis is simple, that is, it fully specifies
the null distribution of the test statistic. An exact significance level, perhaps esti-
mated by simulation, is then in principle available. In practice exact tests are usually
unobtainable because the null distribution of Y depends on unknowns. In the most
common setting there is a nuisance parameter λ and a parameter of interest ψ , and
the null hypothesis imposes the constraint ψ = ψ0 but puts no restriction on λ. Most
of the tests in preceding chapters were of this sort. The P-value may then be written

Pr0(T ≥ tobs) = Pr(T ≥ tobs; ψ0, λ) =
∫

{y:t(y)≥tobs}
f (y; ψ0, λ) dy. (7.32)

In general this depends on λ, perhaps strongly, but sometimes a critical region Yα of
size α can be found such that

Pr(Y ∈ Yα; ψ0, λ) = α for all λ.

Such a Yα is called a similar region; it is similar to the sample space, which satisfies
this equation with α = 1. A test whose critical regions are similar is called a similar
test and is clearly desirable if it can be found. The two main approaches to finding
exact tests are use of conditioning and appeal to invariance. Before discussing these,
we outline approximate ways to reduce the dependence of (7.32) on λ.

One simple idea is to replace λ by λ̂0, the maximum likelihood estimator of λ when
ψ = ψ0, but this is generally unsatisfactory because the result still depends on λ, albeit
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to a lower order. It is better to base the test on a pivot, exact or approximate. We have
already extensively used an important example of this, the likelihood ratio statistic
Wp(ψ0) = 2{�(ψ̂, λ̂) − �(ψ0, λ̂0)}. Under regularity conditions its distribution for a
large sample size n is χ2

p, where p is the dimension of ψ , and in fact as cp(α) is the α quantile of
the χ2

p distribution.

Pr{Wp(ψ0) ≤ cp(α); ψ0, λ} = α{1 + O(n−1)} for all λ, (7.33)

tests based on Wp(ψ0) are approximately similar. In continuous models the error in
(7.33) can be reduced by noting that E0{Wp(ψ0)} .= p{1 + b(θ0)/n}, where b(θ0) =
b(ψ0, λ) conveys how much the null mean of Wp(ψ0) differs from its asymptotic
value. Tedious calculations establish that

Pr{Wp(ψ0){1 + b(̂θ0)}−1 ≤ cp(α); ψ0, λ} = α{1 + O(n−2)} for all λ,

where θ̂0 = (ψ0, λ̂0). Thus division of the likelihood ratio statistic to make its mean
closer to p improves the quality of the χ2 approximation to its entire distribution.
Bartlett adjustment of this sort can decrease substantially the error in (7.33), and may Maurice Stevenson

Bartlett (1910–2002)
worked at research
institutes and the
universities of London,
Manchester, and Oxford.
Starting in the mid 1930s,
he made pioneering
contributions to likelihood
inference, to multivariate
analysis and to stochastic
processes, on which he
wrote a highly influential
book.

be valuable if n is small or if the dimension of λ is appreciable.

Conditioning

When there is a minimal sufficient statistic S0 for the unknown λ in a null distribution,
it may be removed by conditioning, giving P-value

Pr0(T ≥ tobs | S0; ψ0) =
∫

{y:t(y)≥tobs}
f (y | s0; ψo) dy,

which is independent of λ by sufficiency of S0. If S0 is boundedly complete, this is
the only way to construct a test statistic with P-values independent of λ. To see why,
let Yα be a critical region of size α for all λ. Then

0 = Pr0(Y ∈ Yα; ψ0, λ) − α = E {I (Y ∈ Yα) − α; ψ0, λ}
= ES0 [E {I (Y ∈ Yα) | S0; ψ0} − α; ψ0, λ] ,

for all λ, and the bounded completeness of S0 implies that

E {I (Y ∈ Yα) | S0; ψ0} = Pr (Y ∈ Yα | S0; ψ0) = α.

Hence similar critical regions must be based on this conditional density.

Example 7.34 (Exponential family) In Section 5.2.3 we saw that conditioning on
the statistic S2 associated with λ in the full exponential family model

f (s1, s2; ψ, λ) = exp
{
sT

1ψ + sT
2λ − κ(ψ, λ)

}
g0(s1, s2),

gives a density independent of λ, namely

f (s1 | s2; ψ) = exp
{
sT

1ψ − κs2 (ψ)
}
gs2 (s1). (7.34)

If a particular value ψ0 of ψ is fixed, then S2 is complete and minimal sufficient for
λ. Hence similar critical regions for testing ψ = ψ0 must be based on (7.34).

Consider two independent Poisson variables with means µ1 and µ2, and sup-
pose that we wish to test the hypothesis µ1 = µ2. We may equivalently set
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µ1 = exp(λ + ψ) and µ2 = exp(λ) with −∞ < ψ, λ < ∞ and test the hypothesis
ψ = 0 with no restriction on λ. The corresponding exponential family model is

µ
y1
1

y1!
e−µ1 × µ

y2
2

y2!
e−µ2 = 1

y1!y2!
exp{y1ψ + (y1 + y2)λ − eλ+ψ − eλ},

where y1, y2 ∈ {0, 1, . . .}. Here S2 = Y1 + Y2 has a Poisson distribution with mean
µ1 + µ2 = eλ(1 + eψ ), so the conditional density of S1 = Y1 is binomial,

f (s1 | s2; ψ) = s2!

s1!(s2 − s1)!

(
eψ

1 + eψ

)s1 (
1

1 + eψ

)s2−s1

, s1 = 0, 1, . . . , s2.

This has denominator s2 = y1 + y2 and so treats the total for the two variables as
fixed. When ψ = 0 the probability equals 1/2, so the only similar critical regions for
a test of ψ = 0 against ψ > 0, that is, µ1 > µ2, have form

Pr0(Y1 ≥ r ′ | Y1 + Y2 = s2) =
s2∑

r=r ′

(
s2

r

)
2−r , r ′ = 0, 1, . . . , s2.

Thus y1, y2 show evidence for ψ > 0 if y1 is too close to y1 + y2.
See also Example 4.40. �

Example 7.35 (Permutation test) Let Y1, . . . , Ym and Ym+1, . . . , Yn be indepen-
dent random samples with densities g(y) and g(y − θ ), where g is unknown. One
possibility here is to base a test of θ = 0 on the two-sample t statistic

T = Y 2 − Y 1[(
1
m + 1

n−m

) {
(m − 1)S2

1 + (n − m)S2
2

}]1/2 ,

where Y 2 and S2
2 are the average and variance of Ym+1, . . . , Yn and Y 1 and S2

1 are the
corresponding quantities for Y1, . . . , Ym .

Under the null hypothesis Y1, . . . , Yn form a random sample with unknown density
g, and the set of order statistics Y(1), . . . , Y(n) is a minimal sufficient statistic. The
conditional null distribution of Y1, . . . , Yn given the observed values y(1), . . . , y(n) of
the order statistics puts equal mass on each of the n! permutations of y1, . . . , yn , so
the conditional P-value is

Pr0(T ≥ tobs | Y(1), . . . , Y(n)) = 1

n!

∑
H{t(yperm) ≥ tobs}

where the sum is over all permutations yperm of y1, . . . , yn . �

Invariance

Section 5.3 describes models in which data y were transformed by the action of a
groupG on the sample space, thereby inducing a similar group action on the parameter
space. In many cases it is appropriate that tests be invariant to the subgroup G0 of
such transformations that preserves the null hypothesis. When testing the hypothesis
µ = 0 for a sample y from the N (µ, σ 2) distribution, for example, we might seek a test
that is unaffected by replacing y by τ y. The corresponding parameter transformation
maps σ 2 to τ 2σ 2, thereby preserving the null hypothesis. To see some consequences of
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requiring such invariances, suppose that the null hypothesis splits the parameter space
� into disjoint parts �0 and �1 corresponding to the null and alternative hypotheses.
The problem is then said to be invariant under G0 if

Pr {g(Y ) ∈ A; θ} = Pr{Y ∈ A; g∗(θ )}
for all subsets A of the sample space and all g ∈ G0 and corresponding g∗ ∈ G∗

0 ,
where g∗ satisfies g∗(�) = �, g∗(�0) = �0 and g∗(�1) = �1. Thus the action of
G∗

0 on � leaves �0 and �1 unchanged: whatever transformation is applied to Y , the
null hypothesis remains equally true or false. Hence the evidence for or against the
hypotheses is unaffected by observing g(Y ) rather than Y , for any g ∈ G0. A test with
critical region Yα is then said to be invariant if

Y ∈ Yα if and only if g(Y ) ∈ Yα for all g ∈ G0, (7.35)

implying that its properties are unaffected by transformation. The hope is that appeal
to invariance will simplify the problem by eliminating nuisance parameters. We can
then search among invariant tests for one with high power or other good properties.
As every invariant statistic is a function of a maximal invariant, we start by seeking
a maximal invariant under G0.

Example 7.36 (Student t test) Suppose that we wish to test µ = µ0 against the
alternative µ �= µ0, based on a normal random sample Y1, . . . , Yn , with no restriction
on the variance σ 2. We take θ = (µ, σ ), so �0 is {µ0} × IR+ and

�1 = {(−∞, µ0) ∪ (µ0, ∞)} × IR+.

Let V = (n − 1)−1 ∑
(Y j − Y )2. The statistic (Y , V 1/2) is minimal sufficient in the

full model and can form the basis of our discussion. As (Y , V 1/2) takes values in the
parameter space �, Example 5.21 implies that an element g(η,τ ) of the group G∗ acting
on � transforms (Y , V 1/2) to (η + τY , τ V 1/2). This reduction to a minimal sufficient
statistic taking values in � means that our discussion below may be expressed in
terms of G∗ rather than the group G acting on the original data Y .

The subset of G∗ that preserves �0 must have

g(η,τ )(µ0, σ ) = (η + τµ0, τσ ) = (µ0, a)

for some a > 0, and this implies that η = µ0 − τµ0 but imposes no restriction on τ .
Hence the largest such subset is

G∗
0 = {

g(µ0−τµ0,τ ) : τ > 0
}
.

To verify that G∗
0 is a subgroup of G∗, note that it is closed, because

g(µ0−τµ0,τ ) ◦ g(µ0−σµ0,σ ) = g(µ0−τµ+τ (µ0−σµ0),τσ ) = g(µ0−τσµ0,τσ )

is also an element of G∗
0 , that setting τ = 1 gives the identity element g(0,1), and that

g(µ0−τµ0,τ ) has inverse g(µ0−τ−1µ0,τ−1) also an element of G∗
0 . Moreover G∗

0 preserves
�1, because if µ �= µ0, then

g(µ0−τµ0,τ )(µ, σ ) = (µ0 − τµ0 + τµ, τσ ) = (µ0 + τ (µ − µ0), τσ ) ∈ �1.
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Now g(µ0−τµ0,τ ) maps the Student t pivot T (µ0) = n1/2(Y − µ0)/V 1/2 to

n1/2 µ0 − τµ0 + τY − µ0

τ V 1/2
= n1/2 τ (Y − µ0)

τ V 1/2
= T (µ0),

so T (µ0) is invariant under G0. To verify that it is a maximal invariant, we find an
estimator that lies in �0 and is equivariant under G∗

0 , such as s(Y , V 1/2) = (µ0, V 1/2).
Then a maximal invariant is (page 185)

g∗−1
(µ0−µ0V 1/2,V 1/2)

(
Y , V 1/2

) = g∗
(µ0−µ0V −1/2,V −1/2)

(
Y , V 1/2

)
= (

µ0 − µ0V −1/2 + V −1/2Y , V −1/2V 1/2
)

= (
µ0 + (Y − µ0)V −1/2, 1

)
,

the second component of which can obviously be discarded. Under the null hypothesis
µ0 is known, so T (µ0) is also maximal invariant, as we had anticipated. Hence any
critical region based on T (µ0) would be unaltered if a sample y was replaced by
µ0 − τµ0 + τ y, for any τ > 0, because

n1/2 y − µ0

v1/2
∈ A if and only if n1/2 µ0 − τµ0 + τ y − µ0

τv1/2
∈ A

for any set A ⊂ IR, thus verifying (7.35). Thus any critical region based on T (µ0) is
invariant. An example istn−1(α) is the α quantile

of the tn−1 distribution. {
(y1, . . . , yn) : n1/2

∣∣∣∣ y − µ0

v1/2

∣∣∣∣ ≥ tn−1(1 − α)

}
,

which has size 2α and is uniformly most powerful unbiased against two-sided alter-
natives, in addition to being invariant. �

7.3.4 Link with confidence intervals

There is a close link between tests and the construction of confidence intervals. If the
density of Y depends on a scalar parameter θ , we define a level α upper confidence
limit to be a function T α = tα(Y ) of Y such that

Pr(θ ≤ T α; θ ) = 1 − α for all θ , (7.36)

and that T α1 ≤ T α2 whenever α1 > α2. This requirement is similar to the nesting of
critical regions for tests and is imposed for the same reasons of consistency; it implies
that T α is non-increasing in α. Lower confidence limits may be defined analogously.

The random quantity in (7.36) is T α . An equi-tailed (1 − 2α) confidence interval
for θ is (T 1−α, T α). If the reparametrization ψ = ψ(θ ) is monotonic increasing, then
ψ(T α) is an upper confidence limit for ψ .

In many cases confidence limits are derived from a pivot Z (θ ), a function of the
data and θ with the same distribution for all θ . If this distribution is continuous, we
can find a zα such that

Pr {Z (θ ) ≤ zα; θ} = α for all θ .
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If Z (θ ) is decreasing in θ for every possible value of Y , then the solution in θ to
the equation Z (θ ) = zα can be taken as an upper (1 − α) confidence limit for θ . We
applied this argument to approximate normal pivots and the signed likelihood ratio
statistic in Sections 3.1.1 and 4.5.2; see Figures 3.1 and 4.7.

Now suppose thatYα(θ0) is a critical region of size α constructed for tests of θ = θ0

against lower alternatives θ < θ0. As θ0 increases, the critical region will vary and we
can define the set

{θ : Y �∈ Yα(θ )}
of values of θ not rejected by the test and hence compatible with the data at level α.
Under natural monotonicity conditions the supremum of this set can be taken as an
upper (1 − α) confidence limit T α . This inversion of a collection of critical regions to
obtain a confidence interval allows us to use good tests to construct good confidence
intervals. For example, the Neyman–Pearson lemma tells us that uniformly most
powerful tests of simple hypotheses are commonly based on likelihood ratio statistics,
which will therefore also be the basis for shortest confidence intervals.

In many cases we can express the above argument as follows. Let G(t ; θ0) denote
the null distribution function of a continuous test statistic T when the null hypothesis
is θ = θ0. Then the P-value

pobs(θ0) = Pr0(T ≥ tobs) = 1 − G(tobs; θ0)

is a realization of P(θ0) = 1 − G(T ; θ0), and the probability integral transform
(Section 2.3) implies that the null distribution of P(θ0) is uniform on (0, 1). If the test
rejects when P(θ0) < α, then the set {θ : α ≤ P(θ )} is a one-sided (1 − α) confidence
set. In the two-sided case we take {θ : α ≤ P(θ ) ≤ 1 − α}.

This argument applies when we can eliminate parameters other than θ by appeal
to similarity or invariance; otherwise it can be sometimes be applied approximately,
as with the likelihood ratio statistic. Minor complications arise when T is discrete;
see Example 7.38.

Example 7.37 (Exponential density) Let Y1, . . . , Yn be a random sample from the
exponential density with parameter λ, and let a test of λ = λ0 be conducted against
the two-sided alternative λ �= λ0. We saw in Example 7.22 that the null density of
T = ∑

Y j is gamma with shape parameter n and scale λ0, so the null hypothesis is
rejected at level (1 − 2α) if

pobs(λ0) = Pr0 (T ≥ tobs) =
∫ ∞

λ0tobs

vn−1

�(n)
e−v dv

lies outside the interval (α, 1 − α). For a given value of tobs, this probability depends
on λ0, as shown in Figure 7.7, and a (1 − 2α) confidence interval can be determined
as the set of values of λ for which α ≤ pobs(λ) ≤ 1 − α. �

The interpretation of two-sided confidence intervals as providing random upper and
lower bounds is direct and useful for scalar parameters. Confidence regions for vector
θ require a shape. It is natural to base this on likelihood, insisting that a confidence
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a two-sided test with level
0.9 to form confidence
interval. Left: significance
levels pobs(λ0) for
λ0 = 0.1, 0.2, 0.5, 1, 2
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Horizontal lines show
probabilities 0.05, 0.95
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λ0 = 2, 0.1 are rejected,
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are not rejected, and
λ0 = 0.2 is just rejected.
Right: significance level
pobs(λ) as a function of λ.
Values of λ for which
0.05 ≤ pobs(λ) ≤ 0.95 are
contained in the 0.9
confidence interval.

region Rα be such that Pr(θ ∈ Rα; θ ) = α for all θ and that L(θ ) ≥ L(θ ′) for any
θ ∈ Rα and θ ′ �∈ Rα . This amounts to computing Rα by inverting the likelihood ratio
statistic, typically using its asymptotic distribution, perhaps with Bartlett adjustment.

Often the test inverted to obtain limits of confidence intervals is not exact. Then
there is coverage error, defined as the difference between the actual and nominal
probabilities that the confidence set contains the parameter,

Pr(T α1 < θ ≤ T α2 ; θ ) − (α1 − α2), for α1 > α2. (7.37)

It can be helpful to know where the error occurs. The limit T α is said to be conservative
if it tends to be too high, that is, Pr(θ ≤ T α; θ ) ≥ 1 − α; confidence intervals for whichOtherwise they are called

liberal. (7.37) is positive are called conservative.

Example 7.38 (Binomial density) An equitailed (1 − 2α) confidence interval for
the probability π of a binomial variable Y with denominator m may be found in
various ways. Exact limits may be found by inverting tests based on Y . Having
observed Y = y, the significance level for testing the null hypothesis π = π0 against
the one-sided alternative π < π0 is

Pr0(Y ≤ y) = Pr(Y ≤ y; π0) =
y∑

r=0

(
m

r

)
π r

0 (1 − π0)m−r ,

so the upper α limit πα is the solution to

Pr(Y ≤ y; π ) =
y∑

r=0

(
m

r

)
π r (1 − π )m−r = α,

and equals 1 if y = m. A similar argument with alternative π > π0 shows that the
lower α limit πα is the solution to

Pr(Y ≥ y; π ) =
m∑

r=y

(
m

r

)
π r (1 − π )m−r = α,
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Figure 7.8 Exact
coverages of equi-tailed
0.95 confidence intervals
for the binomial
parameter π , as functions
of π , when m = 10. The
horizontal line shows the
target coverage. Left:
exact (solid), score (dots)
and maximum likelihood
estimator (dashes). Right:
signed likelihood ratio
statistic (solid), modified
signed likelihood ratio
statistic (dots) and
modified maximum
likelihood estimator
(dashes), obtained by
replacing m and r by
m + 2 and r + 1 (dashes).

but equals 0 if y = 0. It turns out that πα and πα are expressible using quantiles of
the F distribution, giving (1 − 2α) confidence interval Fν1 ,ν2 (y) is the

distribution function of an
F variable with ν1, ν2

degrees of freedom.




{
1 + m − y + 1

yF−1
2y,2(m−y+1)(α)

}−1

,

{
1 + m − y

(y + 1)F−1
2(y+1),2(m−y)(1 − α)

}−1

 ,

with the changes mentioned above when y = 0 or y = m. This interval is exact in the
sense that no approximation of binomial probabilities is involved.

Approximate intervals can be based on asymptotic standard normal distributions
of the score statistic, the maximum likelihood estimator π̂ = Y/m or the signed
likelihood ratio statistic,

Z1(π ) = (Y − mπ )/ {mπ (1 − π )}1/2 ,

Z2(π ) = (π̂ − π )/ {π̂ (1 − π̂ )/m}1/2 ,

Z3(π ) = sign(π̂ − π )
(
2

[
Y log(π̂/π ) + (m − Y ) log {(1 − π̂ )/(1 − π )}])1/2

,

as well as on a quantity Z∗(π ) = Z3(π ) + Z3(π )−1 log {Z2(π )/Z3(π )} motivated in
Section 12.3.3. The confidence interval based on each of these is the set of π for
which |Z (π )| < z1−α; this must be found numerically for Z3(π ) and Z∗(π ). Any of
these intervals has coverage

∑m
y=0( m

y )π y(1 − π )m−y I1−2α(π, y), where I1−2α(y, π )
indicates that π lies in an interval of nominal level (1 − 2α) based on y.

Figure 7.8 compares the coverages for α = 0.025 and m = 10. That of the exact
interval always exceeds 0.975, so it is quite conservative, while that of the interval
based on Z1(π ) is fairly close to its nominal level overall. Intervals based on Z2(π )
undercover for most π . The intervals based on Z3(π ) and Z∗(π ) have coverage close
to nominal for 0.3 < π < 0.7, while perhaps the best overall performance is obtained
from Z2(π ) with m and y replaced by m + 2 and y + 1. �

This example suggests that in highly discrete situations approximate confidence
intervals may be preferable to exact ones. Moreover exact tests will inherit the con-
servatism and tend to reject too rarely. The difference decreases as the sample size
increases, but even with m = 50 the mean exact coverage is about 0.97 in the binomial
case.
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Exercises 7.3

1 Show that (7.26) has mean and variance roughly pobs and pobs(1 − pobs)/R. Hence give
minimum values of R for obtaining 5% relative error in estimation of pobs = 0.5, 0.2, 0.1,
0.05, 0.01, 0.001. Discuss.

2 In Example 7.22, calculate the significance level for testing H0 : λ = 1 against H1 : λ = 4,
based on the data 1.2, 3, 1.5, 0.3.

3 If U ∼ U (0, 1), show that min(U, 1 − U ) ∼ U (0, 1
2 ). Hence justify the computation of a

two-sided significance level as 2 min(P−, P+).

4 Consider testing the hypothesis that µ = µ0 based on a random sample Y1, . . . , Yn from
the N (µ, σ 2) distribution, with two-sided alternative µ �= µ0. Show that the power of the
region (7.31) is �(zα/2 + δ) + �(zα/2 − δ), where δ = n1/2(µ − µ0)/σ . Sketch this as a
function of δ for α = 0.025, and explain why it is invariant to the sign of µ − µ0.

5 Check the power calculation for the sign test in Example 7.30.

6 Consider testing the hypothesis that a binomial random variable has probability π = 1/2
against the alternative that π > 1/2. For what values of α does a uniformly most powerful
test exist when the denominator is m = 5?

7 In a random sample Y1, . . . , Yn from the gamma density with shape κ and scale λ, find a
locally most powerful test of the null hypothesis κ = 1.

8 If I is Bernoulli with probability p = (α2 − α)/(α2 − α1) and Yα1 and Yα2 are critical
regions of sizes α1, α2, show that the critical region Y = IYα1 + (1 − I )Yα2 has size α.

9 Y1, Y2 are independent gamma variables with known shape parameters ν1, ν2 and scale
parameters λ1, λ2,and it is desired to test the null hypothesis H0 that λ1 = λ2 = λ, with
λ unknown. Show that a minimal sufficient statistic for λ under H0 is Y1 + Y2, find
its distribution, and show that it is complete. Hence show that the test is based on the
conditional distribution of Y1 given Y1 + Y2 and that significance levels are computed
from integrals of form

�(ν1 + ν2)

�(ν1)�(ν2)

∫ y1/(y1+y2)

0
uν1−1(1 − u)ν2−1 du.

Explain how this argument is useful in comparison of the scale parameters of two inde-
pendent exponential samples.

10 Independent data pairs (X1, Z1), . . . , (Xn, Zn) arise from a joint density f (x, z). The null
hypothesis is that X and Z are independent, so f (x, z) = g(x)h(z) for some unknown den-
sities g and h and all x and z. Show that the order statistics X (1), . . . , X (n) and Z(1), . . . , Z(n)

are minimal sufficient for g and h under the null hypothesis, and deduce that a similar test
has P-value

pobs = 1

n!

∑
H{t(yperm) ≥ tobs},

where the sum is over all yperm = {(x1, zπ (1)), . . . , (xn, zπ (n))} with the observed values of
the zs permuted, the xs being held fixed.
If the test statistic is T = (n−1

∑
X j Z j − X Z )/(S2

X S2
Z )1/2, S2

X and S2
Z being the sample

variances of the X j and the Z j , show that it is equivalent to base the test on
∑

X j Z j .

11 In a scale family, Y = τε, where ε has a known density and τ > 0. Consider testing the
null hypothesis τ = τ0 against the alternative τ �= τ0. Show that the appropriate group for
constructing an invariant test has just one element (apart from permutations) and hence
show that the test may be based on the maximal invariant Y(1)/τ0, . . . , Y(n)/τ0.
When ε is exponential, show that the invariant test is based on Y/τ0.

12 One natural transformation of a binomial variable R is reversal of ‘success’ and
‘failure’. Show that this maps R to m − R, where m is the denominator, and that
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the induced transformation on the parameter space maps π to 1 − π . Which of the
critical regions (a) Y1 = {0, 1, 20}, (b) Y2 = {0, 1, 19, 20}, (c) Y3 = {0, 1, 10, 19, 20},
(d) Y4 = {8, 9, 10, 11, 12}, is invariant for testing π = 1

2 when m = 20? Which is prefer-
able and why?

13 The incidence of a rare disease seems to be increasing. In successive years the numbers of
new cases have been y1, . . . , yn . These may be assumed to be independent observations
from Poisson distributions with means λθ, . . . , λθ n . Show that there is a family of tests
each of which, for any given value of λ, is a uniformly most powerful test of its size for
testing θ = 1 against θ > 1.

14 A random sample Y1, . . . , Yn is available from the Type I Pareto distribution

F(y; ψ) =
{

1 − y−ψ, y ≥ 1,
0, y < 1.

Find the likelihood ratio statistic to test that ψ = ψ0 against ψ = ψ1, where ψ0, ψ1 are
known, and show how to calculate a P-value when ψ0 > ψ1.
How does your answer change if the distribution is

F(y; ψ, λ) =
{

1 − (y/λ)−ψ, y ≥ λ,
0, y < λ,

with λ > 0 unspecified?

7.4 Bibliographic Notes

The main concepts described in this chapter belong to the core of statistical theory and
were developed in the first half of the twentieth century by Fisher, Neyman, Pearson
and others; other treatments are contained in most books on mathematical statistics.
See for example the treatments of estimation in Silvey (1970), Rice (1988), Casella
and Berger (1990) and Bickel and Doksum (1977), or at a more advanced level Cox
and Hinkley (1974), Lehmann (1983) and Shao (1999).

Kernel density estimation has been extensively studied since it was proposed in the
1950s. Among numerous excellent expositions are Silverman (1986), Scott (1992),
Wand and Jones (1995), and Bowman and Azzalini (1997). The last of these is more
practical in emphasis, while Wand and Jones (1995) contains a detailed discussion of
the choice of bandwidth, a topic on which there has been much progress in the 1990s.
Although cross-validation is an important paradigm for selection of bandwidths and
related smoothing parameters in other non- and semi-parametric contexts, other ap-
proaches to bandwidth selection give better results; see Sheather and Jones (1991).
Stone (1974) is a fundamental reference on cross-validation.

Estimators based on estimating functions are widely used in practice, but there
are few general expositions of them at this level. Godambe (1991) is an interesting
collection of papers on the topic, with many further references, while McLeish and
Small (1994) give a more abstract treatment. A fundamental reference for the role
of the influence function in robust statistics is Hampel et al. (1986). Inference for
stochastic processes is discussed in books by Hall and Heyde (1980), Basawa and
Scott (1981), and Guttorp (1991), while Sørensen (1999) reviews the asymptotic
theory for estimating functions.
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Although the idea of significance testing goes back hundreds of years, the develop-
ment of underlying theory is more recent. R. A. Fisher made extensive informal use
of P-values, but resisted what he saw as the over-formalization due to Neyman and
E. S. Pearson. They introduced the idea of testing as a choice between two hypotheses
and introduced the notions of size, power and so forth in work that prefigured the
later development of decision theory. Their joint papers are collected in Neyman and
Pearson (1967). The theory of testing is explained more fully in Lehmann (1983) and
in Chapters 3–6 of Cox and Hinkley (1974). Bartlett correction was first described
by Bartlett (1937). Example 7.38 is based on Agresti and Coull (1998), Agresti and
Caffo (2000), and Greenland (2001).

7.5 Problems

1 In Example 7.2 show that ψ̂
D= exp{µ + σn−1/2 Z + σ 2V/(2n)}. Hence give an explicit

expression for E(ψ̂r ) and compute the analogue of Table 7.1. Discuss your results.

2 Let Y1, . . . , Yn be a random sample from an unknown density f . Let I j indicate whether
or not Y j lies in the interval (a − 1

2 h, a + 1
2 h], and consider R = ∑

I j . Show that R has
a binomial distribution with denominator n and probability

∫ a+ 1
2 h

a− 1
2 h

f (y) dy.

Hence show that R/(nh) has approximate mean and variance f (a) + 1
2 h2 f ′′(a) and

f (a)/nh, where f ′′ is the second derivative of f .
What implications have these results for using the histogram to estimate f (a)?

3 Suppose that the random variables Y1, . . . , Yn are such that

E(Y j ) = µ, var(Y j ) = σ 2
j , cov(Y j , Yk) = 0, j �= k,

where µ is unknown and the σ 2
j are known. Show that the linear combination of the Y j ’s

giving an unbiased estimator of µ with minimum variance is

n∑
j=1

σ−2
j Y j

/ n∑
j=1

σ−2
j .

Suppose now that Y j is normally distributed with mean βx j and unit variance, and that the
Y j are independent, with β an unknown parameter and the x j known constants. Which of
the estimators

T1 = n−1
n∑

j=1

Y j/x j , T2 =
n∑

j=1

Y j x j

/ n∑
j=1

x2
j

is preferable and why?

4 In n independent food samples the bacterial counts Y1, . . . , Yn are presumed to be Poisson
random variables with mean θ . It is required to estimate the probability that a given sample
would be uncontaminated, π = Pr(Y j = 0).
Show that U = n−1

∑
I (Y j = 0), the proportion of the samples uncontaminated, is unbi-

ased for π , and find its variance. Using the Rao–Blackwell theorem or otherwise, show
that an unbiased estimator of π having smaller variance than U is V = {(n − 1)/n}nY ,
where Y = n−1

∑
Y j . Is this a minimum variance unbiased estimator of π?

Find var(V ) and hence give the asymptotic efficiency of U relative to V .
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5 Let Y1, . . . , Yn be independent Poisson variables with means x1β, . . . , xnβ, where β > 0
is an unknown scalar and the x j > 0 are known scalars. Show that T = ∑

Y j x j/
∑

x2
j is

an unbiased estimator of β and find its variance.
Find a minimal sufficient statistic S for β, and show that the conditional distribution of Y j

given that S = s is multinomial with mean sx j/
∑

i xi . Hence find the minimum variance
unbiased estimator of β. Is it unique?

6 Given that there is a 1–1 mapping between x1 < · · · < xn and the sums s1, . . . , sn , where
sr = ∑

xr
j , show that the order statistics of a random sample form a complete minimal

sufficient statistic in the class of all continuous densities. You may find it useful to consider
the exponential family density

f (y; θ ) ∝ exp(−x2n + θ1x + · · · + θn xn).

7 Find the maximum likelihood estimator of β based on a random sample from the shifted
exponential density f (y) = e−(y−β) for y ≥ β. Show that β̂ is biased but consistent. Does
it satisfy the Cramér–Rao lower bound?

8 (a) Let Y1, . . . , Yn be a random sample from the exponential density λe−λy , y > 0, λ > 0.
Say why an unbiased estimator W for λ should have form a/S, and hence find a. Find
the Fisher information for λ and show that E(W 2) = (n − 1)λ2/(n − 2). Deduce that
no unbiased estimator of λ attains the Cramér–Rao lower bound, although W does so
asymptotically.
(b) Let ψ = Pr(Y > a) = e−λa , for some constant a. Show that

I (Y1 > a) =
{

1, Y1 > a,
0, otherwise,

is an unbiased estimator of ψ , and hence obtain the minimum variance unbiased estimator.
Does this attain the Cramér–Rao lower bound for ψ?

9 Let X1, . . . , Xn represent the times of the first n events in a Poisson process of rate
µ−1 observed from time zero; thus 0 < X1 < · · · < Xn . Show that W = 2(X1 + · · · +
Xn)/{n(n + 1)} is an unbiased estimator of µ, and establish that its Rao–Blackwellized
form is T = Xn/n. Find var(W ) and give the asymptotic efficiency of W relative to T .

10 Show that no unbiased estimator exists of ψ = log{π/(1 − π )}, based on a binomial
variable with probability π .

11 Let Y j = η + τε j , where ε1, . . . , εn is a random sample from a known density. Show that
the set of order statistics Y(1), . . . , Y(n) is in general minimal sufficient for η, τ (Exam-
ple 4.12). By considering (Y(2) − Y(1))/(Y(n) − Y(1)) show that it is not complete.

12 Show that when the data are normal, the efficiency of the Huber estimating function
gc(y; θ ) compared to the optimal function g∞(y; θ ) is

{1 − 2�(−c)}2

1 + 2{c2�(−c) − �(−c) − cφ(c)} .

Hence verify that the efficiency is 0.95 when c = 1.345.

13 Compare the performance of the estimating function

g(y; θ ) =
{

y − θ, |y − θ | < c,
0, otherwise,

with that of the Huber function gc(y; θ ) for the distributions in Example 7.19.

14 Show how (a) the Poisson birth process in Example 4.6, and (b) the Markov chain likeli-
hood in Section 6.1.1, fall into the framework for dependent data outlined in Section 7.2.3.

15 Let Y1, . . . , Yn
iid∼ N (µ, σ 2), with both parameters unknown. Suppose that we wish to test

µ = µ0 against the one-sided alternative µ > µ0. By considering separately the cases
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Y ≥ µ0 and Y < µ0, show that the likelihood ratio statistic is

Wp(µ0) =
{

n log
{

1 + T (µ0)2

n−1

}
, Y ≥ µ0,

0, Y < µ0.

Hence justify the one-tailed significance level described in Example 7.25.

16 Independent random samples Yi1, . . . , Yini , where ni ≥ 2, are drawn from each of k nor-
mal distributions with means µ1, . . . , µk and common unknown variance σ 2. Derive the
likelihood ratio statistic Wp for the null hypothesis that the µi all equal an unknown µ,
and show that it is a monotone function of

R =
∑k

i=1 ni (Y i · − Y ··)2∑k
i=1

∑ni
j=1(Yi j − Y i ·)2

, ,

where Y i · = n−1
i

∑
j Yi j and Y ·· = (

∑
ni )−1

∑
i, j Yi j . What is the null distribution of R?

17 Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from continuous distri-
butions FX and FY . We wish to test the hypothesis H0 that FX = FY .
Define indicator variables Ii j = I (Xi < Y j ) for i = 1, . . . , m, j = 1, . . . , n and let U =∑

i, j Ii j . Assuming that H0 is true, (i) show that E(U ) = mn/2; (ii) find cov(Ii j , Iik) and
cov(Ii j , Ikl ), where i, j, k, l are distinct; and (iii) hence show that var(U ) = mn(m + n +
1)/12. Why is it important that the underlying distributions are continuous?
Here are the weight gains (gms) of rats fed on low and high protein diets:

High 83 97 104 107 113 119 123 124 129 134 146 161
Low 70 85 94 101 106 118 132

Use the approximate normality of U to test for a difference between diets.

18 Below are diastolic blood pressures (mm Hg) of ten patients before and after treatment for
high blood pressure. Test the hypothesis that the treatment has no effect on blood pressure
using a Wilcoxon signed-rank test, (a) using the exact significance level and (b) using a
normal approximation. Discuss briefly.

Before 94 105 101 106 118 107 96 102 114 95
After 96 96 95 103 105 111 86 90 107 84

19 (a) A random sample of size n = 2 is taken from f (y). For 0 < α < 1/2, find a critical
region of size α for testing that f (y) is

f0(y) =
{

θ−1, 0 < y < θ ,
0, otherwise,

when θ = 1, against the alternative that f (y) is the exponential density f1(y) = e−y ,
y > 0. Is there a best critical region for testing f = f0 against the composite hypothesis
f (y) = λ exp(−λy), y > 0, for some λ > 0?
(b) Show there is no best critical region when θ is unknown.
(c) Show that the largest order statistic Y(2) is sufficient for θ under the null model,
and deduce that there is a uniformly most powerful test based on the ratio of conditional
densities of Y given Y(2) under the two hypotheses. Show that the most powerful conditional
critical region of size α is Yα = {(y1, y2) : 0 ≤ y(1) ≤ αy(2))}.
(d) Find the conditional critical region for general n.

20 If

f (x ; θ ) =
{

θλ�(λ)−1xλ−1e−θx , x > 0,
0, elsewhere,

where λ is known and θ is positive, deduce that there exists a uniformly most powerful
test of size α of the hypothesis θ = θ0 against the alternative θ > θ0, and show that when
λ = 1/n the power function of the test is 1 − (1 − α)θ/θ0 .
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21 A source at location x = 0 pollutes the environment. Are cases of a rare disease D later
observed at positions x1, . . . , xn linked to the source?
Cases of another rare disease D′ known to be unrelated to the pollutant but with the same
susceptible population as D are observed at x ′

1, . . . , x ′
m . If the probabilities of contracting

D and D′ are respectively ψ(x) and ψ ′, and the population of susceptible individuals has
density λ(x), show that the probability of D at x , given that D or D′ occurs there, is

π (x) = ψ(x)λ(x)

ψ(x)λ(x) + ψ ′λ(x)
.

Deduce that the probability of the observed configuration of diseased persons, conditional
on their positions, is

n∏
j=1

π (x j )
m∏

i=1

{1 − π (x ′
i )}.

The null hypothesis that D is unrelated to the pollutant asserts that ψ(x) is independent of
x . Show that in this case the unknown parameters may be eliminated by conditioning on
having observed n cases of D out of a total n + m cases. Deduce that the null probability
of the observed pattern is ( n+m

n )−1.
If T is a statistic designed to detect decline of ψ(x) with x , explain how permutation of
case labels D, D′ may be used to obtain a significance level pobs.
Such a test is typically only conducted after a suspicious pattern of cases of D has been
observed. How will this influence pobs?
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Linear Regression Models

Regression models are used to describe how one or perhaps a few response variables
depend on other explanatory variables. The idea of regression is at the core of much
statistical modelling, because the question ‘what happens to y when x varies?’ is cen-
tral to many investigations. It is often required to predict or control future responses by
changing the other variables, or to gain an understanding of the relation between them.
There is usually a single response, treated as random. Often there are many explanatory
variables, which are treated as non-stochastic. The simplest models involve linear de-
pendence and are described in this chapter, while Chapter 9 deals with more structured
situations in which the explanatory variables have been chosen by the experimenter
according to a design. Chapter 10 describes some of the many extensions of regression
to nonlinear dependence. Throughout we simplify our previous notation by using y to
represent both the response variable and the value it takes; no confusion should arise
thereby.

8.1 Introduction

If we denote the response by y and the explanatory variables by x , our concern is
how changes in x affect y. In Section 5.1, for example, the key question was how the
annual maximum sea level in Venice depended on the passage of time. We fitted the
straight-line regression model

y j = β0 + β1x j + ε j , j = 1, . . . , n,

where we took y j to be the j th annual maximum sea level and x j to be the year in
which this occurred. The parameters β0 and β1 represent a baseline maximum sea
level and the annual rate at which sea level increases, while ε j is a random variable
that represents the difference between the underlying level, β0 + β1x j , and the value
observed, y j .

353
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An immediate generalization is to increase the number of explanatory variables,
setting

y j = β1x j1 + · · · + βpx jp + ε j = xT
jβ + ε j ,

where xT
j = (x j1, . . . , x jp) is a 1 × p vector of explanatory variables associated with

the j th response, β is a p × 1 vector of unknown parameters and ε j is an unobserved
error accounting for the discrepancy between the observed response y j and xT

jβ. In
matrix notation,

y = Xβ + ε, (8.1)

where y is the n × 1 vector whose j th element is y j , X is an n × p matrix whose
j th row is xT

j , and ε is the n × 1 vector whose j th element is ε j . The data on which
the investigation is to be based are y and X , and the aim is to disentangle systematic
changes in y due to variation in X from the haphazard scatter added by the errors ε.
Model (8.1) is known as a linear regression model with design matrix X .

Example 8.1 (Straight-line regression) For the straight-line regression model,
(8.1) becomes 


y1

y2
...

yn


 =




1 x1

1 x2
...

...
1 xn




(
β0

β1

)
+




ε1

ε2
...
εn


 ,

so X is an n × 2 matrix and β a 2 × 1 vector of parameters. �

Example 8.2 (Polynomial regression) Suppose that the response is a polynomial
function of a single covariate,

y j = β0 + β1x j + · · · + βp−1x p−1
j + ε j .

For example, we might wish to fit a quadratic or cubic trend in the Venice sea level
data, in which case we would have p = 3 or p = 4 respectively. Then




y1

y2
...

yn


 =




1 x1 x2
1 · · · x p−1

1

1 x2 x2
2 · · · x p−1

2
...

...
...

...
1 xn x2

n · · · x p−1
n







β0

β1
...

βp−1


 +




ε1

ε2
...
εn


 ,

where X has dimension n × p. �

A key point is that (8.1) is linear in the parameters β. Polynomial regression can
be written in form (8.1) because of its linearity, not in x , but in β.

Example 8.3 (Cement data) Table 8.1 contains data on the relationship between
the heat evolved in the setting of cement and its chemical composition. Data on
heat evolved, y, for each of n = 13 independent samples are available, and for each
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Table 8.1 Cement data
(Woods et al., 1932): y is
heat evolved in calories
per gram of cement, and
x1, x2, x3, and x4 are
percentage weight of
clinkers, with x1,
3CaO.Al2 O3, x2,
3CaO.Si O2, x3,
4CaO.Al2 O3.Fe2 O3,
and x4, 2CaO.Si O2.

Case x1 x2 x3 x4 y

1 7 26 6 60 78.5
2 1 29 15 52 74.3
3 11 56 8 20 104.3
4 11 31 8 47 87.6
5 7 52 6 33 95.9
6 11 55 9 22 109.2
7 3 71 17 6 102.7
8 1 31 22 44 72.5
9 2 54 18 22 93.1

10 21 47 4 26 115.9
11 1 40 23 34 83.8
12 11 66 9 12 113.3
13 10 68 8 12 109.4
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Figure 8.1 Plots of
cement data. The
variables are heat evolved
in calories per gram, y,
percentage weight in
clinkers of x1,
3CaO.Al2 O3, x2,
3CaO.Si O2, x3,
4CaO.Al2 O3.Fe2 O3,
and x4, 2CaO.Si O2.

sample the percentage weight in clinkers of four chemicals, x1, 3CaO.Al2 O3, x2,
3CaO.Si O2, x3, 4CaO.Al2 O3.Fe2 O3, and x4, 2CaO.Si O2, is recorded.

Figure 8.1 shows that although the response y depends on each of the covariates
x1, . . . , x4, the degrees and directions of the dependences differ.
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In this case we might fit the model

y j = β0 + β1x1 j + β2x2 j + β3x3 j + β4x4 j + ε j ,

where Figure 8.1 suggests that β1 and β2 are positive, and that β3 and β4 are negative.
The design matrix has dimension 13 × 5, and is

X =




1 7 26 6 60
1 1 29 15 52
...

...
...

...
...

1 10 68 8 12


 ;

the vectors y and ε have dimension 13 × 1 and β has dimension 5 × 1. �

In the examples above the explanatory variables consist of numerical quantities,
sometimes called covariates. Dummy variables that represent whether or not an effect
is applied can also appear in the design matrix.

Example 8.4 (Cycling data) Norman Miller of the University of Wisconsin wanted
to see how seat height, tyre pressure and the use of a dynamo affected the time taken
to ride his bicycle up a hill. He decided to collect data at each combination of two
seat heights, 26 and 30 inches from the centre of the crank, two tyre pressures, 40
and 55 pounds per square inch (psi) and with the dynamo on and off, giving eight
combinations in all. The times were expected to be quite variable, and in order to
get more accurate results he decided to make two timings for each combination. He
wrote each of the eight combinations on two pieces of card, and then drew the sixteen
from a box in a random order. He planned to make four widely separated runs up the
hill on each of four days, first adjusting his bicycle to the setups on the successive
pieces of card, but bad weather forced him to cancel the last run on the first day; he
made five on the third day to make up for this. Table 8.2 gives timings obtained with
his wristwatch.

The lower part of Table 8.2 shows how average time depends on experi-
mental setup. There is a large reduction in the average time when the seat is
raised and smaller reductions when the tyre pressure is increased and the dynamo
is off.

The quantities that are varied in this experiment — seat height, tyre pressure, and
the state of the dynamo — are known as factors. Each takes two possible values,
known as levels. Here there are two types of factors: quantitative and qualitative. The
two levels of seat height and tyre pressure are quantitative — other values might have
been chosen, and more than two levels could have been used — but the dynamo factor
has only two possible levels and is qualitative.

An experiment like this, in which data are collected at each combination of a
number of factors, is known as a factorial experiment. Such designs and their variants
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Table 8.2 Data and
experimental setup for
bicycle experiment (Box
et al., 1978, pp. 368–372).
The lower part of the table
shows the average times
for each of the eight
combinations of settings
of seat height, tyre
pressure, and dynamo,
and the average times for
the eight observations at
each setting, considered
separately.

Seat height Tyre pressure Time
Setup Day Run (inches) Dynamo (psi) (secs)

1 3 2 − − − 51
2 4 1 − − − 54
3 2 2 + − − 41
4 2 3 + − − 43
5 3 3 − + − 54
6 2 1 − + − 60
7 3 1 + + − 44
8 4 3 + + − 43
9 1 1 − − + 50

10 4 4 − − + 48
11 3 5 + − + 39
12 4 2 + − + 39
13 3 4 − + + 53
14 1 3 − + + 51
15 1 2 + + + 41
16 2 4 + + + 44

Seat height Tyre pressure
(inches from centre of crank) Dynamo (psi)

− 26 Off 40
+ 30 On 55

Tyre pressure low Tyre pressure high

Dynamo Seat low Seat high Seat low Seat high

Off 52.5 42.0 49.0 39.0
On 57.0 43.5 52.0 42.5

Dynamo Tyre pressure Seat

Off On Low High Low High

45.63 48.75 48.75 45.63 52.63 41.75

are widely used; see Section 9.2.4. In this case an experimental setup with three factors
each having two levels is applied twice: the design consists of two replicates of a
23 factorial experiment.

One linear model for the data in Table 8.2 is that at the lower seat height, with the
dynamo off, and the lower tyre pressure, the mean time is µ, and the three factors act
separately, changing the mean time by α1, α2, and α3 respectively. This corresponds
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to the linear regression model


y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16




=




1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 1 1 0
1 1 1 0
1 0 0 1
1 0 0 1
1 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1
1 1 1 1
1 1 1 1







µ

α1

α2

α3


 +




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

ε13

ε14

ε15

ε16




.

Table 8.2 suggests that µ
.= 52.5, that α1 < 0, α2 > 0, and α3 < 0. The baseline time

is µ, which corresponds to the mean time at the lower level of all three factors, and
the overall average time is y = µ + 1

2α1 + 1
2α2 + 1

2α3 + ε, where ε is the average of
the unobserved errors.

A different formulation of the model would take the overall mean time as the
baseline, leading to



y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16




=




1 −1 −1 −1
1 −1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 1 1 −1
1 1 1 −1
1 −1 −1 1
1 −1 −1 1
1 1 −1 1
1 1 −1 1
1 −1 1 1
1 −1 1 1
1 1 1 1
1 1 1 1







β0

β1

β2

β3


 +




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

ε13

ε14

ε15

ε16




. (8.2)

In (8.2) the effect of increasing seat height from 26 to 30 inches is 2β1, the effect
of switching the dynamo on is 2β2, and the effect of increasing tyre pressure is 2β3.
As each column of the design matrix apart from the first has sum zero, the overall
average time in this parametrization is β0 + ε. Although the parameter β0 is related
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to the overall mean, it does not correspond to a combination of factors that can be
applied to the bicycle — how can the dynamo be half on? Despite this, we shall see
below that (8.2) is convenient for some purposes. �

Often it is better to apply a linear model to transformed data than to the original
observations.

Example 8.5 (Multiplicative model) Suppose that the data consist of times to
failure that depend on positive covariates x1 and x2 according to

y = γ0xγ1
1 xγ2

2 η,

where η is a positive random variable. Then

log y = log γ0 + γ1 log x1 + γ2 log x2 + log η,

which is linear in log γ0, γ1, and γ2. The variance of the transformed response log y
does not depend on its mean, whereas y has variance proportional to the square of its
mean, so in addition to achieving linearity, the transformation equalizes the variances.

�

Exercises 8.1

1 Which of the following can be written as linear regression models, (i) as they are, (ii) when
a single parameter is held fixed, (iii) after transformation? For those that can be so written,
give the response variable and the form of the design matrix.
(a) y = β0 + β1/x + β2/x2 + ε;
(b) y = β0/(1 + β1x) + ε;
(c) y = 1/(β0 + β1x + ε);
(d) y = β0 + β1xβ2 + ε;
(e) y = β0 + β1xβ2

1 + β3xβ4
2 + ε;

2 Data are available on the weights of two groups of three rats at the beginning of a fortnight,
x , and at its end, y. During the fortnight, one group was fed normally and the other group
was fed a growth inhibitor. Consider a linear model for the weights,

y jg = αg + βg x jg + ε jg, j = 1, . . . , 3, g = 1, 2.

(a) Write down the design matrix for the model above.
(b) The model is to be reparametrized in such a way that it can be specialized to (i) two
parallel lines for the two groups, (ii) two lines with the same intercept, (iii) one common
line for both groups, just by setting parameters to zero. Give one design matrix which can
be made to correspond to (i), (ii), and (iii), just by dropping columns.

8.2 Normal Linear Model

8.2.1 Estimation

Suppose that the errors ε j in (8.1) are independent normal random variables, with
means zero and variances σ 2. Then the responses y j are independent normal random
variables with means xT

jβ and variances σ 2, and (8.1) is the normal linear model. The
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likelihood for β and σ 2 is

L(β, σ 2) =
n∏

j=1

1

(2πσ 2)1/2
exp

{
− 1

2σ 2

(
y j − xT

jβ
)2

}
,

and the log likelihood is

�(β, σ 2) ≡ −1

2

{
n log σ 2 + 1

σ 2

n∑
j=1

(
y j − xT

jβ
)2

}
.

Whatever the value of σ 2, the log likelihood is maximized with respect to β at the
value that minimizes the sum of squares

SS(β) =
n∑

j=1

(
y j − xT

jβ
)2 = (y − Xβ)T(y − Xβ). (8.3)

We obtain the maximum likelihood estimate of β by solving simultaneously the
equations

∂SS(β)

∂βr
= 2

n∑
j=1

x jr (y j − βTx j ) = 0, r = 1, . . . , p.

In matrix form these amount to the normal equations

X T(y − Xβ) = 0, (8.4)

which imply that the estimate satisfies (X T X )β = X T y. Provided the p × p matrix
X T X is of full rank it is invertible, and the least squares estimator of β is

β̂ = (X T X )−1 X T y.

The maximum likelihood estimator of σ 2 may be obtained from the profile likeli-
hood for σ 2,

�p(σ 2) = max
β

�(β, σ 2) = −1

2

{
n log σ 2 + 1

σ 2
(y − X β̂)T(y − X β̂ )

}
, (8.5)

and it follows by differentiation that the maximum likelihood estimator of σ 2 is

σ̂ 2 = n−1(y − X β̂)T(y − X β̂) = n−1
n∑

j=1

(
y j − xT

j β̂
)2

.

We shall see below that σ̂ 2 is biased and that an unbiased estimator of σ 2 is

S2 = 1

n − p
(y − X β̂)T(y − X β̂) = 1

n − p

n∑
j=1

(
y j − xT

j β̂
)2

.
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Example 8.6 (Straight-line regression) We write the straight-line regression model
(5.3) in matrix form as




y1

y2
...

yn


 =




1 x1 − x
1 x2 − x
...

...
1 xn − x




(
γ0

γ1

)
+




ε1

ε2
...
εn


 .

The least squares estimates are

β̂ =
(

γ̂0

γ̂1

)
=

(
n

∑
(x j − x)∑

(x j − x)
∑

(x j − x)2

)−1 ( ∑
y j∑

(x j − x)y j

)

=
(

n−1 0
0 1∑

(x j −x)2

) ( ∑
y j∑

(x j − x)y j

)

=
(

y∑
(x j −x)y j∑
(x j −x)2

)
.

If all the x j are equal, X T X is not invertible, and γ̂1 is undetermined: any value is
possible.

The unbiased estimator of σ 2 is

1

n − 2

n∑
j=1

{
y j − y − (x j − x)

∑
(xk − x)yk∑
(xk − x)2

}2

.

�

Example 8.7 (Surveying a triangle) Suppose that we want to estimate the angles
α, β, and γ (radians) of a triangle ABC based on a single independent measurement
of the angle at each corner. Although there are three angles, their sum is the constant
α + β + γ = π , and so just two of them vary independently. In terms of α and β,
we have yA = α + εA, yB = β + εB , and yC = π − α − β + εC , and this gives the
linear model 

 yA

yB

yC − π


 =


 1 0

0 1
−1 −1




(
α

β

)
+


 εA

εB

εC


 .

Hence(
α̂

β̂

)
= 1

3

(
2 −1

−1 2

) (
π + yA − yC

π + yB − yC

)
= 1

3

(
π + 2yA − yB − yC

π + 2yB − yA − yC

)
.

It is straightforward to show that s2 = (yA + yB + yC − π )2/3. �

The sum of squares SS(β) plays a central role. Its minimum value,

SS(̂β) =
n∑

j=1

(
y j − xT

j β̂
)2 = (y − X β̂)T(y − X β̂),

is called the residual sum of squares because it is the residual squared discrepancy
between the observations, y, and the fitted values, ŷ = X β̂. The vector ŷ is the linear
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combination of the columns of X that best accounts for the variation in y, in the sense
of minimizing the squared distance between them. Note that

ŷ = X β̂ = X (X T X )−1 X T y = H y,

say, where the hat matrix H = X (X T X )−1 X T “puts hats” on y. Evidently H is a
projection matrix; see Section 8.2.2.

The unobservable error ε j = y j − xT
jβ is estimated by the j th residual e j = y j− Sometimes e j is called a

raw residual.ŷ j = y j − xT
j β̂. In vector terms,

e = y − X β̂ = y − H y = (In − H )y,

where In is the n × n identity matrix.

Example 8.8 (Cycling data) For model (8.2) we find that

(X T X )−1 = 1

16
I4,

so the least squares estimates (X T X )−1 X T y are

1

16




y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 + y16
−y1 − y2 + y3 + y4 − y5 − y6 + y7 + y8 − y9 − y10 + y11 + y12 − y13 − y14 + y15 + y16
−y1 − y2 − y3 − y4 + y5 + y6 + y7 + y8 − y9 − y10 − y11 − y12 + y13 + y14 + y15 + y16
−y1 − y2 − y3 − y4 − y5 − y6 − y7 − y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 + y16


 =




47.19
−5.437
1.563

−1.563


 .

Thus the overall average time is 47.19 seconds, putting the seat at height
30 inches rather than 26 inches changes the time by an average of 2 × (−5.437) =
−10.87 seconds, putting the dynamo on rather than off changes the time by an aver-
age of 2 × 1.563 = 3.13 seconds, and increasing the tyre pressure from 40 to 55 psi
changes the time by –3.13 seconds. The largest effect is due to increasing the seat
height. The model suggests that the fastest time is obtained with no dynamo, a high
seat and tyres at 55 psi.

The residual sum of squares for this model is 43.25 seconds squared, the overall
sum of squares is

∑
y2

j = 36221 seconds squared, and therefore the sum of squares
explained by the model is 36221 − 43.25 = 36177.75 seconds squared; this is the
amount of variation removed when Xβ is fitted.

The fitted values are ŷ = X β̂, giving ŷ1 = β̂0 − β̂1 − β̂2 − β̂3 = 52.625, e1 =
y1 − ŷ1 = 51 − 52.625 = −1.625, and so forth. Table 8.3 gives the data, fitted values,
residuals and quantities discussed in Examples 8.22 and 8.27. �

8.2.2 Geometrical interpretation

Figure 8.2 shows the geometry of least squares. The n-dimensional vector space in-
habited by the observation vector y is represented by the space spanned by all three
axes, and the p-dimensional subspace in which Xβ lies is represented by the horizontal
plane through the origin. The least squares estimate β̂ minimizes (y − Xβ)T(y − Xβ),
which is the squared distance between Xβ and y. We see that (y − Xβ)T(y − Xβ) is
minimized when the vector y − Xβ is orthogonal to the horizontal plane spanned by
the columns of X , so that for any column x of X we have xT(y − Xβ) = 0. Equiv-
alently the normal equations X T(y − Xβ) = 0 hold, and provided X T X is invertible
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Table 8.3 Data from
bicycle experiment,
together with fitted values
ŷ, raw residuals e,
standardized residuals, r ,
deletion residuals r ′,
leverages h and Cook
distances C .

Seat Tyre Time
Setup height Dynamo pressure y ŷ e r r ′ h C

1 −1 −1 −1 51 52.62 −1.625 −0.99 −0.99 0.25 0.08
2 −1 −1 −1 54 52.62 1.375 −0.84 0.83 0.25 0.06
3 1 −1 −1 41 41.75 −0.750 −0.46 −0.44 0.25 0.02
4 1 −1 −1 43 41.75 1.250 0.76 0.75 0.25 0.05
5 −1 1 −1 54 55.75 −1.750 −1.06 −1.07 0.25 0.09
6 −1 1 −1 60 55.75 4.250 2.59 3.72 0.25 0.56
7 1 1 −1 44 44.87 −0.875 −0.53 −0.52 0.25 0.02
8 1 1 −1 43 44.87 −1.875 −1.14 −1.16 0.25 0.11
9 −1 −1 1 50 49.50 0.500 0.30 0.29 0.25 0.01

10 −1 −1 1 48 49.50 −1.500 −0.91 −0.91 0.25 0.07
11 1 −1 1 39 38.62 0.375 0.23 0.22 0.25 0.00
12 1 −1 1 39 38.62 0.375 0.23 0.22 0.25 0.00
13 −1 1 1 53 52.62 0.375 0.23 0.22 0.25 0.00
14 −1 1 1 51 52.62 −1.625 −0.99 −0.99 0.25 0.08
15 1 1 1 41 41.75 −0.750 −0.46 −0.44 0.25 0.02
16 1 1 1 44 41.75 2.250 1.37 1.43 0.25 0.16

we obtain β̂ = (X T X )−1 X T y. The fitted value ŷ = X β̂ = X (X T X )−1 X T y = H y is
the orthogonal projection of y onto the plane spanned by the columns of X , and the
matrix representing that projection is H . Notice that ŷ is unique whether or not X T X
is invertible.

Figure 8.2 shows that the vector of residuals, e = y − ŷ = (In − H )y, and the
vector of fitted values, ŷ = H y, are orthogonal. To see this algebraically, note that

ŷTe = yT H T(In − H )y = yT(H − H )y = 0, (8.6)

because H T = H and H H = H , that is, the projection matrix H is symmetric and
idempotent (Exercise 8.2.5). The close link between orthogonality and independence
for normally distributed vectors means that (8.6) has important consequences, as we
shall see in Section 8.3. For now, notice that (8.6) implies that

yT y = (y − ŷ + ŷ)T(y − ŷ + ŷ) = (e + ŷ)T(e + ŷ) = eTe + ŷT ŷ, (8.7)

as is clear from Figure 8.2 by Pythagoras’ theorem. That is, the overall sum of squares
of the data,

∑
y2

j = yT y, equals the sum of the residual sum of squares, SS(̂β) =∑
(y j − ŷ j )2 = eTe, and the sum of squares for the fitted model,

∑
ŷ2

j = ŷT ŷ.
Such decompositions are central to analysis of variance, discussed below.

8.2.3 Likelihood quantities

Chapter 4 shows how the observed and expected information matrices play a central
role in likelihood inference, by providing approximate variances for maximum like-
lihood estimates. To obtain these matrices for the normal linear model, note that the
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y

ŷŷ1

0

Figure 8.2 The
geometry of least squares
estimation. The space
spanned by all three axes
represents the
n-dimensional observation
space in which y lies. The
horizontal plane through
O represents the
p-dimensional space in
which the linear
combination Xβ lies, and
estimation by least
squares amounts to
minimizing the squared
distance
(y − Xβ)T(y − Xβ). In
the figure the value of Xβ

that gives the minimum
lies vertically below y,
which corresponds to
orthogonal projection of y
into the p-dimensional
subspace spanned by the
columns of X ; the fitted
value ŷ = H y is the point
closest to y in that
subspace, and the
projection matrix is
H = X (XT X )−1 XT. The
vector of residuals
e = y − ŷ is orthogonal to
the fitted value ŷ. The line
x = z = 0 represents the
space spanned by the
columns of the reduced
model matrix X1, with
corresponding fitted value
ŷ1. The orthogonality of
ŷ1, ŷ − ŷ1, and y − ŷ
implies that when the data
are normal the
corresponding sums of
squares are independent.

log likelihood has second derivatives

∂2�

∂βr∂βs
= − 1

σ 2

n∑
j=1

x jr x js,
∂2�

∂βr∂σ 2
= 1

σ 4

n∑
j=1

x jr
(
y j − xT

jβ
)
,

∂2�

∂(σ 2)2
= −1

2

{
− 1

σ 4
+ 2

σ 6

n∑
j=1

(
y j − xT

jβ
)2

}
, r, s = 1, . . . , p.

Thus elements of the expected information matrix are

E

(
− ∂2�

∂βr∂βs

)
= 1

σ 2

n∑
j=1

x jr x js, E

(
− ∂2�

∂βr∂σ 2

)
= 0, E

{
− ∂2�

∂(σ 2)2

}
= n

2σ 4
,

or in matrix form

I (β, σ 2) =
(

σ−2 X T X 0
0 1

2 nσ−4

)
, I (β, σ 2)−1 =

(
σ 2(X T X )−1 0

0 2σ 4/n

)
.

Provided that X has rank p, the matrices I (β, σ 2) and J (̂β, σ̂ 2) are positive definite
(Exercise 8.2.7).

Under mild regularity conditions on the design matrix and the errors, the general
theory of likelihood estimation implies that the asymptotic distribution of β̂ and σ 2 is
normal with means β and σ 2, and covariance matrix given by I (β, σ 2)−1, the block
diagonal structure of which implies that β̂ and σ̂ 2 are asymptotically independent. We
shall see in the next section that stronger results are true: when the errors are normal
the estimates β̂ have an exact normal distribution and are independent of σ̂ 2 for every
value of n, while σ̂ 2 has a distribution proportional to χ2

n−p provided that n > p.
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The quantities β̂ and SS(̂β) are minimal sufficient statistics for β and σ 2

(Problem 8.7).

Example 8.9 (Two-sample model) Suppose that we have two groups of normal
data, the first with mean β0,

y0 j = β0 + ε0 j , j = 1, . . . , n0,

and the second with mean β0 + β1,

y1 j = β0 + β1 + ε1 j , j = 1, . . . , n1,

where the εg j are independent with means zero and variances σ 2. The matrix form of
this model is 



y01
...

y0n0

y11
...

y1n1




=




1 0
...

...
1 0
1 1
...

...
1 1




(
β0

β1

)
+




ε01
...

ε0n0

ε11
...

ε1n1




.

The estimator of β is β̂ = (X T X )−1 X T y, that is,
(

β̂0

β̂1

)
=

(
n0 + n1 n1

n1 n1

)−1 (
n0 y0· + n1 y1·

n1 y1·

)

=
(

n−1
0 −n−1

0

−n−1
0 n−1

0 + n−1
1

) (
n0 y0· + n1 y1·

n1 y1·

)

=
(

y0·
y1· − y0·

)
,

where y0· = n−1
0

∑
y0 j and y1· = n−1

1

∑
y1 j are the group averages. One can verify

directly that the elements of σ 2(X T X )−1 give the variances and covariance of the least
squares estimators.

In this example the fitted values are β̂0 = y0· for the first group and β̂0 + β̂1 = y1·
for the second group, and the unbiased estimator of σ 2 is

S2 = 1

n0 + n1 − 2

{
n0∑

j=1

(y0 j − y0·)
2 +

n1∑
j=1

(y1 j − y1·)
2

}
.

A minimal sufficient statistic for (β0, β1, σ
2) is (y0·, y1·, s2). �

Example 8.10 (Maize data) The discussion in Example 1.1 suggests that a model
of matched pairs better describes the experimental setup for the maize data than the
two-sample model of Example 8.9. We parametrize the matched pair model so that
the j th pair of observations is

y1 j = β j − β0 + ε1 j , y2 j = β j + β0 + ε2 j , j = 1, . . . , m,
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where we assume that the ε j i are independent normal random variables with means
zero and variances σ 2. We have m = 15. The average difference between the heights
of the crossed and self-fertilized plants in a pair is 2β0, and the mean height of the
pair is β j . The matrix form of this model is



y11

y21

y12

y22
...

y1m

y2m




=




−1 1 0 · · · 0
1 1 0 · · · 0

−1 0 1 · · · 0
1 0 1 · · · 0
...

...
...

...
−1 0 0 · · · 1

1 0 0 · · · 1







β0

β1

β2
...

βm




+




ε11

ε21

ε12

ε22
...

ε1m

ε2m




,

so β has dimension (m + 1) × 1 and X T X = diag(2m, 2, . . . , 2) has dimension (m +
1) × (m + 1).

We see that

β̂0 = (y21 − y11 + y22 − y12 + · · · + y2m − y1m)/(2m),

β̂ j = 1

2
(y1 j + y2 j ), j = 1, . . . , m,

and that the estimators are independent. The unbiased estimator of σ 2 is

S2 = 1

2m − (m + 1)

m∑
j=1

{(y1 j − β̂ j + β̂0)2 + (y2 j − β̂ j − β̂0)2},

which can be written as {2(m − 1)}−1 ∑
(d j − d)2, where d j = y2 j − y1 j is the dif-

ference between the heights of the crossed and self-fertilized plants in the j th pair,
and d = m−1 ∑

d j is their average. Note that β̂0 equals 1
2 d. �

Likelihood ratio statistic

The likelihood ratio statistic is a standard tool for comparing nested models. In the
context of the normal linear model, let

y = Xβ + ε = ( X1 X2 )

(
β1

β2

)
+ ε = X1β1 + X2β2 + ε,

where X1 is an n × q matrix, X2 is an n × (p − q) matrix, q < p, and β1 and β2 are
vectors of parameters of lengths q and p − q . Suppose that we wish to compare this
with the simpler model in which β2 = 0, so the mean of y depends only on X1. Under
the more general model the maximum likelihood estimators of β and σ 2 are β̂ and
σ̂ 2 = n−1SS(̂β), where SS(β) = (y − Xβ)T(y − Xβ), and it follows from (8.5) that
the maximized log likelihood is

�p(σ̂ 2) = −1

2
{n log SS(̂β) + n − n log n},

where �p(σ 2) = maxβ �(β, σ 2) is the profile log likelihood for σ 2. When β2 = 0, the
maximum likelihood estimator of σ 2 is

σ̂ 2
0 = n−1SS(̂β1) = n−1(y − X1β̂1)T(y − X1β̂1),
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where β̂1 is the estimator of β1 when β2 = 0. Hence the likelihood ratio statistic for
comparison of the models is

2
{
�p(σ̂ 2) − �p

(
σ̂ 2

0

)} = n log{SS(̂β)/SS(̂β1)}

= n log

[
1 + p − q

n − p

{SS(̂β1) − SS(̂β)}/(p − q)

SS(̂β)/(n − p)

]

= n log

(
1 + p − q

n − p
F

)
, (8.8)

say. Here F ≥ 0, with equality only if the two sums of squares are equal. This event
can occur only if the columns of X2 are linearly dependent on those of X1. If not, the
results of Section 4.5.2 imply that the likelihood ratio statistic has an approximate χ2

distribution, but as it is a monotonic function of F , large values of (8.8) correspond
to large values of F . We shall see in Section 8.5 that the exact distribution of F is
known and can be used to compare nested models, with no need for approximations.

It is instructive to express F explicitly in terms of the least squares estima-
tors. As (8.8) is a likelihood ratio statistic for testing β2 = 0, it is invariant to 1–1
reparametrizations that leave β2 fixed, and we write E(y) as

X1β1 + X2β2 = X1β1 + H1 X2β2 + (I − H1)X2β2

= X1
{
β1 + (

X T
1 X1

)−1
X T

1 X2β2
} + Z2β2

= X1λ + Z2ψ,

say, where H1 = X1(X T
1 X1)−1 X T

1 is the projection matrix for X1, Z2 = (I − H1)X2

is the matrix of residuals from regression of the columns of X2 on those of X1, and
the new parameters are λ and ψ = β2. Note that

X T
1 Z2 = X T

1

{
I − X1

(
X T

1 X1
)−1

X T
1

}
X2 = 0,

and that H1 is idempotent. In this new parametrization the parameter estimates are

(
λ̂

ψ̂

)
=

(
X T

1 X1 X T
1 Z2

Z T
2 X1 Z T

2 Z T
2

)−1 (
X T

1

Z T
2

)
y =

( (
X T

1 X1
)−1

X T
1 y(

Z T
2 Z2

)−1
Z T

2 y

)
,

while if ψ = β2 = 0, the least squares estimate of λ remains λ̂. Consequently

SS(̂β) = (y − X1λ̂ − Z2ψ̂)T(y − X1λ̂ − Z2ψ̂)

= (y − X1λ̂)T(y − X1λ̂) − 2ψ̂T Z T
2(y − X1λ̂) + ψ̂T Z T

2 Z2ψ̂

= SS(̂β1) − ψ̂T Z T
2 Z2ψ̂,

since

ψ̂T Z T
2(y − X1λ̂) = ψ̂T Z T

2 y − ψ̂T Z T
2 X1λ̂

= ψ̂T
(
Z T

2 Z2
)(

Z T
2 Z2

)−1
Z T

2 y

= ψ̂T
(
Z T

2 Z2
)
ψ̂.
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Thus the F statistic in (8.8) may be written as

F = n − p

p − q

β̂T
2 X T

2(I − H1)X2β̂2

SS(̂β)

and this is large if β̂2 differs greatly from zero.
If β2 is scalar, then p − q = 1, the matrix Z T

2 Z2 = X T
2(I − H1)X2 = v−1

pp is scalar,
and F = T 2, where

T = β̂2 − β2

(v pps2)1/2
(8.9)

with s2 = SS(̂β)/(n − p) and β2 = 0. Thus F is a monotonic function of T 2. We
shall see in Section 8.3.2 that T has a tn−p distribution.

8.2.4 Weighted least squares

Suppose that a normal linear model applies but that the responses have unequal
variances. If the variance of y j is σ 2/w j , where σ 2 is unknown but the w j are known
positive quantities giving the relative precisions of the y j , the log likelihood can be
written as

�(β, σ 2) ≡ −1

2

{
n log σ 2 + 1

σ 2
(y − Xβ)TW (y − Xβ)

}
,

where W = diag{w1, . . . , wn} is known as the matrix of weights. Let W 1/2 =
diag{w1/2

1 , . . . , w1/2
n }, and set y′ = W 1/2 y and X ′ = W 1/2 X . Then the sum of squares

may be written as (y′ − X ′β)T(y′ − X ′β). As this has the same form as (8.3), the es-
timates of β and σ 2 are

β̂ = (X ′T X ′)−1 X ′T y′ = (X TW X )−1 X TW y, (8.10)

and

s2 = (n − p)−1 y′T{I − X ′(X ′T X ′)−1 X ′T}y′

= (n − p)−1 yT{W − W X (X TW X )−1 X TW }y. (8.11)

These are the weighted least squares estimates. This device of replacing y and X with
W 1/2 y and W 1/2 X allows methods for unweighted least squares models to be applied
when there are weights (Exercise 8.2.9).

Example 8.11 (Grouped data) Suppose that each y j is an average of a random
sample of m j normal observations, each with mean xT

jβ and variance σ 2, and that the
samples are independent of each other. Then y j has mean xT

jβ and variance σ 2/m j ,
and the y j are independent. The estimates of β and σ 2 are given by (8.10) and (8.11)
with weights w j ≡ m j . �
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Weighted least squares can be extended to situations where the errors are correlated
but the relative correlations are known, that is, var(y) = σ 2W −1, where W is known
but not necessarily diagonal. This is sometimes called generalized least squares. The
corresponding least squares estimates of β and σ 2 are given by (8.10) and (8.11).

Weighted least squares turns out to be of central importance in fitting nonlinear
models, and is used extensively in Chapter 10.

Exercises 8.2

1 Write down the linear model corresponding to a simple random sample y1, . . . , yn from
the N (µ, σ 2) distribution, and find the design matrix. Verify that

µ̂ = (X T X )−1 X T y = y, s2 = SS(̂β)/(n − p) = (n − 1)−1
∑

(y j − y)2.

2 Verify the formula for s2 given in Example 8.7, and show directly that its distribution is
σ 2χ 2

1 .

3 The angles of the triangle ABC are measured with A and B each measured twice and C
three times. All the measurements are independent and unbiased with common variance
σ 2. Find the least squares estimates of the angles A and B based on the seven measurements
and calculate the variance of these estimates.

4 In Example 8.10, show that the unbiased estimator of σ 2 is {2(m − 1)}−1
∑

(d j − d)2.
Recall that: (i) if the
matrix A is square, then
tr(A) = ∑

aii ; (ii) if A
and B are conformable,
then tr(AB) = tr(B A);
(iii) λ is an eigenvalue of
the square matrix A if
there exists a vector of
unit length a such that
Aa = λa, and then a is an
eigenvector of A; and (iv)
a symmetric matrix A
may be written as E L ET,
where L is a diagonal
matrix of the eigenvalues
of A, and the columns of
E are the corresponding
eigenvectors, having the
property that ET = E−1.
If the matrix is symmetric
and positive definite, then
all its eigenvalues are real
and positive.

5 Show that if the n × p design matrix X has rank p, the matrix H = X (X T X )−1 X T is
symmetric and idempotent, that is, H T = H and H 2 = H , and that tr(H ) = p. Show that
In − H is symmetric and idempotent also. By considering H 2a, where a is an eigenvector
of H , show that the eigenvalues of H equal zero or one. Prove also that H has rank p.
Give the elements of H for Examples 8.9 and 8.10.

6 In a linear model in which n → ∞ in such a way that β̂
P−→ β, show that e j

P−→ ε j .
Generalize this to any finite subset of the residuals e. Is this true for the entire vector e?
Let y j = β0 + β1x j + ε j with x1 = · · · = xk = 0 and xk+1 = · · · = xn = 1. Is β̂ consis-
tent if n → ∞ and k = 1? If k = m, for some fixed m? If k = n/2? Which of the ε j can
be estimated consistently in each case?

7 Show that in a normal linear model in which X has rank p, the matrices I (β, σ 2) and
J (̂β, σ̂ 2) are positive definite.

8 (a) Consider the two design matrices for Example 8.4; call them X1 and X2. Find the
4 × 4 matrix A for which X1 = X2 A, and verify that it is invertible by finding its inverse.
(b) Consider the linear models y = X1β + ε and y = X2γ + ε, where X1 = X2 A, γ =
Aβ, and A is an invertible matrix. Show that the hat matrices, fitted values, residuals, and
sums of squares are the same for both models, and explain this in terms of the geometry
of least squares.

9 (a) Consider a normal linear model y = Xβ + ε where var(ε) = σ 2W −1, and W is a
known positive definite symmetric matrix. Show that a inverse square root matrix W 1/2

exists, and re-express the least squares problem in terms of y1 = W 1/2 y, X1 = W 1/2 X ,
and ε1 = W 1/2ε. Show that var(ε1) = σ 2 In . Hence find the least squares estimates, hat
matrix, and residual sum of squares for the weighted regression in terms of y, X , and
W , and give the distributions of the least squares estimates of β and the residual sum of
squares.
(b) Suppose that W depends on an unknown scalar parameter, ρ. Find the profile log
likelihood for ρ, �p(ρ) = maxβ,σ 2 �(β, σ 2, ρ), and outline how to use a least squares
package to give a confidence interval for ρ.
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8.3 Normal Distribution Theory

8.3.1 Distributions of β̂ and s2

The derivation of the least squares estimators in the previous section rests on the
assumption that the errors satisfy the second-order assumptions

E(ε j ) = 0, var(ε j ) = σ 2, cov(ε j , εk) = 0, j �= k, (8.12)

and in addition are normal variables. As they are uncorrelated, their normality implies
they are independent. On setting εT = (ε1, . . . , εn), we have

E(ε) = 0, cov(ε, ε) = E(εεT) = σ 2 In,

where In is the n × n identity matrix. The least squares estimator equals

β̂ = (X T X )−1 X T y = (X T X )−1 X T(Xβ + ε) = β + (X T X )−1 X Tε,

which is a linear combination of normal variables, and therefore its distribution is
normal. Its mean vector and covariance matrix are

E(̂β) = β + (X T X )−1 X TE(ε),

var(̂β) = cov{β + (X T X )−1 X Tε, β + (X T X )−1 X Tε}
= (X T X )−1 X Tcov(ε, ε)X (X T X )−1,

so

E(̂β) = β, var(̂β) = σ 2(X T X )−1. (8.13)

Therefore β̂ is normally distributed with mean and covariance matrix given by (8.13).
We shall see below that the residual sum of squares has a chi-squared distribution,
independent of β̂. Thus the key distributional results for the normal linear model are

β̂ ∼ Np{β, σ 2(X T X )−1} independent of SS(̂β) ∼ σ 2χ2
n−p. (8.14)

To show that the least squares estimator and residual sum of squares are indepen-
dent, note that the residuals can be written as

e = (In − H )y = (In − H )(Xβ + ε) = (In − H )ε,

because H X = X (X T X )−1 X T X = X . Therefore the vector e = (In − H )ε is a linear
combination of normal random variables and is itself normally distributed, with mean
and variance matrix

E(e) = E{(In − H )ε} = 0,

(8.15)

var(e) = var {(In − H )ε} = (In − H )var(ε)(In − H )T = σ 2(In − H ).

The covariance between β̂ and e is

cov(̂β, e) = cov{β + (X T X )−1 X Tε, (In − H )ε}
= (X T X )−1 X Tcov(ε, ε)(In − H )T

= (X T X )−1 X Tσ 2 In(In − H )T = 0.
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As both e and β̂ are normally distributed and their covariance matrix is zero, they are
independent, which implies that β̂ and the residual sum of squares SS(̂β) = eTe are
independent.

The key to the distribution of SS(̂β) is the decomposition

εTε = (y − Xβ)T(y − Xβ)

= (y − X β̂ + X β̂ − Xβ)T(y − X β̂ + X β̂ − Xβ)

= {e + X (̂β − β)}T{e + X (̂β − β)},
which leads to

εTε/σ 2 = eTe/σ 2 + (̂β − β)T X T X (̂β − β)/σ 2, (8.16)

because eT X = yT(In − H )X = 0. The left-hand side of (8.16) is a sum of the n inde-
pendent chi-squared variables ε2

j/σ
2, so its distribution is χ2

n ; its moment-generating
function is (1 − 2t)−n/2, t < 1

2 . It follows from applying (3.23) to the normal distribu-
tion of β̂ in (8.14) that (̂β − β)T X T X (̂β − β)/σ 2 ∼ χ2

p. On taking moment-generating
functions of both sides of (8.16) we therefore obtain

(1 − 2t)−n/2 = E{exp(teTe/σ 2)} × (1 − 2t)−p/2, t <
1

2
,

because e and β̂ are independent. Therefore eTe/σ 2 has moment-generating func-
tion (1 − 2t)−(n−p)/2, showing that its distribution is χ2

n−p. We need only recall that
SS(̂β) = eTe to establish the remaining result in (8.14): under the normal linear model,
we have SS(̂β)/σ 2 ∼ χ2

n−p.
As the distribution of SS(̂β) is σ 2χ2

n−p, its mean is E{SS(̂β)} = (n − p)σ 2, and its
variance is var{SS(̂β)} = 2(n − p)σ 4. Thus

S2 = 1

n − p

n∑
j=1

(y j − x j β̂)2 = 1

n − p
SS(̂β)

is an unbiased estimator of σ 2, whereas σ̂ 2 = SS(̂β)/n is biased.

8.3.2 Confidence and prediction intervals

Confidence intervals for components of β are based on the distributions of β̂ and S2.
Under the normal linear model the r th element of β̂ satisfies

β̂r ∼ N (βr , σ
2vrr ),

where vrr is the r th diagonal element of (X T X )−1, and β̂ is independent of S2, whose
distribution is (n − p)−1σ 2χ2

n−p. Therefore

T = β̂r − βr√
S2vrr

∼ tn−p,

which makes the connection with (8.9). A (1 − 2α) confidence interval for βr is
β̂r ± sv1/2

rr tn−p(α). When σ 2 is known, we replace s by σ and tn−p(α) by the normaltν (α) is the α quantile of
the tν distribution. quantile zα .
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Similar reasoning gives confidence intervals for linear functions of β. The max-
imum likelihood estimator of the linear function xT

+β is xT
+β̂, which has a normal

distribution with mean xT
+β and variance

var(xT
+β̂) = xT

+var(̂β)x+ = σ 2xT
+(X T X )−1x+.

As S2 is independent of β̂, confidence regions for xT
+β can be based on

xT
+β̂ − xT

+β

{S2xT+(X T X )−1x+}1/2
∼ tn−p.

If σ 2 is known, the observed s is replaced in the confidence interval by σ and quantiles
of the t distribution are replaced by those of the normal. Notice that the variance of a
fitted value ŷ j = xT

j β̂ is σ 2xT
j (X T X )−1x j , and this equals σ 2h j j , where h j j is the j th

diagonal element of the hat matrix H .
A confidence interval for a function of parameters is different from a prediction

interval for a new observation, y+ = xT
+β + ε+. The presence of ε+ would introduce

uncertainty about y+ even if β was known, and a prediction interval must take this
into account. If ε+ is normal with mean zero and variance σ 2, independent of the data
from which β̂ is estimated, we have

E(xT
+β̂ + ε+) = xT

+β,

var(xT
+β̂ + ε+) = var(xT

+β̂) + var(ε+) = σ 2{xT
+(X T X )−1x+ + 1}.

When σ 2 is unknown, therefore, a prediction interval for y+ can be based on

y+ − xT
+β̂

[S2{1 + xT+(X T X )−1x+}]1/2
∼ tn−p,

with the appropriate changes if σ 2 is known.

Example 8.12 (Cycling data) The covariance matrix for the parameter estimates
in Example 8.8 is σ 2

16 I4. As the residual sum of squares is SS(̂β) = 43.25, n = 16 and
p = 4, an estimate of σ 2 is s2 = 43.25/12 = 3.604 on 12 degrees of freedom, and
each estimate β̂r has standard error (s2/16)1/2 = 0.475.

A 0.95 confidence interval for the true value of β1 is β̂1 ± st12(0.025)/4, and this
is −5.437 ± 0.475 × 2.18 = (−6.47, −4.40) seconds, clear evidence that the time is
shorter when the seat is higher. The change due to the effect of tyre pressure is 2β̂3

seconds, for which the standard error is 2 × s/4 = 0.95 seconds.
A 0.95 prediction interval for a further timing y+ made with all three factors set at

their higher levels would be 41.75 ± (1 + 4
16 )1/2st12(0.025), which is (39.49, 46.01).

The variability introduced by ε+ forms the bulk of the variability of y+, whose variance
is five times that of the fitted value. �

Example 8.13 (Maize data) Consider the two-sample model applied to the data
in Table 1.1. If we assume that the heights of the cross-fertilized plants form a ran-
dom sample with means β0 + β1, and that the heights of the self-fertilized plants
form a random sample with height β0, and that both have variance σ 2, the results of
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Example 8.9 establish that the estimates are

β̂0 = y0· = 140.6, β̂1 = y1· − y0· = 161.53 − 140.6 = 20.93,

that the unbiased estimate of σ 2 is s2 = 553.19, and that the estimated variance of
β̂1 is s2(n−1

0 + n−1
1 ) = 73.78. As s2 has 28 degrees of freedom, a 0.95 confidence

interval for β1 has limits

β̂1 ± s
(
n−1

0 + n−1
1

)1/2
t28(0.025) = 20.93 ± 73.781/2 × 2.048 = 3.34, 38.52.

This does not contain zero, and is evidence that the crossed plants are significantly
taller than self-fertilized plants.

For the matched pairs model of Example 8.10, there are m = 15 pairs, with β̂0 =
10.48 and s2 = 712.36, on 2m − (m + 1) = 14 degrees of freedom. A 0.95 confidence
interval for β0 based on this model has limits

β̂0 ± {s2/(2m)}1/2t14(0.025) = 10.48 ± (712.36/30)1/2 × 2.154 = 0.00, 20.96.

The corresponding interval for the height increase for crossed plants is an interval
for 2β0, that is, (0.00, 41.91). This is wider than the interval for the two-sample model,
and just contains the value zero, giving evidence that there may be no increase due to
cross-fertilization. The increase in interval width has two causes. First, the estimate
of σ 2 for the matched pairs model equals 712.36, which is larger than the value
553.19 for the two-sample model. Second, there are only 14 degrees of freedom for
the matched pairs estimate of variance, and |t14(0.025)| > |t28(0.025)|, which slightly
inflates the matched pairs confidence interval relative to the interval from the matched
analysis. �

Exercises 8.3

1 The following table gives the parameter estimates, standard errors and correlations, when
the model y = β0 + β1x1 + β2x2 + β3x3 + ε is fitted to the cement data of Example 8.3.
The residual sum of squares is 48.11.

Estimate SE Correlations of Estimates
(Intercept) 48.19 3.913 (Intercept) x1 x2

x1 1.70 0.205 x1 -0.736
x2 0.66 0.044 x2 -0.416 -0.203
x3 0.25 0.185 x3 -0.828 0.822 -0.089

On the assumption that this normal linear model applies, compute 0.95 confidence intervals
for β0, β1, β2, and β3, and test the hypothesis that β3 = 0. Compute a 0.90 confidence
interval for β2 − β3.

2 Let β̂ be a least squares estimator, and suppose that ε+ ∼ N (0, σ 2) independent of β̂. Ver-
ify that var(xT

+β̂) = σ 2xT
+(X T X )−1x+ and that var(xT

+β̂ + ε+) = σ 2{1 + xT
+(X T X )−1x+}.

Assuming that a normal linear model is suitable for the cycling data, calculate a 0.90
confidence interval for the mean time to cycle up the hill when the three factors are at
their lowest levels. Obtain also a 0.90 prediction interval for a future observation made
with that setup.
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8.4 Least Squares and Robustness

In Section 8.2.1 we established that β̂ = (X T X )−1 X T y is the maximum likelihood
estimator of the regression parameter β under the assumption of normal responses.
The model is a linear exponential family with complete minimal sufficient statistic
(̂β, S2), and it follows that these are the unique minimum variance unbiased estimators
of (β, σ 2). It is natural to ask to what optimality properties hold more generally. We
shall see below that β̂ has minimum variance among all estimators linear in the
responses y, under assumptions on the mean and variance structure of y alone. Thus
the least squares estimator retains optimality properties even without full distributional
assumptions. This has important generalizations, as we shall see in Section 10.6.

Suppose that the second-order assumptions (8.12) hold, but that the errors are
not necessarily normal. Thus, although uncorrelated, they may be dependent. Then
E(y) = Xβ and var(y) = σ 2 In . Let β̃ denote any unbiased estimator of β that is linear
in y. Then a p × n matrix A exists such that β̃ = Ay, and unbiasedness implies that
E(β̃) = AXβ = β for any parameter vector β; this entails AX = Ip. Now The n × n hat matrix

H = X (XT X )−1 XT is
symmetric and idempotent
and hence so is In − H .

var(β̃) − var(̂β) = Aσ 2 In AT − σ 2(X T X )−1

= σ 2{AAT − AX (X T X )−1 X T AT}
= σ 2 A(In − H )AT

= σ 2 A(In − H )(In − H )T AT

and this p × p matrix is positive semidefinite. Thus β̂ has smallest variance in finite
samples among all linear unbiased estimators of β, provided that the second-order
assumptions hold. This result, the Gauss–Markov theorem, gives further support for Johann Carl Friedrich

Gauss (1777–1855) was
born and educated in
Brunswick. He studied in
Göttingen and obtained a
doctorate from the
University of Helmstedt.
His first book, published
at the age of 24, contained
the largest advance in
geometry since the
Greeks. He became
director of the Göttingen
observatory and invented
least squares estimation
for the combination of
astronomical
observations, though his
statistical work was not
published until much later.
He also wrote treatises on
theoretical astronomy,
surveying, terrestial
magnetism, infinite series,
integration, number
theory, and differential
geometry.

using β̂ if a linear estimator of β is sought, though of course nonlinear estimators
may have smaller variance.

Example 8.14 (Student t density) Suppose that y = Xβ + σε, where the ε j are
independent and have the Student t density (3.11) with ν degrees of freedom. Now
var(ε j ) is finite and equals ν/(ν − 2) provided ν > 2, and then the least squares
estimator has variance matrix σ 2ν/(ν − 2) × (X T X )−1.

How much efficiency is lost by using least squares rather than maximum likelihood
estimation for β? To see this we must compute the expected information matrix, which
gives the inverse variance of the maximum likelihood estimator. The log likelihood
assuming ν and σ 2 known is

�(β) ≡ −ν + 1

2

n∑
j=1

log
{
1 + (

y j − xT
jβ

)2
/(νσ 2)

}
,

and differentiation with respect to β gives

∂�(β)

∂β
= ν + 1

νσ 2

n∑
j=1

y j − xT
jβ

1 + (
y j − xT

jβ
)2

/(νσ 2)
x j ,

−∂2�(β)

∂β∂βT
= ν + 1

νσ 2

n∑
j=1

1 − (
y j − xT

jβ
)2

/(νσ 2){
1 + (

y j − xT
jβ

)2
/(νσ 2)

}2 x j x
T
j .
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Now E{(1 + ε2/ν)−r } = (ν + 2r − 2) · · · ν/{(ν + 2r − 1) · · · (ν + 1)}, so the ex-
pected information for β is σ−2(ν + 1)/(ν + 3) × X T X . Thus the maximum like-
lihood estimator is a nonlinear function of y with large-sample variance matrix
σ 2(ν + 3)/(ν + 1) × (X T X )−1. It follows that the least squares estimator has asymp-
totic relative efficiency (ν − 2)(ν + 3)/{ν(ν + 1)}, independent of the design matrix,
β, or σ 2. As ν → ∞, the efficiency tends to one; for ν = 5, 10, and 20 it equals 0.8,
0.95, and 0.99. Maximum likelihood estimation of β barely improves on least squares
for a wide range of ν, because the t density is close to normal unless ν is small. �

M-estimation

The least squares estimators have strong optimality properties, but because they are
linear in y, they are sensitive to outliers. When data are too extensive to be carefully
inspected or when bad data are present, robust or resistant estimators are more ap-
propriate. One approach to constructing them is to replace the sum of squares with a
function

∑
ρ{(y j − xT

jβ)/σ } that downweights extreme values of (y j − xT
jβ)/σ . The

resulting estimators are called M-estimators because they are maximum-likelihood-
like: the function ρ takes the place of a negative log likelihood. They may also be
defined as the solutions of the p × 1 estimating equation (Section 7.2)

σ−1
n∑

j=1

x jρ
′{(y j − xT

jβ
)
/σ

} = 0, (8.17)

where ρ ′(u) = dρ(u)/du, which extends the least squares estimating equation

X T(y − Xβ) =
n∑

j=1

x j
(
y j − xT

jβ
) = 0. (8.18)

Many functions ρ(u) have been proposed. Setting ρ(u) = u2/2 gives least squares.
Other possibilities include ρ(u) = |u|, ρ(u) = ν log(1 + u2/ν)/2, and

ρ(u) =
{

u2, if |u| < c,
c(2|u| − c), otherwise,

corresponding to the median, a tν density, and a Huber estimator (Example 7.19).
These have the drawback that large outliers are not downweighted to zero. This can
be achieved with a redescending function such as the biweight,

ρ ′(u) = u max[{1 − (u/c′)2}2, 0];

taking c′ = 4.865 gives asymptotic efficiency 0.95 for normal data.
Notice that

∑
ρ{(y j − xT

jβ)/σ } has second derivative σ−2 ∑
x j xT

j g
′(y j − xT

jβ),
whose expectation is of form σ−2 X T X × E{g′(ε)} under a model in which y j =
xT

jβ + σε j and the ε j are independent and identically distributed with zero mean and
unit variance. The ideas of Section 7.2 imply that the M-estimator has asymptotic
variance

σ 2(X T X )−1 × E{g(ε)2}/E{g′(ε)},
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Figure 8.3 Data for
which least squares
estimation fails. Left: log
survival proportions for
rats given doses of
radiation, with lines fitted
by least squares with
(solid) and without (dots)
the outlier, and a Huber
M-estimate for the entire
data (dashes) (Efron,
1988). Right: simulated
data with a batch of
outliers (circles), and fits
by least squares to all data
(solid), least squares to
good data only (large
dash), Huber (dot-dash),
biweight (dashes), and
least trimmed squares
(medium dash). The
Huber and biweight fits
are the same to plotting
accuracy.

so its efficiency relative to least squares is simply E{g′(ε)}/E{g(ε)2}. The Huber
estimator for regression has efficiencies given by the right panel of Figure 7.4, for
instance.

Equation (8.17) may be solved using iterative versions of least squares described
in Section 10.2.2, though these may fail to converge if ρ is not convex. In practice σ

too must be estimated, by the median absolute deviation of the residuals y j − xT
j β̂ at

each iteration, or using an M-estimator of scale.
Initial values for these fits can be found by a highly resistant procedure such as least

trimmed squares, whereby β is chosen to minimize
∑q

i=1(y j − xT
jβ)2

(i); this is the sum
of the smallest q = �n/2	 + �(p + 1)/2	 squared residuals, found by a Monte Carlo
search. Highly resistant procedures do not usually provide standard errors, which
can be obtained by a data-based simulation procedure such as the bootstrap; see the
bibliographic notes.

Example 8.15 (Survival data) The left panel of Figure 8.3 shows data on batches of
rats given doses of radiation. They are well fit by a straight line, apart from an apparent
outlier, which strongly affects the least squares fit — note what the pattern of residuals
will be. The least squares estimates of slope and its standard error with and without the
outlier are −5.91 (1.05) and −7.79 (0.59), while Huber estimation gives −7.02 (0.46).
Downweighting the outlier using the robust estimator gives a result intermediate
between keeping it and deleting it.

This sample is small and the outlier sticks out, so robust methods are not really
needed. They are more valuable for larger more complex data sets where visualization
is difficult and outliers non-obvious. �

Example 8.16 (Simulated data) To illustrate and compare some robust estimators,
we generated sets of 25 standard normal observations y with a single covariate x ,
and then added k outliers with mean 6, having the t5 distribution. The right panel
of Figure 8.3 shows one of these datasets, with k = 5. We then computed five esti-
mates of slope, from least squares applied with and without the outliers, from Huber
and biweight M-estimators having efficiency 0.95 at the normal model, and from
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Table 8.4 Bias (standard
deviation) of estimators of
slope in sample of 25
good data and k outliers,
estimated from 200
replications.

Least squares M-estimation
Least trimmed

k No outliers With outliers Huber Biweight squares

1 0.00 (0.07) 0.17 (0.06) 0.07 (0.07) 0.01 (0.07) −0.01 (0.13)
2 0.00 (0.07) 0.26 (0.06) 0.13 (0.07) 0.02 (0.09) 0.01 (0.14)
5 0.00 (0.07) 0.41 (0.05) 0.38 (0.06) 0.19 (0.19) 0.01 (0.14)

10 0.00 (0.06) 0.48 (0.04) 0.48 (0.04) 0.46 (0.12) 0.05 (0.20)

least trimmed squares. Table 8.4 shows the bias and standard deviation of the slope
estimators for various k, computed from 200 replicate data sets.

Inclusion of just one outlier ruins the least squares estimator, which is the bench-
mark when outliers are excluded. The biweight gives the better of the M-estimators,
but with k ≥ 5 it is badly biased. The M-estimators perform as badly as least squares
when contamination is high. Least trimmed squares is least biased overall, but is very
inefficient even for k = 1. This suggests that a good practical data analysis strategy
is to use an initial least trimmed squares fit to identify and delete outliers, and then
apply M-estimation to the remaining data. �

Misspecified variance

Outliers are just one of many possible problems in regression. Suppose that although
E(y) = Xβ, the variance is var(y) = V rather than the assumed σ 2 In . Then β̂ =
(X T X )−1 X T y has variance

(X T X )−1(X TV X )(X T X )−1. (8.19)

If V = σ 2 In , then var(̂β) = σ 2(X T X )−1, which itself is the inverse Fisher information
for β under the normal model. Thus if the variance of y is correctly supposed to equal
σ 2 In , the least squares estimator attains the Cramér–Rao lower bound appropriate to
normal responses, while (7.20) implies that var(̂β) is inflated otherwise.

Most packages use the formula σ 2(X T X )−1 and make no allowance for possible
variance misspecification. If plots such as those described in Section 8.6 do not suggest
a particular variance to be fitted using weighted least squares, the weights being W =
V −1, then it may be better to apply least squares but to base confidence intervals on an
estimate of (8.19). One simple possibility is to replace V with V̂ = diag{r2

1 , . . . , r2
n },

where r j = (y j − ŷ j )/(1 − h j j ).

Exercises 8.4

1 Check the details of Example 8.14.

2 Show that β̂ and S2 are unbiased estimators of β and σ 2 even when the errors are not
normal, provided that the second-order assumptions are satisfied.

3 Consider a linear regression model (8.1) in which the errors ε j are independently
distributed with Laplace density

f (u; σ ) = (23/2σ )−1 exp
{

−
∣∣∣u/(

21/2σ
)∣∣∣}, −∞ < u < ∞, σ > 0.
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Verify that this density has variance σ 2. Show that the maximum likelihood estimate of β
is obtained by minimizing the L1 norm

∑ |y j − xT
j β| of y − Xβ.

Show that if in fact the ε j
iid∼ N (0, σ 2), the asymptotic relative efficiency of the esti-

mators relative to least squares estimators is 2/π .

4 Consider a linear model y j = x jβ + ε j , j = 1, . . . , n in which the ε j are uncorrelated and
have means zero. Find the minimum variance linear unbiased estimators of the scalar β
when (i) var(ε j ) = x jσ

2, and (ii) var(ε j ) = x2
j σ

2. Generalize your results to the situation
where var(ε) = σ 2/w j , where the weights w j are known but σ 2 is not.

5 Use (8.18) to establish that (7.20) takes form

(X T X )−1 X TV X (X T X )−1 ≥ σ 2(X T X )−1

when var(y) is wrongly supposed equal to ε2 In instead of V .

8.5 Analysis of Variance

8.5.1 F statistics

In most regression models a key question is whether or not the explanatory variables
affect the response. For example, in the bicycle data, we were concerned how the
time to climb the hill depended on the seat height and other factors. Ockham’s razor
suggests that we use the simplest model we can. This poses the question: which
explanatory variables are needed? To be concrete, suppose that we fit a normal linear
model

y = Xβ + ε = (X1, X2)

(
β1

β2

)
+ ε = X1β1 + X2β2 + ε, (8.20)

where X1 is an n × q matrix, X2 is an n × (p − q) matrix, q < p, and β1 and β2 are
vectors with respective lengths q and p − q . We suppose that X has rank p and X1

has rank q. The explanatory variables X2 are unnecessary if β2 = 0, in which case
the simpler model y = X1β1 + ε holds. How can we detect this?

In Figure 8.2, let the line x = 0 in the horizontal plane through the origin rep-
resent the linear subspace spanned by the columns of X1. The fitted value ŷ1 =
X1(X T

1 X1)−1 X T
1 y is the orthogonal projection of y onto this subspace. The vector of

residuals, y − ŷ1 = {In − X1(X T
1 X1)−1 X T

1}y, resolves into the two orthogonal vectors
y − ŷ and ŷ − ŷ1; that is,

y − ŷ1 = (y − ŷ) + (̂y − ŷ1),

where (y − ŷ)T(̂y − ŷ1) = 0. These vectors are the residual from the more complex
model, y − ŷ, and the change in fitted values when X2 is added to the design matrix,
ŷ − ŷ1. As these vectors are orthogonal linear functions of the normally distributed
vector y, they are independent. Pythagoras’ theorem implies that

(y − ŷ1)T(y − ŷ1) = (y − ŷ)T(y − ŷ) + (̂y − ŷ1)T(̂y − ŷ1),

or equivalently

SS(̂β1) = SS(̂β) + {SS(̂β1) − SS(̂β)}. (8.21)
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Thus the residual sum of squares for the simpler model is the sum of two independently
distributed parts: the residual sum of squares for the more elaborate model, SS(̂β),
and the reduction in sum of squares when the columns of X2 are added to the design
matrix, SS(̂β1) − SS(̂β).

If the submodel is correct, so too is the more elaborate model, because β2 takes the
particular value zero. In this case SS(̂β1) has a σ 2χ2

n−q distribution, and SS(̂β) has a
σ 2χ2

n−p distribution. Since SS(̂β1) − SS(̂β) is independent of SS(̂β), (8.21) implies
that when β2 = 0, SS(̂β1) − SS(̂β) has a σ 2χ2

p−q distribution, and that

F = {SS(̂β1) − SS(̂β)}/(p − q)

SS(̂β)/(n − p)
∼ Fp−q,n−p;

recall (8.8). If β2 is non-zero, the reduction in sum of squares due to including the
columns of X2 in the design matrix will be larger on average than if β2 = 0. Thus if
β2 �= 0, F will tend to be large relative to the Fp−q,n−p distribution. We can therefore
test the adequacy of the simpler model using the statistic F , large values of which
suggest that β2 �= 0.

Exercise 8.5.3 gives the algebraic equivalent of the geometric argument above. As
we saw in Section 8.2.3, F arises from the likelihood ratio statistic for comparison
of the two models. When X2 consists of a single covariate, β2 is scalar, and tests
and confidence intervals for it may be obtained by fitting the more elaborate model
(8.20) and calculating T = (̂β2 − β2)/(sv1/2

rr ). Here s2 is the estimate of σ 2 from the
more elaborate model, and the null distribution of T is tn−p. In this situation there is
a simple connection to F : when testing β2 = 0, F = T 2 = β̂2

2/(s2vrr ).

Example 8.17 (Cement data) Suppose that we want to compare the models y =
β0 + x1β1 + ε and y = β0 + x1β1 + x2β2 + x3β3 + x4β4 + ε. This corresponds to
asking if is there any effect on y of x2, x3, or x4, after allowing for the effect of x1.
Here X1 is a 13 × 2 matrix whose columns are a vector of ones and x1, and X2 is a
13 × 3 matrix whose columns are x2, x3, and x4; both matrices have full rank.

For the full model p = 5 and the residual sum of squares is SS(̂β) = 47.86, and
for the simpler model q = 2 and the residual sum of squares is SS(̂β1) = 1265.7.
Thus the reduction in sum of squares due to the columns of X2 after fitting X1 is
1265.7 − 47.86 = 1217.84 on three degrees of freedom. To test whether this is a
significant reduction, we compute

F = (1265.7 − 47.86)/(5 − 2)

47.86/(13 − 5)
= 67.86,

which would be consistent with an F3,8 distribution if the simpler model was adequate.Fν1 ,ν2 (α) is the α quantile
of the F distribution with
ν1 and ν2 degrees of
freedom.

As F greatly exceeds F3,8(0.95) = 4.066, there is strong evidence that there are effects
of the added covariates.

Having established that adding extra covariates helps to explain the overall varia-
tion, it is natural to ask whether this is due to a subset of them rather than to all three.
Is there a more informative decomposition of the sum of squares due to adding X2?

�
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8.5.2 Sums of squares

The interpretation of sums of squares is most useful if they can be decomposed into
the reductions from successively adding different explanatory variables to the design
matrix.

Suppose that we have a normal linear model

y = 1nβ0 + X1β1 + X2β2 + · · · + Xmβm + ε, (8.22)

where we call the matrices 1n, X1, X2, and so forth terms; the constant term 1n

is a column of n ones. Usually the simplest model that might be considered sets
y = 1nβ0 + ε, in which case the fitted value is ŷ0 = 1n y, and the residual sum of
squares is SS0 = ∑

(y j − y)2 with ν0 = n − 1 degrees of freedom.
We now consider the successive reductions in sum of squares due to adding the

terms X1, X2, and so forth to the design matrix. Let ŷr be the fitted value when the
terms X1, . . . , Xr are included, and write

y − ŷ0 = (y − ŷm) + (̂ym − ŷm−1) + · · · + (̂y1 − ŷ0).

This decomposition extends that leading to (8.21) and shown in Figure 8.2. The
geometry of least squares implies that the quantities in parentheses on the right are
mutually orthogonal. Pythagoras’ theorem tells us that (y − ŷ0)T(y − ŷ0) equals

(y − ŷm)T(y − ŷm) + (̂ym − ŷm−1)T(̂ym − ŷm−1) + · · · + (̂y1 − ŷ0)T(̂y1 − ŷ0),

or equivalently

SS0 = SSm + (SSm−1 − SSm) + · · · + (SS0 − SS1), (8.23)

where SSr denotes the residual sum of squares that corresponds to the fitted value
ŷr , on νr degrees of freedom. In (8.23) the difference SSr−1 − SSr is the reduction in
residual sum of squares due to adding the term Xr when the model already contains
1n, X1, . . . , Xr−1. As y is normal and the vectors ŷr − ŷr−1 and y − ŷm are all linear
functions of the data, the geometry of least squares implies that SSm and all the
SSr−1 − SSr are mutually independent.

As more terms are successively added to the model, the degrees of freedom of
the residual sums of squares decrease, that is, ν0 ≥ ν1 ≥ · · · ≥ νm , with νr = νr+1

when the columns of Xr+1 are a linear combination of the columns of the matrices
1n, X1, . . . , Xr . If νr = νr+1, ŷr = ŷr+1, and SSr = SSr+1. The term Xr+1 is then
redundant, because its inclusion does not change the fitted model.

Analysis of variance

The sums of squares can be laid out in an analysis of variance table. The prototype
is Table 8.5. The residual sums of squares decrease as terms are added successively
to the model. Often the three leftmost columns are omitted and their bottom row is
placed under the right-hand columns; SSm is used to compute the denominator for
the F statistics for inclusion of X1, X2 and so forth, and these may be included also,
as in the examples below.
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Table 8.5 Analysis of
variance table. Residual Terms Reduction in

Terms df sum of squares added df sum of squares Mean square

1n n − 1 SS0

1n, X1 ν1 SS1 X1 n − 1 − ν1 SS0 − SS1
SS0−SS1
n−1−ν1

1n, X1, X2 ν2 SS2 X2 ν1 − ν2 SS1 − SS2
SS1−SS2
ν1−ν2

...
...

...
...

...
...

...
1n, X1, . . . , Xm νm SSm Xm νm−1 − νm SSm−1 − SSm

SSm−1−SSm
νm−1−νm

Table 8.6 Analysis of
variance table for the
cement data, showing
reductions in overall sum
of squares when terms are
entered in the order given.

Reduction in
Term df sum of squares Mean square F

x1 1 1450.1 1450.1 242.5
x2 1 1207.8 1207.8 202.0
x3 1 9.79 9.79 1.64
x4 1 0.25 0.25 0.04

Residual 8 47.86 5.98

Table 8.7 Models for
the means of the crossed
and self-fertilized plants
in the pth pot and j th pair
for the maize data.

Terms Crossed Self-fertilized

1 µ µ

1+Fertilization µ + α µ

1+Fertilization+Pot µ + α + βp µ + βp

1+Fertilization+Pot+Pair µ + α + βp + γ j µ + βp + γ j

Example 8.18 (Cement data) Table 8.6 gives the analysis of variance when the
covariates x1, x2, x3, and x4 are successively included in the design matrix. There are
very large reductions due to fitting x1 and x2, but those due to x3 and x4 are smaller.
The F statistics for testing the effects of x1 and x2 are highly significant, but once x1

and x2 are included the F statistic for x3 is not large compared to the F1,8 distribution.
A similar conclusion holds for x4. Thus once x1 and x2 are included, x3 and x4 are
unnecessary in accounting for the response variation. �

Example 8.19 (Maize data) Consider models for the maize data with means as in
Table 8.7. In order, these correspond to: no differences among pairs and no difference
between cross-fertilization and self-fertilization; no differences among pairs but an
effect of fertilization type; differences among the pots and an effect of fertilization
type; and differences among the pots and among the pairs and an effect of fertil-
ization type. Table 8.8 gives the analysis of variance when these models are fitted
successively.
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Table 8.8 Analysis of
variance table for linear
models fitted to the maize
data.

Reduction in
Term df sum of squares Mean square F

Fertilization 1 3286.5 3286.5 4.61
Pot 3 1053.6 351.2 0.49
Pair 11 4467.3 406.1 0.57

Residual 14 9972.5 712.3

There are four pot parameters βp, but the reduction in degrees of freedom when the
pots term is included is three because although the corresponding 30 × 4 matrix has
rank four, its columns sum to a column of ones. As the design matrix already contains
a column of ones, including the four columns for the pots term increases the rank of
the design matrix by only three. Likewise only 11 columns of the 30 × 15 matrix of
terms for pairs increase the rank of a design matrix that already contains the overall
mean and the pots term: the remaining four columns are linear combinations of those
already present.

The residual sum of squares for the eventual model is 9972.5 on 14 degrees of
freedom, so the denominator for F statistics is 9972.5/14 = 712.3. The F statistic
for fertilization is just significant at the 5% level, but there seem to be no differences
among pots or pairs. We can attribute to random variation the reduction in sum of
squares when the pots and pairs terms are added, and obtain a better estimate of σ 2,
namely

(9972.5 + 1053.6 + 4467.3)/(14 + 3 + 11) = 553.3

on 28 degrees of freedom. The F statistic for fertilization with this pooled estimate of
σ 2 as denominator is 5.94 on 1 and 28 degrees of freedom and its significance level
is 0.02, so the addition of the sums of squares for pots and pairs to the residual has
resulted in a more sensitive analysis. �

8.5.3 Orthogonality

The reduction in sum of squares when a term is added depends on the terms already
in the model. This can obscure the interpretation of an analysis of variance, if a term
that gives a large reduction early in a sequence of fits gives a small reduction if fitted
later in the sequence instead.

Suppose that a normal linear model (8.22) applies. The reductions in sum of squares
due to the terms Xr are unique only if the vector spaces spanned by the columns of
the Xr are all mutually orthogonal, that is, X T

r Xs = 0 when r �= s. Suppose that this
is true, that in addition X T

r 1n = 0, and that

y = 1nβ0 + X1β1 + X2β2 + ε. (8.24)
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Then the orthogonality of 1n , X1, and X2 implies that the least squares estimators are


 β̂0

β̂1

β̂2


 =


 1T1 0 0

0 X T
1 X1 0

0 0 X T
2 X2




−1

( 1 X1 X2 )T y,

so that β̂0 = y, β̂1 = (X T
1 X1)−1 X T

1 y, and β̂2 = (X T
2 X2)−1 X T

2 y, with residual sum of
squares

yT y − β̂T X T X β̂ = yT y − ny2 − β̂T
1 X T

1 X1β̂1 − β̂T
2 X T

2 X2β̂2. (8.25)

For the simpler models

y = 1nβ0 + ε, y = 1nβ0 + X1β1 + ε y = 1nβ0 + X2β2 + ε,

a similar calculation gives residual sums of squares

yT y − ny2, yT y − ny2 − β̂T
1 X T

1 X1β̂1, yT y − ny2 − β̂T
2 X T

2 X2β̂2,

and comparison with (8.25) shows that the reductions due to X1 and X2 are β̂T
1 X T

1 X1β̂1

and β̂T
2 X T

2 X2β̂2 whether or not the other has been included in the design matrix.
Consequently the reductions in sums of squares due to X1 and X2 are unique. This
argument readily extends to models with more than two mutually orthogonal terms
Xr . In fact (8.24) has three, as we see by writing 1n = X0.

Example 8.20 (Orthogonal polynomials) Consider a normal linear model with
design matrix

X = (1n, x1, x2, x3, x4) =




1 −2 2 −1 1
1 −1 −1 2 −4
1 0 −2 0 6
1 1 −1 −2 −4
1 2 2 1 1


 ,

the last four columns of which correspond to linear, quadratic, cubic, and quartic
polynomials in a covariate with five values equally spaced one unit apart. The columns
of X are mutually orthogonal, and it follows that the reduction due to any of them
does not depend on which of the others have already been fitted.

If the values had been equally-spaced but δ units apart, the model would be
y = 1nβ0 + δx1β1 + · · · + δ4x4β4 + ε, and the orthogonality of the terms would be
unaffected. �

The argument leading to (8.25) rarely applies directly, but it may do so if an
overall mean, corresponding to a column of ones in the design matrix, is fitted first.
Suppose that the matrices X1 and X2 in (8.24) are not mutually orthogonal and are
not orthogonal to 1n , but that we rewrite the model as

y = 1n
(
β0 + xT

1β1 + xT
2β2

) + (
X1 − 1n xT

1

)
β1 + (

X2 − 1n xT
2

)
β2 + ε

= 1nγ0 + Z1β1 + Z2β2 + ε,
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say, where xT
1 and xT

2 are the averages of the rows of X1 and X2. Then Z1 and Z2

are centred and Z T
11n = Z T

21n = 0. This rearrangement of the model changes the
intercept but leaves β1 and β2 unaffected. If the original matrices X1 and X2 are such
that Z T

1 Z2 = 0, we can apply the argument leading to (8.25) to our new model, to
obtain the successive residual sums of squares

SS0 = yT y − ny2,

SS1 = yT y − ny2 − β̂T
1 Z T

1 Z1β̂1,

SS2 = yT y − ny2 − β̂T
1 Z T

1 Z1β̂1 − β̂T
2 Z T

2 Z2β̂2,

as the terms Z1 and Z2, or equivalently X1 and X2, are added to the design matrix.
Since Z1 is defined purely in terms of X1 and 1n , and Z2 is defined purely in terms
of X2 and 1n , the reduction in sum of squares due to adding X1 after including the
constant column 1n in the design matrix is the same whether or not X2 is present.
Hence provided the constant is fitted first, the reductions in sum of squares due to
X1 and X2 are independent of the order in which they are included. This argument
extends to models with more than two Xr , provided that the centred matrices Zr are
mutually orthogonal.

Example 8.21 (3 × 2 layout) In a 3 × 2 layout with no interaction the observations
and their means can be written

y11 y12

y21 y22

y31 y32

,

µ µ + α

µ + δ1 µ + δ1 + α

µ + δ2 µ + δ2 + α

.

In terms of the parameter vector (µ, α, δ2, δ3)T, the design matrix is

X =




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
1 1 0 1




,

with X1 the second column of X , and X2 the third and fourth columns of X . Evidently
X1 and X2 are not orthogonal and they are not orthogonal to the constant. On the
other hand Z1 and Z2 in the corresponding centred matrix,



1 − 1
2 − 1

3 − 1
3

1 1
2 − 1

3 − 1
3

1 − 1
2

2
3 − 1

3
1 1

2
2
3 − 1

3
1 − 1

2 − 1
3

2
3

1 1
2 − 1

3
2
3




,

are orthogonal to the constant by construction and to each other because the design is
balanced: δ2 and δ3 each occur equally often with α and without α. This balance has
the consequence that provided that µ is fitted first, the reductions in sums of squares
due to X1 and X2, or equivalently Z1 and Z2, are unique. �
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A designed experiment such as Example 8.21 can often be balanced, so that or-
thogonality is arranged, at least approximately, and the interpretation of its analysis of
variance is relatively clear-cut. Even if the terms are not orthogonal, however, it may
be possible to order them unambiguously. One example is polynomial dependence of
y on x , where terms of increasing degree are added successively. Another example
is when some terms represent classifications that are known to affect y but which are
of secondary importance, and others correspond to the question of primary interest.
For instance, it would be natural to assess the effects of different treatments on the
incidence of heart disease after taking into account the effects of classifying variables
such as age, sex, and previous medical history.

Exercises 8.5

1 Consider the cement data of Example 8.3, where n = 13. The residual sums of squares
for all models that include an intercept are given below.

Model SS Model SS Model SS

– – – – 2715.8 1 2 – – 57.9 1 2 3 – 48.11
1 – – – 1265.7 1 – 3 – 1227.1 1 2 – 4 47.97
– 2 – – 906.3 1 – – 4 74.8 1 – 3 4 50.84
– – 3 – 1939.4 – 2 3 – 415.4 – 2 3 4 73.81
– – – 4 883.9 – 2 – 4 868.9

– – 3 4 175.7 1 2 3 4 47.86

Compute the analysis of variance table when x4, x3, x2, and x1 are fitted in that order, and
test which of them should be included in the model. Are your conclusions the same as in
Example 8.18?

2 (a) Let A, B, C , and D represent p × p, p × q, q × q, and q × p matrices respectively.
Show that provided that the necessary inverses exist

(A + BC D)−1 = A−1 − A−1 B(C−1 + D A−1 B)−1 D A−1.

(b) If the matrix A is partitioned as

A =
( A11 A12

A21 A22

)
,

and the necessary inverses exist, show that the elements of the corresponding partition of
A−1 are

A11 = (
A11 − A12 A−1

22 A21

)−1
, A22 = (

A22 − A21 A−1
11 A12

)−1
,

A12 = −A−1
11 A12 A22, A21 = −A−1

22 A21 A11.

3 In (8.20), suppose that X1 and X2 have ranks q and p − q respectively, and define H =
X (X T X )−1 X T, P = In − H , H1 = X1(X T

1 X1)−1 X T
1 and P1 = In − H1. Let ŷ = H y, and

ŷ1 = H1 y.Use the previous exercise.

(a) Show that (y − ŷ )T( ŷ − ŷ1) = 0 if and only if H H1 = H1, and show that H1 H = H H1.
Give a geometrical interpretation of the equations H1 H = H H1 = H1.
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Table 8.9 Sums of
squares for models fitted
to maize data.

Model SS Model SS Model SS Model SS

— — — 18780 — Po — 17726 F Po — 14440 F — Pa 9972
F — — 15493 — — Pa 13259 — Po Pa 13259 F Po Pa 9972

(b) Show that

(
X T

1 P2 X1

)−1 = (
X T

1 X1

)−1 − H1 X2

(
X T

2 P1 X2

)−1
X T

2 X1

(
X T

1 X1

)−1
.

(c) Show that

H = X1

(
X T

1 P2 X1

)−1
X T

1 − H1 X2

(
X T

2 P1 X2

)−1
X T

2 + X2

(
X T

2 P1 X2

)−1
X T

2 P1.

(d) Use (b) and (c) to show that H H1 = H1.

4 Under what two circumstances might one of the reductions in residual sum of squares
SSr − SSr+1 in an analysis of variance table for a normal linear model equal zero? Does
the more probable of these occur when the columns of either of the design matrices below
are included successively in their models:

(a)




1 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1


 , (b)




1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


?

5 Suppose that the maize data consisted of three pots each containing two pairs of plants,
12 plants in all. Using the parametrization in Example 8.19, write out the 12 × 11 design
matrix whose first two columns are terms for the overall mean and for cross-fertilization,
whose next three columns are the pots term, and whose last six columns are the pairs term.
Say what the degrees of freedom for the four models in Example 8.19 would then be, and
hence give the degrees of freedom in the analysis of variance table.

6 The residual sums of squares in Example 8.19 are given in Table 8.9. For which of the
terms are the reductions in residual sum of squares independent of the order of fitting?
Explain why adding the Pots term to a model that already contains the Pairs term does
not reduce the sum of squares, even if Fertilization is not included.

7 Verify that the columns of the design matrix in Example 8.20 are orthogonal. Use Gram–
Schmidt orthogonalization to derive the corresponding matrices for two, three, and four
observations.

8 Verify that 1n , Z1, and Z2 in Example 8.21 are orthogonal. Show that if one of the rows
of the original design matrix is missing, the Zr are not orthogonal.

8.6 Model Checking

8.6.1 Residuals

Discrepancies between data and a regression model may be isolated or systematic, or
both. One type of isolated discrepancy is when there are outliers: a few observations
that are unusual relative to the rest. Systematic discrepancies arise, for example, when
a transformation of the response or a covariate is needed, when correlated errors
are supposed independent, or when a term is incorrectly omitted. There are many
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techniques for detecting such problems. Graphs are widely used, often supplemented
by more formal methods that sharpen their interpretation.

The assumptions underlying the linear regression model (8.1) are:

� linearity — the response depends linearly on each explanatory variable and on
the error, with no systematic dependence on any omitted terms;

� constant variance — the responses have equal variances, which in particular
do not depend on the level of the response;

� independence — the errors are uncorrelated, and independent if normal; and
sometimes

� normality — in the normal linear model the errors are normally distributed.

Many graphical methods for checking these assumptions are based on the raw resid-
uals, e = y − ŷ. These are estimates of the unobserved errors ε, with mean vector
and variance matrix

E(e) = 0, var(e) = σ 2(In − H ),

where H is the hat matrix X (X T X )−1 X T. The covariance of two different residuals,
e j and ek , equals −σ 2h jk , so in general the residuals are correlated.

A difficulty in direct comparison of the e j is that their variances, σ 2(1 − h j j ), are
usually unequal. We therefore construct standardized residuals

r j = e j

s(1 − h j j )1/2
= y j − xT

j β̂

s(1 − h j j )1/2
, (8.26)

where xT
j β̂ = ŷ j is the j th fitted value and s2 is the unbiased estimate of σ 2 based on

the model. The r j have means zero and approximately unit variances, and hence are
comparable with standard normal variables.

The simplest check on linearity is to plot the response vector y against each column
of the design matrix X . It is also useful to plot the standardized residuals r against each
variable, whether or not it has been used in the model. Incorrect form of dependence on
an explanatory variable, or omission of one, will show as a pattern in the corresponding
plot. More formal techniques designed to detect wholesale nonlinearity are discussed
below.

Constancy of variance is usually checked by a plot of the r j or |r j | against fitted
values. A common failure of this assumption occurs when the error variance increases
with the level of the response; this shows as a trumpet-shaped plot. Since the raw
residuals e and the fitted values ŷ are uncorrelated, we would expect random scatter
if the model fitted adequately. This plot can also help to detect a nonlinear relation
between the response and fitted value, as in Example 8.24 below.

Non-independence of the errors can be hard to detect and can have a serious effect
on the standard errors of estimates, but serial correlation of time-ordered observations
may show up in scatterplots of lagged r j , or in their correlogram.

Assumptions about the distribution of the errors can be checked by probability
plots of the r j . In particular, normal scores plots are widely used.
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Figure 8.4 Residual
plots for data on cycling
up a hill. The panels
showing residuals plotted
against levels of day and
run, and against fitted
values, would show
random variation if the
model is adequate, as
seems to be the case. The
normal scores plot shows
that the errors appear
close to normal.

Single outliers — maybe due to mistakes in data recording, transcription, or entry —
are likely to show up on any of the plots described above, while multiple outliers may
lead to masking where each outlier is concealed by the presence of others.

Example 8.22 (Cycling data) Figure 8.4 shows plots of the r j for the model that
includes effects of seat height, dynamo and tyre pressure. The top panels show the r j

plotted against the day on which the run took place, and the order of the run within each
day. There is slight evidence of dependence on these, but we must beware of spurious
patterns when there are only sixteen observations. To check whether these patterns
might be genuine, we construct the F statistic for inclusion of factors corresponding
to day and run after including seat height, dynamo, and tyre pressure in the model.
Its value is 3.99, to be compared to F7,5(0.95) = 4.88. Any evidence of differences
among days and runs is weak, and we discount it.

The lower left panel of the figure shows residuals plotted against fitted values.
There is a slight suggestion that the error variance increases as the fitted value does,
but this is mostly due to the largest observation at the right of the plot.

The lower right panel of the figure shows a normal probability plot of the residuals.
This is slightly upwardly curved, but not remarkably so in so small a set of data.
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Inspection of Table 8.3 shows that the largest residual is for the sixth setup, of
which the experimenter writes:

Its comparison run (setup 5) was only 54 seconds. This is the largest amount of
variation in the whole table. I suspect that the correct reading for setup 6 was
55 seconds, that is, I glanced at my watch and thought that it said 60 instead of
55 seconds. Since I am not sure, however, I have not changed it for the analysis.
The conclusions would be the same in any case.

One reason that the conclusions would be unchanged is that a well-designed experi-
ment like this is relatively robust to a single bad value.

To sum up: the linear model (8.2) seems to fit these data adequately. �

8.6.2 Nonlinearity

Linearity is usually a convenient fiction for describing how a response depends on
the explanatory variables, and there are many ways it can fail. For example, a linear
model may be appropriate for a transformation of the original response, so that a(y) =
xTβ + ε for some function a(·); then y = a−1(xTβ + ε) and error is not additive on
the original scale. Another possibility is that the response is a nonlinear function of
xTβ but the error is additive, that is, y = b(xTβ) + ε for some b(·). More generally
we could put a(y) = b(xTβ) + c(ε) for fairly arbitrary functions a(·), b(·) and c(·).
Such models can be fitted, but they are beyond our scope.

For a simpler approach, we consider parametric transformation of the response, in
which we assume that for some family of transformations a(·) indexed by a parameter
λ, there is a transformation such that a(y) = xTβ + ε. In principle we might consider
many possible transformations, but practical experience suggests that power and log-
arithmic transformations are among the most fruitful. The following example gives a
general approach.

Example 8.23 (Box–Cox transformation) Suppose that a normal linear model

Suggested by Box and
Cox (1964). George E. P.
Box (1919–) was educated
at London University and
has held posts in industry
and at Princeton and the
University of Wisconsin.
He has made important
contributions to robust
and Bayesian statistics,
experimental design, time
series, and to industrial
statistics. Sir David
Roxbee Cox (1924–) was
born in Birmingham and
educated in Cambridge
and Leeds. He has held
posts at Imperial College
London, Cambridge, and
Oxford where he nows
works. He has made
highly influential
contributions across the
whole of statistical theory
and methods. See
DeGroot (1987a) and
Reid (1994).

applies not to y, but to

y(λ) =
{

yλ−1
λ

, λ �= 0,
log y, λ = 0.

Asλvaries in the range (−2, 2) this encompasses the inverse transformation (λ = −1),
log (λ = 0), cube and square roots (λ = 1

3 , 1
2 ), and the original scale (λ = 1), as well

as the square transformation (λ = 2). We assume below that all the y j are positive.
If not, the transformation must be applied to y j + ξ , with ξ chosen large enough to
make all the y j + ξ positive.

Now let y(λ) denote the n × 1 vector of transformed responses, and assume that a
normal linear model

y(λ) = Xβ + ε

applies for some values of λ, β, and error variance σ 2. We assume that the design
matrix contains a column of ones, so that using y(λ) rather than yλ leaves the fit
unchanged; it merely changes the intercept and rescales β.
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To obtain the likelihood for β, σ 2, and λ, note that on taking into account the
Jacobian of the transformation from y(λ) to y, the density of y j is

f (y j ; β, σ 2, λ) = yλ−1
j

(2πσ 2)1/2
exp

{
− 1

2σ 2

(
y(λ)

j − xT
jβ

)2
}

.

Consequently the log likelihood based on independent y1, . . . , yn is

�(β, σ 2, λ) ≡ −1

2

{
n log σ 2 + 1

σ 2

n∑
j=1

(
y(λ)

j − xT
jβ

)2

}
+ (λ − 1)

n∑
j=1

log y j .

If λ is regarded as fixed, the maximum likelihood estimates of β and σ 2 are β̂λ =
(X T X )−1 X T y(λ) and SS(̂βλ)/n, where SS(̂βλ) is the residual sum of squares for the
regression of y(λ) on the columns of X . Thus the profile log likelihood for λ is

�p(λ) = max
β,σ 2

�(β, σ 2, λ) ≡ −n

2

{
log SS(̂βλ) − log g2(λ−1)

}
,

where g = (
∏

y j )1/n is the geometric average of y1, . . . , yn . Equivalently �p(λ) =
− 1

2 n log SSg (̂βλ), where SSg (̂βλ) is the residual sum of squares for the regression of
y(λ)/g on the columns of X . Exercise 8.6.3 invites you to provide the details.

A plot of the profile log likelihood �p(λ) summarizes the information concerning
λ; a (1 − 2α) confidence interval is the set for which �p(λ) ≥ �p(̂λ) − 1

2 c1(1 − 2α). cν (α) is the α quantile of
the χ2

ν distribution.The exact maximum likelihood estimate of λ is rarely used, since a nearby value is
usually more easily interpreted. �

A different approach is to consider whether the model y = b(xTβ) + ε might apply.
This cannot be linearized by a response transformation and if there is evidence that
b(·) is substantially nonlinear but the variance is constant it may be necessary to fit a
nonlinear normal model. The following example gives one method for detecting this
sort of nonlinearity.

Example 8.24 (Non-additivity) Suppose that it is feared that y = b(xTβ) + ε,
where b(·) is a smooth nonlinear function. Taylor series expansion of b(·) about a
typical value of xTβ, η, say, gives

y
.= b(η) + b′(η)(xTβ − η) + 1

2
b′′(η)(xTβ − η)2 + ε.

If the model contains a constant, so that xTβ = β0 + x1β1 + · · ·, then y
.= xTγ +

δ(xTγ )2 + ε, where γ is just a reparametrization of β, and δ ∝ b′′(η). A large value
of δ corresponds to strong nonlinear dependence of y on xTβ.

Let us fit the model y = Xβ + ε, giving fitted values xT
j β̂ and residual sum of

squares SS(̂β). Then as y − xTγ
.= δ(xTγ )2 + ε, non-additivity should show up as

curvature in a plot of standardized residuals against fitted values.
A formal test for non-zero δ is based on refitting the model with the column (xT

j β̂)2

added to the design matrix. Although the residual sum of squares for this model,
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Table 8.10 Poison data
(Box and Cox, 1964).
Survival times in 10-hour
units of animals in a 3 × 4
factorial experiment with
four replicates. The table
underneath gives average
(standard deviation) for
the poison × treatment
combinations.

Treatment Poison 1 Poison 2 Poison 3

A 0.31, 0.45, 0.46, 0.43 0.36, 0.29, 0.40, 0.23 0.22, 0.21, 0.18, 0.23
B 0.82, 1.10, 0.88, 0.72 0.92, 0.61, 0.49, 1.24 0.30, 0.37, 0.38, 0.29
C 0.43, 0.45, 0.63, 0.76 0.44, 0.35, 0.31, 0.40 0.23, 0.25, 0.24, 0.22
D 0.45, 0.71, 0.66, 0.62 0.56, 1.02, 0.71, 0.38 0.30, 0.36, 0.31, 0.33

Treatment Poison 1 Poison 2 Poison 3 Average

A 0.41 (0.07) 0.32 (0.08) 0.21 (0.02) 0.31
B 0.88 (0.16) 0.82 (0.34) 0.34 (0.05) 0.68
C 0.57 (0.16) 0.38 (0.06) 0.24 (0.01) 0.39
D 0.61 (0.11) 0.67 (0.27) 0.33 (0.03) 0.53

Average 0.62 0.55 0.28 0.48

SSδ , depends upon the fitted values for the previous fit, the F statistic for inclusion
of (xT

j β̂)2,

SS(̂β) − SSδ

SSδ/(n − p − 1)
, (8.27)

has an F1,n−p−1 distribution; this is known as Tukey’s one degree of freedom forSee Tukey (1949).

non-additivity. �

Covariates that are artificially created to help assess model fit, such as (xT
j β̂)2 in

Example 8.24, are known as constructed variables.

Example 8.25 (Poisons data) Table 8.10 contains data from a completely random-
ized experiment on the survival times of 48 animals. The animals were divided at
random into groups of size four, and then each group was given one of three poisons
and one of four treatments. Thus there are two factors, one with three and the other
with four levels. The lower part of Table 8.10 and the upper panels of Figure 8.5 both
show strong effects of treatment and poison: poison 3 is most potent, and treatments B
and D are more efficacious than A and C. There is also evidence that the response vari-
ance depends on the mean: the standard deviations are smaller for poison × treatment
combinations with smaller average response.

One model for these data is

ytpj = µ + αt + βp + εtpj , t = 1, 2, 3, 4, p = 1, 2, 3, j = 1, 2, 3, 4. (8.28)

Here µ represents a baseline average response in the absence of treatments or poisons,
αt represents the effect of the t th treatment, βp the effect of the pth poison and εtpj is
the unobserved error for the j th replicate given the t th treatment and pth poison. We
assess the fit of (8.28) initially through the plot of standardized residuals against fitted
values in the upper left panel of Figure 8.6, which shows a striking increase of error
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Figure 8.5 Poison data.
The upper panels show
how the responses depend
on the factor levels. The
lower left panel shows a
χ2

3 probability plots of the
3s2

pt , where s2
pt is the

sample variance of the
four replicates ypt j given
the pth poison and t th
treatment. The lower right
panel shows the same plot
for the y−1

pt j .

variance with the mean response. The model underpredicts for the lowest responses,
where r j > 0 and therefore y j > ŷ j , and overpredicts for the middle responses, where
the residuals are mostly negative. Following Example 8.24, this suggests that the
poison and treatment effects are not additive. The neighbouring panel shows that the
errors are somewhat positively skewed relative to the normal distribution. The model
fits the data poorly, not owing to a few bad observations, but in a systematic way, as
was also suggested by the lower left panel of Figure 8.5.

Ignoring for a moment the nonconstancy of variance, we explore whether the
explanatory variables act additively. The F statistic for non-additivity, (8.27), equals
14.03. This is large compared with the 0.95 quantile of the F1,41 distribution and gives
strong evidence of non-additivity.

The lower right panel of Figure 8.6 shows the profile log likelihood for the transfor-
mation parameter, λ. There is strong evidence that the original scale (λ = 1) is poor;
log transformation (λ = 0) also seems inappropriate. The most readily interpretable
value of λ in the 95% confidence interval seems to be −1, corresponding to fitting a
linear model to the inverse response 1/y. This can be interpreted in terms of the rate
of dying, whose units are time−1. The lower left panel of the figure suggests that the
evidence for non-additivity has gone, and that the inverse transformation has roughly
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Figure 8.6 Diagnostic
plots for the two-way
layout model for the
poisons data. The upper
left panel a plot of
standardized residuals for
the fit of the two-way
layout model to the
original data against the
fitted value, while its
neighbour shows the
normal probability plot of
these residuals. The lower
right panel shows the
profile log likelihood for
the Box–Cox parameter λ

and suggests that a linear
model should be fitted to
the inverse response, 1/y.
The lower left panel
shows the residuals for the
two-way layout model
with response 1/y plotted
against its fitted values;
this does not display the
non-linearity and
systematic increase of
variance of the panel
above.

equalized the error variances. A probability plot shows that the residuals on this scale
are close to normal.

To sum up, the model y−1 = µ + αt + βp + εtpj seems to fit the data adequately,
and has a direct interpretation as a linear model for the effect of poisons and treatments
on the speed of dying.

We return to these data in Examples 9.6 and 9.8. �

8.6.3 Leverage, influence, and case deletion

We call the explanatory and response variables (x j , y j ) the j th case. We have already
seen how an odd y j can arise, but there can also be effects due to unusual explanatory
variables. To see how, recall that var(y j − xT

j β̂) = σ 2(1 − h j j ), and notice that if h j j

is close to one the j th fitted value must lie very close to y j itself. Indeed, if h j j = 1,
the model is constrained so that xT

j β̂ = y j . This is undesirable because in effect a
degree of freedom, the equivalent of one parameter, is used to fit one response value
exactly. The effect on β̂ could be catastrophic if y j were outlying.

The quantity h j j is called the leverage of the j th case. Other things being equal,
the argument above suggests that low leverage is good. But tr(H ) = ∑

h j j = p
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(Exercise 8.2.5), so the average leverage cannot be reduced below p/n. Approximate
equalization of leverage is one attribute of good design. In the factorial experiment
in Table 8.3, for example, h j j = 1

4 for each case. A general guideline is that cases for
which h j j > 2p/n deserve closer inspection; it may be worthwhile to repeat an anal-
ysis without them in order to assess their effect on both the values and the precision
of the estimates. In itself, however, high leverage is not sufficient reason to delete a
case, which if not outlying may be very informative.

Example 8.26 (Straight-line regression) The matrix formulation of

y j = γ0 + (x j − x)γ1 + ε j , j = 1, . . . , n,

is given in Example 8.6, and it is easily deduced that the j th leverage is

h j j = 1

n
+ (x j − x)2∑

k(xk − x)2
.

When the constant is dropped the leverage is (x j − x)2/
∑

k(xk − x)2, and when
the covariate x j is dropped the leverage is n−1. Thus h j j can be interpreted as a
sum of contributions for each parameter. As the contribution corresponding to γ1 is
quadratic in x j − x , responses with large values of |x j − x | will strongly affect the
slope of the fitted line. All the responses have equal weight in estimating the intercept.
These effects do not depend on the response values and depend purely on the design
matrix. �

Having seen that an individual case may substantially affect least squares estimates,
it is natural to ask how to measure this. One overall influence measure for the j th case
is Cook’s distance, defined as See Cook (1977).

R. Dennis Cook is a
professor of statistics at
the University of
Minnesota.

C j = 1

ps2
( ŷ − ŷ− j )

T(̂y − ŷ− j ),

where ŷ− j = X β̂− j , and subscript − j denotes a quantity calculated with the j th case
deleted from the model. Cook’s distance measures the overall change in the fitted
values when the j th case is deleted from the model, standardized by the dimension of
β and the estimate of σ 2. It can be revealing to refit a model without the cases whose
values of C j are largest.

To gain some insight into C j , note that the least squares estimate of β calculated
without the j th case is

β̂− j = (
X T X − x j x

T
j

)−1
(X T y − x j y j ).

Some linear algebra shows that

β̂− j = β̂ − (X T X )−1x j
y j − ŷ j

1 − h j j
, (8.29)

and it follows that (Exercise 8.6.5)

C j = r2
j h j j

p(1 − h j j )
, (8.30)
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where r j is the standardized residual. Therefore large values of C j arise if a case
has high leverage or a large standardized residual, or both. A plot of C j against
h j j/(1 − h j j ) helps to distinguish between these possibilities. A crude rule is that as
a residual with |r j | > 2 or a case with leverage h j j > 2p/n deserve attention, a value
of C j greater than 8/(n − 2p) is worth a closer look. It is possible for the model to
depend on a case whose Cook’s distance is zero (Exercise 8.6.6), however, and there
is no substitute for careful inspection of the data, residuals, and leverages.

As an observation with a large standardized residual can have a big effect on a fitted
model, it is natural to ask whether an outlier is more easily detected by comparing y j

with its predicted value based on the other observations, xT
j β̂− j . After all, if the model

is correct and y j is not an outlier, we expect that E(̂β) = E(̂β− j ) = xT
jβ, although

of course β̂− j will be a less precise estimate of β than β̂. On the other hand, an
outlying response y j does not affect xT

j β̂− j , so any discrepancy between them should
be more obvious. There is a close connection to the idea of cross-validation. Now
(8.29) implies that

yk − xT
k β̂− j = yk − ŷk + xT

k (X T X )−1x j
y j − ŷ j

1 − h j j
,

and since xT
k (X T X )−1x j = h jk , we find that var(y j − xT

j β̂− j ) = σ 2/(1 − h j j ). This
suggests that deletion residuals be defined as

r ′
j = y j − xT

j β̂− j

var
(
y j − xT

j β̂− j
)1/2 = y j − ŷ− j, j

s− j (1 − h j j )1/2
,

where ŷ− j, j is the j th element of the vector ŷ− j and the estimate of σ 2 based on the
data with the j th case deleted equals

s2
− j = 1

n − 1 − p

[
(y − ŷ− j )

T(y − ŷ− j ) −
{

y j − ŷ j + h j j (y j − ŷ j )

1 − h j j

}2
]

.

Yet more algebra shows that the deletion residual can be expressed as

r ′
j =

(
n − p − 1

n − p − r2
j

)1/2

r j ,

which is a monotonic function of r j that exaggerates values for which |r j | > 1. As their
derivation suggests, deletion residuals for outlying observations are more prominent
than are the corresponding r j .

Example 8.27 (Cycling data) Table 8.3 gives standardized residuals, deletion resid-
uals, and measures of leverage and influence for the model with an intercept and three
main effects fitted to these data. The design is balanced, and since (X T X )−1 = 1

16 I4,
all the leverages equal 1

4 ; consequently the standardized residuals are a simple mul-
tiple of the raw residuals. As remarked in Example 8.22, the only unusual residual is
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Table 8.11 Simulated
data and case diagnostics.Case x1 x2 y ŷ r r ′ h C

1 0.02 –6.31 0.95 0.41 1.16 1.20 0.88 3.28
2 0.36 0.39 0.44 0.53 –0.08 –0.07 0.13 0.00
3 7.12 –0.64 0.27 0.38 –0.14 –0.13 0.68 0.01
4 –1.54 1.13 0.09 0.59 –0.45 –0.42 0.29 0.03
5 0.24 –1.90 –0.82 0.49 –1.07 –1.08 0.15 0.07
6 0.26 –0.06 0.03 0.53 –0.40 –0.37 0.12 0.01
7 –0.16 0.13 –0.22 0.54 –0.61 –0.59 0.14 0.02
8 0.43 0.80 0.13 0.54 –0.33 –0.31 0.15 0.01
9 –0.02 0.59 3.57 0.55 2.47 6.31 0.15 0.37

10 4.58 0.29 0.57 0.45 0.11 0.10 0.31 0.00

for setup 6, whose deletion residual is strikingly large: there is strong evidence that
this is an outlier. The corresponding Cook statistic, 0.56, is by far the largest, but it
is unremarkable relative to 8/(n − 2p) = 1. The belt-and-braces statistician might
repeat the analysis without this datum, but it makes little difference. �

Exercises 8.6

1 Show that the standardized residuals r j have means zero and variances (n − p)/(n − p −
2). What can you say about their joint distribution?

2 Table 8.11 shows simulated data on the dependence of y = β0 + β1x1 + β2x2 + ε on
covariates x1 and x2. The residual sum of squares was 12.43.
(a) Choose a case and check the relationships between ŷ, r , r ′, h, and C .
(b) Discuss the fit. If it is not adequate, explain what further steps you would take in
analyzing the data.

3 Provide the details for Example 8.23.

4 Compute and interpret the leverages for Examples 8.9 and 8.20.

5 Use Exercise 8.5.2(a) with C = −1 to show that

(
X T X − x j x

T
j

)−1 = (X T X )−1 + (1 − h j j )
−1(X T X )−1x j x

T
j (X T X )−1;

it may help to note that h j j = xT
j (X T X )−1x j . Hence show that

β̂− j = (
X T X − x j x

T
j

)−1
(X T y − x j y j ) = β̂ − (1 − h j j )

−1(X T X )−1x j (y j − ŷ j ),

deduce that ŷ − ŷ− j = (1 − h j j )−1 X (X T X )−1x j (y j − ŷ j ), and finally that

C j = (̂y − ŷ− j )T(̂y − ŷ− j )

ps2
= r 2

j h j j

p(1 − h j j )
.

6 Suppose that the straight-line regression model y = β0 + β1x + ε is fitted to data in which
x1 = · · · = xn−1 = −a and xn = (n − 1)a, for some positive a. Show that although yn

completely determines the estimate of β1, Cn = 0. Is Cook’s distance an effective measure
of influence in this situation?



8.7 · Model Building 397

8.7 Model Building

8.7.1 General

Once the context for a regression problem is known and the data have been scrutinized
for outliers, missing values, and so forth, a model must be built. Related investigations
will often suggest a form for it, the main initial questions concerning the choice of
response and explanatory variables.

The purpose of the analysis determines one or perhaps more responses, which may
combine several of the original variables. Once it is chosen, questions arise about
whether individual responses are correlated, and if their variance is constant. If not, it
may be necessary to use weighted or generalized least squares (Section 8.2.4), or to
consider transformations. These may also be suggested by constraints, for example
that the response is positive, but it is then also good to consider more general classes
of models discussed in Chapter 10.

Scatterplots of the response against potential explanatory variables and of these
variables against each another are needed to screen out bad data, to suggest which
covariates are likely to be important, and perhaps also to indicate suitable transfor-
mations. Dimensional considerations or subject-matter arguments, for example that
certain regression coefficients should be positive, may suggest fruitful combinations
of covariates or particular relations between them and the response.

It may be clear that the response depends on a few variables, and that possible
models can be fitted and compared using F and related tests. Once some suitable
models have been found, the techniques of model checking outlined in Section 8.6
can be applied. Often unexpected discrepancies between a fitted model and data
will lead to further thought, and then to more cycles of model-fitting, checking, and
interpretation, iterated until a broadly satisfactory model has been found.

If p is much larger than n, then the design matrix must be cut down to size. One
possibility is to use principal components regression. The basis of this is the spectral
decomposition, which enables us to write X T X = U DU T, where D is the diagonal
matrix diag(d1, . . . , dp) containing the ordered eigenvalues dp ≥ · · · ≥ d1 ≥ 0 of
X T X , and the columns of U are the corresponding eigenvectors. The matrix U can
be chosen so that UU T = U TU = I . The idea is to form the design matrix from
the columns of Z = XU , which are called principal components. The first principal
component, z1, is the linear combination z = Xu of the columns of X for which zTz is
largest, the next, z2, is the linear combination that maximizes zT

2z2 subject to zT
1z2 = 0,

the third, z3, maximizes zT
3z3 subject to zT

1z2 = zT
1z2 = 0, and so forth. The hope is

that much of the dependence of the response on the columns of X will be concentrated
in these first few zr s, in which case a good low-dimensional regression model may
be obtainable. Sometimes it is useful to centre the columns of X by subtracting their
averages, or to scale them by dividing centred columns by their standard deviations.
The resulting principal components do not equal those for X .

Principal components and corresponding parameter estimates may be uninter-
pretable in terms of the original covariates, though this drawback is less critical
when the goal of analysis is prediction.
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8.7.2 Collinearity

If there is a nonzero vector c such that Xc = 0, the columns of the design matrix are
said to be collinear. Then X has rank less than p and X T X has no unique inverse.
The simplest example of this arises in straight-line regression: if all the x j are equal,
it is impossible to find unique parameter estimates (Example 8.6). This difficulty
arises more generally, because linear dependence among the columns of the design
matrix means that some combinations of parameters cannot be estimated from the
data; collinearity leads to indeterminable estimates with infinite variances. Related
difficulties arise if the columns of X are almost collinear.

The matrix X T X is invertible only if all its eigenvalues dp ≥ · · · ≥ d1 ≥ 0 are
positive. Even if X T X is invertible, however, the estimators can be very poor. The
squared distance between β̂ and β is expressible as

(̂β − β)T(̂β − β)
D= σ 2

p∑
r=1

Z2
r /dr , where Z1, . . . , Z p

iid∼ N (0, 1).

Thus (̂β − β)T(̂β − β) has mean and variance

σ 2
p∑

r=1

d−1
r , 2σ 4

p∑
r=1

d−2
r ,

bounded below respectively by σ 2/d1 and 2σ 4/d2
1 , and β̂ may be far distant from β

for small d1. The practical implication is that parameter estimates from different but
related datasets may vary greatly, giving apparently contradictory interpretations of
the same phenomenon.

Diagnostics to warn of collinearity can be based on functions of the dr such as
the condition number (dp/d1)1/2, but its statistical interpretation is not clear-cut. The
condition number is sometimes reduced by replacing X with the matrix obtained on
dropping the column of ones if any and centering the remaining columns, or by using
the corresponding correlation matrix.

The most straightforward solution to collinearity or near collinearity is to drop
columns from the design matrix until the estimates are better behaved.

A more systematic approach to dealing with weak design matrices is ridge
regression, which starts by rewriting the original model y = 1β0 + X1β1 + ε as
y = 1β0 + Zγ + ε, where Z T1 = 0 and the diagonal of Z T Z consists of ns. This in-
volves centring each column of X1 by subtracting its average, then dividing by its stan-
dard deviation, and multiplying by n1/2. This centring and rescaling ensures that the
elements of γ and of β have the same interpretations apart from a change of scale, un-
like with principal components regression. Then the least squares estimates are β̂0 = y
and γ̂ = (Z T Z )−1 Z T y. The idea is to replace Z T Z by Z T Z + λIp−1, where λ ≥ 0 is
called the ridge parameter. The corresponding estimates, γ̂λ = (Z T Z + λIp−1)−1 Z T y,
are biased unless λ = 0, when they are the least squares estimates of γ . Large values
of λ increase the bias by shrinking the estimates towards the origin, but this decreases
their variance. The value of λ is chosen empirically by minimization of a criterion
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Table 8.12 Parameter
estimates and their
standard errors for the full
model and a reduced
model fitted to the cement
data.

Full model Reduced model

Parameter Estimate Standard error Estimate Standard error

β0 62.41 70.07 71.64 14.14
β1 1.55 0.74 1.45 0.12
β2 0.51 0.72 0.42 0.19
β3 0.10 0.75
β4 −0.14 0.71 −0.24 0.17

such as the cross-validation sum of squares

CV(λ) =
n∑

j=1

(y j − ŷ −
j )2,

where ŷ −
j is the fitted value for y j predicted from the ridge regression model obtained

when the j th case is deleted. Cross-validation, introduced in Section 7.1.2, is here used
to assess how well the ridge regression fit would predict a new set of independent
data like the original observations. A variant approach chooses λ to minimize the
generalized cross-validation sum of squares,

GCV(λ) =
n∑

j=1

(y j − ŷ j )2

{1 − tr(Hλ)/n}2 ,

where Hλ = n−11n1T
n + Z (Z T Z + λIp−1)−1 Z T is the hat matrix corresponding to the

ridge regression, and the vector of fitted values ŷ = Hλy depends on λ. We discuss
these in more detail on page 523, though in another context.

Estimates such as γ̂λ that shrink towards a common value, here γ = 0, may also
be derived by Bayesian arguments (Chapter 11).

Example 8.28 (Cement data) The astute reader will have realized that if the middle
four columns of Table 8.1 are percentages, they may sum to 100. In fact they sum to
(99, 97, 95, 97, 98, 97, 97, 98, 96, 98, 98, 98, 98). As there is a column of ones in the
design matrix for the full model, its columns are nearly dependent: estimation of five
parameters is almost impossible. This is reflected by the standard errors in Table 8.12.
The standard error for β̂0 is vastly inflated by inclusion of x3 because β0 is almost
impossible to estimate, whereas the other estimates are less badly affected.

The residual sum of squares for model without x3 is 47.97, only slightly larger than
that for the full model, 47.86. Thus inclusion of x3 changes the fit of the model very
little, but has a drastic effect on the precision of parameter estimation.

The eigenvalues of X T X with all five columns of X are 44676, 5965.4, 810.0,
105.4 and 0.00012. The condition number of 6056 indicates strong ill-conditioning,
and

∑
d−1

r = 821 seems very large.
The left panel of Figure 8.7 shows how the parameter estimates γ̂λ depend on

the ridge parameter λ. All change fairly sharply as λ increases from zero, and are
more stable for λ > 0.2. The right panel shows that GCV(λ) decreases sharply when
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cement data. Left:
variation of elements of
γ̂λ as a function of λ, for
models with all four
covariates (solid) and with
x1, x2, and x4 only (dots).
Right: generalized
cross-validation criterion
GCV(λ) for these models.

λ increases from zero, and is minimized when λ
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when x3 is dropped both the γ̂λ and GCV(λ) depend much less on λ, consistent with
the discussion above. �

8.7.3 Automatic variable selection

The screening and selection of many explanatory variables may be onerous. With p
covariates, each to be included or not, at least 2p possible design matrices must be
fitted even before accounting for transformations, combinations of covariates, and so
forth. Consequently automatic procedures for variable selection are widely used if p
is large. While valuable as screening procedures, they are no substitute for careful
model-building incorporating knowledge of the system under study and should be
treated as a backstop; their output should always be considered critically.

Stepwise methods

Forward selection takes as baseline the model with an intercept only. Each term is
added separately to this, and the base model for the next stage is taken to be the
model with the intercept and the term that most reduces the sum of squares. Each
of the remaining terms is added to the new base model, and the process continued,
stopping if at any stage the F statistic for the largest reduction in sum of squares is
not significant or if the design matrix is rank deficient.

Backward elimination starts from the model containing all terms, and then suc-
cessively drops the least significant term at each stage. It stops when no term can be
deleted without increasing the sum of squares significantly.

Backward elimination is generally the preferable of the two because its initial
estimate of σ 2 will usually be better than that for forward selection, though at the
possible expense of an unstable initial model. They may yield different final models.

In stepwise regression four options are considered at each stage: add a term, delete
a term, swap a term in the model for one not in the model, or stop. This algorithm is
often used in practice.

These three procedures have been shown to fit complicated models to com-
pletely random data, and although widely used they have no theoretical basis. This
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Table 8.13 Data on light
water reactors (LWR)
constructed in the USA
(Cox and Snell, 1981,
p. 81). The covariates are
date (date construction
permit issued), T1 (time
between application for
and issue of permit), T2
(time between issue of
operating license and
construction permit),
capacity (power plant
capacity in MWe), PR (=1
if LWR already present on
site), NE (=1 if constructed
in north-east region of
USA), CT (=1 if cooling
tower used), BW (=1 if
nuclear steam supply
system manufactured by
Babcock–Wilcox), N
(cumulative number of
power plants constructed
by each
architect-engineer), PT
(=1 if partial turnkey
plant).

cost date T1 T2 capacity PR NE CT BW N PT

1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 452.99 67.33 10 73 1065 0 0 1 0 1 0
3 443.22 67.33 10 85 1065 1 0 1 0 1 0
4 652.32 68.00 11 67 1065 0 1 1 0 12 0
5 642.23 68.00 11 78 1065 1 1 1 0 12 0
6 345.39 67.92 13 51 514 0 1 1 0 3 0
7 272.37 68.17 12 50 822 0 0 0 0 5 0
8 317.21 68.42 14 59 457 0 0 0 0 1 0
9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0
11 350.63 68.58 12 64 560 0 0 0 0 3 0
12 402.59 68.75 13 47 790 0 1 0 0 6 0
13 412.18 68.42 15 62 530 0 0 1 0 2 0
14 495.58 68.92 17 52 1050 0 0 0 0 7 0
15 394.36 68.92 13 65 850 0 0 0 1 16 0
16 423.32 68.42 11 67 778 0 0 0 0 3 0
17 712.27 69.50 18 60 845 0 1 0 0 17 0
18 289.66 68.42 15 76 530 1 0 1 0 2 0
19 881.24 69.17 15 67 1090 0 0 0 0 1 0
20 490.88 68.92 16 59 1050 1 0 0 0 8 0
21 567.79 68.75 11 70 913 0 0 1 1 15 0
22 665.99 70.92 22 57 828 1 1 0 0 20 0
23 621.45 69.67 16 59 786 0 0 1 0 18 0
24 608.80 70.08 19 58 821 1 0 0 0 3 0
25 473.64 70.42 19 44 538 0 0 1 0 19 0
26 697.14 71.08 20 57 1130 0 0 1 0 21 0
27 207.51 67.25 13 63 745 0 0 0 0 8 1
28 288.48 67.17 9 48 821 0 0 1 0 7 1
29 284.88 67.83 12 63 886 0 0 0 1 11 1
30 280.36 67.83 12 71 886 1 0 0 1 11 1
31 217.38 67.25 13 72 745 1 0 0 0 8 1
32 270.71 67.83 7 80 886 1 0 0 1 11 1

arbitrariness is reflected in rules for deciding which terms to include, some of which
use tables of the F or t distributions. Others simply drop a term from the model if its
F statistic is less than a number such as 4, and otherwise include the term. Sometimes
a theoretically-motivated criterion such as AIC is used.

Example 8.29 (Nuclear plant data) Table 8.13 contains data on the cost of 32 light
water reactors. The cost (in dollars ×10−6 adjusted to a 1976 base) is the quantity of
interest, and the others are explanatory variables.

Costs are typically relative. Moreover large costs are likely to vary more than small
ones, so it seems sensible to take log(cost) as the response y. For consistency we also
take logs of the other quantitative covariates, fitting linear models usingdate, log(T1),
log(T2), log(capacity), PR, NE, CT, log(N), and PT. The last of these indicates six
plants for which there were partial turnkey guarantees, and some subsidies may be
hidden in their costs.
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Table 8.14 Parameter
estimates and standard
errors for linear models
fitted to nuclear plants
data; forward and
backward indicate models
fitted by forward selection
and backward elimination.

Full model Backward Forward

Est (SE) t Est (SE) t Est (SE) t

Constant −14.24 (4.229) −3.37 −13.26 (3.140) −4.22 −7.627 (2.875) −2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR −0.092 (0.077) −1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) −0.080 (0.046) −1.74 −0.088 (0.042) −2.11
PT −0.224 (0.123) −1.83 −0.226 (0.114) −1.99 −0.490 (0.103) −4.77

Residual SE (df) 0.164 (21) 0.159 (25) 0.195 (28)

Estimates and standard errors for the full model and those found by backward
elimination and forward selection are given in Table 8.14. Backward elimination
starts by refitting the model without BW and then considering the t statistics for the
remaining variables, dropping the next least significant, here log(T1), and so forth.
The effects for the variables retained are strengthened; most are highly significant.
Forward selection chooses a smaller model with larger residual sum of squares, and
this results in smaller t statistics. Stepwise selection starting from this model yields the
model chosen by backward elimination. Examination of residuals for this suggests no
difficulty, and we are left with a model in which cost increases with capacity, though
not proportionally, with presence of a cooling tower, with date, and in the north-east
region of the USA, but is decreased by a partial turnkey guarantee, and with architect’s
experience. �

Likelihood criteria

A more satisfactory approach is to fit all reasonable models and adopt the one that
minimizes some overall measure of discrepancy. One such measure is the residual sum
of squares, but this continues to decrease as the number of parameters increases and
always yields the model with all possible terms. This suggests that model complexity
be penalized by balancing it against a measure of fit. We now discuss one approach
to this.

Suppose that the data were generated by a true model g under which the responses
Y j are independent normal variables with means µ j and variances σ 2 and let Eg(·)
denote expectation with respect to this model. Following the discussion in Section 4.7,
our ideal would be to choose the candidate model f (y; θ ) to minimize the loss when
predicting a new sample like the old one, The scaling factor 2 is

included for comparability
with AIC.

Eg

(
E+

g

[
2

n∑
j=1

log

{
g(Y +

j )

f (Y +
j ; θ̂ )

}])
. (8.31)
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Here Y +
1 , . . . , Y +

n is another sample independent of Y1, . . . , Yn but with the same dis-
tribution, E+

g denotes expectation over Y +
1 , . . . , Y +

n , and θ̂ is the maximum likelihood
estimator of θ based on Y1, . . . , Yn .

If the candidate model is normal, then θ comprises the mean responses µ1, . . . , µn

and σ 2, with maximum likelihood estimators µ̂1, . . . , µ̂n and σ̂ 2. Then the sum in
(8.31) equals

1

2

n∑
j=1

{
log σ̂ 2 + (Y +

j − µ̂ j )2

σ̂ 2
− log σ 2 − (Y +

j − µ j )2

σ 2

}
,

and hence the inner expectation is
n∑

j=1

{
log σ̂ 2 + σ 2

σ̂ 2
+ (µ j − µ̂ j )2

σ̂ 2
− log σ 2 − 1

}
.

Suppose that in our earlier terminology a candidate linear model with full-rank n ×
p design matrix X is correct, that is, the true model is nested within it. Then the
vector µ = (µ1, . . . , µn)T of true means lies in the column space of X and there is a
p × 1 vector β such that µ = Xβ. Hence µ̂ = (µ̂1, . . . , µ̂n)T is normal with mean µ,
from which it follows that

∑
(µ j − µ̂ j )2 = (µ̂ − µ)T(µ̂ − µ) ∼ σ 2χ2

p independent
of nσ̂ 2 ∼ σ 2χ2

n−p. Now the expected values of a χ2
ν variable and of its inverse are ν

and (ν − 2)−1, provided ν > 2, and so (8.31) equals

nEg(log σ̂ 2) + n2

n − p − 2
+ np

n − p − 2
− n log σ 2 − n,

or equivalently for our purposes,

nEg(log σ̂ 2) + n(n + p)

n − p − 2
.

This is estimated unbiasedly by the corrected information criterion

AICc = n log σ̂ 2 + n
1 + p/n

1 − (p + 2)/n
,

and the ‘best’ candidate model is taken to be that which minimizes this. Taylor
expansion gives AICc

.= n log σ̂ 2 + n + 2(p + 1) + O(p2/n), and for large n and
fixed p this will select the same model as AIC = n log σ̂ 2 + 2p. When p is comparable
with n, AICc penalizes model dimension more severely.

A widely used related criterion is

C p = SSp

s2
+ 2p − n,

where SSp is the residual sum of squares for the fitted model and s2 is an estimate of
σ 2; C p can be derived as an approximation to AIC (Problem 8.16), though its original
motivation was different. In some cases σ 2 can be estimated from the full model, but
care is needed because the choice of s2 is critical to successful use of C p.

Example 8.30 (Simulation study) Twenty different n × 7 design matrices X
were constructed using standard normal variables, centered and scaled so that
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Table 8.15 Number of
times models were
selected using various
model selection criteria in
50 repetitions using
simulated normal data for
each of 20 design
matrices. The true model
has p = 3.

Number of covariates

n 1 2 3 4 5 6 7

10 C p 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 C p 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 C p 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16

each column of X had mean zero and unit variance. The parameter vector was
β = (3, 2, 1, 0, 0, 0, 0)T, so the true model had three covariates, and the errors were
taken to be independent standard normal variables. Then the models with the first p
columns of X were fitted for p = 1, . . . , 7, and the best of these was selected using
AIC, AICc, the Bayesian criterion BIC, and C p. This procedure was performed
50 times for each design matrix.

Table 8.15 shows the results of this experiment. For n = 10 and 20, AICc has
the highest chance of selecting the true model, and moreover the models selected
using it are the least dispersed because of the stronger penalty applied, at least for p
comparable with n. For n = 40 the consistent criterion BIC is most likely to select
the true model. In practice, however, the true model would rarely be among those
fitted, and so AICc seems the best of the criteria considered, particularly when p is
comparable with n. �

Example 8.31 (Nuclear plant data) When AICc is computed for the 210 possible
models in Example 8.29, the model chosen by backward elimination is selected, with
AICc = −71.24. Two nearby models have AICc within 2 of the minimum, namely
those withoutlog(N) and withoutPT, but dropping these covariates together increases
AICc sharply. The interpretation and overall fit are changed little by dropping them
singly, so we retain them. �

Plots of the contributions to these criteria from individual observations can be
useful in diagnosing whether particular cases strongly influence model choice.

There may be several different models whose values of AICc are similarly low.
If a single model is needed the choice among them should if possible be based on
subject-matter considerations. If there are several equally plausible models with quite
different interpretations, then it is important to say so.
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Inference after model selection

One reason that automatic variable selection should if possible be avoided is its conse-
quence for subsequent inference. To illustrate this, consider a straight-line regression
model y = β0 + xβ1 + ε, based on n pairs (x j , y j ) with

∑
x j = 0 and independent

normal errors with mean zero and known variance σ 2. Then the least squares estimate
β̂1 is normally distributed with mean β1 and variance v = σ 2/

∑
x j , and following

the discussion in Section 8.3.2 we would base inference for β1 on Z = (̂β1 − β1)/v1/2,
whose distribution is standard normal when model selection is not taken into account.
Suppose, however, that before attempting to construct a confidence interval for β1,
we test for inclusion of the covariate x in the model, declaring that it should be in-
cluded if |̂β1/v1/2| > z1−α . If not, we declare that β1 = 0 and use the simpler modelz1−α is the 1 − α quantile

of the standard normal
distribution.

y = β0 + ε. Now as β̂1 = β1 + v1/2 Z , post-model selection inference for β1 given
that x has been included will be based on the conditional density of Z given that
|Z + β1/v1/2| > z1−α , which is

φδ(z) = φ(z) {H (z < zα − δ) + 1 − H (z < −zα − δ)}
�(zα − δ) + �(zα + δ)

, −∞ < z < ∞,

where δ = β1/v1/2 is the standardized slope. Figure 8.8 displays φδ(z) for δ =H (u) is the Heaviside
function. 0, 1, . . . , 5 and α = 0.025, corresponding to two-sided testing at the 5% level. When

β1 = 0, for example, Z considered conditionally takes values in the tails of the stan-
dard normal distribution but not in its centre. Conditional on variable selection, Z is
clearly far from pivotal unless |δ| � 0. Hence it is only a sensible basis for inference
on β1 if the regression on x is very strong.

In practice there are three complications: the error variance σ 2 is unknown, there are
typically many covariates, and the true model is not among those fitted. However the
broad conclusion applies: if variables are selected automatically, the only covariates
for which subsequent inference using the standard confidence intervals is reliable
are those for which the evidence for inclusion is overwhelming, that is, for which it
is clear that |δ| � 0. Other covariates should be considered in the light of previous
knowledge and the context of the model.
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Model uncertainty

Inference is often performed after comparing different competing models, and the
questions arise if, when, and how one should allow for this. Consider for example the
quantity β0 in the two models M0 and M1 in which y = β0 + ε and y = β0 + xβ1 + ε,
where E(ε) = 0. It is sometimes suggested that one should somehow average the
variances of the estimators β̂0 across the models, but this is inappropriate because
the interpretation of β0 is model-dependent. Although the same symbol is used,
β0 represents the unconditional response mean E(Y ) under M0, while under M1 it
represents the conditional mean E(Y | x = 0). Hence the meaning of β0 depends on
the context and inference for it must be conditioned on the model in which it appears:
averaging is meaningless unless the quantity of interest has the same interpretation
for all models considered. In particular, the interpretation of regression coefficients
typically depends on the model in which they appear. Having said this, one situation
in which the quantity of interest has a model-free interpretation is prediction, and
below we treat the simplest example of this.

Consider using the fits of M0 and M1 to estimate the mean µ+ = β0 + x+β1 of
a future variable Y+ with covariate x+ �= 0, assuming the error ε to be normal with
mean zero and known variance σ 2; note that µ+ has the same interpretation under both
models. Suppose that n independent pairs (x j , y j ) are available and that

∑
x j = 0, so

that β̂0 = y with variance σ 2/n under either model, independent of the slope estimate
β̂1 with variance v = σ 2/

∑
x2

j . The estimators of µ+ and their biases, variances, and
mean squared errors are

Model Estimator Bias Variance MSE

M0 : µ̂0
+ = β̂0, x+β1, σ 2/n, σ 2/n + x2

+β2
1 ,

M1 : µ̂1
+ = β̂0 + x+β̂1, 0, σ 2/n + x2

+v, σ 2/n + x2
+v,

so µ̂0
+ improves on µ̂1

+ if |δ| < 1, where δ = β1/v1/2 is the standardized slope.
This suggests that it may be possible to construct a better estimator of µ+ by

choosing µ̂0
+ if an estimator of δ is close enough to zero, and otherwise taking µ̂1

+. If
we decide between the models on the basis that M1 is indicated when |̂β1|/v1/2 > z1−α ,
corresponding to a two-sided test of the hypothesis that β1 = 0 at level (1 − 2α), then
the overall estimator is I (·) is the indicator

random variable of its
event.µ̂+ = β̂0 + x+β̂1

{
I
(
β̂1/v1/2 < −z1−α

) + I
(
β̂1/v1/2 > z1−α

)}
= β̂0 + x+v1/2(δ + Z ) {I (Z < zα − δ) + I (Z > z1−α − δ)} ,

where we have written β̂1 = v1/2(δ + Z ), with Z = (̂β1 − β1)/v1/2 a standard normal
variable; note that −z1−α = zα . The bias and variance of µ̂+ are

E (µ̂+ − µ+) = x+v1/2 E(Q), var (µ̂+) = σ 2

n
+ x2

+v var(Q),

where Q = (δ + Z ) {I (Z < zα − δ) + I (Z > z1−α − δ)} − δ. As v = σ 2/
∑

x2
j , the

bias is O(n−1/2) and the variance is O(n−1), while the mean squared error is σ 2/n +
x2

+v{E(Q)2 + var(Q)}. Elementary calculations give the functions E(Q), var(Q), and
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Figure 8.9 Properties of
estimators of β0 + x+β1

in the straight-line
regression model. Left:
bias (dots), variance
(solid) and mean squared
error (dashes) for
weighted estimator µ̂w

+.
Right: corresponding
quantities for
model-choice estimator
µ̂+. The weighted
estimator improves
considerably on the
model-choice estimator.
The upper panels are for
theoretical calculations,
and the lower ones for the
simulation experiment
described in
Example 8.32.

E(Q)2 + var(Q), which are shown in the upper right panel of Figure 8.9 for α =
0.025, corresponding to choosing between the models at the two-sided 95% level.
As we might have anticipated, µ̂+ is generally biased towards zero because of the
possibility of using the simpler estimator µ̂0

+ even if β1 �= 0; its bias tends to zero
when |δ| � 0. The variance of µ̂+ is largest when |δ| .= 2, and then decreases to the
limit corresponding to use of µ̂1

+.
One difficulty with µ̂+ is that the indicator variables badly inflate its bias and

variance. A simple way to avoid this is to use a weighted combination of µ̂0
+ and µ̂1

+.
Take for example the estimator

µ̂w
+ = (1 − W )µ̂0

+ + W µ̂1
+ = (1 − W )̂β0 + W (̂β0 + x+β̂1),

where the weight

W = exp(−AIC1/2)

exp(−AIC1/2) + exp(−AIC0/2)

depends on the information criteria AIC0 and AIC1 for the two models. If AIC1 �
AIC0, then W

.= 1, the data give a strong preference for M1, and µ̂w
+

.= µ̂1
+. If on the

other hand β1 = 0, then W slightly favours M0 but the estimators under both models
are unbiased.
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Under our simplifying assumptions, AIC0 − AIC1 = β̂2
1/v − 2 = (δ + Z )2 − 2,

and as µ̂w
+ = β̂0 + x+W β̂1, the quantity that corresponds to Q above is Qw =

(δ + Z )G{(δ + Z )2/2 − 1} − δ, where G(u) = exp(u)/ {1 + exp(u)}. The bias and
variance of µ̂w

+ depend on those of Qw , which are shown in the upper left panel of
Figure 8.9. Both are smaller than the values for µ̂+, and the mean squared error is
considerably reduced. Evidently µ̂w

+ improves on µ̂1
+ over a wide range of values of

δ, while its mean squared error is smaller than that of µ̂+. The weighted estimator
µ̂w

+ clearly improves on the model-choice estimator µ̂+.

Example 8.32 (Simulation study) To assess how this approach performs in a
slightly more realistic setting, we performed a small simulation study with linear
model data simulated in the same way as in Example 8.30, now with n = 15 and
βT = τ (0, 4, 3, 2, 1, 1, 0, 0); thus p = 8 including a constant vector. We then fitted
the eight models with a constant only, constant plus the first covariate, constant plus
first and second covariates, and so forth, and combined the corresponding estimators
and AIC-based weights, to obtain a weighted estimator θ̂ of θ = 1T

8β. We compared
this with the estimator θ̂+ obtained from the ‘best’ model, this being chosen as the
model minimizing −2̂�q + 3.84q , where �̂q is the log likelihood obtained when fitting
the model with q parameters. This information criterion is constructed to give prob-
ability 0.05 of selecting the more complex of two nested models differing by one pa-
rameter, when in fact the simpler model is correct. This criterion is intended to mimic
hypothesis testing procedures for model selection, such as backward elimination.

This experiment was repeated with 20 different response vectors for each of
250 design matrices: 5000 datasets, for τ = 0, 0.05, 0.1, 0.2, 0.4, . . . , 1.2. The lower
panels of Figure 8.9 show the bias, variance, and mean squared error of θ̂ and θ̂+. The
results bear out the preceding toy analysis: the weighted estimator has lower mean
squared error except when the regression effects are small. �

Although we have only considered the simplest situation, our broad conclusion
generalizes to more complex settings: sharp choices among estimators from different
models tends to give worse predictions than do estimators interpolating smoothly
among them.

Exercises 8.7

1 Consider the cement data of Example 8.3, where n = 13. The residual sums of squares
for all models that include an intercept are given in Exercise 8.5.1.
(a) Use forward selection, backward elimination, and stepwise selection to select models
for these data, including variables significant at the 5% level.
(b) Use Cp to select a model for these data.

2 Another criterion for model selection is to choose the covariates that minimize the cross-
validated sum of squares

∑
(y j − xT

j β̂− j )2, where β̂− j is the estimate of β obtained when
the j th case is deleted. Show this is equivalent to minimizing

∑
(y j − xT

j β̂)2/(1 − h j j )2,
and compare computational aspects of this approach with those based on AIC.
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8.8 Bibliographic Notes

There are books on all aspects of the linear model. Seber (1977) and Searle (1971) give
a thorough discussion of the theory, while Draper and Smith (1981), Weisberg (1985),
Wetherill (1986) and Rawlings (1988) have somwhat more practical emphases; see
also Sen and Srivastava (1990) and Jørgensen (1997a). Most of these books cover the
central topics of this chapter in more detail. Scheffé (1959) is a classic account of the
analysis of variance.

Robust approaches to regression are described by Li (1985), and in more detail in
Huber (1981), Hampel et al. (1986), and Rousseeuw and Leroy (1987).

Davison and Hinkley (1997) and Efron and Tibshirani (1993) give accounts of boot-
strap methods, which are simulation approaches to finding standard errors, confidence
limits and so forth, for use with awkward estimators.

The formal analysis of transformations was discussed by Box and Cox (1964) and
further developed by many others; for book-length discussions see Atkinson (1985)
and Carroll and Ruppert (1988). The test for non-additivity was suggested by Tukey
(1949); see also Hinkley (1985). Books on general regression diagnostics include
Cook and Weisberg (1982), Belsley et al. (1980) and Chatterjee and Hadi (1988).
Belsley (1991) focuses on problems of collinearity. Shorter accounts of aspects of
model-checking are Davison and Snell (1991) and Davison and Tsai (1992). Atkinson
and Riani (2000) describe how diagnostic procedures may be used to give reliable
strategies for data analysis.

Stone and Brooks (1990) and their discussants give numerous references and com-
parison of various approaches to regression situations with fewer observations than
covariates, such as principal components regression and partial least squares. Perhaps
the most widespread of these is ridge regression (Hoerl and Kennard, 1970a,b; Hoerl
et al., 1985). Brown (1993) is a book-length treatment of these and related methods.

Variable selection for the linear model has been intensively studied. Linhart and
Zucchini (1986) and Miller (1990) give useful surveys, now somewhat dated owing
to the considerable amount of work in the 1990s. Model selection based on AIC was
suggested by Akaike (1973) in a much-cited paper, though related criteria such as
C p were already in use (Mallows, 1973). Schwartz (1978) proposed use of BIC, and
Hurvich and Tsai (1989, 1991) derive the modified AIC with improved small-sample
properties. McQuarrie and Tsai (1998) give a comprehensive discussion of these and
related criteria. Pötscher (1991) and Hurvich and Tsai (1990) give theoretical and
numerical results on inference after model selection in linear models. More general
discussion and many further references may be found in Chatfield (1995) and Burnham
and Anderson (2002).

8.9 Problems

1 Consider Table 8.16. Formulate the design matrix X for the model in which E(Yield) =
βi + β3(z − 2), estimate the parameters and test whether β1 = β2.
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Table 8.16 Rescaled
yields (tonnes/Ha) when
two varieties of corn were
treated with five levels of
fertiliser.

Level of fertilizer, z

Variety 0 1 2 3 4

1 0.2 0.6 0.5 0.8 0.9
2 0.1 0.2 0.4 0.6 0.7

2 Suppose that random variables Ygj , j = 1, . . . , ng , g = 1, . . . , G, are independent and that
they satisfy the normal linear model Ygj = xT

gβ + εg j . Write down the covariate matrix for
this model, and show that the least squares estimates can be written as (X T

1 W X1)−1 X T
1 W Z ,

where W = diag{n1, . . . , nG}, and the gth element of Z is n−1
g

∑
j Yg j . Hence show that

weighted least squares based on Z and unweighted least squares based on Y give the same
parameter estimates and confidence intervals, when σ 2 is known. Why do they differ if
σ 2 is unknown, unless ng ≡ 1?
Discuss how the residuals for the two setups differ, and say which is preferable for model-
checking.

3 Let Y1, . . . , Yn and Z1, . . . , Zm be two independent random samples from the N (µ1, σ
2
1 )

and N (µ2, σ
2
2 ) distributions respectively. Consider comparison of the model in which

σ 2
1 = σ 2

2 and the model in which no restriction is placed on the variances, with no restriction
on the means in either case. Show that the likelihood ratio statistic Wp to compare these
models is large when the ratio T = ∑

(Y j − Y )2/
∑

(Z j − Z )2 is large or small. Show
that T is proportional to a random variable with the F distribution, and discuss whether
the model of equal variances is plausible for the maize data of Example 1.1.

4 Find the expected information matrix for the parameters (β0, β1, σ
2) of the normal straight-

line regression model (5.2).

5 The usual linear model y = Xβ + ε is thought to apply to a set of data, and it is assumed that
the ε j are independent with means zero and variances σ 2, so that the data are summarized
in terms of the usual least squares estimates and estimate of σ 2, β̂ and S2. Unknown to the
unfortunate investigator, in fact var(ε j ) = v jσ

2, and v1, . . . , vn are unequal. Show that β̂
remains unbiased for β and find its actual covariance matrix.

6 Suppose that y satisfies a quadratic regression, that is,

y = β0 + xβ1 + x2β2 + ε,

and that we can control the values of x . It is decided to choose x = ±a r times each and
x = 0 n − 2r times.
(a) Derive explicit expressions for the least squares estimates. Are they uncorrelated? If
not, can they easily be made so?
(b) What value of r is best if we intend to test for the adequacy of a linear regression?
(c) What value of r is best if we intend to predict y at x = a/2?

7 By rewriting y − Xβ as e + X β̂ − Xβ and that eT X = 0, show that

(y − Xβ)T(y − Xβ) = SS(̂β) + (̂β − β)T X T X (̂β − β).

Hence show that that the likelihood for the normal linear model equals

1

(2π )n/2σ n
exp

{
− SS(̂β)

2σ 2
− 1

2σ 2
(̂β − β)T X T X (̂β − β)

}
,

and use the factorization criterion to establish that (̂β, SS(̂β)) is a minimal sufficient
statistic for (β, σ 2). The sample size n and the covariate matrix X are also needed to
calculate the likelihood, so why are they not regarded as part of the minimal sufficient
statistic?
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8 Consider a normal linear regression y = β0 + β1x + ε in which the parameter of interest
is ψ = β0/β1, to be estimated by ψ̂ = β̂0/β̂1; let var(̂β0) = σ 2v00, cov(̂β0, β̂1) = σ 2v01

and var(̂β1) = σ 2v11.
(a) Show that

β̂0 − ψβ̂1

{s2(v00 − 2ψv01 + ψ2v11)}1/2
∼ tn−p,

and hence deduce that a (1 − 2α) confidence interval for ψ is the set of values of ψ
satisfying the inequality

β̂2
0 − s2t2

n−p(α)v00 + 2ψ
{
s2t2

n−p(α)v01 − β0β1

} + ψ2
{
β̂2

1 − s2t2
n−p(α)v11

} ≤ 0.

How would this change if the value of σ was known?
(b) By considering the coefficients on the left-hand-side of the inequality in (a), show that
the confidence set can be empty, a finite interval, semi-infinite intervals stretching to ±∞,
the entire real line, two disjoint semi-infinite intervals — six possibilities in all. In each
case illustrate how the set could arise by sketching a set of data that might have given rise
to it.
(c) A government Department of Fisheries needed to estimate how many of a certain
species of fish there were in the sea, in order to know whether to continue to license
commercial fishing. Each year an extensive sampling exercise was based on the numbers
of fish caught, and this resulted in three numbers, y, x , and a standard deviation for y, σ .
A simple model of fish population dynamics suggested that y = β0 + β1x + ε, where the
errors ε are independent, and the original population size was ψ = β0/β1. To simplify the
calculations, suppose that in each year σ equalled 25. If the values of y and x had been

y : 160 150 100 80 100
x : 140 170 200 230 260

after five years, give a 95% confidence interval for ψ . Do you find it plausible that σ = 25?
If not, give an appropriate interval for ψ .

9 Over a period of 2m + 1 years the quarterly gas consumption of a particular household
may be represented by the model

Yi j = βi + γ j + εi j , i = 1, . . . , 4, j = −m, −m + 1, . . . , m − 1, m,

where the parameters βi and γ are unknown, and εi j
iid∼ N (0, σ 2). Find the least

squares estimators and show that they are independent with variances (2m + 1)−1σ 2 and
σ 2/(8

∑m
i=1 i2).

Show also that

(8m − 1)−1


 4∑

i=1

m∑
j=−m

Y 2
i j − (2m + 1)

4∑
i=1

Y
2
i · −

2
∑m

j=−m jY
2
. j∑m

i=1 i2




is unbiased for σ 2, where Y i · = (2m + 1)−1
∑m

j=−m Yi j and Y · j = 1
4

∑4
i=1 Yi j .

10 A statistician travels regularly from A to B by one of four possible routes, each route
crossing a river bridge at R. The times taken for the possible segments of the journey are
independent random variables with means as shown in the figure, each having variance
σ 2/2.

A
R

B

β2

β1α1

α2
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Table 8.17 Residual
sums of squares for fits of
linear models to output
from n = 10 runs of a
hydrological model.

Model SS Model SS Model SS

- - - - 11.06 1 2 - - 5.56 1 2 3 - 4.75
1 - - - 5.96 1 - 3 - 4.78 1 2 - 4 0.74
- 2 - - 10.19 1 - - 4 1.34 1 - 3 4 0.83
- - 3 - 9.96 - 2 3 - 8.09 - 2 3 4 3.05
- - - 4 9.09 - 2 - 4 7.94

- - 3 4 6.51 1 2 3 4 0.69

He times the complete journey once by each route, obtaining observations yi j distributed
as random variables Yi j having means E(Yi j ) = αi + β j , for i, j = 1, 2. Why it is not
possible to estimate all the parameters from these observations?
Now define µ = α1 + β1, γ = α2 − α1 and δ = β2 − β1. Obtain expressions for the least
squares estimates of µ, γ and δ and also for their variance matrix.
If the observed vector of times is (y11, y21, y12, y22) = (124, 120, 128, 136) minutes, de-
termine which route has the smallest estimated mean time. Obtain a 90% confidence
interval for the mean on the assumption that the times are normally distributed.

11 Suppose that we wish to construct the likelihood ratio statistic for comparison of the two
linear models y = X1β1 + ε and y = X1β1 + X2β2 + ε, where the components of ε are
independent normal variables with mean zero and variance σ 2; call the corresponding
residual sums of squares SS1 and SS on ν1 and ν degrees of freedom.
(a) Show that the maximum value of the log likelihood is − 1

2 n(log SS + 1 − log n) for a
model whose residual sum of squares is SS, and deduce that the likelihood ratio statistic
for comparison of the models above is W = n log(SS1/SS).
(b) By writing SS1 = SS + (SS1 − SS), show that W is a monotonic function of the F
statistic for comparison of the models.
(c) Show that W

.= (ν1 − ν)F when n is large and ν is close to n, and say why F would
usually be preferred to W .

12 Suppose that the denominator in the F statistic was replaced by SS(̂β1)/(n − q), giving F ′,
say. Use the geometry of least squares to explain why F ′ does not have an F distribution,
even if the simpler model is correct so that SS(̂β1) ∼ σ 2χ2

n−q . Show that F ′ is a monotone
increasing function of F , that tends to be less than F if the simpler model is not adequate.

13 Table 8.17 gives results from n = 10 runs of a computer experiment to assess the accuracy
of a hydrological model. The response y is the relative accuracy of predictions, and the
covariates x1, x2, x3, and x4 represent parameters input to the model. The table gives the
residual sums of squares for all normal linear models that include an intercept and the x j .
Taking the level of significance to be 5%, select models for the data using (a) forward
selection, (b) backward elimination, (c) stepwise model selection starting from the full
model, and (d) Cp . Comment briefly.

14 In the normal straight-line regression model it is thought that a power transformation of
the covariate may be needed, that is, the model

y = β0 + β1x (λ) + ε

may be suitable, where x (λ) is the power transformation

x (λ) =
{

xλ−1
λ

, λ �= 0,
log x, λ = 0.

(a) Show by Taylor series expansion of x (λ) at λ = 1 that a test for power transformation
can be based on the reduction in sum of squares when the constructed variable x log x is
added to the model with linear predictor β0 + β1x .
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(b) Show that the profile log likelihood for λ is equivalent to �p(λ) ≡ − n
2 log SS(̂βλ),

where SS(̂βλ) is the residual sum of squares for regression of y on the n × 2 design matrix
with a column of ones and the column consisting of the x (λ)

j . Why is a Jacobian for the
transformation not needed in this case, unlike in Example 8.23?
(Box and Tidwell, 1962)

15 Consider model y = X1β1 + X2β2 + ε, which leads to least squares estimates

(
β̂1

β̂2

)
=

(
X T

1 X1 X T
1 X2

X T
2 X1 X T

2 X2

)−1 (
X T

1 y
X T

2 y

)
.

Let H1 = X1(X T
1 X1)−1 X T

1 , P1 = In − H1, and define H2 and P2 similarly; notice that these
projection matrices are symmetric and idempotent.
(a) Show that β̂2 can be expressed as

(
X T

2 P1 X2

)−1
X T

2 y − (
X T

2 X2

)−1
X T

2 X1

(
X T

1 P2 X1

)−1
X T

1 y,

and use the result from Exercise 8.5.3 to deduce that β̂2 = (X T
2 P1 X2)−1 X T

2 P1 y, with vari-
ance matrix σ 2(X T

2 P1 X2)−1. Note that β̂2 is the parameter estimate from the regression of
P1 y on the columns of P1 X2.
(b) Use the geometry of least squares to show that the residual sums of squares for
regression of y on X1 and X2 is the same as for the regression of P1 y on X1 and X2.
(c) Suppose that in a normal linear model, X2 is a single column that depends on y only
through the fitted values from regression of y on X1, so that X2 is itself random. Noting
that the residuals P1 y are independent of the fitted values, H1 y, and arguing conditionally
on H1 y, show that the t statistic for β̂2 has a distribution that is independent of X2. Hence
give the unconditional distribution of (8.27).

Recall that a model is
called correct if it contains
all covariates with
non-zero coefficients, and
called true if it contains
precisely these covariates.

16 (a) Show that AIC for a normal linear model with n responses, p covariates and unknown
σ 2 may be written as n log σ̂ 2 + 2p, where σ̂ 2 = SSp/n is the maximum likelihood esti-
mate of σ 2. If σ̂ 2

0 is the unbiased estimate under some fixed correct model with q covariates,
show that use of AIC is equivalent to use of n log{1 + (σ̂ 2 − σ̂ 2

0 )/σ̂ 2
0 } + 2p, and that this is

roughly equal to n(σ̂ 2/σ̂ 2
0 − 1) + 2p. Deduce that model selection using C p approximates

that using AIC.
(b) Show that Cp = (q − p)(F − 1) + p, where F is the F statistic for comparison of the
models with p and q > p covariates, and deduce that if the model with p covariates is
correct, then E(C p)

.= q, but that otherwise E(Cp) > q.

17 Consider the straight-line regression model y j = α + βx j + σε j , j = 1, . . . , n. Suppose
that

∑
x j = 0 and that the ε j are independent with means zero, variances ε, and common

density f (·).
(a) Write down the variance of the least squares estimate of β.
(b) Show that if σ is known, the log likelihood for the data is

�(α, β) = −n log σ +
n∑

j=1

log f

(
y j − α − βx j

σ

)
,

derive the expected information matrix for α and β, and show that the asymptotic variance
of the maximum likelihood estimate of β can be written as σ 2/(i

∑
x2

j ), where

i = E

{
−d2 log f (ε)

dε2

}
.

Hence show that the the least squares estimate of β has asymptotic relative efficiency
i/v × 100%.
(c) Show that the cumulant-generating function of the Gumbel distribution, f (u) =
exp{−u − exp(−u)}, −∞ < u < ∞, is log �(1 − t), and deduce that its variance is

With
�(t) = ∫ ∞

0 ut−1e−u du,
�′′(1) − �′(1)2 .=
1.64493.

roughly 1.65. Find i for this distribution, and show that the asymptotic relative efficiency
of least squares is about 61%.
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18 Over a period of 90 days a study was carried out on 1500 women. Its purpose was to
investigate the relation between obstetrical practices and the time spent in the delivery
suite by women giving birth. One thing that greatly affects this time is whether or not a
woman has previously given birth. Unfortunately this vital information was lost, giving
the researchers three options: (a) abandon the study; (b) go back to the medical records
and find which women had previously given birth (very time-consuming); or (c) for each
day check how many women had previously given birth (relatively quick). The statistical
question arising was whether (c) would recover enough information about the parameter
of interest.
Suppose that a linear model is appropriate for log time in delivery suite, and that the
log time for a first delivery is normally distributed with mean µ + α and variance σ 2,
whereas for subsequent deliveries the mean time is µ. Suppose that the times for all
the women are independent, and that for each there is a probability π that the labour
is her first, independent of the others. Further suppose that the women are divided into
k groups corresponding to days and that each group has size m; the overall number is
n = mk. Under (c), show that the average log time on day j , Z j , is normally distributed
with mean µ + R jα/m and variance σ 2/m, where R j is binomial with probability π and
denominator m. Hence show that the overall log likelihood is

�(µ, α) = −1

2
k log(2πσ 2/m) − m

2σ 2

k∑
j=1

(z j − µ − r jα/m)2,

where z j and r j are the observed values of Z j and R j and we take π and σ 2 to be
known. If R j has mean mπ and variance mτ 2, show that the inverse expected information
matrix is

I (µ, α)−1 = σ 2

nτ 2

( mπ2 + τ 2 −mπ
−mπ m

)
.

(i) If m = 1, τ 2 = π (1 − π ), and π = n1/n, where n = n0 + n1, show that I (µ, α)−1

equals the variance matrix for the two-sample regression model. Explain why.
(ii) If τ 2 = 0, show that neither µ nor α is estimable; explain why.
(iii) If τ 2 = π (1 − π ), show that µ is not estimable when π = 1, and that α is not estimable
when π = 0 or π = 1. Explain why the conditions for these two parameters to be estimable
differ in form.
(iv) Show that the effect of grouping, (m > 1), is that var(̂α) is increased by a factor m
regardless of π and σ 2.
(v) It was known that σ 2 .= 0.2, m

.= 1500/90, π
.= 0.3. Calculate the standard error for α̂.

It was known from other studies that first deliveries are typically 20–25% longer than
subsequent ones. Show that an effect of size α = log(1.25) would be very likely to be
detected based on the grouped data, but that an effect of size α = log(1.20) would be less
certain to be detected, and discuss the implications.

19 Suppose that model y = Xβ + Zγ + ε holds, but that model y = Xβ + ε is fitted, giving
β̂ = (X T X )−1 X T y with hat matrix H = X (X T X )−1 X T and residuals e = y − X β̂.
(a) Show that

e = (I − H )y = (I − H )Zγ + (I − H )ε,

and hence that E(e) = (I − H )Zγ . What happens if Z lies in the space spanned by the
columns of X?
(b) Now suppose that Z is a single column z. Explain how an added variable plot of the
residuals from the regression of y on X against the residuals from the regression of z on
X can help in deciding whether or not to add z to the design matrix.
(c) Discuss the interpretation of the added variable plots in Figure 8.10, bearing in mind
the possibility of outliers and of a need to transform z before including it in the design
matrix.
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Figure 8.10 Added
variable plots for four
normal linear models.

20 Figure 8.11 shows standardized residuals plotted against fitted values for linear models
fitted to four different sets of data. In each case discuss the fit and explain briefly how you
would try to remedy any deficiencies.

21 Data (x1, y1), . . . , (xn, yn) satisfy the straight-line regression model (5.3). In a calibration
problem the value y+ of a new response independent of the existing data has been observed,
and inference is required for the unknown corresponding value x+ of x .
(a) Let s2

x = ∑
(x j − x)2 and let S2 be the unbiased estimator of the error variance σ 2.

Show that

T (x+) = Y+ − γ̂0 − γ̂1(x+ − x)[
S2

{
1 + n−1 + (x+ − x)2/s2

x

}]1/2

is a pivot, and explain why the set

X1−2α = {x+ : tn−2(α) ≤ T (x+) ≤ tn−2(1 − α)}
contains x+ with probability 1 − 2α.
(b) Show that the function g(u) = (a + bu)/(c + u2)1/2, c > 0, a, b �= 0, has exactly one
stationary point, at ũ = −bc/a, that sign g(ũ) = sign a, that g(ũ) is a local maximum if
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Figure 8.11
Standardized residuals
plotted against fitted
values for four normal
linear models.

a > 0 and a local minimum if a < 0, and that limu→±∞ g(u) = ∓b. Hence sketch g(u) in
the four possible cases a, b < 0, a, b > 0, a < 0 < b and b < 0 < a.
(c) By setting u = S(x+ − x)/sx , show that T (x+) can be written in form g(u). Deduce that
X1−2α can be a finite interval, two semi-infinite intervals or the entire real line. Discuss.
(d) Show that if in fact γ1 = 0, X1−2α has infinite length with probability 1 − 2α.
(e) A different approach considers x+ to be an unknown parameter, and constructs the
likelihood for β, σ 2 and x+ based on the pairs (x j , y j ) and y+. Does the resulting profile
log likelihood �p(x+) result in confidence sets such as those in (c)?



9

Designed Experiments

A carefully planned investigation can give much more insight into the question at
hand than a haphazard one, data from which may be useless. Experimental de-
sign is a highly developed subject, though its principles are not universally appreci-
ated. In this chapter we outline some basic ideas and describe some simple designs
and associated analyses. The first section discusses the importance of randomiza-
tion, and shows how it can be used to justify standard linear models and how it
strengthens inferences. Section 9.2 then describes some common designs and analy-
ses. Interaction, contrasts and analysis of covariance are discussed in Section 9.3.
Section 9.4 then outlines the consequences of having more than one level of
variability.

9.1 Randomization

9.1.1 Randomization

The purpose of a designed experiment is to compare how treatments affect a re-
sponse, by applying them to experimental units, on each of which the response is
to be measured. The units are the raw material of the investigation; formally a unit
is the smallest subdivision of this such that any two different units might receive
different treatments. The treatments are clearly defined procedures one of which is
to be applied to each experimental unit. In an agricultural field trial the treatments
might be different amounts of nitrogen and potash, while a unit is a plot of land. In a
medical setting, treatments might be types of operation and different therapies, with
units being patients who are operated upon and then given therapy to aid recovery. In
each case our concern is how the response depends on the treatment combinations and
other measurable quantities. The response must be carefully defined and measured in
a consistent way for every unit.

Suppose for illustration that we wish to assess the effect of a drug in reducing blood
pressure, and that n = 2m individuals are available. We plan to administer the drug to
m of the individuals, the treatment group, and to give a placebo to the remaining m,

417
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Figure 9.1 Directed
acyclic graphs showing
consequences of
randomization. An arrow
from T to Y indicates
dependence of Y on T ,
and so forth. In general
both response Y and
treatment T may depend
on properties U of units
(upper left).
Randomization (lower
left) makes treatments and
units independent, so any
observed dependence of Y
on T cannot be ascribed to
joint dependence on U .
The upper right graph
shows the general
dependence of Y , T , and
covariates X on U .
Randomization makes T
and U independent,
conditional on X (lower
right), so any influence of
U on T is mediated
through X , for which
adjustment is possible in
principle. Thus having
adjusted for X ,
dependence of Y on T
cannot be due to U .

the control group. The response is to be the blood pressure of an individual measured a
fixed time after the drug has first been administered. We calculate the average changes
for the treated and control groups, y1 and y0, observe that y1 − y0 is significantly less
than zero, and declare that the drug plays an effect in reducing blood pressure. Is this
headline news? No!

A key difficulty is that the procedure does not avoid biased allocation of treatments
to units. For example, if the control group mostly consisted of those patients with
higher blood pressures at the start of the study, y1 and y0 might differ greatly even if
the treatment had been ineffective. This particular source of bias could be avoided if
the experimenter measured the initial blood pressures and deliberately balanced the
groups with respect to them, but unknown causes of bias could not be removed in this
way, and the interpretation of the results would rely on the uncheckable assertion that
the experiment was also balanced with respect to these unknown factors. Any deter-
ministic allocation scheme will have this flaw, and we turn instead to randomization.
By allocating treatments to patients at random, we expect to equalize the effect of any Allocation at random

means that some physical
device has been used, not
that the experimenter has
made a choice that
appears haphazard.

factors that might affect the response, other than the treatment itself. We can then be
surer that a significant difference between the groups is related to the treatment itself.

To explain randomization differently, let T represent the treatment, Y the response,
and U properties of units — potential sources of bias. For example, left to their
own devices physicians might be tempted to allocate a promising but untested new
treatment to patients most severely affected by a disease, and an existing treatment
to less severe cases. Then treatment T would depend on an attribute of the units,
disease severity U ; the response Y might depend on both T and U . This is shown
by the directed acyclic graph in the upper left part of Figure 9.1. In general both
T and Y depend on U , so any apparent relation between Y and T may be ascribed
to U . Randomization induces independence between properties of the unit and any
treatment allocation, making T independent of U and the lower left graph appropriate:
although U may influence the response Y , it cannot entirely explain any dependence
on T unless the randomization is compromised, for example by allocating all men
to one group and all women to the other purely by chance. If this has not happened,
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then a highly significant effect of T implies either that treatment works, or that a rare
event has occurred.

If randomization had been used and if a normal linear model was suitable, inference
could be based on the two-sample model of Example 8.9, using

z = y1 − y0

(2s2/m)1/2
, (9.1)

where s2 = (2m − 2)−1 ∑
t, j (yt j − yt )

2 is the pooled estimate of error and yt j is the
response for the j th individual in treatment group t . In fact randomization gives a
basis for the use of this and other linear models, as we shall see below.

Blocking

The design outlined above presupposes that the units are fairly homogeneous, that
is, any variation among blood pressures of different patients is small enough for
the design to be completely randomized. However, if the treatment effect was small
relative to this variation, s2 would be inflated because the division into groups made
no allowance for it. The larger is s2, the smaller is z for given y1 − y0, and this
makes it harder to detect any treatment effect. This suggests that we should subdivide
the patients into groups whose initial blood pressures are as alike as possible, and
allocate the treatment randomly within these groups, a procedure known as blocking.
As the purpose of our experiment is to compare one treatment with the control,
we divide the patients into m blocks of two individuals with similar initial blood
pressures, and randomly allocate one of each pair to the treatment and the other to the
control, in a paired comparison. In the corresponding normal linear model, discussed
in Example 8.10, analysis is based on the differences d j between the treated and control
individuals in the j th block, leading to confidence statements using the standardized
difference given by

zd = d(
s2

d/m
)1/2 , s2

d = (m − 1)−1
m∑

j=1

(d j − d)2, (9.2)

where d = y1 − y0 is the average difference between pairs. The numerator of zd is
the same as that of (9.1), but the denominator may be substantially smaller if the
blocking has been effective in increasing the precision of the experiment. Although
here the matching is performed deliberately, randomization is still involved in the
treatment allocations.

This line of reasoning suggests taking as response for each patient the difference
between his initial blood pressure and that after treatment, so the comparisons are
made entirely within individuals, allocated randomly to treatment or control. We
ignore this design below, however, purely for purposes of exposition.

The right half of Figure 9.1 shows the effect of randomization when treatment
allocation can depend on a covariate, X . For example, randomization might take into
account knowledge that certain treatments should not be given to patients taking other
medication. In general T might depend on unknown properties U of the unit as well
as on X , so that Y and T depend on both X and U . Randomization breaks the direct
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Figure 9.2 Simulated
results from experiments
to compare the effect of a
treatment T on a response
Y that varies with a
covariate X . The lines
show the mean response
for T = 0 (solid) and
T = 1 (dots). Left: the
effect of T is confounded
with dependence on X .
Right: the experiment is
balanced, with random
allocation of T dependent
on X .

link between U and T , so any effect of X on T is mediated through the observed X ,
for which adjustment is in principle possible.

To illustrate this, Figure 9.2 shows results from two simulated attempts to assess
the effect of a treatment T on a response Y . Unnoticed by the virtual experimenter
who obtained the data in the left panel, the mean of Y increases with a covariate X , as
shown by the lines. However because all the units for which T = 1 also have the largest
values of X , there appears to be no difference between the treatment group averages.
The true treatment effect is δ = −1, but the observed difference of averages is 0.2 with
standard error 0.2. The 0.95 confidence interval (−0.2, 0.6) does not include the true
δ because of confounding between the effects of X and T . In practice such serious
confounding would be most likely to arise due to lack of randomization, but lack of
balance could occur by accident even if the treatments had been allocated at random.
If so, randomization would fail to remove all possible biases due to confounders
such as X .

A cannier experimenter might have formed pairs of units using values of X mea-
sured before the experiment and then randomized the treatment within pairs, leading
to results like those in the right panel, where the difference of averages is −1.2 with
standard error 0.3; the 0.95 confidence interval now contains δ.

In both cases the observed values of X can be used to obtain more precise estimates
of δ, by fitting the model y = β0 + β1x + δt + ε to the observed triples (x, t, y),
where t = 0 or 1. The left panel has δ̂ = −0.7 with standard error 0.3 and corre-
lation corr(̂δ, β̂1) = −0.82, while the right has δ̂ = −1.25, standard error 0.16 and
corr(̂δ, β̂1) = −0.04. One effect of the blocking has been to reduce the confounding
of T and X by making the corresponding columns of the design matrix almost orthog-
onal; their parameters can then be estimated without ambiguity. There is a relation
here to the discussion of collinearity in Section 8.7.2.

Although regression on x reduces the confounding between X and T in the first
experiment, the lack of overlap in the values of X for the two treatment groups means
that the model must be used to interpolate between them. This makes the estimate
less precise and the inference less secure: an act of faith in the linearity of the model
is needed, because neither of the groups has X values over the entire range.
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The second experiment gives similar estimates of δ with or without adjustment for
x , though the precision of δ̂ is increased by making the adjustment, known as analysis
of covariance; see Section 9.3.3. Moreover the data can be used to check whether the
treatment effect is constant over X .

Randomization inference

In this chapter we shall assume that normal linear models are applicable. In fact the act
of randomization provides a basis for inference without appealing to specific paramet-
ric assumptions, but for which the normal model often provides a good approximation.
Suppose that m observations have been randomly allocated to a treatment and a fur-
ther m to a control. Suppose also that unit-treatment additivity holds, that is there
exist constants γ1, . . . , γ2m , one for each unit, and δ for the treatment, such that the
response on the j th unit is γ j + δ when it is allocated to the treatment, and γ j − δ if it
is allocated to the control group, regardless of the allocation of treatments to the other
units. Thus the effect of treatment is to increase the response by � = 2δ relative to
the control, for each unit in the experiment. Under this model the responses from the
j th unit when it is allocated to treatment and to control are

Tj (γ j + δ), (1 − Tj )(γ j − δ),

where Tj is an indicator of whether it has been allocated to the treatment. Therefore
the difference between treatment and control averages is

Y 1 − Y 0 = 1

m

2m∑
j=1

Tj (γ j + δ) − 1

m

2m∑
j=1

(1 − Tj )(γ j − δ) = 2δ + 1

m

2m∑
j=1

(2Tj − 1)γ j .

The properties of Y 1 − Y 0 stem from the moments of T1, . . . , T2m ,

E(Tj ) = 1

2
, E(Tj Tk) = m − 1

2(2m − 1)
, j �= k. (9.3)

Thus Y 1 − Y 0 has mean � and variance 2{m(2m − 1)}−1 ∑2m
j=1(γ j − γ )2. Moreover

the strong symmetry induced by the Tj , allied to the weak dependence among them,
means that the randomization distribution of Y 1 − Y 0 is close to normal.

Example 9.1 (Shoe data) Table 9.1 shows the amount of wear in a paired compar-
ison of materials A and B used to sole shoes. Material B is cheaper and the aim of the
experiment was to see if it was less durable than A. Ten boys were chosen, material A
allocated at random to one of their shoes, and material B to the other. All but two of
the differences d j are positive, suggesting that shoes soled with B wear more quickly
than those with A. The average difference is d = 0.41.

Suppose that there was no difference between the materials. Then A and B
would simply be labels attached randomly to the shoes, and each difference might
equally well have had the opposite sign. That is, each of the 210 = 1024 outcomes
±0.8, ±0.6, . . . , ±0.3 would have been equally as likely as that actually observed.
Thus the average difference d would be the observed value of D = m−1 ∑

j D j ,
where D j = I j d j , and I1, . . . , Im are independent variables taking values ±1 with
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Table 9.1 Shoe wear
data (Box et al., 1978,
p. 100). The table shows
the amount of shoe wear
in an paired comparison
experiment in which two
materials A and B were
randomly assigned to the
soles of the left (L) or
right (R) shoe of each of
ten boys.

Material
Difference

Boy A B d

1 13.2 (L) 14.0 (R) 0.8
2 8.2 (L) 8.8 (R) 0.6
3 10.9 (R) 11.2 (L) 0.3
4 14.3 (L) 14.2 (R) –0.1
5 10.7 (R) 11.8 (L) 1.1
6 6.6 (L) 6.4 (R) –0.2
7 9.5 (L) 9.8 (R) 0.3
8 10.8 (L) 11.3 (R) 0.5
9 8.8 (R) 9.3 (L) 0.5

10 13.3 (L) 13.6 (R) 0.3
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Figure 9.3
Randomization
distribution of the t
statistic for the shoes data,
together with its
approximating t9
distribution. The left panel
shows a histogram and rug
for the randomized values
of Z , with the t9 density
overlaid; the observed
value is given by the
vertical dotted line. The
right panel shows a
probability plot of the
randomization distribution
against t9 quantiles.

probability 1
2 ; here m = 10. In fact there are precisely three values of D that are larger

than d, and four values equal to it, so the exact P-value based on D is 7/1024
.= 0.007.

The studentized version of D, Z = D/[{m(m − 1)}−1 ∑
(D j − D)2]1/2, is a mono-

tonic function of D, so both Z and D give the same P-values under randomization.
Figure 9.3 shows the randomization distribution of Z , with the t distribution on
m − 1 = 9 degrees of freedom that would be used under a normal model. The agree-
ment between the randomization distribution and the normal approximation is excel-
lent. The observed value of Z is 3.35, with significance level 0.004 when compared
to the t9 distribution.

The pairing in this experiment could have been used to extend the validity of the
results, by taking boys of different ages, with different types of shoes and so forth.
As the comparisons are based only on differences between feet of the same boy,
that is, within blocks, the heterogeneity of the boys themselves does not affect the
comparison of A and B. If the same difference between materials was seen on a wide
variety of blocks, one could be more confident that the difference in durability was
general. As previously mentioned, blocking is used to ensure a generalizable result
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by taking blocks that are heterogeneous, while eliminating block effects by ensuring
that treatment comparisons are made within blocks. �

Although described above only in the simplest cases, the normal linear model
provides approximations to randomization distributions in other settings also. Below
we continue to talk of normal errors, with the understanding that these often generate
approximations to randomization distributions.

9.1.2 Causal inference

In many investigations the key question is causal. Does passive smoking cause lung
cancer? Does exposure to air pollution increases levels of asthma? Does applying
treatment T to a unit increase its response Y by amount δ? The extensive philosophical
discussion of causality is largely irrelevant here, because of its focus on deterministic
relations between cause and effect. The best we can usually hope for is statements
such as ‘if applied to a large sample of units, T would give an average increase δ,
compared with what would have been observed had they remained untreated’. This
translates into probability statements for individual units.

It is important to appreciate that potential causes are aspects of units that could
in principle be manipulated in the context in question. In a study of the effects of
lifestyle on longevity, we can conceive of altering individuals’ dietary and exercise
habits, for example, but not their genders. We can imagine comparing the survival of
flabby burger-loving Mr Jones with his survival as fit or vegetarian or both, but not
with that of Mr Jones as female rather than male; were he a woman, he would not
be Mr Jones. Here diet and exercise are potential causes, but gender is not. Intrinsic
attributes of units cannot be regarded as potential causes, because to speak of a causal
effect of T on Y , intervention to change the value of T must be possible.

Three types of causal statement are as follows. First, and strongest, there may be
a well-understood evidence-based mechanism or set of mechanisms — biological,
physical or whatever — that links a cause to its effect. This is the usual meaning of
causality in so-called hard science, even though knowledge about the mechanism is
invariably subject to improvement.

Second, and much weaker, is the observation that two phenomena are linked by
a stable association, whose direction is established and which cannot be explained
by mutual dependence on some other allowable variable. In Example 6.18, for ex-
ample, ignoring age induced an apparently positive association between survival and
smoking, whose direction was reversed once age was taken into account. To see this
differently, consider a population of units on each of which (T, Y ) may be observed,
and let the association between T and Y be measured by

γ = E(Y | T = 1) − E(Y | T = 0) > 0,

say. This can be estimated by the difference in averages Y 1 − Y 0 for samples with
T = 1 and T = 0. To say that the association cannot be explained away amounts to
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asserting that no confounding variable X exists for which

γ (x) = E(Y | T = 1, X = x) − E(Y | T = 0, X = x) ≡ 0.

In practice this will need to be bolstered by careful study design, often consider-
ing together studies that account for different possible confounders. The restric-
tion to allowable variables means amongst other things that X cannot itself be a
response to T .

A third interpretation of causality, intermediate between the first two, is related to
experimentation and relies on the notion of a counterfactual. Consider a unit, and let
R0 and R1 represent its responses on setting T = 0 and T = 1; these three variables
are assumed to have a joint distribution. If in fact T = 0, then R0 is observed and R1

is counterfactual; it is the response that would have been observed had the treatment
been different. Conversely R0 is counterfactual if T = 1. The central difficulty of
causal inference is that it is impossible to compare values of R0 and R1 from the
same unit. Thus an assumption of homogeneity of treatment effects over units, that is,
unit-treatment additivity, is essential. If unit-treatment additivity holds then the effect The assumption need not

apply on the original
scale; it might apply to a
transformed response, in
which case the argument
below is applied on the
transformed scale.

of T is measured by the difference of mean responses

δ = E(R1) − E(R0),

but unlike γ this is not observable. In general δ �= γ , but if the treatment allocation
is randomized, then T is independent of any property of the unit, and the consistency
equation Y = R0(1 − T ) + R1T relating the counterfactuals to the response Y entails

δ = E(R1) − E(R0) = E(R1 | T = 1) − E(R0 | T = 0)

= E(Y | T = 1) − E(Y | T = 0) = γ.

Hence unit-treatment additivity and randomization ensure that the quantity δ we want
to estimate equals γ , which we can estimate.

This argument presumes there to be no relation between treatment allocation and
any property of the unit, and this is typically true only in completely randomized
experiments. Suppose however that (R1, R0) and T are independent conditional on
the value of another variable X , as in the lower right of Figure 9.1. Then

E(R1) = EX {E(R1 | X )} = EX {E(R1 | X, T = 1)} = EX {E(Y | X, T = 1)},
and with a parallel argument for E(R0) we have

δ = E(R1) − E(R0) = EX {E(Y | X, T = 1) − E(Y | X, T = 0)} = γ,

say. The observable effect γ , a function of the joint distribution of Y , X , and T , is
now averaged over the possible values of X for the unit. The interpretation of γ and
the case for a causal effect are both strengthened if in fact

E(Y | X, T = 1) − E(Y | X, T = 0) = γ (X ) ≡ γ,

that is, association with T does not depend on X , as in Figure 9.2. Otherwise there is
interaction between T and Y ; see Section 9.3.1.
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The use of randomization to eliminate confounding variables is a powerful tool,
but it is not sufficient for causal inference. An obvious counter-example is the left
panel of Figure 9.2, where it would be foolhardy to talk of a causal effect of T on
Y even if the appropriate linear model had been fitted, because the observed triples
(x, t, y) give no way to assess whether confounding between X and T is present
despite randomization.

Even if experimentation has established that T changes the distribution of Y , it
seems rash to assert causality with no idea of an underlying mechanism. In practice
a combination of evidence from physical mechanisms, direct experiment, and large-
scale observational data will be most compelling.

Exercises 9.1

1 (a) Show that under the two-sample model, the difference of the sample averages, y2 − y1,
has variance (n1 + n2)σ 2/(n1n2). Show that subject to n1 + n2 = n, this is minimized
when n1 and n2 are as nearly equal as possible.
(b) Suppose that n units are split into k blocks of size m + 1, and that one unit in each
block is chosen at random to be treated, while the remaining m are controls. Suppose
that the responses in the j th block are y j1 and y j2, . . . , y j(m+1), and let d j represent the
difference between the treated individual and the average of the controls. Show that the
average of these differences has variance (m + 1)σ 2/(km), and show that for fixed n this
is minimized when m = 1.

2 Suppose a paired comparison experiment is performed, in which the j th pair satisfies the
normal linear model

y0 j = µ j − δ + ε0 j , y1 j = µ j + δ + ε1 j , j = 1, . . . , m,

but that data analysis is performed using the two-sample model. Show that the variance
estimator can be written as

S2 = 1

2(m − 1)

∑
j,t

(µ j − µ + εt j − ε··)2.

Deduce that this has expected value σ 2 + (m − 1)−1
∑

j (µ j − µ·)
2 conditional on the µ j ,

and hence show that if the µ j are normally distributed with variance τ 2, then E(S2) =
σ 2 + τ 2.
Show that if the two-sample model is used in this situation, the length of a 95% con-
fidence interval for 2δ is roughly 2(σ 2 + τ 2)1/2t2(m−1)(0.025), whereas under the paired
comparisons model the length is about 2σ tm−1(0.025). For what values of τ 2/σ 2 are the
two-sample intervals shorter when (a) m = 3, (b) m = 11? Discuss your results.

3 Check (9.3), find var(Tj ) and cov(Tj , Tk) and hence verify the given formulae for
the mean and variance of Y 1 − Y 0.

4 In Example 9.1, show that Z is a monotonic function of D.

5 To what extent can gender be regarded as a cause in studies (a) relating longevity and
lifestyle and (b) of salary differentials in employment?

6 Let T = 0 with probability 1 − α and T = 1 otherwise, and suppose that conditional on
T = 0, R0 is normal with mean zero and R1 is normal with mean δ, while conditional
on T = 1, the corresponding means are η and η + δ; in each case the variables have unit
variances. Let Y = R0(1 − T ) + R1T denote the observed response variable. Show that
γ = E(Y | T = 1) − E(Y | T = 0) = η + δ, and deduce that δ = E(R1) − E(R0) cannot
be estimated unless (R0, R1) and T are independent.
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Table 9.2 Analysis of
variance table for one-way
layout.

Term df Sum of squares Mean square

Groups T − 1
∑

t,r (yt · − y··)2 (T − 1)−1 ∑
t (yt · − y··)2

Residual T (R − 1)
∑

t,r (ytr − yt ·)2 {T (R − 1)}−1 ∑
t,r (ytr − yt ·)2

9.2 Some Standard Designs

9.2.1 One-way layout

If more than two treatments are to be compared and the population is relatively
homogeneous, the two-group model may be extended to a completely randomized
design, known as a one-way layout. Henceforth we let T denote the number of
treatments in the model under consideration.

Suppose that we wish to compare the effects of T treatments and that we have
available n = RT units. We divide the units at random into T groups each of size R,
and apply a single treatment to all the units in each group. The corresponding linear
model is

ytr = βt + εtr , t = 1, . . . , T, r = 1, . . . , R, (9.4)

where εtr
iid∼ N (0, σ 2). This assumes that the only effect of the treatment is to alter

the mean response, as would be the case under a randomization distribution. Thus
the observations within each group are random samples, but the groups may have
different means. This explains the term one-way layout: laid out as a T × R array,
only the treatment index is meaningful. In matrix terms this model is
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. (9.5)

This design matrix has full rank T and the least squares estimator of βt it yields is the
average for the t th group, yt · = R−1 ∑

r ytr . If the βt are all equal, corresponding to Here and below
replacement of a subscript
by a dot indicates
averaging over the values
of that subscript.

the model y = 1nβ0 + ε in our general notation, the fitted value for the entire set of
data is the overall average y··. The sum of squares then decomposes as

∑
t,r

(ytr − y··)
2 =

∑
t,r

(ytr − yt ·)
2 +

∑
t,r

(yt · − y··)
2,

corresponding to (8.23), and the analysis of variance is shown in Table 9.2.
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Table 9.3 Data on the
teaching of arithmetic. Group Test result y Average Variance

A (Usual) 17 14 24 20 24 23 16 15 24 19.67 17.75
B (Usual) 21 23 13 19 13 19 20 21 16 18.33 12.75
C (Praised) 28 30 29 24 27 30 28 28 23 27.44 6.03
D (Reproved) 19 28 26 26 19 24 24 23 22 23.44 9.53
E (Ignored) 21 14 13 19 15 15 10 18 20 16.11 13.11

The unbiased estimator of σ 2 when (9.4) is fitted is

S2 = 1

n − p
(y − ŷ)T(y − ŷ) = 1

T (R − 1)

∑
t,r

(ytr − yt ·)
2,

with T (R − 1) degrees of freedom. If R = 1 it is impossible to estimate σ 2, for then
there is only one observation with which to estimate βt , and ytr ≡ yt ·. Thus replication
of the responses for each treatment is essential unless an external estimate of σ 2 is
available, for example from another experiment. A further benefit of replication is the
capacity to check model assumptions, as we shall see in Examples 9.2 and 9.6.

The F statistic for assessing significance of differences among treatments,

F = (T − 1)−1 ∑
t (yt · − y··)2

S2
∼ FT −1,T (R−1),

when β1 = · · · = βT . In applications interest generally focuses on estimation of par-
ticular differences among theβt , however, rather than on testing for overall differences,
this being merely an initial screening device.

Another possible linear model for the data is

ytr = α + γt + εtr , t = 1, . . . , T, r = 1, . . . , R,

in which the overall mean is represented by α, and γt represents the difference between
the mean for treatment t and the overall mean. The design matrix for this model has
T + 1 columns, namely the T columns of the matrix in (9.5) and a column of ones,
and has rank T : the T + 1 parameters cannot be estimated from T groups. Although
the T linear combinations α + γ1, . . . , α + γT corresponding to the group means are
estimable, the T + 1 parameters α, γ1, . . . , γT are not.

Example 9.2 (Teaching methods data) In an investigation on the teaching of arith-
metic, 45 pupils were divided at random into five groups of nine. Groups A and B
were taught in separate classes by the usual method. Groups C, D, and E were taught
together for a number of days. On each day C were praised publicly for their work, D
were publicly reproved and E were ignored. At the end of the period all pupils took
a standard test, with the results given in Table 9.3 and displayed in the left panel of
Figure 9.4. Groups A and B seem to have performed similarly, but the other groups
have responded differently to the regimes imposed, as we see from the averages and
variances in the final columns of the table. If the only differences among groups were
in their means, the group variances could be expected to be independently distributed
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Table 9.4 Analysis of
variance for data on the
teaching of arithmetic.

Term df Sum of squares Mean square F

Groups 4 722.67 180.67 15.3

Residual 40 473.33 11.83
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Figure 9.4 Data on
teaching of arithmetic.
The left panel shows the
original data, and the right
panel shows the ordered
variances for each group
plotted against plotting
positions for the χ2

8
distribution.

as σ 2χ2
8 /8. No doubt is cast on this by the corresponding probability plot, shown in

the right panel of Figure 9.4; this is only available because of the replication within
each group.

The analysis of variance, shown in Table 9.4, shows very strong evidence of dif-
ferences among the groups, as we would expect from inspecting the data. The cor-
responding F statistic is 15.3, to be considered as F4,40 under the hypothesis of no
group differences, in which case the significance level is zero.

As a group average is an average of R = 9 observations, its variance is σ 2/R,
and consequently the estimated variance for the difference between the averages for
groups A and B, y A − yB = 1.33, is 2s2/9 = 2.63. The corresponding t statistic,
1.33/2.631/2, shows no evidence of differences between the control groups, and the
pooled estimate of the mean using the usual teaching method, βU , is accordingly
yU = 1

2 (19.67 + 18.33) = 19, with estimated variance s2/18.
Comparisons of the usual and other methods are of interest here, and they are based

on statistics such as Y C − Y U , each having estimated variance s2/18 + s2/9 = 1.97.
Confidence intervals for the underlying differences are based on the quantities
{Y C − Y U − (βC − βU )}/{S2/18 + S2/9}1/2, each having a t40 distribution. Thus
95% confidence intervals are (5.7, 11.2) for βC − βU , (1.7, 7.2) for βD − βU , and
(−5.6, −0.14) for βE − βU . Giving approval and reproval improves test performance
relative to the usual method, with approval working best, while ignoring pupils de-
creases their test scores, though by less. These conclusions are necessarily highly
tentative because of the very limited scale of the experiment. �
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9.2.2 Randomized block design

Suppose that T treatments are to be compared, and that n = T B units are available.
The analogue of the paired comparisons experiment when there are more than two
treatments is the randomized block design. The units are divided into B blocks of T
units so that similar units are so far as possible in the same block. The T treatments
are then applied randomly to the units, each treatment appearing precisely once in
each block. A simple linear model here is that the response of the unit in block b
given treatment t is

ytb = µ + αt + βb + εtb, t = 1, . . . , T, b = 1, . . . , B, (9.6)

where the εtb are a random sample of N (0, σ 2) variables. This is the two-way layout
model, so-called because the ytb can be laid out as an array with T rows and B columns,
with αt the treatment effect for the t th row and βb the block effect for the bth column;
see Table 9.6. With T = 4 and B = 3 for definiteness, and with parameter vector
(µ, α1, α2, α3, α4, β1, β2, β3)T, the 12 × 8 design matrix

X =




1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 1




has rank 1 + (T − 1) + (B − 1) = 6: all eight parameters cannot be estimated. The
terms corresponding to the treatment and block effects are columns 2–5 and 6–8 of
this matrix respectively. Dropping the second and sixth columns of X is equivalent
to setting α1 = β1 = 0, in which case αt and βb represent the mean differences in
response between treatment t and treatment 1 and between block b and block 1. In
this, the corner-point parametrization, µ is the mean response of the unit in block
1 given treatment 1, that is, in the top left corner of the two-way layout. The least
squares estimates in this parametrization can be obtained from the usual formula, but
their derivation is unenlightening.

Instead, let us use the original parametrization with the least squares estimates
constrained so that

∑
r α̂r = ∑

c β̂c = 0. These are constraints on the estimates, not
on the parameters: nature is free to use as many parameters as she likes, but only certain
linear combinations of them are estimable. These two linear restrictions ensure that
our fitted model is not overparametrized, and we can use symmetry to avoid inverting
a rank-deficient matrix X T X . We use Lagrange multipliers to find the values of µ̂, α̂t ,
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β̂b, η and ζ that minimize

∑
t,b

(ytb − µ̂ − α̂t − β̂b)2 + η

(∑
t

α̂t − 0

)
+ ζ

(∑
b

β̂b − 0

)
.

On differentiating, we see that we should solve the equations

0 =
∑
t,b

(ytb − µ̂ − α̂t − β̂b),

0 =
∑

b

(ytb − µ̂ − α̂t − β̂b) − η, t = 1, . . . , T,

0 =
∑

t

(ytb − µ̂ − α̂t − β̂b) − ζ, b = 1, . . . , B,

0 =
∑

t

α̂t , 0 =
∑

b

β̂b,

giving µ̂ = y··, α̂t = yt · − y··, and β̂b = y·b − y··, where as before we use a dot
in a subscript to indicate averaging over the corresponding index. Thus we have
y·· = (T B)−1 ∑

t,b ytb, yt · = B−1 ∑
b ytb, and so forth.

The fitted values are µ̂ + α̂t + β̂b = y·b + yt · − y··, and hence the residual sum of
squares is

∑
t,b(ytb − yt · − y·b + y··)2; these would be the same in the corner-point

parametrization, because the same subspace is spanned by the columns of the design
matrix in both cases, and the fitted values — though not the parameter estimates —
depend only on the column space of the design matrix; recall Figure 8.2. If the β̂b

were not in the model, µ̂ and α̂t would remain the same, and the fitted values would
be µ̂ + α̂t = yt ·.

The mean difference in response between treatments r and s is estimated by the
difference α̂r − α̂s = yr · − ys·. If we write this estimate in terms of the underlying
parameters, by replacing yrb by µ + αr + βb + εrb and so forth, we obtain

B−1(Bµ + Bαr + β1 + · · · + βB + εr1 + · · · + εr B)

−B−1(Bµ + Bαs + β1 + · · · + βB + εs1 + · · · + εs B),

which equals αr − αs + εr · − εs·, and this is independent of the block effects, which
appeared equally often in yr · and ys·. Thus because the design is balanced, com-
parisons among treatments are essentially made within blocks, and this increases
precision if there are substantial block effects.

The difference between an observation and the overall average equals

ytb − y·· = (ytb − yt · − y·b + y··) + (yt · − y··) + (y·b − y··),

and because
∑

t,b(ytb − y··)(yt · − y··) = 0,
∑

t,b(yt · − y··)(y·b − y··) = 0, and so
forth, we see that∑

t,b

(ytb − y··)
2 =

∑
t,b

(ytb − yt · − y·b + y··)
2 +

∑
t,b

(yt · − y··)
2 +

∑
t,b

(y·b − y··)
2,

which echoes (8.23). If we had set β̂b ≡ 0, the corresponding sum of squares
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Table 9.5 Analysis of
variance table for
two-way layout model.

Term df Sum of squares

Treatments T − 1
∑

t,b(yt · − y··)2

Blocks B − 1
∑

t,b(y·b − y··)2

Residual (T − 1)(B − 1)
∑

t,b(ytb − yt · − y·b + y··)2

Table 9.6 Data on
weight gains in pigs. Group

Diet 1 2 3 4 5 6 7 8 Average

I 1.40 1.79 1.72 1.47 1.26 1.28 1.34 1.55 1.48
II 1.31 1.30 1.21 1.08 1.45 0.95 1.26 1.14 1.21
III 1.40 1.47 1.37 1.15 1.22 1.48 1.31 1.27 1.33
IV 1.96 1.77 1.62 1.76 1.88 1.50 1.60 1.49 1.70

Average 1.52 1.58 1.48 1.37 1.45 1.30 1.38 1.36 1.43

decomposition would have been∑
t,b

(ytb − y··)
2 =

∑
t,b

(ytb − yt ·)
2 +

∑
t,b

(yt · − y··)
2,

and it follows by symmetry that once the constant term has been fitted, the reductions
in sum of squares due to treatment and block terms are respectively

∑
t,b(yt · − y··)2

and
∑

t,b(y·b − y··)2. As
∑

t,b(yt · − y··)(y·b − y··) = 0, these sums of squares are
independent if the errors are normal.

The analysis of variance table for a two-way layout with T rows and B columns is
in Table 9.5. The residual degrees of freedom are

T B − 1 − (T − 1) − (B − 1) = (T − 1)(B − 1),

and the sums of squares are independent of the order in which terms are fitted.

Example 9.3 (Pig diet data) Twelve pigs were divided into eight groups of four,
in such a way that the pigs in any one group were expected to gain weight at equal
rates if fed in the same way. Four diets were compared by randomly assigning them
to pigs, subject to each diet occurring once in each group. The average daily weight
gains of the pigs are given in Table 9.6. The diet averages suggest that pigs on diet
IV gain more weight than the others, and that any differences between II and III are
small. Differences among the groups are less marked.

The analysis of variance in Table 9.7 shows strong differences among diets, but little
effect of blocking into groups. The estimate of σ 2 is s2 = 0.024. The diet averages
are 1.48, 1.21, 1.33, and 1.70, and as the standard error for a difference of two of them
is (2s2/8)1/2 = 0.077, it is clear that diet IV leads to the fastest weight gain, with diet
I second and better than diet III; it is less clear that II is worse than III. �
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Table 9.7 Analysis of
variance table for two-way
layout model applied to
the data of Table 9.6.

Term df Sum of squares Mean square F statistic

Diet 3 1.042 0.347 14.6
Group 7 0.247 0.035 1.48

Residual 21 0.500 0.024

Table 9.8 Log10 dry
weight y (µg) of chick
bones after cultivation
over a nutrient chemical
medium, either complete
(—), or with single amino
acids missing (Cox and
Snell, 1981, p. 95). The
order of treatment pairs
was randomized, but the
table shows them
systematically.

Embryo Treat y Treat y Embryo Treat y Treat y

1 — 2.51 His– 2.15 9 His– 2.32 Lys– 2.53
2 — 2.49 Arg– 2.23 10 Arg– 2.15 Thr– 2.23
3 — 2.54 Thr– 2.26 11 Arg– 2.34 Val– 2.15
4 — 2.58 Val– 2.15 12 Arg– 2.30 Lys– 2.49
5 — 2.65 Lys– 2.41 13 Thr– 2.20 Val– 2.18
6 His– 2.11 Arg– 1.90 14 Thr– 2.26 Lys– 2.43
7 His– 2.28 Thr– 2.11 15 Val– 2.28 Lys– 2.56
8 His– 2.15 Val– 1.70

Balanced incomplete block design

Sometimes variation among units is large enough for blocking to be required, but a
randomized block design cannot be used because the block size is smaller than the
number of treatments, T . In such circumstances it may be possible to use a balanced
incomplete block design. Suppose that there are B blocks each with K units, and that
R = BK/T is an integer. In the simplest such design, each treatment appears exactly
once in a block, and each pair of treatments appears together λ times, in which case
R(K − 1) = (T − 1)λ.

Example 9.4 (Chick bone data) Table 9.8 gives data on the growth of chick
bones. Bones from 7-day-old chick embryos were cultivated over a nutrient chemical
medium. Two bones were available from each chick, and the experiment was set out
in a balanced incomplete block design with two units per block. The treatments were
growth in the complete medium, with about 30 nutrients in carefully controlled quan-
tities, and growth in five other media, each with a single amino acid omitted. Thus
His–, Arg–, and so forth denote media without particular amino acids. This balanced
incomplete block design has T = 6, B = 15, K = 2, R = 5, and λ = 1.

One way to proceed here is to let βH , βA, . . . denote the effect of the absence of
His, Arg, . . ., and then regard the first pair of responses as having means µ1, µ1 + βH ,
the sixth as having means µ6 + βH , µ6 + βA, and so forth. We then perform a linear
regression with response the differences of the responses for each of the embryos,
parameter vector (βH , βA, βT , βV , βL )T, and a 15 × 5 design matrix whose first and
sixth rows are (1, 0, 0, 0, 0) and (−1, 1, 0, 0, 0). This avoids the necessity to estimate
µ1, . . . , µ15, but gives the same estimates of the βs, shown in the first line of Table 9.9.
The estimate of error variance is s2 = 0.013. The initial sum of squares of 1.024 re-
duces to 0.132, giving overall F statistic 13.6 on 5 and 10 degrees of freedom: a
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Table 9.9 Parameter
estimates and standard
errors for intra-block,
inter-block and pooled
analyses of chick data.

Amino acid

Analysis His Arg Thy Val Lys SE

Intra-block β̂ −0.22 −0.35 −0.35 −0.49 −0.16 0.066
Inter-block β̃ −0.55 −0.40 −0.33 −0.42 0.07 0.124
Pooled β∗ −0.29 −0.36 −0.34 −0.47 −0.11 0.058

highly significant reduction. Lack of each amino acid reduces growth; Lys has the
smallest effect, but even this has the large t value of −0.16/0.066 = −2.42 on
10 degrees of freedom.

In this regression the terms for individual amino acids are not orthogonal, and the
analysis of variance is not unique. For example, if acids are fitted in the order His,
Arg, Thr, Val, Lys, the reductions in sum of squares are 0.014, 0.052, 0.078, 0.67,
0.077, while the reductions for the order Lys, Thr, Val, His, Arg are 0.074, 0.033,
0.40, 0.01, 0.38. Here balance gives equal precision for estimation of each of the βs,
rather than orthogonal sums of squares.

Though simple, this so-called intra-block analysis uses a degree of freedom to
estimate each block parameter µ j , and if these vary little then information may be
lost. To outline how inter-block analysis can retrieve this, we denote the responses
from the j th block as y j1, y j2 and treat these as independent normal variables with
means µ j + xT

j1β, µ j + xT
j2β and variances σ 2. The previous analysis was based

on y j1 − y j2, and this is independent of the block sum y j1 + y j2. The inter-block
analysis treats the µ j as random variables with mean µ, say, and variance σ 2

µ, so
the block sums have variance 2(2σ 2

µ + σ 2), perhaps much larger than the variance
2σ 2 of the differences. We then fit to the 15 block sums a linear model with means
µ115 + Xβ, the j th row of X being xT

j1 + xT
j2, thereby obtaining estimates β̃ of

the amino acid effects. These estimates are independent of those obtained from the
intrablock analysis; their values are given in Table 9.9, along with the standard error
inflated by σ 2

µ. Both sets of estimates are unbiased, so approximate minimum variance
unbiased estimates are formed as a weighted combination β∗ = w β̂ + (1 − w)β̃,
where w = v̂−1/(̂v−1 + ṽ−1), v̂ and ṽ being the estimated variances for the intra- and
inter-block estimates. As w = 0.78, these pooled estimates are close to the β̂, with
a slightly smaller standard error. This standard error combines independent standard
errors from the intra- and inter-block analyses and has approximately 13.8 degrees of
freedom; see Exercise 9.2.3.

The response is log10 dry weight, so the effect of eliminating an amino acid is
multiplicative on the original scale. A 0.95 confidence interval for the median effect
of eliminating His is 10β̂H ±2.15×0.058 = (0.38, 0.68), with the estimate 10β̂H = 0.51t13.8(0.975) = 2.15

corresponding to a 50% reduction in growth. See Practical 9.1. �

There are many generalizations of incomplete block designs. Their key purpose is
to give good precision for estimation of the effects of interest — usually treatment
effects, or perhaps a subset of them — when there are more treatments than blocks.
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Higher degrees of balance are possible, in which all triples of treatments appear
equally often, and sometimes constraints on the numbers of units lead to the use of
partially balanced designs, which give increased precision on treatments of primary
interest while sacrificing precision on those of less importance.

9.2.3 Latin square

When there are two possible blocking factors, a three-way layout could be used. In
many circumstances, however, a design that requires fewer units is required, and one
possibility may be a Latin square. Suppose that the blocking factors and the treatment
have the the same number of levels, q . Then a Latin square design is constructed by
laying out units in a q × q array with the blocking factors corresponding to rows and
columns, and applying each treatment precisely once in each row and in each column.
An example is shown in the upper left part of Table 9.11. This balanced application
of treatments leads to an orthogonal decomposition of the total sum of squares. Many
such layouts are possible, with randomization by choice of design and permutation
of row, column and treatment labels.

The corresponding linear model treats the response in the r th row and cth column
as yrc = µ + αr + βc + γt(r,c) + εrc, where t(r, c) is the treatment applied to that
unit, and εrc

iid∼ N (0, σ 2). As it stands this model contains 1 + 3q parameters but the
design matrix would have rank 1 + 3(q − 1).

Least squares estimates may be obtained by extending the Lagrange multiplier
argument on page 429. We minimize

∑
r,c(yrc − µ̂ − α̂r − β̂c − γ̂t(r,c))2 subject to

the constraints
∑

r α̂r = ∑
c β̂c = ∑

t γ̂t = 0. This yields

µ̂ = y, α̂r = yr · − y··, β̂c = y·c − y··, γ̂t = yt − y··,

with residual sum of squares
∑

r,c(yrc − yr · − y·c − yt + 2y··)2.
To see this another way, suppose that we had ignored the treatment classification in

the Latin square, and obtained the analysis of variance table for the row and column
classifications. These would be the same as in Table 9.5, though the residual sum
of squares would also contain the variation due to treatments. However, we could
rewrite the table so that treatments appeared as the row classification, in which case
the current row classification would take on the role of treatments and appear inside the
table. The two-way analysis of variance table for the rearranged data, ignoring the
new treatments (old rows), would contain sums of squares due to treatments and
to columns, and its residual sum of squares would also contain the sum of squares
for rows. Since the sums of squares for both two-way analyses are orthogonal, the
analysis of variance table for a q × q Latin square must be as shown in Table 9.10.

Example 9.5 (Field concrete mixer data) A field concrete mixer lays down a
concrete road surface while moving forward. Its efficiency is measured by the hardness
of the surface it produces, as a percentage of the corresponding hardness produced
under laboratory conditions. It is thought that efficiency may fall off as the speed at
which the machine moves increases, and trials were performed to investigate this.
On each of four days, the machine was run at four different speeds, 4, 8, 12, and
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Table 9.10 Analysis of
variance table for a Latin
square.

Term df Sum of squares

Rows q − 1
∑

r,c(yr · − y··)2

Columns q − 1
∑

r,c(y·c − y··)2

Treatments q − 1
∑

r,c(yt(r,c) − y··)2

Residual (q − 1)(q − 2)
∑

r,c(yrc − yr · − y·c − yt(r,c) + 2y··)2

Table 9.11 Field
concrete mixer data. Latin
square experiment,
showing application of
treatments — speed in
miles per hour (left) —
and observed responses —
machine efficiency (%)
(right) — for 16
combinations of day and
run. Below are average
efficiencies for day, run,
and speed.

Run Run

Day 1 2 3 4 Day 1 2 3 4

1 8 16 4 12 1 64.2 59.8 66.2 63.6
2 16 12 8 4 2 47.5 57.3 67.7 58.6
3 4 8 12 16 3 54.2 59.9 57.1 54.1
4 12 4 16 8 4 60.1 68.4 58.7 63.7

Day Average Run Average Speed Average

1 63.45 1 56.50 4 61.85
2 57.78 2 61.35 8 63.88
3 56.33 3 62.43 12 59.53
4 62.73 4 60.00 16 55.03
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Figure 9.5 Field
concrete mixer data. Left
panel: efficiencies as a
function of speed, with
plotting symbol giving the
day. Right panel: average
efficiencies, with fitted
quadratic curve
corresponding to day 1
and run 1.

16 miles per hour, these being taken in a different order on each day. The layout
in Table 9.11 gives the speeds and the response, machine efficiency. There are two
blocking factors, day and run, and a quantitative treatment with four levels, speed.
The averages, also in Table 9.11, show large differences among days and speeds, and
smaller ones among runs, while they and the left panel of Figure 9.5 show a systematic
variation of efficiency with speed.
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Table 9.12 Analysis of
variance for Latin square
fitted to field concrete
mixer data.

Term df Sum of squares Mean square F statistic

Days 3 151.06 50.35 5.78
Runs 3 79.74 26.58 3.05
Speeds 3 173.58 57.86 6.64

Residual 6 52.23 8.71

The analysis of variance in Table 9.12 shows evidence of day and speed differences,
with significance levels for their F statistics respectively 0.03 and 0.02, and weak
evidence of differences among runs, at significance level 0.11.

The estimated mean response for the t th treatment is µ̂ + γ̂t = yt , and the average
efficiencies for the speeds are 61.85, 63.88, 59.53, and 55.03%, suggesting that the
best speed is 8 mph or so. A 95% confidence interval for the true efficiency at 8 mph is
63.88 ± t6(0.025)(s2/4)1/2, and since s2 = 8.71 and t6(0.025) = −2.45, this interval
is (60.26, 67.50)%. We return to these data in Example 9.12. �

9.2.4 Factorial design

A factorial design involves a number of treatments, each with several levels, and every
combination of levels of the different factors appears together. Thus if there are two
factors with two levels and one with three levels, there are 2 × 2 × 3 = 12 possible
treatment combinations, each of which is applied to at least one unit. A 23 factorial
design was used in Example 8.4.

Example 9.6 (Poisons data) The data in Table 8.10 are from a 3 × 4 factorial
experiment with four replicates. The model

ytpj = µ + αt + βp + γtp + εtpj , t = 1, 2, 3, 4, p = 1, 2, 3, j = 1, 2, 3, 4,

(9.7)
modifies (8.28) by adding terms γtp representing the interaction of poisons and treat-
ments; see Section 9.3.1. If the γtp are all equal, (9.7) is the two-way layout model
(9.6), except that there are four replicates at each combination of the two factors. The
model (9.7) has 20 parameters, which evidently cannot be estimated separately from
the 12 groups of times available. If we use Lagrange multipliers to minimize the sum
of squares subject to the constraints

∑
t

α̂t =
∑

p

β̂p =
∑

t

γ̂tp =
∑

p

γ̂tp = 0,

then we find

µ̂ = y···, α̂t = yt ·· − y···, β̂p = y·p· − y···, γ̂tp = ytp· − yt ·· − y·p· + ytp·,

with corresponding orthogonal decomposition

ytpj − y··· = (ytpj − ytp·) + (ytp· − yt ·· − y·p· + ytp·) + (yt ·· − y···) + (y·p· − y···).
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Table 9.13 Sums of
squares for two-way
layout with replication,
assuming T rows, P
columns, and J replicates
in each cell. For the
poisons data, T = 4,
P = 3, and J = 4.

Term df Sum of squares

Rows T − 1
∑

t,p, j (yt ·· − y···)2

Columns P − 1
∑

t,p, j (y·p· − y···)2

Rows×Columns (T − 1)(P − 1)
∑

t,p, j (ytp· − yt ·· − y·p· + ytp·)2

Residual T P(J − 1)
∑

t,p, j (ytpj − ytp·)2

Table 9.14 Analyses of
variance for the poisons
data, with responses y and
y−1. For MS and F read
‘Mean square’ and ‘F
statistic’.

Response y Response y−1

Term df SS MS F SS MS F

Poisons 2 1.033 0.517 23.22 34.88 17.44 72.63
Treatments 3 0.921 0.307 13.81 20.41 6.80 28.34
Treatments × Poisons 6 0.250 0.042 1.87 1.57 0.26 1.09

Residual 36 0.801 0.022 8.64 0.24

The sums of squares and their degrees of freedom are given in Table 9.13. Notice that
if J = 1, the residual sum of squares is zero, because ytpj ≡ ytp·, and the analysis
of variance reduces to that in Table 9.5, with the interaction sum of squares used
to estimate the error variance σ 2. If it was known a priori that an interaction was
likely to be present, replication would be essential rather than merely desirable, and
if replication was for some reason impossible, an external estimate of σ 2 would be
required.

The left part of Table 9.14 shows the analysis of variance. There are the expected
strong effects of poisons and treatments, but the interaction is less important, with a
significance level of about 0.11 when treated as an F6,36 variable. The estimate of σ 2

is s2 = 0.022.
Under the model (9.7) the fitted values for each cell are ytp·. This suggests a check

on the adequacy of the model. The four observations within each combination of
poison and treatment should form a random sample from the normal distribution
with mean µ + αt + βp + γtp and variance σ 2, and therefore their sample variance
s2

tp should have the σ 2χ2
3 /3 distribution if the error assumption is correct. The lower

left panel of Figure 8.5 shows a systematic departure from linearity, suggesting that
the assumption of normal errors with constant variance is untenable. The lower right
panel shows that the inverse survival times follow the normal error model more closely,
suggesting that it is better to replace ytpj with y−1

tpj . The corresponding analysis of
variance, shown in the right part of Table 9.14, shows that the poison and treatment
effects explain a higher proportion of the response variability on the inverse scale,
and that the interaction is reduced.

With response y−1, the parameter estimates for the model with no interac-
tion are µ̂ = 2.62, α̂1 = 0.90, α̂2 = −0.76, α̂3 = 0.32, α̂4 = −0.46, β̂1 = −0.82,
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β̂2 = −0.35, β̂3 = 1.17. The standard errors are 0.07 for µ̂, 0.12 for the α̂s, and 0.10
for the β̂s, all with units of (10-hours)−1. As suggested by the panels of Figure 8.5,
treatments B and D prolong life best, and poison 3 shortens it most. We reconsider
these data in Example 9.8. �

Exercises 9.2

1 Consider the one-way layout. Show that when the model ytr = µ + εtr is fitted, the residual
sum of squares is

∑
r,t (ytr − y··)

2 on T R − 1 degrees of freedom, where y·· is the overall
average. Show that

∑
r,t

(ytr − y··)
2 =

∑
r,t

(ytr − yt.)
2 +

∑
r,t

(yt. − y··)
2,

and hence verify the contents of Table 9.2.
How would you form a confidence interval for β1 − β2?

2 Calculate the analysis of variance table for the data of Example 9.3, and test whether there
are differences between the diets and the groups. Find the standard error of a difference
between diets, and use it to give a 95% confidence interval for the mean difference in
weight gain between diets IV and I.

3 Suppose that T1 and T2 have common mean µ and variances σ 2
1 and σ 2

2 , and let S2
1 and S2

2
be estimators of σ 2

1 , σ 2
2 , independently distributed as χ2

ν1
, χ2

ν2
.

(a) Show that if σ 2
1 , σ 2

2 are known, then µ has minimum variance unbiased estimator

T = T1/σ
2
1 + T2/σ

2
2

1/σ 2
1 + 1/σ 2

2

,

with variance σ 2
1 σ 2

2 /(σ 2
1 + σ 2

2 ).
(b) Suppose that var(T ) is estimated by V in which σ 2

1 and σ 2
2 are replaced by their

estimates. Show that V has approximate mean and variance

σ 2
1 σ 2

2

σ 2
1 + σ 2

2

,
2σ 4

1 σ 4
2(

σ 2
1 + σ 2

2

)4

(
σ 4

1

ν1
+ σ 4

2

ν2

)
.

Hence show that if V is regarded as approximately χ 2, then its degrees of freedom are
(σ 2

1 + σ 2
2 )2/(σ 4

1 /ν1 + σ 4
2 /ν2).

(c) Compute the degrees of freedom for this approximation in Example 9.4.

4 Give the analysis of variance table for a two-way layout with replication, when the numbers
of replicates in the t th row and pth column, Jtp , are unequal.

5 Use Lagrange multipliers to verify the formulae for the estimates and fitted values given
in Example 9.5, and hence check the contents of the analysis of variance table for a Latin
square.

6 In Example 9.5, suppose that a confidence interval is required for the difference of the
mean efficiencies between 8 and 4 mph. Show that owing to the balance of the experiment,
a point estimate of this is just the difference between the average efficiencies for these
speeds, and that its variance is 1

2 σ 2. Give the estimate of σ 2 ignoring day and run effects,
that is, treating the data as a one-way layout with the four levels of speed as groups. How
much longer is the corresponding confidence interval than when day and run effects are
taken into account?
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9.3 Further Notions

9.3.1 Interaction

Terms that do not act additively in a linear model are said to interact. An easy way to
understand this is by example.

Example 9.7 (22 factorial experiment) A 22 factorial experiment involves a re-
sponse measured at each combination of two factors each with two levels. As an
illustration, consider an experiment to assess the effects of two fertilizers, in which
the factors are addition or not of potash and nitrogen. If the cell means are

No potash Potash
No nitrogen µ µ + β

Nitrogen µ + α µ + α + β + γ

,

and γ = 0, the effects act additively because the addition of potash increases the mean
response by β whether or not nitrogen is present. Similarly the effect of nitrogen does
not depend on the presence of potash.

The two treatments interact if γ is non-zero, because the effect of both treatments
together is not the sum of the effects of adding them separately. The difference between
the effects of adding potash when there is no nitrogen present and when there is
nitrogen present is

{(µ + α + β + γ ) − (µ + α)} − {(µ + β) − µ)} = γ,

so we can view a non-zero interaction of the two fertilizers as a differential effect of
adding potash depending on the presence or not of nitrogen. The average effect of
adding potash, taken over both rows of the table, is then

1

2
{(µ + α + β + γ ) − (µ + α) + (µ + β) − µ} = β + 1

2
γ.

Thus if there is no interaction, β represents the average effect of adding potash
whatever the level of nitrogen, but it loses this interpretation if γ is non-zero.

If the model is reparametized to have cell means

No potash Potash
No nitrogen β0 − β1 − β2 + β3 β0 − β1 + β2 − β3

Nitrogen β0 + β1 − β2 − β3 β0 + β1 + β2 + β3

,

the overall mean is β0, the average effect of adding potash is

1

2
{(β0 + β1 + β2 + β3) − (β0 + β1 − β2 − β3) + (β0 − β1 + β2 − β3)

− (β0 − β1 − β2 + β3)} = 2β2,

and likewise the average effect of adding nitrogen is 2β1. The difference between the
effects of adding potash when there is no nitrogen present and when it is present is

1

2
[{(β0 + β1 + β2 + β3) − (β0 + β1 − β2 − β3)} − {(β0 − β1 + β2 − β3)

− (β0 − β1 − β2 + β3)}] = 2β3.
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Figure 9.6 Poison data.
The left panel shows how
the fitted values under the
model of no interaction,
µ̂ + α̂t + β̂p , for
treatments A–D depend
on poisons 1–3. The right
panel shows the
corresponding fitted
values under the model of
interaction,
µ̂ + α̂t + β̂p + γ̂tp . The
vertical line in each panel
has length four times the
standard error of a fitted
value.

The difference between the two parametrizations is clear from the design matrices,


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


 ,




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1


 .

The first parametrization, in terms of µ, α, β and γ , represents changes in the mean
response relative to the top left cell; this is the corner-point parametrization. In the
parametrization using β0, β1, β2 and β3, the parameters can be interpreted as the
overall mean, the mean effects of adding potash, nitrogen, and the effect of adding
both, regardless of the other parameters. The first column corresponds to the overall
mean, the middle two columns to main effects of potash and nitrogen, and the final
column to the first-order or two-factor interaction between the two main effects. The order of an

interaction is one less than
the number of effects it
involves.

Notice that the interaction term is the product of the columns for the main effects
and that the second parametrization is orthogonal, but the first is not. In practice the
parametrization used would depend on the purpose of the analysis.

If interaction is present, four parameters must be estimated from four observations.
In this case σ 2 would usually be estimated by replicating the experiment. �

The same ideas generalize, as the next example shows.

Example 9.8 (Poisons data) The linear model corresponding to the data discussed
in Example 9.6 is given at (9.7). If the first-order interaction parameters γpt ≡ 0,
the profile of fitted values for poison p and treatments A–D may be written (µ̂ +
α̂1 + β̂p, . . . , µ̂ + α̂4 + β̂p), and the effect of applying poison r instead of poison p
is a translation of the fitted values by β̂r − β̂p. The left panel of Figure 9.6 shows
the profile of fitted values for the three poisons; of course the profiles are parallel,
as would also be the case for the poison profiles (µ̂ + α̂t + β̂1, . . . , µ̂ + α̂t + β̂3),
because no interaction has been fitted.

Under the model with interaction, that is, including the γtp, the fitted values are
µ̂ + α̂t + β̂p + γ̂tp = ytp·, and the profiles are (y1p, . . . , y4p); these are shown in the
right panel of the figure, and are not parallel, because under the model with interaction
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Table 9.15 Interactions
for 23 factorial design. Two-factor

Three-factor
Intercept

Main effects interactions
interaction

Unit Treatment I A B C AB AC BC ABC

1 1 + − − − + + + −
2 a + + − − − − + +
3 b + − + − − + − +
4 ab + + + − + − − −
5 c + − − + + − − +
6 ac + + − + − + − −
7 bc + − + + − − + −
8 abc + + + + + + + +

the effect of changing poisons is more complex than a simple translation. The profiles
are broadly similar to those in the left panel, and the evidence for interaction is weak,
as shown by the F statistic for Treatments × Poisons in Table 9.14, which gives an
overall test for departures from the simple pattern in the left panel. �

Two-factor interactions are relatively common in applications. Higher-order inter-
actions are rarer and can indicate outliers or a poorly fitting model.

Example 9.9 (23 factorial experiment) A 23 factorial experiment has three factors,
A, B, and C , each with two levels, denoted −1 and +1. Each of the 23 possible
combinations of the factor levels is applied to a unit, as in the main effects columns
of Table 9.15, where the signs only are given. This design, replicated twice, is used
in Example 8.4.

The second column of the table shows which treatments have been applied to each
unit. Under the model with main effects of A, B, and C only, no treatment is applied
to unit 1 and its mean response is β0 − βA − βB − βC , treatment A alone is applied
to unit 2 and its mean is β0 + βA − βB − βC , and so forth. The design matrix then
corresponds to the intercept and main effects columns, and

β̂A = 1

8
(ya − y1 + yab − yb + yac − yc + yabc − ybc)

where ya is the response for unit 2, yab is the response for unit 4, and so forth. Thus
the estimate of βA is based on contrasting the responses for units to which A was
applied with those to which it was not applied. Likewise

β̂B = 1

8
(yb − y1 + yab − ya + ybc − yc + yabc − yac),

β̂C = 1

8
(yc − y1 + yac − ya + ybc − yb + yabc − yab).

Under the model that includes the two-factor interactions βAB , βAC , and βBC as
well as the intercept and main effects, the mean response for unit 1 is β0 − βA −
βB − βC + βAB + βAC + βBC . On including the two-factor interaction columns in
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the design matrix, we obtain

β̂AB = 1

8
(yab − ya − yb + y1 + yabc − yac − ybc + yc),

which is based on contrasting responses for which the levels of A and B are the
same with those for which the levels of A and B are different. There are similar
interpretations of the other estimated two-factor interactions

β̂AC = 1

8
(yac − ya − yc + y1 + yabc − yab − ybc + yb),

β̂BC = 1

8
(ybc − yb − yc + y1 + yabc − yab − yac + ya).

The estimated three-factor interaction is

β̂ABC = 1

8
(yabc + ya + yb + yc − yab − yac − ybc − y1)

= 1

8
{(yabc − yac − ybc + yc) − (yab − ya − yb + y1)},

which contrasts the contributions to the AB interaction when C is applied and when
it is not applied. Whichever of these models is fitted, the design matrix is orthogonal,
and (X T X )−1 = 1

8 I , so the variance of each of the estimates above is σ 2/8, as is
readily verified directly. �

When strong two-factor interaction is present, interpretation is often simplified by
considering how responses behave separately for each level of one factor, and likewise
for higher-order interactions.

Confounding

Factorial designs make it possible to assess the effects of many treatments and their in-
teractions in a single experiment, but when there are many factors many homogeneous
units must be found, and this can pose practical problems.

Example 9.10 (22 factorial experiment) An experiment with two two-level factors
A and B is performed using two blocks each having two units. The possible treatments
are 1, a, b, and ab, and there are three possible designs depending on which treatment
appears in the same block as 1. Suppose that the first block has treatments 1 and a,
and the second has b and ab. The model with an intercept, a block effect, and the
main effects of A and B is


y1

ya

yb

yab


 =




1 0 −1 −1
1 0 1 −1
1 1 −1 1
1 1 1 1







β0

α

βA

βB


 + ε,

in which the design matrix has rank three because the column for B is a linear
combination of the first two columns. The design makes it impossible to distinguish
these effects, which are said to be confounded. Evidently A would be confounded
with blocks if the first block contained treatments 1 and b and the second a and ab.
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Suppose instead that the experiment is set up to have 1 and ab in the same block.
Then the design matrix is 


1 0 −1 −1
1 0 1 1
1 1 −1 1
1 1 1 −1


 ,

which has rank four. Then β̂0 = 1
2 (y1 + yab), α̂ = 1

2 (ya + yb − y1 − yab), while
the estimates β̂A = 1

4 (yab − y1 + yA − yB) and β̂B = 1
4 (yab − y1 − yA + yB) corre-

spond to comparisons made within blocks. Thus this design does allow the estimation
of the main effects of interest, though an external estimate of the error variance σ 2 is
required.

The interaction between A and B would usually be estimated by

β̂AB = 1

4
(ya + yb − y1 − yab) = 1

2
α̂,

so use of this design entails sacrificing any information about this interaction.
In examples with many factors, interactions known to be unimportant are often
deliberately confounded with blocks in such a way that the effects of interest
are estimated with maximum precision in the resulting fractional factorial design.

�

If effects are confounded by accident, then further experimentation will be needed
to identify the parameters, unless there is external information about their values.
Some models are intrinsically non-identifiable, however; see Section 4.6.

9.3.2 Contrasts

Suppose that a model has n × p design matrix X of full rank and that we have a p × p
invertible matrix A for which X A = C , where the first column of C is a column of
ones, and the remaining columns, c1, . . . , cp−1, are orthogonal to the first and to
each other. In this case CTC = diag(n, cT

1c1, . . . , cT
p−1cp−1). Let us reparametrize the

original model, y = Xβ + ε, by letting γ = A−1β, thereby obtaining y = Cγ + ε.
The columns of C are known as orthogonal contrasts.

The least squares estimators for the model y = Cγ + ε are γ̂ = (CTC)−1CT y,
with covariance matrix σ 2(CTC)−1. As CTC is a diagonal matrix, the estimate of
γr is γ̂r = cT

r y/cT
r cr , with variance var(γ̂r ) = σ 2/cT

r cr , and different estimates γ̂r are
uncorrelated with each other and with the overall average, y. The residual sum of
squares SS(γ̂ ) equals

yT{I − C(CTC)−1CT}y = yT y − γ̂ TCTC γ̂

=
n∑

j=1

y2
j − ny2 − γ̂ 2

1 cT
1c1 − · · · − γ̂ 2

p−1cT
p−1cp−1.

As the reduction in sum of squares due to adding cr to the design matrix is γ̂ 2
r cT

r cr , the
total sum of squares can be split into the contributions from each of the columns of
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Table 9.16 Analysis of
variance for the cycling
data.

Term df Sum of squares Mean square F statistic

Seat 1 473.06 473.06 112.9
Dynamo 1 39.06 39.06 9.32
Tyre 1 39.06 39.06 9.32
Seat × Dynamo 1 1.56 1.56 0.37
Seat × Tyre 1 5.06 5.06 1.21
Dynamo × Tyre 1 0.06 0.06 0.01
Seat × Dynamo × Tyre 1 3.06 3.06 0.73

Residual 8 33.50 4.19
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Figure 9.7 Half-normal
plots of normalized
contrasts |γ̂r |(cT

r cr )1/2 for
the data on cycling up a
hill. The left panel shows
the |γ̂r |(cT

r cr )1/2 for the
last seven columns of C1,
with the dotted line having
slope s = 4.191/2, the
residual standard error.
The right panel shows the
|γ̂r |(cT

r cr )1/2 for the last
15 columns of C2. In each
case, only contrasts
corresponding to main
effects seem to be
non-null. See text for
details.

C , namely ny2, γ̂ 2
1 cT

1c1, and so forth. If γr equals zero, γ̂r has mean zero and variance
σ 2/cT

r cr , and if the errors are normal, γ̂ 2
r cT

r cr ∼ σ 2χ2
1 . A normal scores plot of the

γ̂r (cT
r cr )1/2, a plot of the ordered γ̂ 2

r cT
r cr against χ2

1 plotting positions, or a half-normal
plot (Practical 2.1) of the |γ̂r |(cT

r cr )1/2, helps to show which of the γr may be non-zero.

Example 9.11 (Cycling data) The data on cycling up a hill are from a 23 factorial
experiment, replicated twice. The design matrix D for a 23 experiment, in which the
three main effects, the three second-order interactions, and the third-order interaction
are all fitted, is obtained by adding ones to the pluses and minuses in Table 9.15. This
matrix has the property that DT D = 8I8, so its columns are orthogonal contrasts. The
16 × 8 design matrix for the replicated experiment may be written as

C1 =
(

D
D

)
;

as CT
1C1 = 16I8, the columns of C1 are also orthogonal contrasts. Table 9.16 shows

the analysis of variance when this model is fitted. There are eight residual degrees of
freedom, and the estimate of error is s2 = 4.19. The main effects are significant, but
the interactions, denoted Seat×Dynamo and so forth, are not.

The left panel of Figure 9.7 shows a half-normal plot of the quantities |γ̂r |(cT
r cr )1/2

corresponding to the contrasts in the last seven columns of C1; the dotted line has
slope s. The plot confirms our impression from the analysis of variance table: only
the three main effects seem to be non-zero.
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The residual sum of squares can also be decomposed into its component degrees
of freedom. To see how, we add eight columns to C1, giving

C2 =
(

D −D
D D

)
,

the last 15 columns of which are orthogonal contrasts, as CT
2C2 = 16I16. The right

panel of Figure 9.7 shows a half-normal plot of the contrasts corresponding to these
columns; the eight contrasts comprising s2 — corresponding to the columns of C2 not
in C1 — have been added to the previous seven. These eight contrast the main effects,
the second- and third-order interactions between the two replicates. As no degrees
of freedom remain with which to estimate σ 2, it may be estimated by pooling those
contrasts that lie roughly on a straight line in the lower left corner of the graph. Here
there seem to be about 12 such contrasts, the pooling of which gives error estimate
3.60 on 12 degrees of freedom. �

Example 9.12 (Field concrete mixer data) In Example 9.5 we found evidence that
the efficiency of the mixer depended strongly on its speed, with the best concrete
produced at about 8 mph. An estimated best speed can be obtained by decomposing
the sum of squares due to speed using contrasts based on orthogonal polynomi-
als. There are three degrees of freedom for speeds. One parametrization for them
gives three columns in which the rows corresponding to the four speeds 4, 8, 12, and
16 miles per hour are

4 0 0 0
8 1 0 0

12 0 1 0
16 0 0 1

,

whereas a parametrization in terms of orthogonal polynomials gives

4 −3 1 −1
8 −1 −1 3
12 1 −1 −3
16 3 1 1

,

where the first column is linear in speed and the other two columns are obtained by
Gram–Schmidt orthogonalization of the square and cube of the first. The correspond-
ing columns of the design matrix, s1, s2, and s3, are orthogonal to the grand mean, to
each other, and to the day and run effects. The parameter estimates, standard errors,
and sums of squares γ̂ 2

r sT
r sr for these contrasts are given in Table 9.17; note that the

total sum of squares equals that for speeds in Table 9.12.
The t statistics for the linear, quadratic, and cubic effects are significant at lev-

els about 0.01, 0.07, and 0.38 respectively, suggesting that the effect of speed on
efficiency may be summarized as µ̂ + γ̂1s1 + γ̂2s2, where µ̂ is the estimated grand
mean in this parametrization. In terms of speed, x , s1 = (x − 10)/2 and s2 = {(x −
10)2 − 20}/16. Since γ̂2 < 0, efficiency is maximized as a function of speed when
γ̂1ds1/dx + γ̂2ds2/dx = 0 and the estimated best speed is 10 − 4γ̂1/γ̂2 = 6.96 mph.
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Table 9.17 Field
concrete mixer data:
orthogonal decomposition
of sum of squares for
speed into linear,
quadratic, and cubic
effects.

Term Estimate Standard error Sum of squares

Linear, s1 −1.24 0.329 123.26
Quadratic, s2 −1.63 0.737 42.58
Cubic, s3 0.31 0.330 7.75

Total 173.58

A confidence interval for the true best speed may be obtained by the delta method or
using an exact argument (Exercise 9.3.3), but the t statistic for γ̂2 suggests that such
a confidence interval will be imprecise. The right panel of Figure 9.5 shows the fitted
quadratic curve as a function of speed. �

9.3.3 Analysis of covariance

Analysis of covariance is intended to reduce bias or increase precision when some
variables cannot be controlled by design. This may arise because the importance of
these variables has been recognized only after randomization, because the random-
ization took them partially but not fully into account, or because their values only
became available after randomization.

Suppose that a model with a design matrix X from a balanced experimental setup
is to be fitted, but that additional explanatory variables contained in the matrix Z have
been measured that might affect the response. The design leads us to fit the model
y = Xβ + ε, but instead we fit y = Xβ + Zγ + ε, in the hope that inclusion of Z
will increase the precision of β̂. However adding Z removes balance and complicates
the analysis of variance. Our interest is in the treatment effects after adjusting for Z ,
so for analysis of variance we fit Z before treatments and their interactions.

Example 9.13 (Cat heart data) Table 9.18 shows the results from an experiment to
determine the relative potencies of eight similar cardiac drugs, labelled A–H, where
A is a standard. The method used was to infuse slowly a suitable dilution of the drug
into an anaesthetized cat. The dose at which death occurred and the weight of the
cat’s heart were recorded. The table shows y = 100 × log dose in µgm, and, below,
z = 100 × log heart weight in gm. Four observers each made two determinations on
each of eight days, with a Latin square design used to eliminate observer and time
differences. Here z cannot be known at the start of the experiment, but might be
expected to affect comparisons among the treatments; it is assumed that heart weight
is unaffected by the treatments.

The left part of Table 9.19 gives the analysis of variance without adjustment for
heart weight. The seven degrees of freedom for the sum of squares between rows have
been decomposed into the main effects of observer and time, and their interaction.
There are clearly large differences among observers, and between times, and a
smaller but substantial interaction between these terms, but there is little evidence
of day-to-day variation.
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Table 9.18 Data from
Latin square experiment
on the potencies of eight
cardiac drugs given to
anaesthetized cats. The
table shows
y = 100 × log dose in
µgm at which death
occurred, and, below,
z = 100 × log heart
weight in gm.

Day

Observer Time 1 2 3 4 5 6 7 8

1 am G 75 F 77 A 52 E 71 C 65 D 47 B 37 H 63
91 77 102 102 84 85 73 84

1 pm E 81 D 58 G 74 A 54 F 62 H 69 C 59 B 59
76 90 116 87 93 79 105 71

2 am H 94 G 86 F 104 C 66 E 94 B 72 D 82 A 58
90 100 102 108 97 90 96 90

2 pm B 73 A 59 E 103 F 86 G 84 C 82 H 95 D 65
88 82 94 77 88 106 89 83

3 am A 22 C 36 B 39 D 32 H 43 E 67 G 52 F 34
90 81 83 94 95 101 97 66

3 pm C 46 H 25 D 52 G 59 B 42 A 54 F 77 E 69
90 81 91 99 90 98 106 101

4 am F 39 E 56 H 56 B 28 D 52 G 86 A 45 C 70
83 88 95 79 87 100 84 117

4 pm D 87 B 82 C 72 H 92 A 58 F 92 E 99 G 89
96 93 87 89 87 92 90 106

Table 9.19 Analysis of
variance for cats data, with
and without adjustment
for heart weight.

Without adjustment With adjustment

Term df Sum of squares Mean square df Sum of squares Mean square

Heart weight 1 3058 3058
Observer 3 9949 3316 3 9452 3151
Time 1 2003 2003 1 1939 1939
Observer × Time 3 2238 746 3 1890 630
Day 7 922.9 131.8 7 463 66.3
Drug 7 6098 871.1 7 5051 721.6

Residual 42 4874 116.0 41 4228 103.1

Table 9.20 Estimated
differences between
standard drug A and the
treatments B–H, without
and with adjustment for
the covariate heart weight.

B C D E F G H

Unadjusted 3.75 (5.4) 11.75 (5.4) 9.13 (5.4) 29.75 (5.4) 21.12 (5.4) 25.37 (5.4) 16.87 (5.4)
Adjusted 6.53 (5.2) 8.71 (5.2) 9.02 (5.1) 28.2 (5.1) 22.38 (5.1) 21.34 (5.3) 17.82 (5.1)

The estimates of the differences between the drugs and the standard, unadjusted
for heart weight, are given in the upper row of Table 9.20. Their standard errors are
equal because of the balance. The dose of drug B needed to cause death appears not
to differ from the standard, those for C, D and H are rather larger, and those required
for E, F, and G are substantially larger.

The analysis of variance with z is given in the right part of Table 9.19. Since interest
centres on the drug effects, heart weight must be fitted before the term for drugs, but
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Table 9.21 Data from a
completely randomized
experiment on the
comparison of diets, with
initial weight x and final
weight y.

A B C

x 1.5, 2.2, 2.9, 4.1, 4.1 2.7, 3.8, 5.6, 6.4, 6.8 2.2, 3.5, 4.6, 5.5, 6.6
y 9.6, 11.3, 10.3, 12.5, 12.6 8.6, 7.2, 8.9, 11.6, 11.5 4.8, 5.6, 6.2, 7.5, 6.8

otherwise it is immaterial when it is fitted; here we fit it before allowing for the
experimental conditions. This results in a non-unique analysis of variance: the order
of fitting is irrelevant in the left part of the table, but matters in the right part. The
adjustment reduces the sums of squares for the other terms, with the reduction for
days being largest. The estimate of σ 2 adjusted for heart weight, 103.1, is somewhat
smaller than the unadjusted estimate, 116.0, and the precision of the comparisons
between the drugs and the standard is slightly increased. In particular the adjusted
estimates for B, C, and D, and for F, G, and H, are more similar — some of the
variation in the unadjusted comparisons is due to heart weights. �

Exercises 9.3

1 Suppose that a 22 factorial experiment is to be performed using eight units in four blocks
of two units each. Show that the intercept, three block effects, and the main effects and
interaction between the treatments can be estimated if the treatments are allocated to blocks
as follows: (1, a), (b, ab), (1, ab), (a, b). Can they all still be estimated if an observation
from the last block is lost?

2 Table 9.21 gives results from a completely randomized experiment in which five individ-
uals were allocated at random to each of three diets.
(a) Calculate the group averages and variances, and hence obtain the analysis of variance
of the final weights, unadjusted for initial weights. Give the standard errors for differences
between averages for diet A and the other two diets.
(b) Use analysis of covariance to adjust for the initial weights. Give the new analysis of
variance table, and adjusted standard errors for the differences in (a). Comment.

3 Consider the calculation of a 95% confidence interval for the speed that gives the maximum
efficiency for the field concrete mixer of Example 9.12.
(a) Use the delta method to show that

var

(
γ̂1

γ̂2

)
.= γ 2

1

γ 2
2

(
var(γ̂1)

γ 2
1

+ var(γ̂2)

γ 2
2

)
.

Use this to show that γ̂1/γ̂2 has standard error 1.595, and hence give an approximate 95%
confidence interval for 10 − 4γ1/γ2.
(b) If ψ = −γ1/γ2, show that the distribution of γ̂2ψ + γ̂1 is normal with mean zero
and variance σ 2(ψ2v22 + v11), where v11 and v22 are the diagonal elements of the matrix
(X T X )−1 that correspond to γ1 and γ2. Deduce that as (γ̂2ψ + γ̂1)2/{s2(ψ2v22 + v11)}
has an F1,ν distribution, an exact confidence region for ψ is the set of values such that
(γ̂2ψ + γ̂1)2/{s2(ψ2v22 + v11)} ≤ F1,ν(1 − α).
A 95% confidence set for 10 + 4ψ based on the calculations in Example 9.12 is
(−∞, 9.15), (38.03,∞). On the same graph, plot this confidence set, the average ef-
ficiencies for the different speeds and the fitted efficiency from Example 9.12 against
speed. Do you find the exact confidence set surprising?
(c) Use part (b) to calculate the exact coverage of your delta method confidence interval.
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9.4 Components of Variance

9.4.1 Basic ideas

Our models so far have involved just one level of random variation, with all the
responses independent. Sometimes a more complex error structure is required.

The simplest example is the one-way layout with R units in each of T blocks.
Suppose the blocking factors are of no intrinsic interest, and the block effects may be
thought of as being sampled at random from a population, block means being a random
sample from a normal distribution with mean µ and variance σ 2

b . Conditional on the
block mean, the responses for units within a block are independent normal variables
with mean zero and variance σ 2. Thus the response for the r th unit in block t is

ytr = µ + bt + εtr , (9.8)

where the bt have zero means and variances σ 2
b , the εtr have zero means and variances

σ 2, and the bt and εtr are all mutually independent. Responses from different blocks
are independent, but those within the same block are not, as cov(ytr , yts) = σ 2

b for
r �= s. Thus the covariance matrix for the responses is block diagonal. This is called
a random effects model, as the block effects are regarded as random variables rather
than fixed parameters.

The analysis of variance for the one-way layout involves the sums of squares within
and between blocks

SSw =
∑
t,r

(ytr − yt ·)
2, SSb =

∑
t,r

(yt · − y··)
2.

Under the random effects model, ytr − yt · = εtr − εt ·, and as this does not depend
on the presence of the random effects, SSw has its usual σ 2χ2

T (R−1) distribution.
Now yt · = µ + bt + εt · ∼ N (µ, σ 2

b + σ 2/R), and as the yt · are independent, the
distribution of SSb is R(σ 2

b + σ 2/R)χ2
T −1. Furthermore,

cov(ytr − yt ·, yt · − y··) = cov(bt + εtr − bt − εt ·, bt + εt · − b· − ε··) = 0,

and hence the linear combinations of normal variables ytr − yt · and yt · − y·· must be
independent. Thus the sums of squares SSw and SSb have independent chi-squared
distributions with scale parameters σ 2 and σ 2 + Rσ 2

b respectively. Tests and confi-
dence intervals for the ratio σ 2

b /σ 2 can be based on the FT −1,T (R−1) distribution of

σ 2

σ 2 + Rσ 2
b

× SSb/(T − 1)

SSw/{T (R − 1)} . (9.9)

An alternative derivation of the independence of SSw and SSb under the random
effects model is to argue conditionally on the values of the bt . Conditional on the bt ,
the model is just the one-way layout described in Section 9.2.1, under which SSw and
SSb are independent, and only the distribution of SSb depends on the bt . Hence SSw

and SSb are unconditionally independent.
One aspect of interest may be statements of uncertainty for the population mean

µ, which is estimated by the overall sample average, y·· = µ + b· + ε··. This has
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Table 9.22 Blood data:
seven measurements from
each of six subjects on a
property related to the
stickiness of their blood.

Subject

1 2 3 4 5 6

68 49 41 33 40 30
42 52 40 27 45 42
69 41 26 48 50 35
64 56 33 54 41 44
39 40 42 42 37 49
66 43 27 56 34 25
29 20 35 19 42 45

variance σ 2
b /T + σ 2/(T R) = (σ 2 + Rσ 2

b )/(T R), which is estimated unbiasedly by
SSb/{(T − 1)T R}, independent of y··, and confidence intervals are based on the tT −1

distribution of (y·· − µ)/[SSb/{(T − 1)T R}]1/2.
The assumptions of homogeneous variance across all blocks and of normality can

be checked using probability plots.

Example 9.14 (Blood data) Six subjects were selected at random from a large
population, and a property related to stickiness of samples of blood was measured
seven times on each subject. The data are given in Table 9.22.

For these data, SSw = 4549.7 and SSb = 1466.0 on 36 and 5 degrees of freedom
respectively. A point estimate of the variance for different measurements on the same
subject is SSw/36 = 126.4. and a point estimate of the variance of mean stickiness
between subjects is (SSb/5 − SSw/36)/7 = 23.83. An equi-tailed 90% confidence
interval for the ratio σ 2

b /σ 2 based on (9.9) is (−0.01, 1.34); this overlaps the negative
half-axis and would not usually be appropriate. �

Nested variation

The previous example had two levels of nested variation, for subjects and for mea-
surements. In practice data with several levels of variation arise. Consider for example
comparison of the success of a surgical procedure, measured on a continuous scale.
Data are available on patients, P of whom are treated by each surgeon and with S
surgeons working at H hospitals. We suppose that surgeons at different hospitals
are independent, and likewise for the patients, so patients are nested within surgeons
within hospitals — there is no relation between the first patient of surgeon 1 at
hospital 1 and the first patient of surgeon 2 at hospital 1, nor between surgeon 1 at
hospital 1 and surgeon 1 at hospital 2. Put another way, labels for patients can be
permuted independently within each surgeon without changing the data structure,
and likewise for surgeons within each hospital. A simple model for the outcome yhsp

for the pth patient of the sth surgeon at the hth hospital is

yhsp = µ + bh + ehs + εhsp, h = 1, . . . , H, s = 1, . . . , S, p = 1, . . . , P,

(9.10)
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Table 9.23 Analysis of
variance table for nested
model. Each sum of
squares is summed over h,
s and p. Mean squares are
formed by dividing sums
of squares by their degrees
of freedom. δ2

b and δ2
e are

non-centrality parameters
measuring differences
among the bh and ehs

when they are treated as
fixed.

E(Mean square) when terms below random

Term df Sum of squares ε ε, e ε, e, b

Between hospitals H − 1
∑

(yh·· − y···)2 P Sδ2
b + Pδ2

e + σ 2 P Sδ2
b + Pσ 2

e + σ 2 P Sσ 2
b + Pσ 2

e + σ 2

Between surgeons H (S − 1)
∑

(yhs· − yh··)2 Pδ2
e + σ 2 Pσ 2

e + σ 2 Pσ 2
e + σ 2

within hospitals
Between patients H S(P − 1)

∑
(yhsp − yhs·)2 σ 2 σ 2 σ 2

within surgeons

where µ is the mean success level in a population of hospitals, from which the hth
hospital departs by bh , the ehs represent surgeon effects, and the εhsp are independent
normal variables with means zero and variance σ 2 corresponding to the pth patient
treated by the sth surgeon at hospital h. If random, we suppose the bh and ehs to
be independent normal variables with means zero and variances σ 2

b and σ 2
e , but the

decision whether they should be treated as random or as fixed depends on the context.
A potential patient able to choose his surgeon would treat bh and ehs as fixed, and
hope to choose h and s to optimize his prospects. If on the other hand he could choose
his hospital but not his surgeon, he might treat the ehs as random — in effect he
will be operated upon by a randomly selected surgeon — but try and choose among
hospitals, treated as fixed. A health service official hoping to estimate the national
success rate for the procedure from a sample of such data would treat the bh and the
ehs as random. The quantities of interest in the three cases are µ + bh + ehs , µ + bh ,
and µ, estimated by yhs·, yh··, and y···, whose variances are σ 2/P , σ 2

e /S + σ 2/(S P),
and σ 2

b /H + σ 2
e /(H S) + σ 2/(H S P). In each case the analysis of variance is given

by Table 9.23 and depends on

yh·· − y··· = bh − b· + eh· − e·· + εh·· − ε···,
yhs· − yh·· = ehs − eh· + εhs· − εh··,

yhsp − yhs· = εhsp − εhs·.

If all the quantities contributing to it are regarded as random, then each sum of
squares has a chi-squared distribution. For example, the sum of squares between
surgeons within hospitals is

SSS =
∑
h,s,p

(yhs· − yh··)
2 = P

∑
h,s

(ehs − eh· + εhs· − εh··)2,

and if ehs and εhsp are random, then ehs + εhs· is normal with mean zero and variance
σ 2

e + σ 2/P . Hence

P
∑
h,s

(ehs − eh· + εhs· − εh··)2 D= P
(
σ 2

e + σ 2/P
)
(W1 + · · · + WH )

∼ (
Pσ 2

e + σ 2
)
χ2

H (S−1),
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where the Wh are a random sample from the χ2
S−1 distribution. If the ehs are fixed,

then ehs + εhs· is normal with mean ehs and variance σ 2/P and hence SSS has a non-
central chi-squared distribution with H (S − 1) degrees of freedom and non-centrality
parameter H (S − 1)δ2

e = P
∑

h,s(ehs − eh·)2 (Problem 2.12). Such calculations give
the entries in Table 9.23, in which (H − 1)δ2

b = ∑
h(bh − b·)2. Note that E(δ2

e ) = σ 2
e

and E(δ2
b) = σ 2

b .
Under the model with bh and ehs fixed, ratios of mean squares can be used to test for

differences among surgeons and hospitals, for example comparing the ratio of mean
squares for the last two lines of Table 9.23 with the FH (S−1),H S(P−1) distribution.

The assumptions underlying this model would need careful scrutiny in applications:
from what populations are patients, surgeons, and hospitals drawn, and in what sense
can they be treated as random samples?

Nesting is fundamentally different from the type of classification described earlier.
Consider a two-way layout in which factors A and B with T and R levels respectively
are applied to T R units. Then if the levels of B among y11, . . . , y1R were permuted,
the same permutation would have to be applied to those of yt1, . . . , yt R for each t ,
because the second subscript corresponds to the same treatment for y2r and y1r , for
example. The two classifications are then said to be crossed. In the random effects
model described at the start of this section, however, the labelling is essentially ar-
bitrary, yt1, . . . , yt R being simply replicate observations; here permutation of any or
all of these groups of observations should not affect analysis. Compare Examples 9.3
and 9.14.

It is crucial that crossed and nested effects be distinguished. Typically the levels of
crossed effects are of intrinsic interest and are represented by fixed parameters, while
parameters associated with nested suffixes are treated as random. Different levels of
nesting then correspond to different variance components. However it may be hard
to write down the model appropriate to a complex design.

Split-unit experiments

Some experiments are performed with certain treatments applied to entire units and
others to sub-units. As such designs originally arose in agriculture, with units being
for instance plots of land sown with plant varieties, sub-plots of which were treated
with different fertilisers, they are often called split-plot experiments. They also arise in
industrial applications, where certain aspects of a manufacturing process may be more
easily varied than others, and in medical settings where units are often patients, each
with measurements taken in succession over a period, giving a series of correlated
responses. Such designs are useful if it is already known that whole-unit treatments
differ substantially and interest centres on sub-unit treatments and their interactions,
or if physical constraints impose them; they can also arise by accident. The key
idea is that there is variation within units (that is, between sub-units) as well as
between units. Analysis of variance is effectively performed at two levels, as discussed
below.

Suppose there are B blocks of W units, to each of which a whole-unit treatment is
applied according to a randomized block design, for example. Units themselves are
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split into S sub-units, with a sub-unit treatment randomized to each. The corresponding
linear model is

ybws = µ + βb + γw + ubw + ζs + τws + εbws, b = 1, . . . , B, w = 1, . . . , W,

s = 1, . . . , S,

where the whole-unit effects are the overall mean µ, the block and whole-unit treat-
ment parameters βb and γw , and the whole-unit errors ubw , taken to be independentWe use the Roman letter u

to indicate that the
whole-unit effects are
regarded as random
variables rather than as
parameters.

normal variables with mean zero and variance σ 2
u . The sub-unit treatment effects are

ζs , the interactions between sub- and whole-unit treatments τws and the sub-unit errors
εbws , taken to be normal with mean zero and variance σ 2 independent of each other
and of the ubw . Terms ξbs are not included because interaction between blocks and
sub-units makes no sense.

Under this model different treatments are analyzed at different levels. Whole-unit
averages have variance σ 2

u + σ 2/S estimated by the residual mean square from a ran-
domized block analysis of these averages, with (B − 1)(W − 1) degrees of freedom.
Whole-unit treatments are compared using contrasts of these averages such as

y·2· − y·1· = γ2 − γ1 + u·2 − u·1 + ε·2· − ε·1·,

whose variance is 2σ 2
u /B + 2σ 2/(BS). Comparisons of sub-unit treatments and their

interactions with whole-unit treatments use the BW (S − 1) remaining degrees of
freedom and involve quantities such as

y··2 − y··1 = ζ2 − ζ1 + τ ·2 − τ ·1 + ε··2 − ε··1,
(y·22 − y·21) − (y·12 − y·11) = τ22 − τ21 − τ12 + τ11 + ε·22 − ε·21 − ε·12 + ε·11,

with variances respectively 2σ 2/(BW ) and 4σ 2/B. As there are S − 1 degrees of
freedom for sub-unit treatments and (S − 1)(W − 1) degrees of freedom for their
interactions with whole-unit treatments,

BW (S − 1) − (S − 1) − (S − 1)(W − 1) = W (B − 1)(S − 1)

degrees of freedom remain for estimation of σ 2. If the variability between whole units
is larger than that within them, that is, σ 2 < σ 2

u , then comparisons among sub-unit
treatments and their interactions with whole-unit treatments will be more precise than
among whole-unit treatments themselves.

Example 9.15 (Cake data) Table 9.24 gives data from an experiment in which six
different temperatures for cooking three recipes for chocolate cake were compared.
Each time a mix was made using one of the recipes, enough batter was prepared
for six cakes, which were then randomly allocated to be cooked at temperatures
175, 185, . . . , 225◦C. Thus mixes correspond to blocks, recipes are the whole-unit
treatments and baking temperatures the sub-unit treatments. We suppose that the 15
mixes of each recipe were made in order 1, . . . , 15, so that mix is a surrogate for time.

The response is the breaking angle, found by fixing one half of a slab of cake, then
pivoting the other half about the middle until breakage occurs. Let yrmt denote the
response for the r th recipe, mth mixture and t th temperature, where r = 1, . . . , 3,
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Table 9.24 Data on
breaking angles (◦) of
chocolate cakes (Cochran
and Cox, 1959, p. 300).

Temp
Mix

Recipe ◦C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 175 42 47 32 26 28 24 26 24 24 24 33 28 29 24 26
185 46 29 32 32 30 22 23 33 27 33 39 31 28 40 28
195 47 35 37 35 31 22 25 23 28 27 33 27 31 29 32
205 39 47 43 24 37 29 27 32 33 31 28 39 29 40 25
215 53 57 45 39 41 35 33 31 34 30 33 35 37 40 37
225 42 45 45 26 47 26 35 34 23 33 30 43 33 31 33

2 175 39 35 34 25 31 24 22 26 27 21 20 23 32 23 21
185 46 46 30 26 30 29 25 23 26 24 27 28 35 25 21
195 51 47 42 28 29 29 26 24 32 24 33 31 30 22 28
205 49 39 35 46 35 29 26 31 28 27 31 34 27 19 26
215 55 52 42 37 40 24 29 27 32 37 28 31 35 21 27
225 42 61 35 37 36 35 36 37 33 30 33 29 30 35 20

3 175 46 43 33 38 21 24 20 24 24 26 28 24 28 19 21
185 44 43 24 41 25 33 21 23 18 28 25 30 29 22 28
195 45 43 40 38 31 30 31 21 21 27 26 28 43 27 25
205 46 46 37 30 35 30 24 24 26 27 25 35 28 25 25
215 48 47 41 36 33 37 30 21 28 35 38 33 33 25 31
225 63 58 38 35 23 35 33 35 28 35 28 28 37 35 25
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Figure 9.8 Cake data.
Left: variation of
yrmt − yrm· across mixes
for the three recipes. The
vertical lines demarcate
results for the three
recipes. Right:
dependence of yrmt − y··t
on temperature.

m = 1, . . . , 15 and t = 1, . . . , 6. The model we consider is

yrmt = µ + βr + γm + urm + ζt + τr t + εrmt , (9.11)

where the urm
iid∼ N (0, σ 2

u ) represent the whole-unit errors corresponding to the mixes
made for each recipe, and the εrmt

iid∼ N (0, σ 2) denote the sub-unit errors. We treat the
βr and γm as parameters and the urm as random variables because if the experiment
was repeated, the recipes would be unchanged and the time ordering would still arise,
but the mixes would be different.

The left panel of Figure 9.8 shows how yrmt − yrm· varies across mixes for the three
recipes. There is evidently a systematic effect of mix, with responses for the first few
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Table 9.25 Analysis of
variance on a split-unit
basis for cakes data. The
F statistics for the upper
part are computed using
the residual sum of
squares (a) for contrasts
among whole units. Those
in the lower part are
computed using (b), the
residual sum of squares
for contrasts among split
units. There are large
differences among mixes
and temperatures, but not
among recipes. The
temperature effect is
essentially linear.

Source of variation df Sum of squares Mean square F

Mixes 14 8.159 0.583 12.15
Recipes 2 0.186 0.093 1.93
Residual (a) 28 1.343 0.048

Temperatures 5 2.051 0.410 21.32
Linear 1 1.925 1.925 100.08
Quadratic 1 0.021 0.021 1.08
Cubic, quartic, quintic 3 0.105 0.035 1.82

Recipes × Temperatures 10 0.176 0.018 0.91
Residual (b) 210 4.040 0.019

Table 9.26 Average log
breaking angle (degrees)
of cakes by recipe and
temperature.

Temperature (◦C)

Recipe 175 185 195 205 215 225 Average

1 3.350 3.433 3.409 3.493 3.638 3.535 3.476
2 3.270 3.355 3.428 3.443 3.505 3.537 3.423
3 3.293 3.331 3.428 3.405 3.516 3.538 3.419

Average 3.304 3.373 3.422 3.447 3.553 3.537 3.439

mixes for each recipe substantially greater than for later ones, but any recipe differ-
ences seem small. The right panel shows roughly linear dependence on temperature
of the differences yrmt − y··t , from which whole-unit variation has been eliminated,
but there is a perceptible increase in variance with mean. This suggests use of log-
transformed responses, which is confirmed by a Box–Cox analysis (Example 8.23).

Table 9.25 shows the analysis of variance for the model fitted to the log responses.
There are 3 × 15 = 45 whole units, from which a grand mean and 44 contrasts may be
computed. The component of variance for these 44 degrees of freedom is shown in the
upper part of the table, split into 14 degrees of freedom among mixes, 2 among recipes
and 28 residuals. The mean square at (a) estimates σ 2 + 6σ 2

u and is the appropriate
basis for comparison of recipes and mixes. There are large differences among mixes
but not among recipes.

The lower part of the table shows the 3 × 15 × (6 − 1) = 225 degrees of freedom
for contrasts within whole units, of which there are 5 among temperatures and
(3 − 1) × (6 − 1) for the recipe × temperature interaction. The mean square for resid-
ual (b) estimates σ 2, and comparison with (a) gives estimate (0.048 − 0.019)/6 =
0.0035 of σ 2

u , rather small variation among mixes. A split of the overall temperature
effect into linear, quadratic and remaining effects confirms the linearity of the effect
of temperature on the response.

Table 9.26 shows average log breaking angles by recipe and temperature. Each
average is based on 15 raw observations and has variance σ 2

u + σ 2/15, but while
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differences between rows involve the u’s, those between columns do not. Differ-
ences between two recipe averages and between two temperature averages have vari-
ances 2(σ 2

u + σ 2/6)/15 and 2(σ 2/15)/3, estimated by 2 × 0.048/90 = 0.0333 and
2 × 0.019/45 = 0.0292. The difference between two temperature averages for one
recipe, yr ·t1 − yr ·t2 , does not depend on the urm , so its variance is 2σ 2/15, while the
difference of two recipe averages for a given temperature, yr1·t − yr2·t , involves both
u’s and ε’s and has variance 2(σ 2

u + σ 2)/15; these variances are estimated respectively
by 2 × 0.019/15 = 0.0502 and 2 × {5 × 0.019 + 0.048)/90 = 0.0562.

The best summary of the results here is Table 9.26, supplemented by the standard
errors for comparisons among the averages. �

9.4.2 Linear mixed models

In many situations the comparison of treatments is complicated by correlations among
the responses. In medical settings, for example, a common design involves repeated
measures on the same individual, leading to repeated measures or longitudinal data.
Related designs arise in many types of investigation. Although the notion of levels of
variation underlying the classical split-plot experiment remains very useful, such data
are rarely neatly balanced and their analysis and interpretation is less straightforward.
In this section we briefly put such experiments in a more general context.

When confronted with a complex experiment, it is helpful to ask if it is reasonable
to assume that the levels of certain factors have been selected from a population. If
so, we ask if interest resides purely in the population, or also in the realized values of
random variables sampled from it. When this latter is the case, then we must estimate
not only properties of the population but also the underlying variables. In dairy herd
breeding experiments, for example, bulls and cows are mated and the milk yield of
their daughters is treated as the response. As any repetition of the experiment would
involve different animals, they are regarded as randomly sampled from a population.
It is useful to estimate effects for individual animals, however, in order to retain for
future breeding those bulls whose daughters give the best yield. Thus although a
random effects model is appropriate, estimates of the random effects are required.
Similar considerations arise in many other contexts, and we now discuss inference
for random effects.

We consider normal linear models of form

y = Xβ + Zb + ε, (9.12)

where in addition to the usual setup the n × q matrix Z indicates how the response
vector y depends on the q × 1 vector of unobserved random variables b. This is called
a mixed model because the response depends on random variables b as well as on
fixed parameters β. If b is normal with mean zero and covariance matrix �b, then we
may write

y | b ∼ Nn(Xβ + Zb, �) and b ∼ Nq (0, �b). (9.13)
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Thus the marginal density of y is normal with mean Xβ and variance matrix Z�b Z T +
�, which does not depend on β. In most cases � = σ 2 In , where σ 2 = var(ε j ), and
later it will be useful to write Z�b Z T + � = σ 2ϒ−1, say. We use ψ to denote the
vector of distinct variance ratios appearing in ϒ−1.

Example 9.16 (Longitudinal data) A short longitudinal study has one individual
allocated to the treatment and two to the control, with observations

y1 j = β0 + b1 + ε1 j , y21 = β0 + b2 + ε21, y3 j = β0 + β1 + b3 + ε3 j , j = 1, 2.

Thus there are two measurements on the first and third individuals, and just one on the
second. The b j represent variation among individuals and the εi j variation between
measures on the same individuals. If the b’s and ε’s are all mutually independent with
variances σ 2

b and σ 2, then



y11

y12

y21

y31

y32


 =




1 0
1 0
1 0
1 1
1 1




(
β0

β1

)
+




1 0 0
1 0 0
0 1 0
0 0 1
0 0 1





 b1

b2

b3


 +




ε11

ε12

ε21

ε31

ε32


 ,

and this fits into formulation (9.12) with �b = σ 2
b I3 and � = σ 2 I5. Here ψ comprises

the scalar σ 2
b /σ 2, and hence the variance matrix

� + Z�b Z T =




σ 2
b + σ 2 σ 2

b 0 0 0
σ 2

b σ 2
b + σ 2 0 0 0

0 0 σ 2
b + σ 2 0 0

0 0 0 σ 2
b + σ 2 σ 2

b

0 0 0 σ 2
b σ 2

b + σ 2




may be written as

σ 2ϒ−1 = σ 2




1 + ψ ψ 0 0 0
ψ 1 + ψ 0 0 0
0 0 1 + ψ 0 0
0 0 0 1 + ψ ψ

0 0 0 ψ 1 + ψ


 ,

of block diagonal form. �

In principle likelihood inference for the parameters of this model may be based on
the marginal normal density of y, which gives log likelihood

�(β, σ 2, ψ) ≡ − 1

2σ 2
(y − Xβ)T ϒ(y − Xβ) − n

2
log σ 2 + 1

2
log |ϒ |,

where ϒ depends on ψ . For known ψ the maximum likelihood estimators of β and
σ 2 are

β̂ψ = (X Tϒ X )−1 X Tϒy, σ̂ 2
ψ = n−1(y − X β̂)Tϒ(y − X β̂),
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so the profile log likelihood for ψ is �p(ψ) ≡ − 1
2 n log σ̂ 2

ψ + 1
2 log |ϒ |. We maximize

this to estimate ψ , and then obtain maximum likelihood estimates β̂ψ̂ and σ̂ 2
ψ̂

. Thus
inference boils down to maximization of �p(ψ) .

Unfortunately life is not so simple. One difficulty is that the maximum likelihood
variance estimators can have large downward bias because no adjustment is made for
the degrees of freedom lost in estimating the p × 1 vector β. In such models p can
be large, and then it is important to replace the divisor n in σ̂ 2 by the true degrees of
freedom n − p. Adjustment both for this and for estimation of the elements of ψ can
be performed by maximizing the modified log likelihood

�(β, σ 2, ψ) + p

2
log σ 2 − 1

2
log |X Tϒ X |.

This procedure, known as REML or restricted maximum likelihood estimation, is
justified in Section 12.2. It turns out to be equivalent to use of a marginal likelihood,
that is, a likelihood formed from a cunningly chosen marginal density rather than the
full density of the data.

A second difficulty is that the domain forψ is [0, ∞)dim ψ . If the maximum occurs on dim ψ is the dimension of
ψ .the boundary of this set, then standard likelihood theory does not apply to confidence

intervals and so forth. Care must anyway be used unless the maximum lies well away
from the boundary. If so, standard errors for β̂ are found from σ 2(X Tϒ X )−1 with
parameters replaced by estimates.

A third difficulty is computational: in realistic problems the matrices involved in
such models can be large enough that even specially designed optimization routines
converge only slowly.

Prediction of random effects

Once estimates of β, σ 2, and ψ have been obtained, the question arises how to perform
inference for the random variables b. We prefer to reserve the term estimation for
unknown parameters and to speak of prediction of unobserved random variables. In
normal models it is natural to choose the predictor b̃ = b̃(y) to be the function of y
that minimizes the mean squared prediction error

E[{b̃(y) − b}T{b̃(y) − b}],

where the expectation is over both b and y. It is straightforward to show that this is
achieved by taking b̃(y) = E(b | y), the conditional mean of b given y. As b and y
have a joint normal distribution, we obtain (Exercise 9.4.5)

E(b | y) = (
Z T�−1 Z + �−1

b

)−1
Z T�−1 (y − Xβ) , (9.14)

var(b | y) = (
Z T�−1 Z + �−1

b

)−1
. (9.15)

Replacement of the unknown parameters by estimates results in the predictions b̃ and
their estimated variance. It turns out that the b̃ are best linear unbiased predictors They are often called

BLUPs.(Problem 9.6). If �−1
b was absent, then (9.14) would be the weighted least squares

estimator from regressing (y − Xβ) on the columns of Z with weight matrix �−1.
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The presence of �−1
b means that b̃ is shrunk towards zero compared to the weighted

least squares estimator, and for this reason b̃ is known as a shrinkage estimator.
The residuals too are modified due to shrinkage. As

y − X β̂ = Zb̃ + y − X β̂ − Zb̃

= Zb̃ + {
In − Z

(
Z T�̂−1 Z + �̂−1

b

)−1
Z T�̂−1

}
(y − X β̂),

the residuals y − X β̂ split into two parts, the first Zb̃ being attributable to the predicted
random effects, and the second being the usual residual y − X β̂ shrunk towards zero;
this estimates ε.

Example 9.17 (One-way layout) Consider the unbalanced one-way layout model

yi j = µ + bi + εi j , j = 1, . . . , ni , i = 1, . . . , q,

in which the group effects bi
iid∼ N (0, σ 2

b ) independently of the individual errors
εi j

iid∼ N (0, σ 2). This generalizes (9.8). In terms of (9.12),

� = σ 2 In, �b = σ 2
b Iq , X = 1n, Z =




1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq


 ,

where n = n1 + · · · + nq . Substitution into (9.14) and (9.15) reveals that the i th
element of b̃ and its estimated variance are

b̃i = yi · − y··
1 + σ̂ 2/

(
ni σ̂

2
b

) ,
1

1/σ̂ 2
b + ni/σ̂ 2

,

so the fixed-effects estimator yi · − y·· is shrunk towards zero by an amount that
depends on the estimated variance ratio. The shrinkage will be considerable if
σ̂ 2/ni � σ̂ 2

b , corresponding to large variation in the group averages owing to in-
dividual variances compared to the variation between groups, as in Example 9.14.
The data are then almost a simple random sample of size n, so strong shrinkage is not
surprising.

The variance formula is also instructive, as var(b̃i | y) → 0 when σ 2
b → 0, σ 2 → 0,

or ni → ∞. In the first case, there is no variation between groups, and hence bi = 0
with probability one. In the second two cases, the value of bi is known exactly, because
variation around it is negligible. The practical implication is that consistent inference
for bi is impossible when σ 2

b and σ 2 take positive values: even if q → ∞, the amount
of information on any given bi does not accumulate unless ni → ∞, and this is rarely
the case. This applies to estimation of random effects more generally. �

Example 9.18 (Rat growth data) Table 9.27 gives the weights of n = 30 young
rats measured for five weeks. The left panel of Figure 9.9 shows that although the
weight of each rat grows roughly linearly, neither slope nor intercept appears to be
common to all the animals. This is confirmed by the analysis of variance from fitting
standard linear models with common intercept and slope, different intercepts, and
both intercepts and slopes different: the F tests are all highly significant.
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Table 9.27 Weights
(units unknown) of
30 young rats over a
five-week period (Gelfand
et al., 1990).

Week Week

1 2 3 4 5 1 2 3 4 5

1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323

10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 188 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324
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Figure 9.9 Rat growth
data. Left: weekly weights
of 30 young rats. Right:
shrinkage of individual
slope estimates towards
overall slope estimate; the
solid line has unit slope,
and the estimates from the
mixed model lie slightly
closer to zero than the
individual estimates.

We treat the rats as a sample from a population of similar creatures, with different
initial weights and growing at different rates. To model this we express the data from
the j th rat as

y jt = β0 + b j0 + (β1 + b j1)x jt + ε j t , t = 1, . . . 5,

where the random variables (b j0, b j1) have a joint normal distribution with mean
vector zero and unknown variance matrix. In matrix terms we have


y j1
...

y j5


 =




1 x j1
...

...
1 x j5




(
β0

β1

)
+




1 x j1
...

...
1 x j5




(
b j0

b j1

)
+




ε j1
...

ε j5


 , j = 1, . . . , n,

and the overall model is obtained by stacking these expressions. Below we take
(x j1, . . . , x j5) = (0, . . . , 4), so that the intercept β0 corresponds to the weight in
week 1. There are just p = 2 population parameters β0 and β1, but q = 60 because
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Table 9.28 Results from
fit of mixed model to rat
growth data, using REML.
Values in parentheses are
for maximum likelihood
fit. In each case
σ̂ 2 = 5.822.

Fixed Random

Parameter Estimate Standard error Variance Correlation

Intercept 156.05 2.16 (2.13) 10.932 (10.712)
Slope 43.27 0.73 (0.72) 3.532 (3.462) 0.18 (0.19)

there are two random variables per rat. We assume that the within-rat errors ε j t are
independent normal variables with variances σ 2, independent of the b’s.

Table 9.28 gives estimates from REML and maximum likelihood fits of this model.
As expected, the maximum likelihood estimates for variances are smaller than the
REML estimates, but here p is small and the difference is minimal. The estimated
mean weight in week 1 is 156, but the variability from rat to rat has estimated standard
deviation of about 11 about this. The slopes show similarly large variation. Correlation
between the slope and intercept variables is small, however. The measurement error
variance σ̂ 2 = 5.822 is smaller than is the inter-rat variation in intercepts, but exceeds
that for slopes.

The right panel of Figure 9.9 shows how the slope estimates from fitting separate
models to each rat are shrunk towards the overall value. The amount of shrinkage is
small, owing to the relatively large variation among the rats relative to σ̂ 2, and as it
depends on the intercepts it is not uniform.

Probability plots show that the residuals and random effects b̃ are reasonably
close to normal, but a plot of residuals against week suggests adding quadratic terms
(β2 + b j2)x2

j t . Their inclusion reduces AIC for REML from 1096.58 to 1013.36, a
large improvement, but the resulting model involves predicting 90 b’s from 150 obser-
vations, leaving only about two observations per rat for model checking. Fortunately
cubic terms do not seem to be necessary as well. �

Sometimes it is helpful to separate b into sub-vectors corresponding to different
levels of variation. For example, educational studies may involve classes of students
in different schools belonging to different educational authorities, so that comparisons
of outcomes must take into account different levels of random effects as well as fixed
effects corresponding to types of school, socio-economic background of students,
and so forth. For data with L levels of variation it may be useful to write this as a
multi-level model

y = Xβ + ZLbL + · · · + Z0b0, (9.16)

where the ql × 1 vectors bl are all mutually independent with means zero and variance
matrices �l . Then the marginal mean of y is Xβ, while its variance is

∑L
l=0 Zl�l Z T

l .
For consistency we set Z0 = In and let b0 contain the errors, so b0 = ε and �0 = σ 2 In .
The examples above have L = 1, so in addition to measurement error there is just
one other level of variation, corresponding to individuals. More generally L > 1, and
var(y) is formed by adding block diagonal matrices. References to fuller discussions
can be found in Section 9.5.
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Table 9.29 The numbers
of red blood cells counted
by five doctors using ten
sets of apparatus.

Pipette and counting chamber

Doctor 1 2 3 4 5 6 7 8 9 10

A 427 372 418 440 349 484 430 416 449 464
B 434 420 385 472 415 420 415 396 439 424
C 480 421 473 496 474 411 472 423 502 488
D 451 369 500 464 444 410 422 396 459 471
E 462 453 450 520 489 409 508 347 440 391

Exercises 9.4

1 Consider (9.8).
(a) Show that a confidence interval for the mean of the t th group, αt = µ + bt , may be
based on T = (yt · − αt )/[SSw/{T R(R − 1)}]1/2, and give its distribution.
(b) Suppose we take a single observation on a randomly selected block. Show that its
variance is σ 2 + σ 2

b , and that this is estimated unbiasedly by {T SSb + (T − 1)SSw }/
{RT (T − 1)}.
(c) Suppose a fixed number n = RT of units is available, and that it is required to minimize
the variance of the population mean estimator, y··. Show that we should take T as large
as possible, that is, R = 2.
(d) Suppose there is a cost c0 for measuring the response on each unit, and a cost c1

for each group. Show that the total cost is RT c0 + T c1, and find R to minimize var(y··)
subject to a fixed total cost.

2 Discuss how to check the assumptions of the components of variance model (9.8) using
(i) normal probability plots of the ytr − yt · and of the yt · and (ii) chi-squared probability
plots of the group sums of squares

∑
r (ytr − yt.)

2. In each case give the expected slope
and intercept of the plot.
Show that if R is small a normal scores plot of the (ytr − yt ·)/{(R − 1)/R}1/2 is preferable
to one based on the ytr − yt ·.
Discuss whether (9.8) is appropriate for the data of Example 9.14.

3 Table 9.29 gives the numbers of red blood cells counted by five doctors using ten sets of
apparatus. Suppose that both doctors and sets of apparatus are thought of as randomly
selected from suitable populations, and that the response for the r th doctor and cth set of
apparatus is

yrc = µ + dr + ac + εrc,

where dr , ac, and εrc are independent normal variables with zero means and variances σ 2
d ,

σ 2
a , and σ 2.

(a) Show that if the means of the dr , ac, and εrc were in fact non-zero, they could not be
distinguished from µ. Give a careful interpretation of µ.
(b) By arguing conditionally on the values of the dr and ac, show that the sums of squares
for rows,

∑
r,c(yr · − y··)

2, columns,
∑

r,c(y·c − y··)
2, and residuals,

∑
r,c(yrc − yr · − y·c +

y··)
2, are independent. Obtain their distributions, and hence give formulae for unbiased

estimates of the variances.
(c) The sums of squares for the analysis of variance table are 2969 for pipettes on 9 df,
2938 for doctors on 4 df, and 1176 for residual on 36 df. Obtain estimates of σ 2

d , σ 2
a ,

and σ 2.
(d) Now suppose that general practitioners are to perform these measurements on a routine
basis, with results referred to a central laboratory. Under the assumption that the data are
normal, give the standard error for a measurement taken by a particular GP (i) if the
apparatus is reusable, (ii) if a new set of apparatus must be used for each measurement.
What standard error is appropriate if the measurements are rarely made, so that in effect
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both GP and apparatus are new? What if the average of k measurements is recorded, and
(i) apparatus is reusable, (ii) apparatus is not reusable?

4 Write down the linear mixed models corresponding to (9.8) and (9.11).

5 Use (3.21) and Exercise 8.5.2 to obtain (9.14) and (9.15).

6 On page 458, let b† be any predictor of b based on y. Show that

cov(b, b̃) = var(b̃), cov(b̃, y) = cov(b, y), cov(b†, b) = cov(b†, b̃),

and deduce that

corr(b†, b)2 = corr(b†, b̃)2corr(b̃, b)2.

Hence show that b̃ is the predictor of b that maximizes corr(b†, b).

7 Consider applying the EM algorithm (Section 5.5.2) for estimation in a normal mixed
model. Show that if the random effects b are treated as unobserved data, then the complete-
data log likelihood is

−1

2
log |�| − 1

2
(y − Xβ − Zb)T�−1(y − Xβ − Zb) − 1

2
log |�b| − 1

2
bT�−1

b b,

and show that the only quantity needed for the M-step for estimation of components of
�b is E

(
bT�−1

b b | y; θ ′).
In the special case �b = σ 2

b Iq , � = σ 2 In , show that E(bTb | y; θ ′) equals

tr
{
σ ′2

b Iq − (σ ′
b/σ

′)2 Z Tϒ ′ Z
} + (σ ′

b/σ
′)4(y − Xβ ′)Tϒ ′ Z Z Tϒ ′(y − Xβ ′).

Hence write down the form of the EM algorithm for this model.
(Searle et al., 1992, Section 8.3)

8 Another approach to estimation in mixed models starts from noticing that

E{(y − Xβ)(y − Xβ)T} = � + Z�b Z T

is linear in the variance parameters. Thus given an estimate β̂, we could stack the unique
elements of (y − X β̂)(y − X β̂)T as a vector, v , say, and estimate the variance param-
eters by least squares regression of v on the appropriate design matrix. We then takeThis is sometimes called

iterative generalized least
squares or IGLS
estimation.

β̂ = (X Tϒ X )−1 Xϒy, where ϒ is formed using the variance estimates, and iterate the
procedure.
Give the details of this for Example 9.16, using as initial value σ 2

b = 0.
What difficulties do you see with this approach in general? Say how they might be over-
come.

9.5 Bibliographic Notes

Designed experiments were used in the nineteenth century and earlier, but R. A. Fisher
was the first to realise the importance of randomization, and his ideas had a strong
impact from the 1920s onwards. His 1935 book on design of experiments, re-issued
as part of Fisher (1990), is fundamental reading. Important further developments,
particularly in agricultural experimentation, were due to F. Yates, with Yates (1937)

Frank Yates (1902–1994)
was born in Manchester
and educated there and in
Cambridge. After working
on a survey in Ghana he
became Fisher’s assistant
at Rothamsted
Experimental Station,
where he rapidly became
head of the statistics
department. He made
fundamental contributions
to the design and analysis
of experiments and to
sample surveys. He
quickly saw the
importance of computing:
in the 1950s he and his
colleagues wrote machine
code programs for
analysis of variance and
for survey analysis.

highly influential. An excellent recent account is Cox and Reid (2000), which con-
tains a full treatment of the topics of this chapter and other topics not mentioned
here, with many further references. A more elementary discussion is Cobb (1998).
Older standard texts are Cochran and Cox (1959) and the excellent non-mathematical
treatment of Cox (1958).
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The study of causality is central to scientific thought, but has been little discussed by
statisticians until fairly recently. A valuable account and excellent starting-point for
further reading is Chapter 8 of Edwards (2000), while Holland (1986) is a good review
making links to the philosophical study of causation. Cox (1992) and Section 8.7 of
Cox and Wermuth (1996) give a somewhat different perspective. Contrasting views
on the usefulness of counterfactuals are held by Dawid (2000), Lauritzen (2001), and
Pearl (2000).

Scheffé (1959) is a standard account of the analysis of variance.
Box et al. (1978) and Fleiss (1986) respectively discuss industrial experimentation

and medical studies. Atkinson and Donev (1992) give a clear discussion of optimal
experimental design; see also Silvey (1980) for a more theoretical account.

Components of variance models originated in astronomy in the 1860s and have
been rediscovered and renamed many times since, being also known as hierarchical
or multilevel models. Chapter 2 of Searle et al. (1992) gives a brief history oriented
towards biometry and agriculture, while Goldstein (1995) describes their use in the so-
cial sciences, using slightly different estimation techniques and with a largely disjoint
set of references! Although R. A. Fisher had discussed components of variance in the
1920s and 1930s, important work by Henderson (1953) and Hartley and Rao (1967)
was key in a more general reformulation, while Patterson and Thompson (1971) built
on earlier work to give a general discussion of REML estimation. Robinson (1991)
is a passionate advocate of best linear unbiased prediction, with an interesting and
wide-ranging discussion; see particularly the contribution by T. P. Speed. McCulloch
and Searle (2001) give a recent account of variance components estimation in linear
and generalized linear models.

9.6 Problems

1 Example 9.6 is a two-way layout with replication, in which the j th replicate in row r and
column c is

yrcj = µ + αr + βc + γrc + εrcj , r = 1, . . . , R, c = 1, . . . , C, j = 1, . . . , k.

The αr and βc represent the main effects of rows and columns; the γrc are row×column
interactions; and εrcj

iid∼ N (0, σ 2).
(a) Explain why an external estimate of σ 2 is needed if the γrc are known not to be constant,
and k = 1.
(b) A first step in the analysis of such data is to calculate the cell mean and sums of squares
yrc· and

∑
j (yrcj − yrc·)

2. Show that the distribution of each cell sum of squares is σ 2χ 2
k−1,

and explain what you might expect to learn from a plot of log
∑

j (yrcj − yrc·)
2 against

log yrc·. What does this plot show for the poisons data?
(c) The analysis of variance for this design is in Table 9.30. Show that

E

{∑
r,c, j

(yr ·· − y···)
2

}
= (R − 1)σ 2 + kC

∑
r

(αr − α· + γ r · − γ ··)
2,

and write down E{∑r,c, j (y·c· − y···)
2}. Explain why these depend on the αr and βc only

through αr − α· and βc − β ·.
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Table 9.30 Analysis of
variance for two-way
layout with replication.

Terms df Sum of squares

Rows R − 1
∑

r,c, j (yr ·· − y···)2

Columns C − 1
∑

r,c, j (y·c· − y···)2

Rows × Columns (R − 1)(C − 1)
∑

r,c, j (yrc· − yr ·· − y·c· + y···)2

Residual RC(k − 1)
∑

r,c, j (yrcj − yrc·)2

(d) Show that

E

{∑
r,c, j

(yrc· − yr ·· − y·c· + y···)
2

}
= (R − 1)(C − 1)σ 2 + k

∑
rc

(γrc − γ r · − γ ·c + γ ··)
2.

Under what circumstances does this equal (R − 1)(C − 1)σ 2?

2 Let ygr , g = 1, . . . , G, r = 1, . . . , R, be independent normal random variables with means
µgr and common variance σ 2.
(a) Assume the one-way analysis of variance model, namely that µgr = µg , so that the
ygr are replicate measurements with the same mean, and find the sufficient statistics for
the µs and σ 2. Show that these are equivalent to

y1·, . . . , yG·, SS =
G∑

g=1

R∑
r=1

(ygr − yg·)
2,

where yg· = R−1
∑R

r=1 ygr ; note that∑
r

(ygr − µg)2 =
∑

r

(ygr − yg·)
2 + R(yg· − µg)2.

(b) Prove that SS is independent of the group means, and that it is proportional to aFind the distribution of∑R
r=1(ygr − yg·)2. chi-squared random variable on G(R − 1) degrees of freedom.

(c) Let y·· = G−1
∑

g yg· denote the overall mean. If µ1 = · · · = µG , show that the distri-
bution of SSG = R

∑G
g=1(yg· − y··)

2 is proportional to a chi-squared distribution on G − 1
degrees of freedom. Hence find the distribution of G(R − 1)SSG/(G − 1)S2, when the
means are equal.
(d) Samples of the same material are sent to four laboratories for chemical analysis as
part of a study to determine whether laboratories give the same results. The results for
laboratories A–D are:

A 58.7 61.4 60.9 59.1 58.2
B 62.7 64.5 63.1 59.2 60.3
C 55.9 56.1 57.3 55.2 58.1
D 60.7 60.3 60.9 61.4 62.3

Test the hypothesis that the means are different and comment.F3,16(0.95) = 3.24.

3 (a) For n = 2m + 1 and positive integer m, suppose that y1, . . . , yn follow the normal
linear model

y j = β0 +
m∑

k=1

{βk cos(2πk j/n) + γk sin(2πk j/n)} + ε j .

Show that the last 2m columns of the design matrix for this model are orthogonal contrasts,
and find the least squares estimators of the parameters.
(b) Show that the overall sum of squares

∑
y2

j may be split into a component ny2 cor-
responding to the grand mean, and m components I j = n(̂β2

j + γ̂ 2
j )/2 corresponding to

variation with frequency 2π j/n, j = 1, . . . , m. Show that the I j are independent, and
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that if there is no cyclical variation, 1
2 I j has an exponential distribution with mean σ 2,

whatever the value of n.
(c) Dataframe venice contains the annual maximum tides at Venice for the 51 years
1931–1981. It has been suggested that they may vary according to the astronomical tidal
cycle, which has period 18.62 years, and that they may also be affected by the sunspot
cycle, whose period is 11 years. To assess this:

attach(venice)
split.screen(c(1,2))
screen(1); plot(year,sea,ylab="Sea level (cm)")
n <- 51;
k1 <- 19; omega1 <- 2*pi*k1/n # roughly 18.62 years
k2 <- 11; omega2 <- 2*pi*k2/n
X19 <- cbind(sin(year*omega1),cos(year*omega1))
X11 <- cbind(sin(year*omega2),cos(year*omega2))
crossprod(cbind(rep(1,n), X11,X19)) # matrix X^\T X
venice.lm <- lm(sea~X19+X11)
anova(venice.lm,test="F")

Do these cycles seem to be present? How would the knowledge that the errors are non-
normal affect your conclusion?
Hint: If ω = 2πp/n, where p is an integer in the range 1, . . . , [n/2], and k1, k2 are integers
in the range 1, . . . , n, then To verify this, consider

the real and imaginary
parts of the sums
eik1ω + · · · + eik1ωn and
ei(k1+k2)ω + · · · +
ei(k1+k2)ωn .

n∑
j=1

cos(k1ω j) =
n∑

j=1

sin(k1ω j) =
n∑

j=1

cos(k1ω j) sin(k2ω j) = 0,

n∑
j=1

cos(k1ω j) cos(k2ω j) =
n∑

j=1

sin(k1ω j) sin(k2ω j) =
{

n/2, k1 = k2,
0, otherwise.

4 (a) Suppose that times had been obtained only for the odd-numbered setups Example 8.4.
Further suppose that two people had been involved, and that one had ridden the bike for
those setups with the seat in the low position, while the other had done so for those with
the seat in the high position. Show that in this case the estimated seat and person effects
are the same, and discuss what this implies about what the seat height should be.
(b) Now suppose that one person had ridden the bike for setups 1, 7, 9, and 15, while
the other person had done so for setups 3, 5, 11, and 13. Show that provided there are no
second- and higher-order interactions, the seat, tyre, dynamo and person effects could all
be estimated from this experiment. What problem would arise if there was known to be
an interaction of seat and dynamo? Explain how to modify the design to overcome this if
it is known that there are no other second-order interactions.

5 The 3 × 3 Latin square laid out as

A B C
B C A
C A B

has nine observations classified by rows, columns, and the treatments A, B, and C. The
corner-point parametrization for the means is

µ µ + α1 + γ1 µ + α2 + γ2

µ + δ1 + γ1 µ + α1 + δ1 + γ2 µ + α2 + δ1

µ + δ2 + γ2 µ + α1 + δ2 µ + α2 + δ2 + γ1

;

α1, α2 are column effects, δ1, δ2 are row effects and γ1, γ2 are treatment effects.
Write out the corresponding design matrix and verify that the effects of rows, columns,
and treatments are not orthogonal. Check that the matrix is orthogonal when the terms for
rows, columns and treatments are centred. Without doing any calculations, say whether
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the same is true for the Graeco-Latin square

Aα Bβ Cγ
Bγ Cα Aβ
Cβ Aγ Bα

in which there is the further set of treatments α, β, γ .

6 (a) Let A be a q × q positive definite symmetric matrix, and let b and y be two random
variables with a joint distribution. Let b† = b†(y) denote any predictor of b based on y,
and let b̃ = E(b | y), assuming this is finite for all y. By writing

E{(b† − b)T A(b† − b)} = EyEb|y{(b† − b̃ + b̃ − b)T A(b† − b̃ + b̃ − b) | y},
deduce that this is minimized when b† = b̃, for any A and any joint distribution. Note that
E(b̃) = E(b), so in this sense b̃ is unbiased.
(b) Now consider the class of linear predictors b†(y) = a + By, where a and B are con-
stants of dimensions q × 1 and q × n. Let W = b − By, and show that

E{(b† − b)T A(b† − b)} = {a − E(W )}T A{a − E(W )} + tr{Avar(W )}.
Deduce that this is minimized by taking a = −B Xβ and B = σ−2�b Z Tϒ . Hence show
that σ−2�b Z Tϒ(y − Xβ) is the best linear predictor of b whatever the distributions of b
and y.

7 (a) Show that the log likelihood in Example 9.17 isYou may like to know that
|cIk + d1k 1T

k | =
ck−1(c + kd).

�(µ, σ 2, ψ) ≡ − 1

2σ 2

{
SSw +

q∑
i=1

ni (yi · − µ)2

1 + niψ

}
− n

2
log σ 2 − 1

2

q∑
i=1

log(1 + niψ),

where ψ = σ 2
b /σ 2 and SSw = ∑

i, j (yi j − yi ·)
2.

(b) Show that using REML increases the log likelihood by

1

2
log σ 2 − 1

2
log

{
q∑

i=1

ni

1 + niψ

}
.

(c) Show that if ψ is known, then

µ̂(ψ) =
∑q

i=1 ni yi ·/(1 + ψni )∑q
i=1 ni/(1 + ψni )

,

and deduce that µ̂ = y·· if the design is balanced, that is, n1 = · · · = nq . In this case obtain
σ̂ 2(ψ) and ψ̂ and compare with the results for (9.8). What is the effect of using REML?
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Nonlinear Regression Models

10.1 Introduction

The regression models of Chapters 8 and 9 involve a continuous response that depends
linearly on the parameters. Linear models remain the backbone of most statistical data
analysis, but they have their deficiencies. In many applications, response variables are
discrete, or statistical or substantive considerations suggest that covariates will appear
nonlinearly. Models of this sort appeared on a somewhat ad hoc basis in the literature
up to about 1970, since when there has been an explosion of generalizations to the
linear model. Two important developments were the use of iterative weighted least
squares for fitting, and the systematic use of exponential family response distributions.
The iterative weighted least squares algorithm has wide applicability in nonlinear
models and we outline its properties in Section 10.2, giving also a discussion of
likelihood inference in this context. Exponential family response densities play a
central role in generalized linear models, which we describe in Section 10.3, turning
to the important special cases of binomial and Poisson responses in Sections 10.4 and
10.5. These models are widely used, but real data often display too much variation
for them to be taken at face value. In Section 10.6 we outline remedies for this, based
on the discussion of estimating functions in Section 7.2.

In each of these generalizations of the linear model our key notion that a few
parameters summarize the entire model is retained. Section 10.7 branches out in
a different direction, taking the viewpoint that the regression curve itself is more
central than the parameters that summarize it. This leads to the idea of semiparametric
modelling, particularly useful in exploratory analysis and assessment of model fit.
Finally Section 10.8 outlines how the special features of survival data described in
Section 5.4 may be dealt with in regression settings. The remainder of this section
briefly motivates later developments.

Below we mostly assume that the responses y1, . . . , yn are independent, and that
the density of y j depends on a parameter η j , through which systematic variation
enters. The η j depend on parameters β and explanatory variables, so we can write
η j = η j (β). In some models there is an incidental parameter φ which controls the

468
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Table 10.1 Calcium
uptake (nmoles/mg) of
cells suspended in a
solution of radioactive
calcium, as a function of
time suspended (minutes)
(Rawlings, 1988, p. 403).

Time (minutes) Calcium uptake (nmoles/mg)

0.45 0.34170 −0.00438 0.82531
1.30 1.77967 0.95384 0.64080
2.40 1.75136 1.27497 1.17332
4.00 3.12273 2.60958 2.57429
6.10 3.17881 3.00782 2.67061
8.05 3.05959 3.94321 3.43726

11.15 4.80735 3.35583 2.78309
13.15 5.13825 4.70274 4.25702
15.00 3.60407 4.15029 3.42484
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Figure 10.1 Calcium
uptake (nmoles/mg) of
cells suspended in a
solution of radioactive
calcium, as a function of
time suspended (minutes).

shape or spread of the distribution. Usually the aim is inference about the parameters
β or prediction of future responses. For the normal linear model y j is normally
distributed with mean η j and variance φ = σ 2 and η j = xT

jβ, but much wider classes
of models can be put into this framework.

Example 10.1 (Calcium data) Table 10.1 contains data on the uptake of calcium
by cells that had been in “hot” calcium suspension. There are three observations at
each of nine times after the start of the experiment. The data, plotted in Figure 10.1,
show nonlinear dependence of calcium uptake on time.

Let y denote calcium uptake at time x after the start of the experiment. Then a
differential equation that might describe how y depends on x is

dy

dx
= (β0 − y)/β1,

with initial condition y = 0 when x = 0 and solution y = β0{1 − exp(−x/β1)}. Al-
lowing for measurement error, which seems to be similar at all levels of y, we might
write

y = β0{1 − exp(−x/β1)} + ε,
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Table 10.2 Response of
a rufous-tailed jacamar to
individuals of seven
species of palatable
butterflies with artifically
coloured wing undersides.
(N=not sampled, S =
sampled and rejected, E =
eaten)

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes†

N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted 0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0 1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0 6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0

† includes Philaethria dido also.
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Figure 10.2 Proportion
of butterflies eaten
(±2SE) for diffferent
species and wing colour.

where ε is normal with mean zero and variance σ 2. This fits into the general framework
with η(β) = β0{1 − exp(−x/β1)}, if y is normal with mean η and variance σ 2. �

Example 10.2 (Jacamar data) As part of a study of the learning ability of tropical
birds, Peng Chai of the University of Texas at Austin collected data on the response
of a rufous-tailed jacamar, Galbula ruficauda, to butterflies. He used marker pens
to paint the underside of the wings of eight species of butterflies, and then released
each butterfly in the cage where the bird was confined. The bird responded in three
ways: by not attacking the butterfly (N); by attacking the butterfly, then sampling but
rejecting it (S); or by attacking and eating the butterfly, usually after removing some
or all of the wings (E).

Table 10.2 gives the data in the form of an 8 × 6 layout, but the response is a triplet
of counts. Figure 10.2 shows strong variation in the proportion of the different species
and colours eaten.

If we take the number of butterflies eaten as the response, we might consider a
model where the probability of the jacamar eating a butterfly would depend on its
species and on its wing colour. However the low numbers in most cells make it
likely that a linear model would give negative fitted probabilities, and this is clearly
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undesirable. In the better models described in Section 10.3 the probabilities have
logistic form exp(η)/{1 + exp(η)}, where η(β) = xTβ, so once again we have a model
that is nonlinear in the covariates. �

One time-honoured way to treat examples like these is to transform the responses
so that a linear model can be applied. The transformation may be chosen to stabilise
the variance of the response, or better, for simplicity of interpretation. Although trans-
formations remain useful for exploratory analysis and for plotting, they have largely
been superseded by the use of likelihood estimation and more realistic modelling. In
the next section we outline how this may be applied in nonlinear regression.

10.2 Inference and Estimation

10.2.1 Likelihood inference

Inference for nonlinear models is usually based on the large-sample likelihood theory
described in Chapter 4. Under mild regularity conditions the asymptotic chi-squared
distributions of likelihood ratio statistics and the joint normal distribution of the
maximum likelihood estimates of β and φ form the basis for tests and confidence
intervals, though the adequacy of these approximations needs to be considered in
applications.

Comparisons between nested models are often based on a form of likelihood ratio
statistic known as the deviance. Suppose that the log likelihood for a model for
independent observations y1, . . . , yn is

�(β, φ) =
n∑

j=1

log f {y j ; η j (β), φ}, (10.1)

and that φ is known; for now we suppress φ. If the maximum likelihood estimate of
the p × 1 parameter vector β is β̂, then the maximum likelihood estimate of η j is
η̂ j = η j (̂β) and the maximized log likelihood is �(̂β). This is obtained by maximizing
over p parameters, which connect the η j for the different observations y j , and thereby
constrain them: larger p would lead to a larger log likelihood. The saturated model
with no constraints on the η j gives the largest possible log likelihood. Then β has
dimension n and if the map between β and η is 1–1, the maximized log likelihood is
simply the sum of the maxima of the individual terms on the right of (10.1). Let η̃ j be
the value of η j that maximizes log f {y j ; η j }. Then the scaled deviance is defined as

D = 2
n∑

j=1

{log f (y j ; η̃ j ) − log f (y j ; η̂ j )}, (10.2)

which is always non-negative. This will be small when the η̂ j and η̃ j are close,
suggesting that the model fits well. Large D suggests poor fit, analogous to the sum
of squares in a linear model.

Suppose we want to test whether βq+1, . . . , βp take specified values. Let A denote
the model in which all p components of β vary freely and let B denote the model
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with q < p parameters nested within A, with maximum likelihood estimates η̂A and
η̂B and deviances DA and DB . Then the likelihood ratio statistic for comparing the
models is

2
n∑

j=1

{
log f

(
y j ; η̂

A
j

) − log f
(
y j ; η̂

B
j

)} = DB − DA, (10.3)

and provided the models are regular, this has an approximate χ2
p−q distribution when

model B is correct. Hence differences between scaled deviances are often used to
compare nested models.

Example 10.3 (Normal deviance) Suppose that the y j are normal with means η j

and known variance φ. Then

log f (y j ; η j , φ) = −1

2
log(2πφ) − (y j − η j )

2/φ

is maximized with respect to η j when η̃ j = y j , giving log f (y j ; η̃ j , φ) =
− 1

2 log(2πφ). Therefore the scaled deviance for a model with fitted means η̂ j is

D = φ−1
n∑

j=1

(y j − η̂ j )
2,

which is just the residual sum of squares for the model, divided by φ. If η j = xT
jβ

is the correct normal linear model, we saw in Section 8.3 that the distribution of
the residual sum of squares is φχ2

n−p, so values of D extreme relative to the χ2
n−p

distribution call the model into question.
The difference between deviances for nested models A and B in which β has

dimensions p and q < p,

DB − DA = φ−1
n∑

j=1

{(
y j − η̂B

j

)2 − (
y j − η̂A

j

)2} .∼ χ2
p−q

when model B is correct. Results from Section 8.5.1 show that this distribution is
exact for linear models. �

If φ is unknown, it is replaced by an estimate. The large-sample properties of
deviance differences outlined above still apply, though in small samples it may be
better to replace the approximatingχ2 distribution by an F distribution with numerator
degrees of freedom equal to the degrees of freedom for estimation of φ.

10.2.2 Iterative weighted least squares

In order to apply large-sample likelihood approximations we must obtain the max-
imum likelihood estimates β̂ and their standard errors. A general procedure for this
may be obtained by a variant Newton–Raphson method, an iterative weighted least
squares algorithm widely used for nonlinear estimation. We now discuss this and
some of its ramifications.
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Assuming for now that φ is fixed, we write the log likelihood for β as

�(β) =
n∑

j=1

� j {η j (β), φ},

where � j {η j (β), φ} is the contribution made by the j th observation. The maximum
likelihood estimates β̂ usually satisfy the equations∂g/∂β denotes the p × 1

vector whose r th element
is ∂g/∂βr , ∂2g/∂β∂βT

denotes the p × p matrix
whose (r, s) element is
∂2g/∂βr ∂βs , ∂η/∂βT

denotes the n × p matrix
with ( j, r ) element is
∂η j /∂βr , and so forth.
Note that
∂ηT/∂β = (∂η/∂βT)T.

∂�(̂β)

∂βr
= 0, r = 1, . . . , p,

which we put in matrix form to give the likelihood equation

∂�(̂β)

∂β
= ∂ηT

∂β
u (̂β) = 0, (10.4)

where u(β) is the n × 1 vector whose j th element is ∂�(β)/∂η j because η j only enters
the log likelihood through the contribution made by the j th observation.

To find the maximum likelihood estimate β̂ starting from a trial value β, we make
a Taylor series expansion in (10.4), to obtain

∂ηT(β)

∂β
u(β) +

{
n∑

j=1

∂η j (β)

∂β

∂2� j (β)

∂η2
j

∂η j (β)

∂βT
+

n∑
j=1

∂2η j (β)

∂β∂βT
u j (β)

}
(̂β − β)

.= 0.

(10.5)

If we denote the p × p matrix in braces on the left by the p × p matrix −J (β),
assumed invertible, we can rearrange (10.5) to obtain

β̂
.= β + J (β)−1 ∂ηT(β)

∂β
u(β). (10.6)

This suggests that maximum likelihood estimates may be obtained by starting from
a particular β, using (10.6) to obtain β̂, then setting β equal to β̂, and iterating (10.6)
until convergence. This is the Newton–Raphson algorithm applied to our particular
setting. In practice it can be more convenient to replace J (β) by its expected value

I (β) =
n∑

j=1

∂η j (β)

∂β
E

(
−∂2� j

∂η2
j

)
∂η j (β)

∂βT
;

the other term vanishes because E{u j (β)} = 0. We write

I (β) = X (β)TW (β)X (β), (10.7)

where X (β) is the n × p matrix ∂η(β)/∂βT and W (β) is the n × n diagonal matrix
whose j th diagonal element is E(−∂2� j/∂η2

j ).
If we replace J (β) by X (β)TW (β)X (β) and reorganize (10.6), we obtain

β̂ = (X TW X )−1 X TW (Xβ + W −1u) = (X TW X )−1 X TW z, (10.8)

say, where the dependence of the terms on the right on β has been suppressed. That is,
starting from β, the updated estimate β̂ is obtained by weighted linear regression of
the vector z = X (β)β + W (β)−1u(β) on the columns of X (β), using weight matrix
W (β). The maximum likelihood estimates are obtained by repeating this step until
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the log likelihood, the estimates, or more often both are essentially unchanged. The
variable z plays the role of the response or dependent variable in the weighted least
squares step and is sometimes called the adjusted dependent variable.

Often the structure of a model simplifies the estimation of an unknown value of φ.
It may be estimated by a separate step between iterations of β̂, by including it in the
step (10.6), or from the profile log likelihood �p(φ).

Example 10.4 (Normal linear model) In the normal linear model, we write η j =
xT

jβ. If the y j are independently normally distributed with means η j and variances
φ = σ 2, we have

� j (η j , σ
2) ≡ −1

2

{
log σ 2 + 1

σ 2
(y j − η j )

2

}
,

so

u j (η j ) = ∂� j

∂η j
= 1

σ 2
(y j − η j ),

∂2� j

∂η2
j

= − 1

σ 2
;

the j th element on the diagonal of W is the constant σ−2. The ( j, r ) element of the
matrix ∂η/∂βT is ∂η j/∂βr = x jr , so X (β) is simply the n × p design matrix X . We
see that z = X (β)β + W −1(β)u(β) = y, because in this situation X (β)β = Xβ and
W −1(β)u(β) = σ 2(y − Xβ)/σ 2.

Here iterative weighted least squares converges in a single step.
The maximum likelihood estimate of σ 2 is obtained as in Section 8.2.1, and is

σ̂ 2 = SS(̂β)/n, where SS(β) is the sum of squares (y − Xβ)T(y − Xβ). �

Example 10.5 (Normal nonlinear model) Here the mean of the j th observation
is η j = η j (β). The log likelihood contribution � j (η j ) is the same as in the previous
example, so u and W are the same also. However, the j th row of the matrix X =
∂η/∂βT is (∂η j/∂β0, . . . , ∂η j/∂βp−1), and as η j is nonlinear as a function of β, X
depends on β. After some simplification, we see that the new value for β̂ given by
(10.8) is

β̂
.= (X T X )−1 X T(Xβ + y − η), (10.9)

where X and η are evaluated at the current β. Here η �= Xβ and (10.9) must be iterated.
The log likelihood is a function of β only through the sum of squares, SS(β) =∑n
j=1{y j − η j (β)}2. The profile log likelihood for σ 2 is

�p(σ 2) = max
β

�(β, σ 2) ≡ −1

2
{n log σ 2 + SS(̂β)/σ 2},

so the maximum likelihood estimator of σ 2 is σ̂ 2 = SS(̂β)/n. Although S2 =
SS(̂β)/(n − p) is not unbiased when the model is nonlinear, it turns out to have
smaller bias than σ̂ 2, and is preferable in applications.

In some cases the error variance depends on covariates, and we write the variance
of the j th response as σ 2

j = σ 2(x j , γ ). Such models may be fitted by alternating
iterative weighted least squares updates for β treating γ as fixed at a current value
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with those for γ with β fixed, convergence being attained when neither estimates nor
log likelihood change materially. �

Iterative weighted least squares can be used for maximum likelihood estimation
in linear models with non-normal errors and extends to situations with dependent
responses.

Example 10.6 (Venice sea level data) In Section 5.1 the straight-line regression
equation y j = γ0 + γ1(x j − x) + ε j was fitted to data on annual maximum sea levels
at Venice from 1931–1981. Fitting was by least squares, as is appropriate for normal
responses, but the right-hand panel of Figure 5.2 suggests that the errors are non-
normal. As the data are annual maxima, it is more appropriate to suppose that y j has
the Gumbel density

f (y j ; η j , τ ) = τ−1 exp

{
− y j − η j

τ
− exp

(
− y j − η j

τ

)}
, (10.10)

where τ is a scale parameter and η j = β0 + β1(x j − x); here we have replaced the
γ s with βs for continuity with the general discussion above. Use of this density is
justified by the arguments leading to (6.34).

In this case

� j (η j , τ ) = − log τ − y j − η j

τ
− exp

(
− y j − η j

τ

)
, (10.11)

and it is straightforward to establish that

∂� j (η j , τ )

∂η j
= τ−1

{
1 − exp

(
− y j − η j

τ

)}
, E

{
−∂2� j (η j , τ )

∂η2
j

}
= τ−2,

that ∂η/∂βT = X is the n × 2 matrix whose j th row is (1, x j − x), and W = τ−2 In .
Hence (10.8) becomes β̂

.= (X T X )−1(Xβ + τ 2u), where the j th element of u is
τ−1[1 − exp{−(y j − η j )/τ }].

Here it is simplest to fix τ , to obtain β̂ by iterating (10.8) for each fixed value of
τ , and then to repeat this over a range of values of τ , giving the profile log likelihood
�p(τ ) and hence confidence intervals for τ . Confidence intervals for β0 and β1 are
obtained from the information matrix.

With starting value chosen to be the least squares estimates of β, and with τ = 5,
19 iterations of (10.8) were required to give estimates and a maximized log likelihood
whose relative change was less than 10−6 between successive iterations. We then took
τ = 5.5, . . . , 40, using β̂ from the preceding iteration as starting-value for the next;
in most cases just three iterations were needed. The left panel of Figure 10.3 shows
a close-up of �p(τ ); its maximum is at τ̂ = 14.5, and the 95% confidence interval
for τ is (11.9, 18.1). The maximum likelihood estimates of β0 and β1 are 111.4 and
0.563, with standard errors 2.14 and 0.137; these compare with standard errors 2.61
and 0.177 for the least squares estimates. There is some gain in precision in using the
more appropriate model. �

Example 10.7 (ABO blood group system) In the usual model for the ABO blood-
group system (Examples 4.38, 5.12), the probabilities for the observed blood groups
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A, B, AB and O are ηA = λ2
A + 2λAλO , ηB = λ2

B + 2λBλO , ηAB = 2λAλB , and
ηO = λ2

O , assuming random mating of a population in which λA, λB , and λO are
the frequencies of alleles A, B, and O; here λA + λB + λO = 1. Given n inde-
pendent individuals in which the groups appear with frequencies yA, yB , yAB , and
yO = n − yA − yB − yAB , the log likelihood is

yA log ηA + yB log ηB + yAB log ηAB

+ (n − yA − yB − yAB) log(1 − ηA − ηB − ηAB).

One of the ηs is redundant and we have replaced ηO with 1 − ηA − ηB − ηAB . If we
set β1 = log λA and β2 = log λB , we have

∂η

∂βT
= 2


 λAλO −λAλB

−λAλB λBλO

λAλB λAλB


 ,

∂�

∂η
=


 yA/ηA − yO/ηO

yB/ηB − yO/ηO

yAB/ηAB − yO/ηO




and

W = n


 1/ηA − 1/ηO −1/ηO −1/ηO

−1/ηO 1/ηB − 1/ηO −1/ηO

−1/ηO −1/ηO 1/ηAB − 1/ηO


 .

Once again iterative weighted least squares can be used for maximization, although
the weight matrix is not diagonal because the log likelihood contribution from yO

depends on ηA, ηB and ηAB . �

10.2.3 Model checking

The fit of a linear model is checked using residuals and other diagnostics and by
embedding it into more complex models chosen to capture particular departures of
interest. These ideas extend to nonlinear models through the components of the itera-
tive weighted least squares algorithm. For example, the leverage of the j th case, h j j ,
is defined as the j th diagonal element of the matrix H = W 1/2 X (X TW X )−1 X TW 1/2,
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evaluated at β̂. As the weight matrix W generally depends on β̂, the leverages de-
pend on the responses as well as the covariates, but otherwise the h j j have the same
properties as in a linear model, where h j j is the j th diagonal element of X (X T X )−1 X T.

There are several types of residual for nonlinear models, because no single definition
plays all the roles of the standardized residual r j defined at (8.26) for the linear model.

The residual sum of squares for a linear model can be written
∑

e2
j , so for more

general models the analogy with the deviance suggests that we write D = ∑
d2

j , where
d j is the signed square root of the contribution y j makes to the scaled deviance. This
gives the deviance residual

d j = sign(η̃ j − η̂ j )[2{� j (η̃ j ; φ) − � j (̂η j ; φ)}]1/2.

Analogy with the linear model suggests that the standardized deviance residuals
rDj = d j/(1 − h j j )1/2 will be more homogeneous, and detailed calculations confirm
that usually the rDj have roughly unit variances and distributions close to normal,
though possibly with non-zero mean. Exceptions to this are binary data and Poisson
data with small responses, whose residuals are essentially discrete.

A better general definition of residual combines the standardized deviance residual
with the standardized Pearson residual

rP j = u j (̂β)

{w j (̂β)(1 − h j j )}1/2
,

which is a standardized score statistic. Detailed calculations show that the distributions
of the quantities r∗

j = rDj + r−1
Dj log(rP j/rDj ) are close to normal for a wide range of

models. For a normal linear model, rP j = rDj = r∗
j = r j . The r∗

j or rDj may be used
in the plots described in Section 8.6.1.

In a linear model, the influence of the j th case, (x j , y j ), is proportional to
( ŷ − X β̂− j )T( ŷ − X β̂− j ), where β̂− j is the estimate when the case is deleted from
the model. For more general models a better measure is

2p−1{�(̂β) − �(̂β− j )}, (10.12)

where p is the dimension of β. Calculation of all n of these requires n additional fits,
and it is more convenient to use the approximate Cook statistic

C j = h j j

p(1 − h j j )
r2

P j . (10.13)

This is derived by Taylor series expansion of (10.12) and reduces to (8.30) in the case
of the normal linear model.

Example 10.8 (Venice sea level data) Here the weight matrix W is proportional to
In and the matrix ∂η/∂βT = X is constant. It follows that leverages h j j are simply the
diagonal elements of X (X T X )−1 X T. If we set z j = (y j − η̂ j )/̂τ , it is easy to check
that the j th deviance residual is sign(y j − η̂ j )[2{z j + exp(−z j ) − 1}]1/2. The r∗

j for
the fitted model are shown in the right panel of Figure 10.3. They are close to standard
normal, and cast no doubt on the adequacy of the model. �



478 10 · Nonlinear Regression Models

beta0

be
ta

1

3 4 5 6 7

2
4

6
8

-29
-28

-35

-70

-60

-60-50 -50-40 -40

-30

beta0

1/
be

ta
1

3        4 5        6       7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-35

-35

-35

-70

-70

-60

-60
-60

-50

-50
-50-50 -50

-40
-40

-40

-30

•

•

•

•

•

•

•

••

•

•• •
•

• •

•

•

•

•

•

•

•

•

•

•

•

Time

R
es

id
ua

l

0 5 10 15

-2
-1

0
1

2

•••

•

•• •
•
•

•

••••
•••

•

•

•

•

•

•

•

•

•

•

h/(1-h)

C
oo

k 
st

at
is

tic

0.0 0.05 0.10 0.15 0.20

0.
0

0.
10

0.
20

Figure 10.4 Fit of a
nonlinear model to the
calcium data. Upper left:
contours for �p(β0, β1).
Upper right: contours for
�p(β0, γ1), where
γ1 = 1/β1. Lower left:
standardized residuals
plotted against time.
Lower right: plot of Cook
statistics against
h/(1 − h), where h is
leverage.

The deviance can be used to check the fit of some types of models, but in moderate
samples its distribution can be far from χ2 and plots of deviances from simulated data
can be useful.

Example 10.9 (Calcium data) The model for the calcium data of Example 10.1
sets η j (β) = β0{1 − exp(−x j/β1)}, so X = ∂η/∂βT has j th row

(∂η j/∂β0, ∂η j/∂β1) = (
1 − exp(−x j/β1), −x jβ0 exp(−x j/β1)/β2

1

)
.

As the initial slope of η as a function of x is β0/β1, and as η has asymptote
β0 for large x , we expect roughly that β0

.= 5, and that β0/β1
.= 1. This suggests

taking β0 = 5 and β1 = 5 as initial values for the iterative weighted least squares
algorithm, which then converges rapidly to β̂0 = 4.31 and β̂1 = 4.80, with standard
errors 0.303 and 0.905. The off-diagonal element of the inverse expected information
matrix is 0.237, corresponding to corr(̂β0, β̂1)

.= 0.45. The residual sum of squares is
SS(̂β) = 7.465, and the estimate of σ 2 is s2 = 7.465/(27 − 2) = 0.299.

Large-sample likelihood theory suggests that β̂0 and β̂1 have approximately a bivari-
ate normal distribution. This rests on quadratic approximation to the log likelihood,
which seems reasonable from the upper left panel of Figure 10.4. The upper right



10.2 · Inference and Estimation 479

panel contains contours of �p(β0, γ1) = maxσ 2 �(β0, γ1, σ
2), where γ1 = 1/β0, for

which quadratic approximation would be poor.
The standardized Pearson residuals in the lower left panel suggests possible poor

fit at the three longest times, although the normal scores plot is good. The lower right
panel shows that one of the approximate Cook statistics is somewhat large, but due
to an outlier rather than a high leverage point.

To check model fit more formally, we allow unconnected means at each time, giving
nine parameters and residual sum of squares 4.797 on 18 degrees of freedom. The
F statistic that compares this and the fitted nonlinear model is equal to {(7.645 −
4.797)/7}/(4.797/18) = 1.53, and as the 0.95 quantile of the F7,18 distribution is
2.58, there is no evidence of poor fit overall. Under the unconnected model the sums
of squares between the three observations at each time have distribution σ 2χ2

2 , so
a chi-squared probability plot of the ordered sums of squares should be straight.
This plot suggests difficulties at x = 11.15 minutes, as was evident from the original
data. �

Exercises 10.2

1 Show that the scaled deviance contribution for a binomial response with probability density
( m

r )π r (1 − π )m−r , 0 < π < 1, r = 0, . . . , m, and η = π is

2{r log{r/(mπ̂ )} + (m − r ) log[(m − r )/{m(1 − π̂ )}]}.
2 Show that the scaled deviance contribution for a Poisson response with density ηye−η/y!,

η > 0, y = 0, 1, . . ., is 2{y log(y/̂η) − y + η̂}.
3 Consider a linear model with non-normal errors, in which the j th response is y j = η j +

τε j , where η j = xT
j β, and ε j has density exp u(ε), for j = 1, . . . , n.

(a) Show that the log likelihood contribution from y j may be written as u(z j ) − log τ ,
and hence express in terms of u(·) and τ the quantities needed to obtain the maximum
likelihood estimates of β by iterative weighted least squares.
(b) Let xT

j = (1, zT
j ), so that the covariate matrix equals X = (1n, Z ) with 1T

n Z = 0. Show
that the expected information matrix may be written

τ−2
( Z T Z 0

0 n A

)
,

where A is a 2 × 2 matrix that does not depend on the parameters. Show further that A is
diagonal if the density of ε j is symmetric about zero.
(c) Give the matrix A for the t density (3.11) and for the Gumbel density (10.10).

4 Suppose that n years of daily data are available, for each of which the r largest observations
are known. Find the score and observed information when the model (6.37) is fitted to
these, with η = xT

j β but constant τ and ξ . Hence write down the steps needed to apply
weighted least squares to estimation of β, when τ and ξ are known. How would you
estimate τ and ξ?

5 Show that for a normal linear model in which φ is replaced by φ̂ = SS(̂β)/(n − p), the
standardized deviance and Pearson residuals both equal the usual standardized residual
r j , and hence verify that (10.13) reduces to (8.30).

6 Verify the contents of the matrices X and W in Example 10.7.

7 In a nonlinear normal regression model, suppose that η = β0(1 − e−β1x ). Let SS(β1) be
the residual sum of squares when β1 is known, that is, when the single covariate 1 − e−β1x
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is fitted. Show that the profile log likelihood for β1 can be written as

�p(β1) = max
β0,σ 2

�(β0, β1, σ
2) ≡ −n

2
log s2(β1),

and give the form of a (1 − 2α) confidence interval for β1 based on �p.

10.3 Generalized Linear Models

10.3.1 Density and link functions

Linear models play a central role in regression. In their simplest form they apply when
the response variable is continuous, takes values on the real line, and has constant
variance. Transformations and weighting broaden their applicability but can give fits
that are awkward to interpret, as well as being unsatisfactory with discrete responses.
In this section we describe how the key features of the linear model may be extended
to situations where the response comes from any of a wide class of distributions.
Such models are widely used in practice and the main ideas form the basis for much
further development, in which the iterative weighted least squares algorithm plays an
important role.

Three aspects of the normal linear model for a continuous response y are:

� the linear predictor η = xTβ through which µ = E(y) depends on the p × 1
vectors x of explanatory variables and β of parameters;

� the density of the response y, which is normal with mean µ and variance σ 2;
and

� the fact that the mean response equals the linear predictor, µ = η.

In a generalized linear model the second and third of these are extended to:

� the response y has density

f (y; θ, φ) = exp

{
yθ − b(θ )

φ
+ c(y; φ)

}
, (10.14)

where θ depends on the linear predictor, and the dispersion parameter φ is
often known; and

� the linear predictor and the mean of y are related by a monotone link function
g, with

η = g(µ). (10.15)

If φ is known then (10.14) is a linear exponential family with natural parameter
θ/φ. Thus it contains old friends such as the normal, gamma, binomial, and Poisson
densities, but it includes also more casual acquaintances such as the inverse Gaussian
and negative binomial models. This broadens the applicability of linear model ideas
to data where the responses are positive, counts or proportions, without the need for
transformations.
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If Y has density (10.14), its moment-generating function is (Exercise 10.3.3)

M(t) = exp{b(θ + tφ) − b(θ )},
so the response has mean and variance

′ denotes differentiation
with respect to θ . E(Y ) = b′(θ ) = µ, var(Y ) = φb′′(θ ) = φb′′{b′−1(µ)} = φV (µ), (10.16)

say, provided that a function inverse to b′(θ ) exists. We met the variance function
V (µ) in Section 5.2.1.

Example 10.10 (Poisson density) The Poisson density may be written as

f (y; µ) = exp (y log µ − µ − log y!) , y = 0, 1, . . . , µ > 0,

which has form (10.14) with θ = log µ, b(θ ) = eθ , φ = 1, and c(y; φ) = − log y!.
The mean of y is µ = b′(θ ) = eθ = µ, and its variance is b′′(θ ) = eθ = µ, so the
variance function is linear: V (µ) = µ; see Example 5.9. �

Example 10.11 (Normal density) The normal density with mean µ and variance
σ 2 may be written

f (y; µ, σ 2) = exp

{
− (y2 − 2yµ + µ2)

2σ 2
− 1

2
log(2πσ 2)

}
,

so

θ = µ, φ = σ 2, b(θ ) = 1

2
θ2, c(y; φ) = − 1

2φ
y2 − 1

2
log(2πφ).

As the first and second derivatives of b(θ ) are θ and 1, we have V (µ) = 1; the variance
function is constant. �

Example 10.12 (Binomial density) We write the binomial density

f (r ; π ) =
(

m

r

)
π r (1 − π )m−r , 0 < π < 1, r = 0, . . . , m,

in the form

exp

[
m

{
r

m
log

(
π

1 − π

)
+ log(1 − π )

}
+ log

(
m

r

)]
,

so

y = r

m
, φ = 1

m
, θ = log

(
π

1 − π

)
, b(θ ) = log(1 + eθ ), c(y; φ) = log

(
m

r

)
.

The mean and variance of y are

µ = b′(θ ) = eθ

1 + eθ
, φb′′(θ ) = eθ

m(1 + eθ )2
;

the variance function is V (µ) = µ(1 − µ). �

By allowing nonlinear relations between the mean response and the covariates, the
link function (10.15) permits the relationship between the linear part of the model and
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the mean response to be chosen on subject-matter or statistical grounds. Restrictions
on µ can be imposed through the choice of g, which maps the domain of µ to the
set inhabited by η, usually the real line. One particular choice is the canonical link,
which is obtained when η = θ = b′−1(µ). When φ is known and the canonical link is
used, the model is a natural exponential family and there is a p-dimensional minimal
sufficient statistic for β. This is attractive from the vantage of statistical theory, but
substantive considerations are more important.

Example 10.13 (Poisson link functions) The Poisson mean is positive, so the most
common link function is the log, for which log µ = η. As θ = log µ, this is the
canonical link.

Suppose that data n1 and n2 are gathered from two independent Poisson processes,
with means t1γ1 and t2γ2, where t1 and t2 are known, but that the aggregated count
y = n1 + n2 only is known. Then E(y) = t1γ1 + t2γ2 and the identity link function
would be appropriate. �

Example 10.14 (Normal link functions) The usual link function for the normal
density is the identity, yielding the normal linear model. Suppose instead that y =
µ + ε, but

µ = α0
x

α1 + x
.

On rewriting µ−1 as η = β0 + β1z, where β0 = α−1
0 , β1 = α1/α0, and z = x−1, we

see that this model fits into our general setup with normal distribution for the response
and the inverse link function, η = µ−1. �

10.3.2 Estimation and inference

The log likelihood of independent responses y1, . . . , yn from density (10.14) is

�(β) =
n∑

j=1

{
y jθ j − b(θ j )

φ j
+ c(y j ; φ j )

}
, (10.17)

where θ j = θ (η j ) with η j = xT
jβ. Maximum likelihood estimates β̂ are obtained by

solving the score equation (10.4) by iterative weighted least squares. Some differen-
tiation shows that

∂�(β)

∂β
= ∂ηT

∂β

∂θ

∂ηT

∂�

∂θ T
= X Tu(β), (10.18)

where the design matrix ∂η/∂βT = X does not depend on β. The components of
the score statistic u(β) and the weight matrix W (β) may be expressed in terms of
components µ j of the mean vector µ as

u j = ∂θ j

∂η j

∂� j (θ j )

∂θ j
= y j − µ j

g′(µ j )φ j V (µ j )
,

w j =
(

∂θ j

∂η j

)2
∂2� j (θ j )

∂θ2
j

= 1

g′(µ j )2φ j V (µ j )
, (10.19)
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where g′(µ j ) = dg(µ j )/dµ j . Thus β̂ is obtained by iterative weighted least squares
regression of response z = Xβ + g′(µ)(y − µ) on the columns of X using weights
(10.19). By using y as an initial value for µ and g(y) as an initial value for η = Xβ,
we avoid needing an initial value for β.

Most generalized linear models in which the φ j are unknown have φ j = φa j ,
where the a j are known and only φ must be estimated; this is analogous to weighted
least squares, with a−1

j playing the role of the weight attached to y j . When φ is
unknown, the scaled deviance is replaced by the deviance, defined as φ times the scaled
deviance.

Under the usual regularity conditions, β̂ has a large-sample normal distribution
with mean β and variance matrix X TW X )−1.

The maximum likelihood estimator of φ can behave poorly, but another estimator
is suggested by noting that if the regression parameters β were known, an unbiased
estimator of φ = var(y j )/{a j V (µ j )} would be

1

n

n∑
j=1

(y j − µ j )2

a j V (µ j )
.

This motivates the use of

φ̂ = 1

n − p

n∑
j=1

(y j − µ̂ j )2

a j V (µ̂ j )
, (10.20)

where the divisor n − p allows for estimation of β, analogous to the unbiased estimate
of variance in a normal linear model. When φ is known, fit can be measured using
Pearson’s statistic,

P = 1

φ

n∑
j=1

(y j − µ̂ j )2

V (µ̂ j )/a j
, (10.21)

analogous to the scaled residual sum of squares in a normal model.
When the dispersion parameter is known, overall tests of fit are provided by

Pearson’s statistic and the scaled deviance, but their distributions depend on the
situation. For gamma or binomial data with small dispersion, that is small φ, the
distribution of D or P when the model fits is roughly χ2

n−p. This corresponds to large
ν for gamma data and to large m for binomial data. For Poisson data χ2 approxima-
tions are useful unless all the fitted means are small, µ̂ < 5, say. Empirical evidence
suggests that although such approximations are better for P than for D, they are poor
if the data are sparse. The problem is most acute for the deviance of binary data, for
which the large-sample approximation is useless (Exercise 10.4.1).

Example 10.15 (Jacamar data) For the data of Example 10.2, we treat the number
of butterflies of species s painted the cth colour and eaten, rcs , as binomial with
denominator mcs and probability

πcs = exp(αc + γs)

1 + exp(αc + γs)
, c = 1, . . . , 8, s = 1, . . . , 6.
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Table 10.3 Deviances
and analysis of deviance
for models fitted to
jacamar data. The lower
part of the analysis of
deviance table shows
results for the reduced
data, without two outliers.

Terms df Deviance

1 43 134.24
1+Species 38 114.59
1+Colour 36 108.46
1+Species+Colour 31 67.28

Deviance Deviance
Terms df reduction Terms df reduction

Species (unadj. for Colour) 5 19.64 Species (adj. for Colour) 5 41.18
Colour (adj. for Species) 7 47.31 Colour (unadj. for Species) 7 25.78

Species (unadj. for Colour) 4 27.63 Species (adj. for Colour) 4 35.18
Colour (adj. for Species) 7 18.03 Colour (unadj. for Species) 7 10.48
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Figure 10.5
Standardized deviance
residuals rD for binomial
two-way layout fitted to
jacamar data.

From Example 10.12 we see that this is equivalent to a generalized linear model with
binomial errors and response ycs = rcs/mcs whose mean µcs = πcs is related to the
linear predictor ηcs = αc + γs by the logit link function

η = log

(
π

1 − π

)
.

Colour and species effects are represented by the αc and γs respectively.
Table 10.3 contains the analysis of deviance. As there are four cells with zero counts

there are 44 degrees of freedom in total. The reductions in deviance depend on the
order of fitting, but are highly significant compared to the appropriate chi-squared
distributions. The residual deviance, 67.28, is large compared to the χ2

31 distribution
and suggests poor fit.

Figure 10.5 shows at least two outliers, corresponding to the first cell in the top
row and the penultimate cell in the last row of Table 10.2. Deletion of the second of
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Table 10.4 Estimated
parameters and standard
errors for the reduced
jacamar data.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes

−1.99 (0.79) −2.22 (0.85) −0.56 (0.67) 0.16 (0.54) − 1.50 (0.78)

Brown Yellow Blue Green Red Orange Black

0.16 (0.73) 0.33 (0.68) −0.53 (0.81) −0.83 (0.75) −1.93 (0.88) −1.94 (0.85) −1.26 (0.86)

Table 10.5 Times in
minutes taken by four
chimpanzees to learn ten
words (Brown and
Hollander, 1977, p. 257).

Word

Chimpanzee 1 2 3 4 5 6 7 8 9 10

1 178 60 177 36 225 345 40 2 287 14
2 78 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

these necessitates dropping its entire column, because all the remaining Consul fabius
butterflies were eaten and the corresponding γ̂s is infinite. In this context a case is aIncidentally when only

the last cell in this column
was dropped, neither of
the two packages used
signalled a failure of γ̂s to
converge.

single butterfly, so deletion of a cell involves deleting a number of cases.
The lower part of Table 10.3 shows the analysis of deviance for the reduced

data. The overall deviance drops from 73.68 on 35 degrees of freedom to 28.02
on 24 degrees of freedom. The significance of the colours depends on whether or not
species is fitted first. Overall significance for each term is assessed by its significance
after adjusting for the other. Thus Colour is significant at about the 0.01 level, when
treated as χ2

7 . The residual deviance is not large compared to the χ2
24 distribution, and

casts no doubt on the model.
Table 10.4 shows the estimates and standard errors. The odds that an unpainted

Aphrissa boisduvalli is eaten are e−1.99 = 0.14 and the correponding probability is
e−1.99/(1 + e−1.99) = 0.12. Painting the underside of its wings green multiplies the
odds of its being eaten by e−0.83 = 0.44. The most marked reductions are when red,
orange, or black paint is used; locally these colours are associated with unpalatable
butterflies.

Pearson’s statistic is 25.58 on 24 degrees of freedom. The standardized deviance
residuals lie between −2.03 and 1.96, and these and other case diagnostics show that
the model fits the reduced data well. �

Example 10.16 (Chimpanzee learning data) Table 10.5 gives times in minutes
taken by four chimpanzees to learn each of ten words. The data are a two-way layout,
but the responses are positive and vary over two orders of magnitude, suggesting that
a linear model is inappropriate. When a linear model with mean αc + γw is fitted,
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Table 10.6 Analysis of
deviance for models fitted
to chimpanzee data.

Deviance Deviance
Term df reduction Term df reduction

Chimp (unadj. for Word) 3 6.95 Chimp (adj. for Word) 3 6.22
Word (adj. for Chimp) 9 38.46 Word (unadj. for Chimp) 9 39.19

where αc and γw correspond to chimpanzee and words effect, the F statistic (8.27)
for non-additivity strongly indicates a change of scale.

We fit a model with gamma errors and the log link function, in which the mean time
taken by the cth chimpanzee to learn the w th word is µcw , where log µcw = ηcw =
αc + γw . If the gamma density with mean µ and shape parameter ν is written in form

f (y; µ, ν) = 1

�(ν)
yν−1

(
ν

µ

)ν

exp(−νy/µ), y > 0, ν, µ > 0, (10.22)

we see (Exercise 10.3.4) that the dispersion parameter φ = 1/ν, which must be esti-
mated.

The deviances for models 1, 1+Chimp, 1+Word, and 1+Chimp+Word are 60.38,
53.43, 21.19, and 14.97, with 39, 36, 30, and 27 degrees of freedom. Table 10.6
shows the analysis of deviance. The two-way layout is balanced and the order of
fitting matters less than in Example 10.15. Use of (10.20) gives φ̂ = 0.432, and
ν̂ = φ̂−1 = 2.31. The significance of the deviance reductions for chimps and words
is gauged by F tests using φ̂ as the denominator. For example, we test for differences
between chimps by comparing (6.22/3)/0.432 = 4.78 with the F3,27 distribution,
giving significance level about 0.01.

An alternative is to fit a normal two-way layout to the log data, but the residuals
suggest that the gamma model is preferable. The largest residual is for the first chim-
panzee and fifth word, which is very large compared to the other times for that word.
This is also the most influential value for the gamma model, but we shall not pursue
this.

A different approach uses gamma errors and the inverse link ηcw = 1/µcw , giving
a linear model for the speed with which a word is learnt. The residual deviance for this
model is 17.08. To test whether this link is suitable we extend the nonadditivity test
outlined in Example 8.24 by adding the constructed variable η̂2 to the linear predictor,
where η̂ is the fitted linear predictor for the model with inverse link. The deviance
drops by 1.26 on one degree of freedom, and since φ̂ = 0.47 for the extended model,
the test statistic is (1.26/1)/0.47 = 2.68, to be compared to the F1,26 distribution.
The significance level, 0.11, gives only weak evidence against the inverse link. �

Exercises 10.3

1 Suppose that y is the number of events in a Poisson process of rate λ observed for a period
of length T . Show that y has a generalized linear model density and give θ , b(θ ), φ and
c(y; φ).

2 Use the identities E(∂�/∂θ ) = 0 and var(∂�/∂θ ) = E(−∂2�/∂θ2) to derive the mean and
variance of the density (10.14).
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3 Check that the moment-generating function that corresponds to (10.14) is exp{b(θ +
tφ) − b(θ )}, give the corresponding cumulant-generating function, and hence verify the
mean and variance in (10.16).

4 Show that the gamma density (10.22) can be put in form (10.14) with canonical parameter
θ = −µ−1, b(θ ) = − log(−θ ) and dispersion parameter φ = 1/ν. Give the canonical link
function, and use b(θ ) to show that (10.22) has mean µ, variance function V (µ) = µ2,
and variance µ2/ν.

5 Verify that the inverse Gaussian density

f (y; λ, µ) =
(

λ

2πy3

)1/2

exp

{
−λ(y − µ)2

2µ2 y

}
, y > 0, λ > 0, µ > 0,

can be written in form (10.14) by giving θ , b(θ ), φ, and c(y; φ), and show that its variance
function is V (µ) = µ3.

6 In (10.17), suppose that φ j = φa j , where the a j are known constants, and that φ is
functionally independent of β. Show that the likelihood equations for β are independent
of φ, and deduce that the profile log likelihood for φ is

�p(φ) = φ−1
n∑

j=1

{
y j θ̂ j − b(̂θ j )

a j
+ c(y j ; φa j )

}
.

Hence show that for gamma data the maximum likelihood estimate of ν solves the equation
log ν − ψ(ν) = n−1

∑
( z j − log z j − 1), where z j = y j/µ̂ j and ψ(ν) is the digamma

function d log �(ν)/dν.

7 Suppose that the canonical link is used with the log likelihood (10.17), so that θ j = η j ,
and that it is required to check this link. Let θ j = θ (η j ), where θ (·) is a potentially
nonlinear function. By quadratic Taylor series expansion of θ (.) about a suitable η0, show
that provided η contains an intercept term, we can write θ (η)

.= η′ + δη′2, where δ is
proportional to b′′(η0) and η′ is a linear function of η. Hence verify that when the fit of a
model with the canonical link has given linear predictor η̂, a constructed variable test of
the canonical link is based on the change in fit when η̂2 is added to the linear predictor.
Discuss Example 8.24 in this light.

8 Show that in any generalized linear model, the Fisher information E(−∂2l/∂βr∂φ) for the
dispersion parameter φ and any regression parameter βr is zero; φ and β are said to be
orthogonal. What is the implication for the maximum likelihood estimates φ̂ and β̂r ?
Prove also the stronger result that, whatever the value of φ, the joint observed information
− ∑

∂2 log f (y j ; β, φ)/∂φ∂β is zero, evaluated at β̂.

10.4 Proportion Data

10.4.1 Binary data

A binary response Y takes values 1 and 0 with probabilities π and 1 − π , denoting
a dichotomous outcome such as success/failure, won/lost, or well/ill. Such data are
common in applications. The simplest relation between E(Y ) = π and a linear pre-
dictor is π = xTβ. This is unsuitable for general use because π may then lie outside
the unit interval. It is usually better to force 0 < π < 1 by taking it to be a nonlinear
monotone function of xTβ, whose inverse is the link function of the corresponding
generalized linear model.

One way to derive link functions for dichotomous variables is to suppose that Y
is a binary version of an underlying continuous response Z . Let Z = xTγ + σε, and
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Table 10.7 Tolerance
distributions and
corresponding link
functions for binary data.

Distribution Link function

Logistic eu/(1 + eu ) Logit η = log{dπ/(1 − π )}
Normal �(u) Probit η = �−1(π )
Log Weibull 1 − exp(− exp(u)} Log-log η = − log{− log(π )}
Gumbel exp{− exp(−u)} Complementary log-log η = log{− log(1 − π )}

suppose that ε has continuous distribution function F . The mean of Z increases with
xTγ , and Y = 1 if Z > 0, with probability

π = Pr(Y = 1) = 1 − F(−xTγ /σ ) = 1 − F(−xTβ),

say. The ratio β = γ /σ is estimable from the binary data, but γ and σ are not. If F
is symmetric about zero, then π equals F(xTβ) and the corresponding link function
(10.15) is η = xTβ = F−1(π ). Some standard choices of the so-called tolerance dis-
tribution F and corresponding link functions are shown in Table 10.7. The logit and
probit functions are symmetric and usually hard to distinguish in practice, while the
log-log and complementary log-log functions are asymmetric in opposite directions.
Numerous other links have been proposed, but those in the table usually suffice in
applications.

Much information may be lost by splitting and it is generally better to work with
the original responses if they are available. Otherwise less information is lost by
taking several categories. Difficulties in the binary case are illustrated in the following
example.

Example 10.17 (Dichotomization) Suppose independent observations Z j =
xT

jβ + ε j are dichotomized by setting Y j = 1 if Z j > 0 and Y j = 0 otherwise, and
let F and f denote the distribution and density of the ε j . If the original Z j were
available, the j th log likelihood contribution would be log f (z j − xT

jβ) and the ex-
pected information matrix would be (10.7), with X the constant matrix whose j th
row is xT

j and W = k In , where k = − ∫
d2 log f (ε)/dε2 f (ε) dε. Thus if the Z j are

available the asymptotic covariance matrix of the maximum likelihood estimator β̂Z

is k−1(X T X )−1.
Suppose now that only the binary variables Y1, . . . , Yn are known. As Y j has suc-

cess probability π j = 1 − F(−η j ), where η j = xT
jβ, its log likelihood contribution

is � j = Y j log π j + (1 − Y j ) log(1 − π j ), and the Fisher information matrix is (10.7)
with the same X as before but with W the diagonal matrix whose j th element is
E(−d2� j/dη2

j ) = f (−η j )2/[F(−η j ){1 − F(−η j )}]. The asymptotic variance of the

maximum likelihood estimator β̂Y based on Y1, . . . , Yn is thus (X TW X )−1.
The efficiency of large-sample inferences based on Z and Y may be compared

through the asymptotic variance matrices k−1(X T X )−1 and (X TW X )−1 of the corre-
The asymptotics here
arise if we imagine m
replicate observations at
each x j , and let m → ∞.

sponding maximum likelihood estimators. Rather than attempt a general discussion,
we illustrate this numerically. Let η j = β0 + β1x j , with x j taking n = 21 values
equally spaced from −1 to 1. The left panel of Figure 10.6 shows data simulated
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from this model, with β0 = 0.5, β1 = 2, and standard normal errors. The right panel
plots β1/v1/2

Y against β1/v1/2
Z , where vY and vZ are the large-sample variances of the

maximum likelihood estimates of β1 based on the Y s and the Zs, for three values
of β0. The quantity β1/v1/2

Z is the limiting value of the t statistic for testing whether
β1 = 0, based on the full data, while β1/v1/2

Y is the corresponding quantity for the
binary data. The ratio vZ/vY is the asymptotic efficiency for estimating β1 from the
binary data, relative to the original data, and in the graph this has largest value of about
(3/4)2 .= 0.56 when β1 = 0, decreasing to about (2/12)2 .= 0.03. For the data in the
left panel, the t-statistic is β̂1/v1/2

Z = 2.39/0.36 = 6.6, whereas the corresponding
quantity for binary data is 3.15/1.20 = 2.6, which is much weaker — though still
strong — evidence of non-zero slope.

An argument analogous to that giving (7.28) shows that the power of a size
α two-sided test of β1 = 0 using the asympototic normal distribution of β̂1/v1/2

Y

is �(zα/2 + δY ) + �(zα/2 − δY ), where δY = β1/v1/2
Z is replaced by δZ = β1/v1/2

Y in
the corresponding power from the full data. Use of the binary data can sharply reduce
the power. When β1/v1/2

Z
.= 2, for example, β1/v1/2

Y
.= 1.4, and with α = 0.025 the

power is reduced from 0.52 to 0.29.
A peculiarity of binary regression is the decrease inβ1/v1/2

Y asβ1 → ∞, because the
information f (−η)2/[F(−η){1 − F(−η)}] tends to zero so quickly that v1/2

Y → ∞
faster than β1 → ∞. Thus the reduced efficiency for estimating β1 becomes extreme
when |β1| is large; to put this another way, as |β1| → ∞, the power for testing for zero
slope based on β̂1 tends to zero. The explanation for this is that most information in
binary data is contributed by those responses whose variances are largest, for which π

is not too close to zero or one, but as β1 → ±∞, the variances of all the observations
tend to zero and β1 cannot be reliably estimated.

Complete separation of successes and failures can occur. To see how, note that the
estimate of β1 from the binary data in the left panel of Figure 10.6 depends crucially
on the value y7 at x7 = −0.4. If y7 had equalled zero, then a perfect fit would have
been obtained by setting β̂1 = +∞ and choosing β̂0 so that π̂ = 0 for x ≤ 0.1 and
π̂ = 1 otherwise. This is harder to spot when there are several covariates, but a good
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model-fitting routine will signal convergence problems as |̂β| → ∞. Near-complete
separation will be indicated by regression diagnostics, which here suggest that the
pair (y7, x7) is an outlier, as it has a large residual and is highly influential. �

Logistic regression

The most common choice of function F is the logistic distribution, which gives the
canonical, logit, link function. Then

Pr(Y = 1) = π = exp(xTβ)

1 + exp(xTβ)
, Pr(Y = 0) = 1 − π = 1

1 + exp(xTβ)
,

and the resulting logistic regression model is a linear model for the logarithm of the
odds of success,

Pr(Y = 1)

Pr(Y = 0)
= π

1 − π
= exp(xTβ).

The likelihood for independent binary observations y1, . . . , yn with covariate
vectors x1, . . . , xn is

L(β) =
n∏

j=1

{
exp

(
xT

jβ
)

1 + exp
(
xT

jβ
)
}y j

{
1

1 + exp
(
xT

jβ
)
}1−y j

= exp
( ∑

j y j xT
jβ

)
∏

j

{
1 + exp

(
xT

jβ
)} .

(10.23)

This is a linear exponential family model in which S = ∑
Y j x j is minimal sufficient

for β. If any of the covariate vectors are repeated, S may be written as
∑

d xd Rd , where
the distinct covariate vectors are labelled xd and Rd = ∑

j Yd j , the total number of
successes for responses with covariates xd , is a binomial variable. Apart from a con-
stant, (10.23) is the same likelihood as would be obtained from responses aggregated
by covariate vectors.

If R is binomial with denominator m, then the log odds may be estimated by the
empirical logistic transform log{(R + 1

2 )/(m − R + 1
2 )}, whose estimated variance

is (R + 1
2 )−1 + (m − R + 1

2 )−1, and this is sometimes useful for plotting.
Many model-checking procedures break down for unaggregated binary data. For

a given fitted probability π̂ , a residual takes just two values, so comparison with a
normal distribution is not useful. Moreover the deviance for a binary logistic model
is a function of the data through β̂ alone, and hence it provides no information about
fit in any absolute sense (Exercise 10.4.1). Pearson’s statistic is strongly correlated
with the deviance and shares this difficulty.

Example 10.18 (Nodal involvement data) Table 10.8 summarizes data on 53 pa-
tients with prostate cancer. There are five binary explanatory variables: age in years
(0 = less than 60, 1 = 60 or more); stage, a measure of the seriousness of the tumour
(0 = less serious, 1 = more serious); grade, a measure of the pathology of the tumour
(0 = less serious, 1 = more serious); xray (0 = less serious, 1 = more serious); and
acid, the level of serum acid phosphatase (0 = less than 0.6, 1 = 0.6 or more). The
response, nodal involvement, indicates whether the cancer has spread to neighbour-
ing lymph nodes. The first row of the table shows that for five out of six patients
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Table 10.8 Data on
nodal involvement
(Brown, 1980).

m r age stage grade xray acid

6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1
1 1 1 1 0 1 1
1 1 1 0 1 1 1
1 1 1 0 0 1 1
1 0 1 0 1 0 0
1 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 0 1 0 1 0

1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0

aged less than 60 and with high levels of the other explanatory variables, there was
nodal involvement. A case is an individual patient rather than a row of the table. The
explanatory variables are relatively easily collected and the aim of analysis was to
predict nodal involvement from them.

Table 10.9 contains the deviances for all 25 combinations of explanatory variables
when a binary logistic model is fitted to the data. The model with terms for stage,
xray, and acid has deviance 19.64 on 49 degrees of freedom and the smallest AIC; it
seems best overall, though it has several close competitors. The fitted linear predictor
for this model is −3.05 + 1.65Istage + 1.91Ixray + 1.64Iacid, where Istage
indicates that stage takes its higher level, and so forth. The fitted odds of nodal
involvement when all the explanatory variables take their lower levels are a low
e−3.05 .= 0.047, though this must be viewed with caution as there are no such cases in
the data. The odds increase by a factor e1.91 .= 6.75 when acid takes its higher level,
and are e−3.05+1.91+1.65+1.64 .= 8.6 at the higher levels of stage, acid, and xray.

The residual scaled deviance of 19.64 on 49 degrees of freedom suggests that the
model fits well, but the binomial denominators are too small for confidence in χ2

asymptotics. The deviance does not measure model fit for binary data: it is a function
of β̂ alone and hence does not contrast the data with the fitted model. If the data
in Table 10.8 had been analyzed as written there, that is as 23 binomial rather than
53 binary observations, the degrees of freedom for the best-fitting model would be
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Table 10.9 Scaled
deviances for 32 logistic
regression models for
nodal involvement data. A
plus denotes a term
included in the model.

age stage grade xray acid df Deviance age stage grade xray acid df Deviance

52 40.71 + + + 49 29.76
+ 51 39.32 + + + 49 23.67

+ 51 33.01 + + + 49 25.54
+ 51 35.13 + + + 49 27.50

+ 51 31.39 + + + 49 26.70
+ 51 33.17 + + + 49 24.92

+ + 50 30.90 + + + 49 23.98
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 32.67 + + + 49 21.28

+ + 50 31.00 + + + + 48 23.12
+ + 50 24.92 + + + + 48 23.38
+ + 50 26.37 + + + + 48 19.22

+ + 50 27.91 + + + + 48 21.27
+ + 50 26.72 + + + + 48 18.22

+ + 50 25.25 + + + + + 47 18.07

23 − 4 = 19 rather than 49, but the deviance of 19.64 would be unchanged. This
ambiguity is another reason not to rely on the deviance to measure fit for binary data.

Figure 10.7 illustrates difficulties with binary residuals. The left panel shows the
53 residuals for the unaggregated data. The linear predictors are slightly jittered to
prevent over-plotting. The upper and lower bands, corresponding to ones and zeros
respectively, are typical of data with only a few response values. The right panel
shows the 23 residuals for the aggregated data; the fitted values are the same as on the
left. Banding remains but is much less obvious, and the apparent outliers are gone.
There is little useful information in either plot.

We reconsider these data in Example 12.18. �

10.4.2 2 × 2 table

A very common data structure classifies individuals by two sets of binary categories.
In a medical setting, for example, we may observe success or failure for patients
randomly allocated to be either a case — receiving some treatment — or a control.
The resulting data may be laid out as in Table 10.10. The simplest model for this
regards the numbers of successes R1 and R0 as independent binomial variables with
probabilities

π1 = eλ+ψ

1 + eλ+ψ
, π0 = eλ

1 + eλ

and denominators m1 and m0. Then the joint density of R1 and R0 is

Pr(R1 = r1, R0 = r0; ψ, λ) =
(

m1

r1

)(
m0

r0

)
e(λ+ψ)r1

(1 + eλ+ψ )m1

eλr0

(1 + eλ)m0
, (10.24)
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Table 10.10 Notation
for 2 × 2 table. Success Failure Total

Case R1 m1 − R1 m1

Control R0 m0 − R0 m0

Total R1 + R0 m1 + m0 − R1 − R0 m1 + m0
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Standardized deviance
residuals for nodal
involvement data, for
ungrouped responses (left)
and grouped responses
(right).

which is an exponential family of order two with natural parameter (ψ, λ) and natural
observation (R1, R1 + R0) (Section 5.2.2). This is a generalized linear model with
binomial errors and logit link function.

The usual purpose of analysis is to compare π1 with π0. Although quantities such
as the difference π1 − π0 are sometimes of interest, we focus here on the difference
in log odds,

ψ = log

(
π1

1 − π1

)
− log

(
π0

1 − π0

)
.

This is a natural parameter of the exponential family, but more importantly its inter-
pretation does not depend on whether the data are obtained prospectively or retrospec-
tively. To appreciate this, suppose that a prospective study is performed: an individual
is allocated randomly to cases (T = 1) or controls (T = 0) and then followed until a
binary outcome Y is observed. Then

Pr(Y = 1 | T = 1) = eλ+ψ

1 + eλ+ψ
, Pr(Y = 1 | T = 0) = eλ

1 + eλ
(10.25)

and as T is allocated and then Y observed, the scheme fixes the vertical margin in
Table 10.10. The drawback is that it may be costly and difficult to follow up enough
individuals to obtain a precise estimate of ψ .

In a retrospective study the treatment status T is determined only after the out-
comes Y are known; the scheme fixes the horizontal margin in Table 10.10. Often the
treatment undergone can be ascertained from medical records, so large samples can
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be assembled more easily and cheaply than a prospective study, though the lack of
randomization weakens subsequent inferences. Let Z = 1 indicate that an individual
is chosen for the retrospective study, and suppose that this occurs with probabilities

Pr(Z = 1 | Y = 1) = p1, Pr(Z = 1 | Y = 0) = p0,

independent of treatment status T . Then the success probability for an individual
who was treated, conditional on their being chosen for inclusion in the study is
Pr(Y = 1 | Z = 1, T = 1). This equals

Pr(Z = 1 | Y = 1)Pr(Y = 1 | T = 1)

Pr(Z = 1 | Y = 1)Pr(Y = 1 | T = 1) + Pr(Z = 1 | Y = 0)Pr(Y = 0 | T = 1)

by Bayes’ theorem, so

Pr(Y = 1 | Z = 1, T = 1) = p1eλ+ψ

p1eλ+ψ + p0
= eλ′+ψ

1 + eλ′+ψ
,

where λ′ = λ + log(p1/p0). A similar argument gives

Pr(Y = 1 | Z = 1, T = 0) = eλ′

1 + eλ′ ,

so although retrospective sampling alters λ, the difference of log odds ψ is unchanged.
This gives a strong motivation for using ψ to summarize the treatment effect, partic-
ularly if estimates from both types of study will ultimately be combined.

This argument applies also if ψ is replaced by xTβ, where x contains covariates as
well as an indicator of treatment status. The key point is that the selection probabilities
p1 and p0 must be independent of x .

Example 10.19 (Smoking and the Grim Reaper) Table 6.8 contains seven 2 ×
2 tables, containing a prospective observational, that is, non-randomized, study on
outcomes for women smokers and non-smokers. The simplest model ignores age by
using only the overall data in the first line of Table 6.8, and gives parameter estimates
for (10.25) of λ̂ = 0.78 (0.08) and ψ̂ = 0.38 (0.13). The significant positive value
of ψ̂ shows an unlikely preservative effect of smoking. The deviance is 632.3 on
12 degrees of freedom, however, so the model is evidently inadequate.

When different values of λ are fitted to each table, the deviance drops to 2.38 on
6 degrees of freedom, and ψ̂ = −0.43 (0.18): smoking significantly increases the
death rate. There are 14 residuals, but as they arise in negatively correlated pairs
and have only 6 degrees of freedom, it is better to examine one residual for each
2 × 2 table. They show nothing untoward. �

Small sample analysis

The discussion above relies on large-sample likelihood results. Special techniques are
needed for 2 × 2 tables with small counts. As (10.24) is an exponential family, the
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nuisance parameter λ may be eliminated by conditioning on its associated statistic
A = R1 + R0, whose density is

r+∑
u=r−

(
m1

u

)(
m0

a − u

)
eλa

(1 + eλ)m0

eψu

(1 + eλ+ψ )m1
, a = 0, . . . , m1 + m0,

where r− = max(0, a − m0), r+ = min(m1, a). The conditional density of R1 given
A = a is the non-central hypergeometric density

f (r | a; ψ) =
(m1

r

)( m0

a−r

)
eψr∑r+

u=r−

(m1

u

)( m0

a−u

)
eψu

, r = r−, . . . , r+, (10.26)

on which exact inferences for ψ may be based; this amounts to conditioning on both
margins of Table 10.10. Tests of π1 = π0 compare the observed value of R1 with
its null distribution, obtained by setting ψ = 0 in (10.26). To test ψ = 0 against the
one-sided alternative ψ > 0 we use the P-value

Pr(R1 ≥ r1 | A = a; 0) =
r+∑

r=r1

f (r | a; 0), (10.27)

and take Pr(R1 ≤ r1 | A = a; 0) when testing ψ < 0. Exact confidence intervals are
obtained by inverting these tests, solving for ψα, ψα the equations

Pr(R1 ≥ r1 | A = a; ψα) = α, Pr(R1 ≤ r1 | A = a; ψα) = α.

When the margins of the table are small, the conditional distribution of R1 is very
discrete and the difficulties seen in Example 7.38 arise: exact conditional confidence
intervals are quite conservative and it is preferable to replace (10.27) by the mid-p
significance level

p+,mid = 1

2
Pr(R1 = r1 | a; 0) + Pr(R1 > r1 | a; 0). (10.28)

When exact significance levels for testing ψ = 0 are unavailable, approximate ones
may be obtained by treating

Z = R1 − 1
2 − E(R1 | A = a; 0)

var(R1 | A = a; 0)1/2

as standard normal, where the 1
2 is a continuity correction, and

E(R1 | A = a; 0) = m1a

m0 + m1
, var(R1 | A = a; 0) = m0m1a(m0 + m1 − a)

(m0 + m1)2(m0 + m1 − 1)
.

Example 10.20 (Ulcer data) In a trial to compare two treatments for stomach ulcer,
28 persons with ulcers were divided randomly into two groups, one of size m1 = 15
who were given a new surgical treatment, and the other of size m0 = 13 who were
given an existing one; see Table 10.11, which also contains data from other trials. The
numbers in these groups without an adverse outcome, recurrent bleeding, were r1 = 8
and r0 = 2. Does the new treatment reduce the number of adverse outcomes? Here the
null hypothesis is ψ = 0, with alternative ψ > 0. The attainable significance levels
for the conditional test are in Table 10.12, and p+ = 0.0434 and p+,mid = 0.0243.
There is some evidence that the new treatment improves on the old.
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Table 10.11 Data from
40 independent
experiments to compare a
new surgery for stomach
ulcer with an older
surgery; data from Efron
(1996) corrected from
original articles. Shown
are the number of persons
given the new treatment,
m1, of whom r1 did not
have recurrent bleeding,
and the number given the
old treatment, m0, of
whom r0 did not have
recurrent bleeding.

r1 m1 r0 m0 r1 m1 r0 m0

1 8 15 2 13 21 34 40 8 21
2 11 19 8 16 22 14 18 34 39
3 29 34 35 39 23 54 68 61 74
4 14 20 13 21 24 20 24 19 27
5 9 12 12 12 25 6 6 0 6
6 3 7 0 4 26 9 10 10 15
7 13 17 11 24 27 12 17 10 15
8 15 16 3 16 28 10 10 2 14
9 11 14 15 22 29 22 22 16 24

10 36 38 20 32 30 16 18 11 21
11 6 12 0 8 31 14 15 6 13
12 5 7 2 9 32 9 12 2 9
13 12 21 17 24 33 20 20 18 23
14 14 21 20 25 34 13 17 14 16
15 22 25 21 32 35 30 40 8 20
16 7 11 4 10 36 13 16 14 16
17 8 10 2 10 37 30 34 14 19
18 30 31 23 27 38 31 38 22 37
19 24 28 16 31 39 34 34 0 34
20 36 43 27 43 40 9 9 16 16

Table 10.12
Significance probabilities
for a test of no treatment
effect in the first 2 × 2
table of the ulcer data.
Here p+ = Pr(R1 ≥ r1 |
A = a; 0), and z′ and z are
the standardized forms of
R1 without and with
continuity correction.
Note how closely
1 − �(z) and 1 − �(z′)
match p+ and p+,mid

respectively.

r1 0 1 2 3 4 5 6 7 8 9 10

p+ 1 1 0.999 0.989 0.929 0.751 0.456 0.184 0.043 0.005 0
1 − �(z) 1 1 0.999 0.987 0.925 0.747 0.456 0.187 0.048 0.007 0

p+,mid 1 1 0.994 0.959 0.840 0.604 0.320 0.114 0.024 0.003 0
1 − �(z′) 1 1 0.995 0.966 0.854 0.609 0.309 0.101 0.020 0.002 0

The left panel of Figure 10.8 shows the conditional and unconditional distribu-
tions of Z ; for the unconditional distribution λ = 0. Though both are discrete, the
unconditional distribution is much more nearly continuous.

The right panel shows summaries for likelihood analysis of the data. The difference
between the conditional likelihood based on (10.26) and the profile likelihood for ψ

is small, but we should be wary of using large-sample likelihood approximations,
because the sample is rather small. The panel also shows slices through the likelihood
corresponding to various values of λ; evidently the likelihood depends strongly on
both parameters. �

The history of the 2 × 2 table has been dogged by controversy, partly because of the
effect of the discreteness of the conditional distribution of R1 on confidence intervals
for ψ . The unconditional distribution is more nearly continuous, so it yields shorter
confidence intervals and more powerful tests. Hence some authors believe that infer-
ence should be based on the unconditional rather than on the conditional distribution.
The drawback is that as the unconditional distribution depends on λ it does not give
exact tests and confidence intervals, whereas the conditional approach does.



10.4 · Proportion Data 497

Standardized test statistic

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

psi

R
el

at
iv

e 
lik

el
ih

oo
d

-1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0Figure 10.8 Analysis

for first 2 × 2 table of
ulcer data. Left:
conditional (bold) and
unconditional distribution
of standardized R1. Right:
relative likelihoods based
on conditional distribution
of R1 given A (heavy),
profile likelihood (solid),
and slices through
likelihood based on R1

and R2 for fixed values of
λ, equal to
−0.5, −1, −1.5, 2, −2.5,
from left to right (dots).

Exercises 10.4

1 Data y1, . . . , yn are assumed to follow a binary logistic model in which y j takes value 1
with probability π j = exp(xT

j β)/{1 + exp(xT
j β)} and value 0 otherwise, for j = 1, . . . , n.

(a) Show that the deviance for a model with fitted probabilities π̂ j can be
written as

D = −2

{
yT X β̂ +

n∑
j=1

log(1 − π̂ j )

}

and that the likelihood equation is X T y = X Tπ̂ . Hence show that the deviance is a function
of the π̂ j alone.
(b) If π1 = · · · = πn = π , then show that π̂ = y, and verify that

D = −2n {y log y + (1 − y) log(1 − y)} .

Comment on the implications for using D to measure the discrepancy between the data
and fitted model.
(c) In (b), show that Pearson’s statistic (10.21) is identically equal to n. Comment.

2 (a) Show that the parametric link function

g(π ; γ ) = log [γ −1{(1 − π )−γ − 1}], γ �= 0,

gives the logit and complementary log-log links when γ = 1 and when γ → 0.
Give a similar function containing the logit and log-log link functions.
(b) Show that the link function

g(π ; γ ) = 2γ −1 πγ − (1 − π )γ

πγ + (1 − π )γ
, γ �= 0,

is symmetric for all γ and gives the logit and identity functions when γ → 0 and when
γ = 1.

3 If X is a Poisson variable with mean µ = exp(xTβ) and Y is a binary variable indicating
the event X > 0, find the link function between E(Y ) and xTβ.
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10.5 Count Data

10.5.1 Log-linear models

The basic model for count data treats the response Y as a Poisson variable with
mean µ. With the canonical, log, link, µ = exp(xTβ); this is a log-linear model.
In certain applications Y may be thought of as the number of events in a Poisson
process of rate exp(xTβ) observed for a period T , in which case µ = T exp(xTβ) =
exp(xTβ + log T ). This is a log-linear model with linear predictor η′ = xTβ + log T ;
the offset term log T is a fixed part of the linear predictor.

The connection between the Poisson and binomial distributions induces a rela-
tionship between log-linear and logistic models. Let Y1 and Y2 be independent Pois-
son variables with means µ1 and µ2. Then the conditional distribution of Y2 given
that Y1 + Y2 = m is binomial with probability π = µ2/(µ1 + µ2) and denominator
m. If µ1 = exp(γ + xT

1β) and µ2 = exp(γ + xT
2β), then π = exp{(x2 − x1)Tβ}/[1 +

exp{(x2 − x1)Tβ}], so β may be estimated either by a log-linear model based on both
observations, or by a logistic model using the conditional distribution of the second
given their sum; in this second case γ cannot be estimated.

Example 10.21 (Premier League data) We consider the numbers of goals scored
in the 380 soccer matches played in the English Premier League in the 2000–2001
season. The data are the home and away scores, yh

i j and ya
i j , when team i is at home

to team j , treated as independent Poisson variables with means

µh
i j = exp(� + αi − β j ), µa

i j = exp(α j − βi ),

where � represents the home advantage and αi and βi the offensive and defensive
strengths of team i . We expect to find � > 0, corresponding to better performance
for teams playing at home.

Table 10.13 contains the analysis of deviance for this log-linear model. There are
large home and offensive effects and weaker but still very significant defensive effects.
Although the residual deviance is substantially larger than its degrees of freedom,
only 36 of the individual scores exceed three goals, so asymptotics based on large
counts are suspect. For the same reason residual analysis is not very useful, and we
assess model fit by Monte Carlo methods. Simulation from the fitted model gave 999
deviances with average value of 826, of which 748 exceeded the observed value. Thus
the observed residual deviance is not unusual, suggesting that the model is broadly
adequate. Under this model, �̂ = 0.37 (0.07), so the mean score of a team playing
at home is increased by a substantial multiplier of exp(�̂) = 1.45. Estimates of the
other parameters are given in the lower part of Table 10.13. The fitted mean scores are
readily computed; for example when Manchester United is at home to Coventry the
fitted means are exp{0.37 + 0.22 − (−0.52)} = 3.03 and exp(−0.53 − 0.15) = 0.51.
In fact this match was a 4–2 win for the home team, Coventry doing better than
expected but losing anyway.

A different analysis models the home score, given the total score m for each match.
The paragraph preceding this example shows that if the log-linear model is correct,
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Table 10.13 Log-linear
and logistic models fitted
to Premier League data.
The upper part shows the
analysis of deviance for
log-linear models with
parameters for home
advantage, offense and
defense. The lower part
shows a league table
based on the overall
strengths estimated from
the binomial model, with
estimated offensive and
defensive capabilities
from the log-linear model.
The baseline team is
Arsenal, some of whose
parameters are aliased.
Individual standard errors
are not shown, but they are
within ±0.02 of the values
at the foot of the table.

Log-linear model Logistic model

Deviance Deviance
Terms df reduction Terms df reduction

Home 1 33.58 Home 1 33.58
Defense 19 39.21 Team 19 79.63
Offense 19 58.85

Residual 720 801.08 Residual 332 410.65

Overall (δ) Offensive (α) Defensive (β)

Manchester United 0.39 0.22 0.15
Liverpool 0.13 0.12 −0.08
Arsenal — 0.04 —
Chelsea −0.09 0.08 −0.22
Leeds −0.10 0.02 −0.17
Ipswich −0.16 −0.10 −0.13
Sunderland −0.33 −0.31 −0.10
Aston Villa −0.48 −0.31 −0.15
West Ham −0.53 −0.33 −0.30
Middlesborough −0.53 −0.35 −0.17
Charlton −0.55 −0.21 −0.43
Tottenham −0.58 −0.28 −0.38
Newcastle −0.59 −0.35 −0.30
Southampton −0.60 −0.45 −0.25
Everton −0.75 −0.32 −0.46
Leicester −0.77 −0.47 −0.31
Manchester City −0.90 −0.40 −0.56
Coventry −0.93 −0.53 −0.52
Derby −0.93 −0.51 −0.45
Bradford −1.29 −0.71 −0.62

SEs 0.29 0.20 0.20

the distribution of the number of goals scored when team i plays at home to team j
is binomial with denominator m and probability

µh
i j

µh
i j + µa

i j

= exp(� + αi − β j )

exp(� + αi − β j ) + exp(α j − βi )

= exp(� + δi − δ j )

1 + exp(� + δi − δ j )
, (10.29)

where δi = αi + βi represents the overall strength of team i . Under this logistic
model, no-score draws contribute no information, as the conditional distribution of
Y2 is degenerate when m = 0, and if there was no home advantage and no differences
among the teams, the number of goals scored by the home side would be binomial
with denominator m and probability 1

2 . This analysis will give no information on the
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absolute goal-scoring abilities of the teams, merely their relative strengths. As an
arbitrary constant may be added to the δi , they cannot all be estimated; we deal with
this by declaring that δ = 0 for Arsenal.

When this model is fitted to the 352 matches with at least one goal scored, we obtain
the deviances in the right part of Table 10.13. There are strong differences among
the teams. The home advantage remains �̂ = 0.37 (0.07), and the estimated δs are
given in the lower part of the table. The broad pattern is the same as in the log-linear
model, though the ordering of clubs in the middle of the league is different. However,
the standard errors for the team effects are larger than those for the log-linear model,
because information is lost when the logistic model is fitted; see Exercise 10.5.2.

The logistic model gives an overall ranking of the teams similar to the official As the lowest three sides
were relegated to the first
division, their supporters
might not regard this as a
matter of detail!

ranking, though with differences of detail: Arsenal and Liverpool are interchanged,
and so are Derby and Manchester City. The centre of the table has further differences,
but as the standard error for each δ̂ j − δ̂i is about 0.3, it is dangerous to read much
into them. One reason for the differences is that the ranking here is based on numbers
of goals, while the official ranking gives 2 for a win, 1 for a draw, and 0 for a
loss. �

10.5.2 Contingency tables

Count data often arise in the form of contingency tables that cross-classify individuals
according to their attributes. The appropriate class of models for such a table depends
on the sampling scheme. Suppose that an R × C table arises by randomly sampling
a population over a fixed period and then classifying the resulting individuals. For
example, a researcher interested in the association of gender (rows) and voting inten- This would not be a good

way to proceed because of
likely bias due to
non-random sampling.

tions (columns) might stand on a street corner for an hour recording data from anyone
willing to talk to him. There are then no constraints on the row and column totals,
and a simple model is that the count in the (r, c) cell, yrc, has a Poisson distribution
with mean µrc. The resulting likelihood is

∏
r,c

{
µ

yrc
rc

yrc!
e−µrc

}
;

this is simply the Poisson likelihood for the counts in the RC groups.
Our hapless researcher may set out with the intention of interviewing a fixed num-

ber m of individuals, stopping only when
∑

rc yrc = m. In this case the data are
multinomially distributed, with likelihood

m!∏
r,c yrc!

∏
r,c

π yrc
rc ,

∑
r,c

πrc = 1,

with πrc = µrc/
∑

s,t µst the probability of falling into the (r, c) cell.
A third scheme is to interview fixed numbers of men and of women, thus fixing

the row totals mr = ∑
c yrc in advance. In effect this treats the row categories as

subpopulations, and the column categories as the response. This yields independent
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multinomial distributions for each row, and product multinomial likelihood

∏
r

{
mr !∏
c yrc!

∏
c

π yrc
rc

}
,

∑
c

π1c = · · · =
∑

c

πRc = 1,

in which πrc = µrc/
∑

t µr t . See Table 10.2, in which the response is the fate of a
fixed number of butterflies for each combination of species and colour; the appropriate
product multinomial model fixes the total for each triplet.

These three set-ups can all be fitted as log-linear models, provided the appropriate
baseline terms are included in the linear predictor. To see this, we arrange our data
as a two-way layout, with row totals fixed: the multinomial sampling scheme gives
just one row, whereas we would arrange the data in Table 10.2 as a 48 × 3 table.
Suppose that the cell counts yrc are independent Poisson variables with means µrc =
exp(γr + xT

rcβ), where γr corresponds to the overall count in the r th row; interest
focuses on the parameter β. The multinomial model has fixed row totals

∑
c yrc = mr

and probabilities

πrc = µrc∑
d µrd

= exp
(
γr + xT

rcβ
)

∑
d exp

(
γr + xT

rdβ
) = exp

(
xT

rcβ
)

∑
d exp

(
xT

rdβ
) ,

so the corresponding log likelihood is

�Mult(β; y | m) ≡
∑

rc

yrc log πrc

=
∑

r

{∑
c

yrcxT
rcβ − mr log

(∑
c

exT
rcβ

)}
, (10.30)

where we have emphasized the fact that the likelihood is based on the conditional
distribution of the counts y given the row totals m.

For the Poisson model there is no conditioning, so the log likelihood is

�Poiss(β, γ ) ≡
∑
r,c

(yrc log µrc − µrc)

=
∑

r

(
mrγr +

∑
c

yrcxT
rcβ − eγr

∑
c

exT
rcβ

)
.

As the γr are not of central concern, we express this log likelihood as a function of
the row totals τr = ∑

c µrc = eγr
∑

c exT
rcβ and the parameter of interest, β. In terms

of β and the τr , we have γr = log τr − log{∑c exp(xT
rcβ)}, giving

�Poiss(β, τ ) ≡
∑

r

(mr log τr − τr ) +
∑

r

{∑
c

yrcxT
rcβ − mr log

(∑
c

exT
rcβ

)}
,

= �Poiss(τ ; m) + �Mult(β; y | m),

say. The first term on the right of this decomposition is the log likelihood that cor-
responds to the Poisson distribution of the row total mr — a sum of independent
Poisson variables — while the second is the multinomial log likelihood (10.30).
Thus the mr form a cut, and the maximum likelihood estimates of β and τ based
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on �Poiss(β, τ ) are the same as those based on separate maximizations of �Poiss(τ ; m)
and �Mult(β; y | m); see (5.21). Hence β̂ equals the maximum likelihood estimate for
the multinomial log likelihood (10.30), and τ̂r = mr . Moreover, the observed and
expected information matrices for the model are block diagonal, with blocks corre-
sponding to −∂2�Poiss(τ ; m)/∂τ∂τ T and −∂2�Mult(β; y | m)/∂β∂βT.

To see that the standard errors for β̂ based on the multinomial and Poisson models
are equal, note that ∂2�Poiss(β, τ )/∂β∂βT depends on the data only through the mr .
Therefore the expected information for β under the multinomial model, in which the
mr are fixed, equals the observed information for β under the Poisson model. Under
the Poisson model, the expected information for β is

∑
r

E(mr )
∂2 log

( ∑
c exT

rcβ
)

∂β∂βT
=

∑
r

τr
∂2 log

( ∑
c exT

rcβ
)

∂β∂βT
,

and the standard errors for β̂ are obtained by replacing τr and β with their estimates,
and inverting the resulting matrix. But as τ̂r = mr , the resulting standard errors will
equal those obtained by inverting the expected information matrix obtained from
(10.30). It follows that the numerical values of standard errors and maximum like-
lihood estimates for β under the Poisson model are the same as those under the
multinomial model, provided that the parameters associated with the margin fixed
under the multinomial model, the γr , are included in the fit. The log linearity is im-
portant here, as it ensures that second derivatives of both log likelihoods with respect
to β involve the counts yrc only through their row totals mr .

Example 10.22 (Jacamar data) Let ycs f denote the number of butterflies of the
cth colour and sth species suffering the f th fate, where c = 1, . . . , 8, s = 1, . . . , 6,
and f = 1, 2, 3. If we treat fate as the response, any model should fix the total count
for each of the 48 combinations of species and colour, giving 48 trinomial variables.
Any Poisson model should have a term αcs in the linear predictor. For example,
log µcs f = αcs corresponds to equal probability of each of the three fates, whatever
the colour and species, because

(πcs1, πcs2, πcs3) =
(

µcs1∑
f µcs f

,
µcs2∑
f µcs f

,
µcs3∑
f µcs f

)
=

(
1

3
,

1

3
,

1

3

)
,

and this is independent of c and s, while log µcs f = αcs + γ f corresponds to proba-
bilities

(πcs1, πcs2, πcs3) =
(

µcs1∑
f µcs f

,
µcs2∑
f µcs f

,
µcs3∑
f µcs f

)

= 1

eγ1 + eγ2 + eγ3
(eγ1 , eγ2 , eγ3 ) ,

also independent of colour and species. Linear predictor log µcs f = αcs + γc f
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Table 10.14 Deviances
for log-linear models
fitted to jacamar data.

Terms df Deviance

C�S 22 259.42
C�S+F 86 173.86
C�S+C�F 72 139.62
C�S+S�F 76 148.23
C�S+C�F+S�F 62 90.66
C�S�F 0 0

corresponds to probability vector

(πcs1, πcs2, πcs3) =
(

µcs1∑
f µcs f

,
µcs2∑
f µcs f

,
µcs3∑
f µcs f

)

= 1

eγc1 + eγc2 + eγc3
(eγc1 , eγc2 , eγc3 ) ,

in which the probabilities of the different fates depend on colour, but not on species.
Let C�S+F denote the terms of the linear predictor αcs + γ f . Then the terms for the
three models above are C�S, C�S+F, and C�S+C�F. Any model that treats F as the
response must contain a term C�S, which fixes the row totals. The term C�F indicates
that the response probabilities depend on colour.

Table 10.14 contains the deviances for the models withC�S, with degrees of freedom
adjusted for triplets with zero totals. The best-fitting model is the full model C�S�F.
The best reasonable model is C�S+C�F+S�F, which extends to trinomial responses the
binomial two-way layout model of Example 10.15, but its deviance is large compared
to its asymptotic χ2

62 distribution.
If categories N and S were merged there would be 96 observations and two possible

fates. In this case the linear predictor log µcs f = αcs + γc f corresponds to probabilities

(πcs1, πcs2) = 1

eγc1 + eγc2
(eγc1 , eγc2 ) = 1

1 + eγc2−γc1
(1, eγc2−γc1 ),

which is the binomial logistic model with terms 1+Colour fitted in Example 10.15.
When the response classification has two categories, it simplifies matters to fit the
model as binomial rather than Poisson, although identical inferences are drawn about
its parameters. �

Example 10.23 (Lung cancer data) Example 1.4 gives data on the lung cancer
mortality of cigarette smokers among British male physicians. The response is the
number of deaths in each cell of the table, which also gives the total number of
man-years of exposure T in each category.

We initially fit a log-linear model with factors for both margins and offset log man-
years at risk in each cell. Thus Trc exp(αr + βc) is the mean number of deaths in the
(r, c) cell. This model has deviance 51.47 on 48 degrees of freedom and appears to fit
well. Figure 10.9 shows the coefficients for this model; the first level of each factor is
taken to have coefficient zero. The figure suggests that there is a linear effect of dose
d on the cancer rate, but that the increase with age is faster. However the standard
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Figure 10.9 Results for
two-way layout model,
plotted against age and
cigarette consumption.
Shown are exponentials of
coefficients, plus/minus
two standard errors.

errors for the individual parameters are very large, reflecting the small numbers of
deaths in most cells.

For a more concise model that is not log-linear, let the death rate for those smoking
d cigarettes per day after t years of smoking be

λ(d, t) = (
β0 + β1dβ2

)
tβ3 , (10.31)

deaths per 100,000 man-years at risk; here β0 and β1 are non-negative, and β2 and
β3 are real. We take t to be the midpoint of each group, divided by 42.5, so that β0

represents the background rate of cancer for non-smokers aged 62.5 years, for whom
the rescaled t = 1. The broadly exponential pattern in the left panel of Figure 10.9
suggests that β3 > 1. The term β1dβ2 describes the effect of smoking on death rates;
we expect β2

.= 1, corresponding to the linear increase seen in the right panel of
Figure 10.9.

A likelihood ratio test of the effect of smoking on death rate would be non-regular,
because setting either β1 = 0 or β2 = 0 eliminates both of these parameters; moreover
β1 = 0 is a boundary hypothesis. In either case the resulting model is log-linear, with
deviance 180.8 on 61 degrees of freedom; the fit seems poor, despite the low counts
and hence the likely inapplicability of chi-squared deviance asymptotics.

To fit the full model it is better to recast (10.31) as

λ(d, t) = {eγ0 + exp(γ1 + β2 log d)} exp(β3 log t),

so that all the parameters are unconstrained; the term exp(γ1 + β2 log d) is omitted
for the non-smokers. In this form it is straightforward to maximize the log likelihood
by iterative weighted least squares, giving deviance 59.58 on 59 degrees of freedom,
so marked an improvement on the model without smoking that the non-regularity of
the asymptotics is immaterial.

Table 10.15 shows that the precision of γ̂0 depends heavily on the data for non-
smokers. The background non-smoker death-rate from cancer at age 62.5 is eγ̂0 = 18.9
per 100,000 years at risk.

With the restriction β2 = 1 the deviance increases to 61.84 on 60 degrees of free-
dom, a deviance difference of 2.26 on 1 degree of freedom. Linear dependence of
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Table 10.15 Parameter
estimates (standard errors)
for lung cancer data.

γ0 γ1 β2 β3

Smokers only 0.96 (25.4) 2.15 (1.45) 1.20 (0.40) 4.50 (0.34)
All data 2.94 (0.58) 1.82 (0.66) 1.29 (0.20) 4.46 (0.33)
All data (β2 = 1) 2.75 (0.56) 2.72 (0.09) — 4.43 (0.33)

Table 10.16 Joint
distribution of visual
impairment on both eyes
by race and age Liang
et al. (1992). Combination
(0, 0) means neither eye is
visually impaired.

Eye Prevalence for whites aged Prevalence for blacks aged

Left Right 40–50 51–60 61–70 70+ 40–50 51–60 61–70 70+

0 0 602 541 752 606 729 551 452 307
1 0 11 15 31 60 19 24 22 29
0 1 15 16 37 67 21 23 21 37
1 1 4 9 11 79 10 14 28 56

death rate on d appears plausible, in which case the background death rate drops
somewhat to 15.6 deaths per 100,000 man-years at risk, but rises by an additional
eγ̂1

.= 15.2 for every cigarette smoked daily. Case analysis shows no residuals out of
line, and the model appears to fit well. It is both more parsimonious than the log-linear
model and motivated by substantive considerations, so it seems preferable. �

Marginal models

Although mathematically elegant and simple to fit, log-linear models have some awk-
ward statistical properties because their parameters have interpretations that depend
on other terms in the model, as we shall now see.

Example 10.24 (Eye data) Table 10.16 gives data from the Baltimore Eye Study
Survey. Drivers are classified by age, race and visual impairment, defined as vision
less than 20/60; in the original data their level of education is also available, and is
treated as a surrogate for socioeconomic status. The aim of the original analysis was
to see how visual impairment depends on age and race, controlling for education, but
we shall simply consider dependence on age and race.

We treat the data as eight 2 × 2 tables corresponding to columns 3–10 of the table,
that is one for each different combination of race and age, given by the covariate
vector x . Each table has elements (y00, y01; y10, y11), where y00 is the number of
men without visual impairment, y01 is the number whose right eye only is poor, and
so forth. The total number of men with covariate combination x is m = y00 + y01 +
y10 + y11, which we treat as fixed. The corresponding probabilities (π00, π01; π10, π11)
depend on x .

A natural preliminary to joint analysis of data for both eyes is to fit logistic regres-
sion models and estimate the probability of impairment in each eye separately. For
the left eye we would treat rL = y10 + y11 as a binomial response with denominator
m and probability

π10 + π11 = πL = exp(xTβL )/{1 + exp(xTβL )},
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say. For the right eye the response would be rR = y01 + y11 with denominator m and
probability π01 + π11 = πR = exp(xTβR)/{1 + exp(xTβR)}. Here βL and βR summa-
rize the effect of x on the marginal distributions of rL and rR . Our earlier arguments
show that these logistic models are also log-linear.

In generalizing these marginal models to allow for the anticipated dependence
between the eyes, it is natural to augment πL and πR by adding further parameters.
One possibility is to write the odds ratio as

π11π00

π10π01
= π11(1 − πL − πR + π11)

(πL − π11)(πR − π11)
= exp(xTβL R).

If xTβL R = γ was independent of x , there would be constant association between the
eyes after adjusting for marginal effects of age and race, with more complicated models
indicating more complex patterns of association. As 0 < π00, π01, π10, π11 < 1, the
probability π11 must lie in the interval (max(0, πL + πR − 1), min(πL , πR)), and a
little algebra shows that π11 may be expressed as the root of a quadratic equation
whose coefficients depends on πL , πR , and xTβL R , thereby enabling us to express the
probabilities in each 2 × 2 table in terms of the marginal probabilities and the odds
ratio.

The log-linear model for the joint density of (y00, y01; y10, y11) has probabilities

(π00, π01; π10, π11) = 1

1 + eγR + eγL + eγR+γL+γL R
(1, eγR , eγL , eγR+γL+γL R ),

where γL = xTδL , γR = xTδR , γL R = xTδL R . Under this model the marginal proba-
bility of an unimpaired left eye is

π ′
L = eγL + eγR+γL+γL R

1 + eγR + eγL + eγR+γL+γL R
,

which has logistic form eγL /(1 + eγL ) only when γL R = 0, that is conditional on x
visual impairment occurs independently in each eye. Otherwise the marginal proba-
bility of an impaired left eye depends on γR and γL R , implying that the initial logistic
fits shed no light on γL .

To put this another way, note that γL may be written as

L = 1 denotes visual
impairment in the left eye,
etc.

log

(
π10

π00

)
= log

Pr(L = 1 | R = 0, x)

Pr(L = 0 | R = 0, x)
,

with a similar expression for γR , and that

γL R = log

{
Pr(L = 1 | R = 1, x)

Pr(L = 0 | R = 1, x)

}
− log

{
Pr(L = 1 | R = 0, x)

Pr(L = 0 | R = 0, x)

}
.

Thus the parameters of the log-linear model have interpretations in terms of contrasts
of log odds for one eye conditional on the state of the other, and these do not yield
marginal probabilities with simple interpretations. Therefore the log-linear model
for the joint outcomes is not upwardly compatible with the logistic models for the
marginal outcomes. This poses problems in applications where marginal properties
of the variables are of interest. �
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Inference for marginal models is awkward because complete specification of their
likelihoods is ordinarily neither possible nor desirable. An alternative is to base in-
ference on systems of estimating equations, and we now sketch how this is done.

Suppose that the j th of n individuals contributes a q × 1 response vector Y j and a
p × 1 vector of explanatory variables x j , and let Z j denote the q(q − 1)/2 × 1 vector
containing the distinct products of pairs of elements of Y j . Now E(Y j ) = µ(xT

jβ) is
specified by the marginal model, while the covariance structure among the responses
is given by E(Z j ) = ξ (xT

jβ, γ ), where β represents the parameters of the marginal
model, and γ additional parameters that account for association among elements of Y j .

In the preceding example q = 2 and Y T
j equals (0, 0), (0, 1), (1, 0), or (1, 1), indi-

cating the state of the left and right eyes, while

E
(
Y T

j

) = µ
(
xT

jβ
)T = (πL , πR) =

(
exp(xTβL )

1 + exp(xTβL )
,

exp(xTβR)

1 + exp(xTβR)

)
,

and ξ (xT
jβ, γ ), the probability of visual impairment in both eyes for individual j ,

depends both on x j and on the degree of association between the eyes.
Ideas from Section 7.2 suggest that consistent estimators ofβ andγ may be obtained

by combining the unbiased estimating functions Y j − µ(xT
jβ) and Z j − ξ (xT

jβ, γ ),
and the form of (7.21) suggests that the estimators that solve the generalized estimating
equations

n∑
j=1

∂
{
µ

(
xT

jβ
)T

, ξ
(
xT

jβ, γ
)T}

∂(β, γ )

(
var(Y j ) cov(Y j , Z j )

cov(Z j , Y j ) var(Z j )

)−1

×
(

Y j − µ
(
xT

jβ
)

Z j − ξ
(
xT

jβ, γ
)
)

= 0

will have smallest asymptotic variance. The presence of cov(Y j , Z j ) means that third-
order moments of Y j must in principle be specified, and one way to avoid this is to
replace this term by a zero matrix. The resulting estimators β̂ and γ̂ are consistent
but the variance of γ̂ can be much larger than when the correct covariance matrix is
used. If γ is of interest then some of the lost efficiency can be retrieved by assuming
a simple form for cov(Y j , Z j ). Standard errors for β̂ and γ̂ are based on a sandwich
covariance matrix; see Section 7.2. In many applications it is important to be able to
accomodate missing data, and this is achieved by allowing the length of Y j to vary
with the individual; no essentially new points arise.

10.5.3 Ordinal responses

Discrete data often arise in which the response comprises numbers in ordered cat-
egories that may be labelled 1, . . . , k. Examples are individuals undergoing some
treatment and asked to say if they experience one of {no pain, slight pain, moderate
pain, extreme pain}, or where curries are classified as {bland, mild, . . . , volcanic}.
The goal is then typically to assess how these ordinal responses depend on explana-
tory variables x . Sometimes the response is a discretized version of an underlying
continuous variable, though this interpretation is not always plausible. In either case
suitable models are based on the multinomial distribution. If there are n independent
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individuals whose responses are I1, . . . , In , and I j = l indicates that the j th re-
sponse falls in category l, then Pr(I j = l) = πl for l = 1, . . . , k, and the correspond-
ing cumulative probabilities are γl = Pr(I j ≤ l) = π1 + · · · + πl for l = 1, . . . , k; of
course γk = 1. Individual responses with common explanatory variables x can be
merged to give a multinomial variable (Y1, . . . , Yk), where Yl represents the number
in category l; thus Y1 + · · · + Yk = n. Typically the joint distribution of (Y1, . . . , Yk)
depends on x through a linear predictor xTβ.

In many applications it is appropriate to require that the interpretation of the model
parameters remains unchanged when adjacent categories are merged. One class of
models with this property may be motivated by positing the existence of an underlying
continuous variable ε with distribution function F , with I indicating into which of
the k intervals

(−∞, ζ1], (ζ1, ζ2], . . . , (ζk−2, ζk−1], (ζk−1, ∞), ζ1 < · · · < ζk−1,

xTβ + ε falls. For convenience let ζ0 = −∞ and ζk = ∞. Then

πl(x
Tβ) = Pr(I = l; xTβ) = Pr(ζl−1 < xTβ + ε ≤ ζl)

= F(ζl − xTβ) − F(ζl−1 − xTβ),

and γl(xTβ) = F(ζl − xTβ), for l = 1, . . . , k. Thus large xTβ leads to higher proba-
bilities for the higher categories. A natural choice is the logistic distribution function
F(u) = exp(u)/{1 + exp(u)}, which leads to the proportional odds model, so-called
because the odds ratio of appearing in category l or lower for two individuals with
explanatory variables x1 and x2,

Pr(I ≤ l; x2)/Pr(I > l; x2)

Pr(I ≤ l; x1)/Pr(I > l; x1)
= exp

(
ζl − xT

2β
)

exp
(
ζl − xT

1β
) = exp

{−(x2 − x1)Tβ
}
,

is independent of l. Another possibility that often works well in practice is F(u) =
1 − exp{− exp(u)}. Whatever the choice of F , interest focuses on how the response
depends on the covariates, summarized in β; typically ζ1, . . . , ζk−1 are of little con-
cern. Any overall intercept term in xTβ is aliased with the ζl .

Although this model is motivated by arguing as if an underlying continuous variable
exists, this is not essential in order for it to be applied — the model may be useful
even when ε clearly does not exist. As Examples 4.21 and 10.17 show, the loss of
information due to categorizing continuous data can be substantial if the number of
categories is very small.

The log likelihood based on independent responses i1, . . . , in with corresponding
vectors of explanatory variables x1, . . . , xn may be written as

�(β, ζ ) =
n∑

j=1

k∑
l=1

I (i j = l) log πl(x
T
jβ),

a multinomial log likelihood to which by now familiar methods can be applied.

Example 10.25 (Pneumoconiosis data) The data in Table 10.17 concern the period
x in years of work at a coalface and the degree of pneumoconiosis in a group of
miners. The response consists of counts {y1, y2, y3} in k = 3 categories {Normal,
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Table 10.17 Period of
exposure x and prevalence
of pneumoconiosis
amongst coalminers
(Ashford, 1959).

Period of exposure (years)

5.8 15 21.5 27.5 33.5 39.5 46 51.5

Normal 98 51 34 35 32 23 12 4
Present 0 2 6 5 10 7 6 2
Severe 0 1 3 8 9 8 10 5
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Figure 10.10
Pneumoconiosis data
analysis. The left panel
shows how empirical
logistic transformations z2

and z3 depend on
exposure x . The right
panel shows how the
implied fitted logistic
distributions depend on x .
The vertical lines show ζ̂1

and ζ̂2; the areas lying left
of, between, and right of
them equal the fitted
probabilities π̂1(x), π̂2(x),
and π̂3(x).

Present, Severe} assessed radiologically and is qualitative. As the period of exposure
increases, the proportion of miners with the disease present or in severe form increases
sharply.

A simple analysis starts by combining categories, either as {Normal or Present,
Severe} or as {Normal, Present or Severe}, to which models for binomial responses
may be fitted. The plot of the empirical logistic transforms

z2 = log

(
y3 + 1

2

y1 + y2 + 1
2

)
, z3 = log

(
y2 + y3 + 1

2

y1 + 1
2

)
,

in the left panel of Figure 10.10 shows that the linear predictor should contain log x
rather than x . The logistic regression model with linear predictor β0 + β1 log x and
response y2 + y3 gives β̂0 = −9.6 and β̂1 = 2.58. The corresponding model with re-
sponse y3 yields β̂0 = −10.9 and β̂1 = 2.69. Both models fit well, and the similarity
of the slope estimates suggests that fitting the proportional odds model will be worth-
while.

Maximum likelihood fitting of the proportional odds model with linear predictor
β1 log x gives β̂1 = 2.60 (0.38), ζ̂1 = 9.68 (1.32), and ζ̂2 = 10.58 (1.34), entirely
consistent with the binomial fits. Pearson’s statistic is 4.7 on 13 degrees of freedom,
so the fit seems good. The interpretation of β̂1 is that every doubling of exposure
increases the linear predictor by 2.6 × log 2

.= 1.8 and hence the odds of having the
disease by a factor 6 or so. The same increase applies to the odds of having the
disease in severe form. The right panel of Figure 10.10 illustrates how the fitted
logistic distribution implied by the model changes with x . �
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Such models can be broadened by taking an underlying variable xTβ + σε, with
σ dependent on explanatory variables.

Continuation ratio models may be based on the decomposition of the multinomial
distribution of (Y1, . . . , Yk) as

Y1 ∼ B(n, π1),

Y2 | Y1 ∼ B

(
n − y1,

π2

1 − π1

)
,

... (10.32)

Yk−1 | Y1, . . . , Yk−2 ∼ B

(
n − y1 − · · · − yk−2,

πk−1

1 − π1 − · · · − πk−2

)
;

of course Yk is constant conditional on Y1, . . . , Yk−1. At each stage the number of
individuals in category l, given the numbers in categories 1, . . . , l − 1, is treated
as a binomial variable with response probability πl/(1 − γl−1), to which a logistic
regression or other suitable binomial response model may be fitted. Thus the original
k-nomial response is broken into k − 1 separate binomial responses. Unlike in the
proportional odds model there is no necessity that the same explanatory variables be
used in each of the k − 1 fits, nor that their link functions be the same; this would
depend on the scientific context.

Exercises 10.5

1 Consider the 2 × n table of independent Poisson variables

Y11 · · · Y1 j · · · Y1n

Y21 · · · Y2 j · · · Y2n
,

where

η1 j = log E(Y1 j ) = xT
1 jβ, η2 j = log E(Y2 j ) = xT

2 jβ.

Show that the conditional density of Y1 j given that Y1 j + Y2 j = m j is binomial with
denominator m j and probability π j satisfying log{π j/(1 − π j )} = xT

j β, where x j = x1 j −
x2 j . This implies that a contingency table in which a single, binary, classification is
regarded as the response can be analyzed using logistic regression. What advantages are
there to doing so in terms of model-fitting and the examination of residuals?

2 In light of the preceding exercise and the discussion on page 501, reconsider the models
fitted in Example 10.21. Say why Table 10.13 contains much larger standard errors for
the logistic than for the log-linear model.

3 For a 2 × 2 contingency table with probabilities

π00 π01

π10 π11
,

the maximal log-linear model may be written as

η00 = α + β + γ + (βγ ), η01 = α + β − γ − (βγ ),
η10 = α − β + γ − (βγ ), η11 = α − β − γ + (βγ ),

where η jk = log E(Y jk) = log(mπ jk) and m = ∑
j,k y jk . Show that the ‘interaction’ term

(βγ ) may be written (βγ ) = 1
4 log �, where � is the odds ratio (π00π11)/(π01π10), so that

(βγ ) = 0 is equivalent to � = 1.

4 Give the matrices needed for iterative weighted least squares for the nonlinear model
(10.31) in Example 10.23. How might starting-values be obtained?
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5 In Example 10.24, discuss whether a marginal model or a log-linear model is preferable
for (a) a white man aged 43 with a visually impaired left eye, who wants to assess his
probability of having visual impairment in the other eye at the age of 65, and (b) a scientist
comparing how visual impairment deveops with age for men of different races.

6 Give the form of the proportional odds model obtained when an underlying continuous
variable xTβ + exp(xTγ )ε is categorized; ε has the logistic density eu/(1 + eu)2, −∞ <
u < ∞. Derive the iterative weighted least squares algorithm for estimation of β when it
is known that γ = 0. Explain how you would need to change your algorithm to deal with
γ �= 0.

7 Establish (10.32).

10.6 Overdispersion

Thus far we have supposed that our data are well-described by a model with a simple
error distribution. Nature is not usually so obliging, however, and in practice it is
common to find that count and proportion data are more variable than would be
expected under the Poisson and binomial models. Other types of data may also exhibit
such overdispersion, manifested by models with over-large deviances and residuals,
but otherwise showing no systematic lack of fit. Structure in the data is obscured by
additional noise, so overdispersion increases uncertainty. Underdispersion also arises
but is much rarer.

Two approaches to dealing with overdispersion are explicit parametric modelling of
the heterogeneity, and the use of quasi-likelihood and associated estimating functions.

Parametric models

Suppose that the response Y has a standard distribution conditional on the unob-
served variable ε, but that ε induces extra variation in Y . Here ε might represent
unobserved — perhaps unobserveable — covariates that affect the response. Let ε

have unit mean and variance ξ > 0, and to be concrete suppose that conditional on ε,
Y has the Poisson distribution with mean µε. Then (3.12) and (3.13) give

E(Y ) = Eε {E(Y | ε)} , var(Y ) = varε {E(Y | ε)} + Eε {var(Y | ε)} ,

so the response has mean and variance

E(Y ) = Eε(µε) = µ, var(Y ) = varε(µε) + Eε(µε) = µ(1 + ξµ).

If on the other hand the variance of ε is ξ/µ, then var(Y ) = (1 + ξ )µ. In both cases
the variance of Y is greater than its value under the standard Poisson model, for
which ξ = 0. In the first case the variance function is quadratic, and in the second it is
linear.

Table 10.18 illustrates the difference between these variance functions under mod-
est overdispersion. Large amounts of data will be needed to detect overdispersion
when the counts are small. The variances are equal when µ = 15, but evidently a
lot of data over a limited range of values of µ or alternatively a large range of mean
responses would be needed to discriminate well between the two variance functions.
This is one reason to consider a more robust approach, rather than to model the
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Table 10.18
Comparison of variance
functions for
overdispersed count data.
The linear and quadratic
variance functions are
VL (µ) = (1 + ξL )µ and
VQ (µ) = µ(1 + ξQµ),
with ξL = 0.5 and ξQ

chosen so that
VL (15) = VQ (15).

µ 1 2 5 10 15 20 30 40 60
Linear 1.5 3.0 7.5 15.0 22.5 30 45 60 90
Quadratic 1.0 2.1 5.8 13.3 22.5 33 60 93 180

overdispersion in detail. If a full likelihood analysis is desired regardless, one can
proceed as in the following example.

Example 10.26 (Negative binomial model) In the discussion above, suppose that ε
has the gamma distribution with unit mean and variance 1/ν. Then Y has the negative
binomial density (Exercise 10.6.1)

f (y; µ, ν) = �(y + ν)

�(ν)y!

ννµy

(ν + µ)ν+y
, y = 0, 1, . . . , µ, ν > 0, (10.33)

and quadratic and linear variance functions are obtained on setting ν = 1/ξ and ν =
µ/ξ respectively. The first leads to simpler likelihood equations and so is preferable in
purely numerical terms. When independent responses y j have associated covariates
x j , it is natural to take the log link, giving means µ j = exp(xT

jβ). The value of ξ may
be estimated from its profile log likelihood or by equating the Pearson statistic and
its expected value; see Example 10.28. �

A similar analysis applies to proportions. Suppose that conditional on ε, R = mY
is binomial with denominator m and success probability πε, and that ε has unit mean
and variance ξ . Then calculations like those above give

E(Y ) = π, var(Y ) = m−1 {π (1 − π ) + ξπ2(m − 1)}. (10.34)

Hence overdispersion increases with m if ξ is constant. Heterogeneity is unde-
tectable in pure binary data, for which m = 1. When m > 1 and γ > 0, the choice
ξ = γ (1 − π )/{π (m − 1)} gives var(Y ) = (1 + γ )π (1 − π )/m, corresponding to
uniform overdispersion. This is explored further in Exercise 10.6.4.

Quasi-likelihood

In all but the simplest cases the modelling of overdispersion by integrating out an
unobserved variable leads to use of numerical integration. This can be awkward, but
a more serious difficulty is that inferences might depend strongly on the unobserved
component, which can be validated only indirectly. Hence it is often preferable to
modify standard methods to accommodate overdispersion, in analogy with the use
of least squares estimation when responses are non-normal (Section 8.4). We shall
see below that provided the mean and variance functions are correctly specified,
the estimators obtained by fitting standard models retain their large-sample normal
distributions, but with an inflated variance matrix. This is very convenient, because
standard software can then be used for fitting, with minor modification to the output.

Unrecognised overdispersion is a form of model misspecification, so one starting-
point is to apply the ideas of Section 7.2, treating the generalized linear model score
statistic (10.18) as an estimating function g(Y ; β) for β. An estimator β̃ is obtained
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by solving the quasi-likelihood equation

g(Y ; β) = X Tu(β) =
n∑

j=1

x j u j (β) =
n∑

j=1

x j
Y j − µ j

g′(µ j )φ j V (µ j )
= 0, (10.35)

where the link function gives g(µ j ) = η j = xT
jβ. Now if the mean structure has been

X is the n × p matrix
whose j th row is xT

j .

chosen correctly, then E(Y j ) = µ j and the estimating function is unbiased, that is
E{g(Y ; β)} = 0 for all β. Then the quasi-likelihood estimator β̃ is consistent under
mild regularity conditions.

In large samples β̃ is normal with variance matrix (Section 7.2.1)

E

{
−∂g(Y ; β)

∂βT

}−1

var {g(Y ; β)} E

{
−∂g(Y ; β)T

∂β

}−1

. (10.36)

In order to compute this we require E{−∂g(Y ; β)/∂βT} and var{g(Y ; β)}. Now

∂u j (β)

∂βT
= ∂η j

∂βT

∂µ j

∂η j

∂u j (β)

∂µ j

= xT
j

1

g′(µ j )

{
−g′′(µ j )

g′(µ j )
u j (β) − V ′(µ j )

V (µ j )
u j (β) − 1

g′(µ j )φ j V (µ j )

}
,

and as E{u j (β)} = 0, it follows that

E

{
−∂g(Y ; β)

∂βT

}
= −

n∑
j=1

x j E

{
∂u j (β)

∂βT

}

=
n∑

j=1

x j x
T
j

1

g′(µ j )2φ j V (µ j )
= X TW X,

where W is the n × n diagonal matrix with j th element {g′(µ j )2φ j V (µ j )}−1.
Moreover if in addition the variance function has been correctly specified, then
var(Y j ) = φ j V (µ j ), and hence

var{g(Y ; β)} = X Tvar{u(β)}X =
n∑

j=1

x j x
T
j

var(Y j )

g′(µ j )2φ2
j V (µ j )2

= X TW X.

Thus (10.36) equals (X TW X )−1. Had the variance function been wrongly spec-
ified, the variance matrix of β̃ would have been of sandwich form (X TW X )−1

(X TW ′ X )(X TW X )−1, where W ′ is a diagonal matrix involving the true and assumed
variance functions. Only if the variance function has been chosen very badly will
this sandwich matrix differ greatly from (X TW X )−1, which therefore provides useful
standard errors unless a plot of absolute residuals against fitted means is markedly
non-random. In that case the choice of variance function should be reconsidered.

Quasi-likelihood estimates and standard errors are easily obtained using software
that fits generalized linear models. Usually φ j = a jφ, where the a j are known con-
stants and φ = 1 corresponds to a model such as the Poisson or binomial, for which
the software finds estimates and standard errors by solving (10.35) with φ = 1. As φ

cancels from (10.35), the quasi-likelihood estimate β̃ equals the maximum likelihood
estimate. Software that sets φ = 1 will yield a variance matrix that is too small by a
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factor φ, however, so the usual standard errors must be multiplied by φ̂1/2, where φ̂

is defined at (10.20).
Under an exponential family model, the quantity g(Y ; β) in (10.35) is the score

statistic, so estimators based upon it are asymptotically optimal. Even if that model
is false, inference based on g(Y ; β) is valid provided the mean and its relation with
the variance V (µ) have been correctly specified. Moreover the argument on page 322
shows that β̃ is optimal among estimators based on linear combinations of the Y j − µ j ,
in analogy with the Gauss–Markov theorem. The essential requirement for this is that
the u j (β) satisfy the two key properties

E(∂�/∂µ) = 0, var(∂�/∂µ) = E(−∂2�/∂µ2)

of a log likelihood derivative. In fact, g(Y ; β) is the derivative with respect to β of the
quasi-likelihood function Strictly Q(β; Y ) is a

quasi-log likelihood.

Q(β; Y ) =
n∑

j=1

∫ µ j

Y j

Y j − u

φa j V (u)
du,

and we can define a deviance as −2φQ(β; Y ). This is positive by construction and
can be used to compare nested models under overdispersion.

Example 10.27 (Weighted least squares) The simplest example of quasi-likelihood
estimation arises when V (µ) = 1, φ j = φa j , and the mean of Y j is µ j = xT

jβ. Then
(10.35) becomes

n∑
j=1

x j

Y j − xT
jβ

φa j
= X TW (Y − Xβ) = 0,

where W is the diagonal matrix φ−1diag(1/a1, . . . , 1/an), and

β̃ = (X TW X )−1 X TW Y

is the weighted least squares estimator of β, found using weights a−1
j . This estimator is

the maximum likelihood estimator only if the Y j are independent and normal, but even
if not, β̃ is the minimum variance unbiased estimator linear in the Y j (Section 8.4).

Integration shows that the deviance Q(β; Y ) equals the weighted sum of squares
(Y − Xβ)TW (Y − Xβ), while

φ̂ = 1

n − p

n∑
j=1

(
Y j − xT

j β̃
)2

a j
= 1

n − p
(Y − X β̃)TW (Y − X β̃);

see Section 8.2.4. �

Example 10.28 (Cloth fault data) The left panel of Figure 10.11 shows the numbers
of flaws in n = 32 cloth samples of various lengths. A plausible model is that the
number of faults y in a sample of length x has a Poisson distribution with mean βx .
A maximum likelihood fit of this model gives β̂ = 1.51 with standard error 0.09.
However the deviance of 64.5 on 31 degrees of freedom and the right panel of the
figure suggest that the data are more variable than the Poisson model might indicate.
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analysis (Bissell, 1972).
The left panel shows the
numbers of flaws in 32
cloth samples of various
lengths (m). The dotted
line shows the fitted mean
number of faults under the
model. The right panel
shows that absolute
residuals for the fit are
overdispersed relative to
the standard normal
distribution appropriate
under the Poisson
assumption.

On reflection this is not surprising, as the rate β is likely to vary from one sample to
another.

For quasi-likelihood estimation with var(Y ) = φµ, (10.35) is given by

n∑
j=1

x j
y j − µ j

φµ j
= 0, µ j = x jβ,

and as
∑

(y j − µ̂ j )2/µ̂ j = 68.03 on 31 degrees of freedom, φ̂ = 68.03/31 = 2.19.
The standard error for β̂ is then 0.09φ̂1/2 = 0.13, appreciably larger than under the
Poisson model.

When the negative binomial model with variance function µ(1 + ξµ) is fitted, the
maximum likelihood estimates of β and ξ are 1.51 and 0.115 with standard errors
0.13 and 0.056. The maximized log likelihood is −87.73, and

∑
(y j − µ̂ j )2/{µ̂ j (1 +

ξ̂ µ̂ j )} = 32.57 on 31 degrees of freedom, giving no evidence of poor fit. For the
alternative negative binomial model with variance function (1 + ξ )µ, the maximized
log likelihood is −88.63, so the fit is slightly worse. This is borne out by the right
panel of Figure 10.11, which suggests that the variance of the residuals increases with
x , as would be the case if the linear variance function was fitted when the quadratic
was more appropriate. �

The discussion above shows how standard errors should be modified in the presence
of overdispersion. A similar adjustment applies when using deviance differences for
model selection. Let model A be nested within a more complicated model B, with
deviances DA > DB and parameters pA < pB . For binomial and Poisson data, the
usual approach is to compare DA − DB with the χ2

pB−pA
distribution. In the presence

of overdispersion this is modified by analogy with F tests in linear regression: if
φ̂B is the estimate of φ under the more complex model, then the adequacy of model
A relative to model B is assessed by referring {(DA − DB)/(pB − pA)}/φ̂B to the
FpB−pA,n−pB distribution.

Example 10.29 (Toxoplasmosis data) Table 10.19 gives data on the relation be-
tween rainfall and the proportions of people with toxoplasmosis for 34 cities in



516 10 · Nonlinear Regression Models

Table 10.19
Toxoplamosis data:
rainfall (mm) and the
numbers of people testing
positive for
toxoplasmosis, r , our of m
people tested, for 34 cities
in El Salvador (Efron,
1986).

City Rain r/m City Rain r/m City Rain r/m City Rain r/m

1 1735 2/4 11 2050 7/24 21 1756 2/12 31 1780 8/13
2 1936 3/10 12 1830 0/1 22 1650 0/1 32 1900 3/10
3 2000 1/5 13 1650 15/30 23 2250 8/11 33 1976 1/6
4 1973 3/10 14 2200 4/22 24 1796 41/77 34 2292 23/37
5 1750 2/2 15 2000 0/1 25 1890 24/51
6 1800 3/5 16 1770 6/11 26 1871 7/16
7 1750 2/8 17 1920 0/1 27 2063 46/82
8 2077 7/19 18 1770 33/54 28 2100 9/13
9 1920 3/6 19 2240 4/9 29 1918 23/43

10 1800 8/10 20 1620 5/18 30 1834 53/75

Table 10.20 Analysis of
deviance for polynomial
logistic models fitted to
the toxoplasmosis data.

Terms df Deviance

Constant 33 74.21
Linear 32 74.09
Quadratic 31 74.09
Cubic 30 62.63
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Toxoplasmosis data. The
left panel shows the
proportion of people
testing positive, r/m,
plus/minus
2{r (m − r )/m3}1/2, as a
function of rainfall in 34
cities in El Salvador. The
right panel shows the data
and linear (solid),
quadratic (dots, almost
identical to the linear fit),
and cubic (dashes)
polynomial models fitted
on the logistic scale.

El Salvador. There is wide variation in the numbers tested, as well as in the propor-
tions testing positive, and the left panel of Figure 10.12 indicates a possible nonlinear
relation between rainfall and toxoplasmosis incidence.

The right panel shows fitted proportions for logistic regression models in which the
linear predictor contains terms linear, quadratic, and cubic in rainfall. Table 10.20 con-
tains the analysis of deviance when the polynomial terms are included successively.
The residual deviance of 62.63 on 30 degrees of freedom indicates overdispersion by
a factor of roughly two.

Under the binomial assumption, the cubic model is tested against the constant
model by comparing the deviance difference 74.21 − 62.63 = 11.58 with the χ2

3



10.6 · Overdispersion 517

distribution, giving significance level 0.009. This overstates the significance of the
test because it makes no allowance for overdispersion. Under quasi-likelihood with
var(R) = φmπ (1 − π ) we obtain φ̃ = 1.94, and our general discussion suggests that
we should compare the F statistic (11.58/3)/φ̃ = 1.99 with the F3,30 distribution.
This gives significance level 0.14, only weak evidence of a relationship between
rainfall and incidence. We return to these data in Example 10.32. �

If the responses are dependent, the above discussion can be extended by taking as
estimating function X TV (µ)−1(Y − µ), where V (µ) is an n × n covariance matrix
for Y ; see page 507. This is a common technique for modelling longitudinal data,
in which short, often irregular time series are available on independent individuals.
In such cases there may be no function whose derivatives with respect to β give the
estimating function, and then no quasi-likelihood exists.

In some cases the response variance may be expressed as φ(γ )V (µ; ξ ), with γ and ξ

unknown. An example is the quadratic variance function µ + ξµ2 in Example 10.26.
The definition of the deviance depends on ξ , so models with different values of ξ

cannot be compared using differences of deviances. An extended quasi-likelihood
can be defined as the sum of the contributions

−1

2
log{φ j (γ )V (µ j ; ξ )} − 1

2

∫ µ j

Y j

Y j − u

φ j (γ )a j V (u; ξ )
du,

however, and used for inference about the unknown parameters. Unfortunately this
definition is ambiguous: for example µ + ξµ2 can be written as φ(γ ) = 1, V (µ; ξ ) =
µ + ξµ2 or as φ(γ ) = µ, V (µ; ξ ) = 1 + ξµ, and these give different extended quasi-
likelihoods. Uniqueness can be imposed by insisting that φ(γ ) not involve µ or that
V (µ) = 1, leading to two different systems of estimating equations. The first system
gives inconsistent estimators and the second gives consistent estimators. However
simulation shows that for sample sizes of most interest the second estimators are
worse than the first. Thus in practice the solutions to the first system are preferable,
though neither is really satisfactory.

Exercises 10.6

1 Use (2.8) to establish (10.33). Give formulae for the corresponding deviance residuals
when ν = 1/ξ and when ν = µ/ξ .
Suppose that independent counts y1, . . . , yn arise with means µ j = exp(xT

j β). Under the
model with constant ν = 1/ξ , write down the negative binomial log likelihood for β and
ξ . Explain why the likelihood equations become more complicated if the shape parameter
changes for each observation, so ν j = µ j/ξ .
If we estimate ξ by equating the Pearson statistic

∑
(y j − µ̂ j )2/V (µ̂ j ) to n − p, where

V (µ j ) = var(Y j ), discuss how to obtain the estimate under the above two variance
functions.

2 Let I be a binary variable with success probability π , and suppose that π is given a density
h. Show that I remains a binary variable whatever the choice of h, and hence explain the
form of the variance in (10.34).
Against what variable should the squared Pearson residual be plotted if it is desired to
assess if (10.34) gives a suitable fit to data?
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3 Find Q(β; Y ) when u j (β) = (Y j − µ j )/{φg′(µ j )V (µ j )} and V (µ) equals µ, µ(1 − µ),
and µ2.

4 One standard model for over-dispersed binomial data assumes that R is binomial with
denominator m and probability π , where π has the beta density �(a) is the gamma

function.

f (π ; a, b) = �(a + b)

�(a)�(b)
πa−1(1 − π )b−1, 0 < π < 1, a, b > 0.

(a) Show that this yields the beta-binomial density

Pr(R = r ; a, b) = �(m + 1)�(r + a)�(m − r + b)�(a + b)

�(r + 1)�(m − r + 1)�(a)�(b)�(m + a + b)
, r = 0, . . . , m.

(b) Let µ and σ 2 denote the mean and variance of π . Show that in general,

E(R) = mµ, var(R) = mµ(1 − µ) + m(m − 1)σ 2,

and that the beta density has µ = a/(a + b) and s2 = ab/{(a + b)(a + b + 1)}. Deduce
that the beta-binomial density has mean and variance

E(R) = ma/(a + b), var(R) = mµ(1 − µ){1 + (m − 1)δ}, δ = (a + b + 1)−1.

Hence re-express Pr(R = r ; a, b) as a function of µ and δ. What is the condition for
uniform overdispersion?

5 Conditional on ε, the observation Y has a generalized linear model density with canonical
parameter η + τε, where τ > 0. If ε is standard normal, show that the marginal density
of Y can be written

f (y; η, τ ) = 1

(2π )1/2

∫ ∞

−∞
exp

{
yη + yτε − b(η + τε)

a(φ)
+ c(y; φ) − ε2/2

}
dε.

By second-order Taylor series expansion of b(η + τε) for small τ , or otherwise, show that
f (y; η, τ ) equals

f (y; η, 0) exp

[
τ 2

2

{y − b′(η)}2

a(φ)2{1 + τ 2b′′(η)/a(φ)}
]

{1 + τ 2b′′(η)/a(φ)}−1/2 + op(τ 2).

Prove that this approximation is exact when the conditional density of Y given ε is normal,
and then find the unconditional mean and variance of Y .

10.7 Semiparametric Regression

Our earlier regression models have involved responses that depend on explanatory
variables x through simple parametric functions such as β0 + β1x + β2x2. Their con-
ciseness and direct interpretation gives such formulations great appeal, but they are
not flexible enough to cater for all the situations met in practice and more general
approaches are desirable, especially for exploratory analysis, model-checking, and
other situations where the data should be allowed to ‘speak for themselves’. Many
ways to do this have been proposed in recent years, under the heading of nonparamet-
ric or semiparametric models, the aim typically being to extract a smooth curve from
the data. An algorithm that does this is often termed a smoother. In fact smoothing The adjective ‘smoother’

has become a noun in this
context.

operations typically do involve parameters, but in less prescriptive ways than before,
and the results are best understood graphically. There are many approaches to semi-
parametric modelling, and below we merely sketch the possibilities by extending our
previous discussion in two directions.
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Earthquake magnitudes
plotted against fitted
intensity just before the
earthquake shock and time
since the preceding shock.
Note the log scales. The
magnitudes have been
jittered to reduce
overplotting.

Example 10.30 (Japanese earthquake data) Figure 6.19 shows data on 483 earth-
quake shocks, of magnitude at least 6 on the Richter scale, offshore from Japan from
1885–1980. In Example 6.38 a self-exciting point process model was fitted to the
data, in which the intensity at time t was given by

λH(t) = µ + κ
∑
j :t j <t

eβ(m j −6)

t − t j + γ
,

where m j is the magnitude and t j the time of the j th earthquake. This fits the times
adequately, but λH(t) models only the time of the next shock and not its its magnitude.
It is natural to ask if the magnitude of a shock depends on the past, for example on the
value of λH(t) just before the shock occurs, or on the time elapsed since the previous
shock.

Figure 10.13 contains scatterplots of mi against limδ→0 λ̂H(ti − δ) and against
ti − ti−1. The lack of pattern in both panels suggests that magnitude is unrelated to
these other quantities, but the clustering of points at the left of the left panel makes it
hard to be sure, and a smooth curve would sharpen our judgement. Fitting a particular
parametric model seems difficult to justify, so the curve should be defined flexibly. �

10.7.1 Local polynomial models

Suppose that the response y equals g(x) + ε, where g is a smooth function of the
scalar x , and ε has mean zero and variance σ 2. Although we assume that g has
as many derivatives as we need, it will not usually have a simple form. The data
consist of pairs (x1, y1), . . . , (xn, yn), and initially we shall suppose that we wish to
make inferences about g(x) at a single point x = x0 in the interval spanned by the
design points x j . One approach is to fit a polynomial to all n pairs and then read off
its value at x0. However, such fits are often unconvincing — see the right panel of
Figure 10.12, for example — and furthermore they can be sensitive to observations
distant from x0. Rather than treat all data pairs equally, it seems natural to attach
more importance to observations close to x0. This is closely related to kernel density
estimation (Section 7.1.2).
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Figure 10.14
Construction of a local
linear smoother. Left
panel: observations in the
shaded part of the panel
are weighted using the
kernel shown at the foot,
with h = 0.8, and the
solid straight line is fitted
by weighted least squares.
The local estimate is the
fitted value when x = x0,
shown by the vertical line.
Two hundred local
estimates formed using
equi-spaced x0 were
interpolated to give the
dotted line, which is the
estimate of g(x). Right
panel: local linear
smoothers with h = 0.2
(solid) and h = 5 (dots).Recall that a kernel function w(u) is a unimodal density function symmetric about

u = 0 and with unit variance. One choice of w is the standard normal density. Another
is a rescaled form of the tricube function

w(u) =
{

(1 − |u|3)3, |u| ≤ 1,
0, otherwise,

(10.37)

and there are many others.
When estimating g(x) at x = x0, we attach weight w j = h−1w{h−1(x j − x0)} to

(x j , y j ), where h is a bandwidth, and fit the polynomial

β0 + β1(x − x0) + · · · + βk(x − x0)k

to the responses by weighted least squares (Section 8.2.4). The weights decrease the
influence of points for which |x j − x0|/h is big: for large h points far from x0 will
affect the fit, whereas as h → 0 the regression becomes ever more local. The number
of data included will vary as x0 changes, with fewer points when x0 is near the limits
of its range or where the x j are sparse.

The estimate of g(x0) is obtained by fitting the linear model



y1

y2
...

yn


 =




1 (x1 − x0) · · · (x1 − x0)k

...
...

...
1 (xn − x0) · · · (xn − x0)k







β0

β1
...

βk


 +




ε1

ε2
...
εn


 ,

that is y = Xβ + ε, with weight matrix W = diag(w1, . . . , wn). This results in the
weighted least squares estimate β̂ = (X TW X )−1 X TW y, of which the component of
interest is β̂0, the value of the fitted polynomial when x = x0.

In practice a smooth estimate ĝ(x) of the entire function g(x) is usually required.
It is obtained by interpolating the estimates β̂0 for different values of x0, as in the left
panel of Figure 10.14. The right panel shows how the curve estimate depends on h.
When h is large, ĝ is too smooth to capture the pattern of the data, and hence it will
be biased. When h is small, ĝ follows the data better but wiggles implausibly and
so has a high variance. The intermediate estimate shown in the left panel balances
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bias and variance more satisfactorily. The choice of h is important and we discuss it
below.

The dips in ĝ towards the right of both panels suggest that local polynomial fits
are sensitive to outliers. This is no surprise because they involve least squares estima-
tion, which is non-robust. Some implementations robustify the fit, for example using
the Huber estimator or discounting outliers by making the weights depend on the
residuals y j − ĝ(x j ) from an initial fit. The popular iterative algorithm lowess takesLowess stands for locally

weighted scatterplot
smoother.

this approach, though it uses nearest neighbours, weighting the proportion p of the
data nearest to x0 instead of using a fixed bandwidth. Typically p = 2/3 in standard
implementations. Nearest neighbour fitting automatically allows for changes in the
density of the x j and hence reduces fluctuations like those at x = 2 in the right panel
of Figure 10.14; it amounts to taking a locally-varying bandwidth.

Local polynomial estimators can be studied using ideas from least squares. The
estimator of g(x0) is a weighted average of the y j , that is

ĝ(x0) = β̂0 =
n∑

j=1

S(x0; x j , h)y j ,

where the elements of the effective kernel S(x0; x1, h), . . . , S(x0; xn, h) form the first
row of the (k + 1) × n matrix (X TW X )−1 X TW . This depends on the design matrix,
the bandwidth, and x0, but not on y, so

E {̂g(x0)} =
n∑

j=1

S(x0; x j , h)g(x j ), var {̂g(x0)} = σ 2
n∑

j=1

S(x0; x j , h)2. (10.38)

The second expression here gives a finite-sample variance for ĝ(x0), provided that σ 2

is replaced by an estimate. One natural choice is

s2(h) = 1

n − 2ν1 + ν2

n∑
j=1

{y j − ĝ(x j )}2, (10.39)

where ν1 and ν2 are defined below. The corresponding estimator is unbiased when g
is a polynomial of degree k, but otherwise is biased upwards. A simple way to reduce
the bias is to construct s2(h) using a smaller h than that used for the curve estimate.

For theoretical and practical purposes it is fruitful to represent the smoothing opera-
tion in matrix form. The fitted values ĝ(xi ) may be obtained by setting x0 = x1, . . . , xn ,
and to each of these corresponds an effective kernel Si1(h), . . . , Sin(h), where Si j (h)
is an abbreviation of S(xi ; x j , h). Let us stack these as an n × n smoothing matrix Sh .
Then the vector of fitted values ĝ = (̂g(x1), . . . , ĝ(xn))T may be written as ĝ = Sh y.
There is an analogy with the hat matrix H = X (X T X )−1 X T for a linear regression with
fitted values ŷ = H y. Unlike a hat matrix, however, Sh is not idempotent and it may
be asymmetric. Any sensible smoothing operation will leave a constant unchanged,
so Sh1n = 1n . Equivalently any effective kernel sums to one.

Although kernel smoothers are most conveniently defined in terms of their band-
width, it is useful to know their degrees of freedom when comparing their output.
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In a standard linear model the trace of the hat matrix equals the number of param-
eters, suggesting by analogy that we define the degrees of freedom of the smoother
to be ν1 = tr(Sh). The analogy is not perfect, however, and alternatives such as
ν2 = tr(ST

h Sh) have been proposed. Both ν1 and ν2 decrease as h increases, and
k ≤ ν2 ≤ ν1 ≤ n.

Three things must be chosen when implementing a local polynomial fit: the kernel
function w , the degree k of the polynomial, and the bandwidth h. Experience shows
that the choice of w is rarely important, though the best-looking curves are obtained
when w descends smoothly to zero. Sharp-edged kernels such as the uniform density
give rough and visually unappealing fits.

Choice of polynomial

It turns out to be sensible to take k odd, at least in theory. To see this in qualitative
terms, consider the simplest form of local smoothing, with k = 0. Then the local
polynomial is a constant and the least squares estimator of g(x0) is a weighted average,
the Nadaraya–Watson estimator

β̂0,N W =
∑n

j=1 w j y j∑n
j=1 w j

. (10.40)

This is a simple estimator, but not a very good one, because of its bias at the ends of the
data. Figure 10.15 shows what happens when local constant and local linear estimators
are fitted to data, shown noiseless for clarity. The left panels show that local linear
and local constant fits give similar estimates when x0 is central; the effective kernel
is almost the same. In the right panels x0 lies at the right-hand edge of the data, and
as β̂0,N W does not allow for g′(x0) it is badly biased upwards. The effective kernel for

Geoffrey Stuart Watson
(1921–1998) was
educated in Melbourne,
North Carolina and
Cambridge, and held posts
in Australia and North
America, the last being at
Princeton. He made
important contributions to
time series, to directional
data analysis, and to
mathematical biology. See
Beran and Fisher (1998).
E. A. Nadaraya (1935–)
worked at Tbilisi State
University. Both men
published papers
describing this estimator
in 1964.

the local linear fit is smaller away from the boundary values of x j , however, and so its
bias is smaller. The fact that local polynomial fits adapt automatically to the presence
of a boundary gives them a large practical advantage over many other approaches.

An asymptotic argument given at the end of this section, under which n → ∞
and h → 0 with nh → ∞, shows that when x0 is away from a boundary, both local
constant and local linear fits have approximate bias and variance

1

2
h2g′′(x0),

σ 2

nh f (x0)

∫
w (u)2 du, (10.41)

where f (x) represents the limiting density of design points. The bias increases if
g(x) has high curvature or if h is large; see Figure 10.14. The bias has the desirable
property of not depending on the pattern of design points, at least asymptotically. One
interpretation of the variance formula is that the effective number of observations that
contribute to the weighted average β̂0 is nh f (x0)/

∫
w(u)2 du, and this explains why

we must have nh → ∞ for a sensible asymptotic framework, while a small value of
f (x0) — that is, few points near x0 — decreases the precision with which g(x0) may
be estimated.

When x0 is near a boundary it may be shown that the bias of the local constant
estimator increases to O(h). The local linear estimator retains its O(h2) bias, however,



10.7 · Semiparametric Regression 523

x

g(
x)

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ••••• •• ••

••
••

•

••
••

•
••

•

x

g(
x)

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ••••• •• ••

••
••

•

••
••

•
••

•

x

g(
x)

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ••••• •• ••

••
••

•

••
••

•
••

•

x

g(
x)

1.0 1.2 1.4 1.6 1.8 2.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 ••••• •• ••
••

••
•

••
••

•
••

•

Figure 10.15 Local
polynomial fitting by least
squares. In each panel the
function g(x) is shown by
a line joining the solid
blobs (x j , y j ), shown
without error for clarity,
and the target value x0 at
which g is to be estimated
is given by the vertical
line; x0 = 1.5 for the left
panels and x0 = 2 for the
right panels. Only
observations falling inside
the shaded region
contribute to the fit, and
the effective kernel is
shown by the circles; in
the right panels the
effective kernel has been
shifted upwards by 0.8.
The heavy solid lines
show the local polynomial
fits, which are constant in
the upper panels and
linear in the lower panels.
The local constant fit is
more biased than the local
linear fit, especially at the
edge x0 = 2.

confirming what is suggested by Figure 10.15. Near a boundary both variances remain
of order (nh)−1. Thus in asymptotic terms the variance of the local linear estimator is
no worse than that of the local constant estimator, while its bias is of smaller order.
The same argument applies in general: whenever k is even, the variance of β̂0 is not
increased asymptotically by fitting a polynomial of order k + 1, and the bias of β̂0 is
reduced thereby.

Asymptotic arguments are useful backstops, but the theoretical benefits of higher-
order fitting are outweighed by a finite-sample increase in variance. In practice local
linear and quadratic polynomials are commonest, but local cubic curves are also
sometimes fitted, particularly to data showing high-frequency variation.

Choice of smoothing parameter

One possibility is to choose the bandwidth h to minimize the asymptotic mean squared
error

h4

4
g′′(x0)2 + σ 2

nh f (x0)

∫
w(u)2 du

of ĝ(x0) with respect to h, giving a local bandwidth at x0. An overall bandwidth could
be found using the integrated asymptotic mean squared error; see (7.7) and (7.8).
Unfortunately both local and overall choices of h involve the unknowns g′′ and f ,
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and further bandwidths are needed to estimate them. A quagmire stands before us,
and we must skirt it if we can.

A better, finite-sample, approach is to trade off the bias and variance when each
observation is predicted from the rest, choosing h to minimize the cross-validation
sum of squares

CV(h) =
n∑

j=1

{y j − ĝ− j (x j )}2,

where ĝ− j (x) is obtained by applying the smoother with bandwidth h but dropping
the j th case from the data. At first sight it appears that n fits are needed to compute
CV(h), but as (Exercise 10.7.5)

y j − ĝ− j (x j ) = y j − ĝ(x j )

1 − Sj j (h)
, (10.42)

it turns out that

CV(h) =
n∑

j=1

{
y j − ĝ(x j )

1 − Sj j (h)

}2

may be computed from components of the overall fit.
In practice CV(h) must be minimized over a grid of values of h, so fast computation

of the Sj j (h) is essential. An alternative is to minimize the generalized cross-validation
criterion

GCV(h) =
n∑

j=1

{
y j − ĝ(x j )

1 − tr(Sh)/n

}2

instead. This replaces the individual Sj j (h) by their average, which is found more
speedily.

Cross-validation and information criteria are closely related, so it is not surprising
that the values of h found by minimizing CV(h) and GCV(h) tend to be too small,
analogous to the overfitting seen when AIC is used. In Section 8.7.3 we saw that for
linear models this may be remedied by using the corrected information criterion AICc.
For semiparametric models this suggests that we choose h to minimize AICc(h), given
by

AICc(h) = n log σ̂ 2(h) + n
1 + tr(Sh)/n

1 − {tr(Sh) + 2}/n
, σ̂ 2(h) = n−1

∑
{y j − ĝ(x j )}2,

where the number of regressors p in the linear model is replaced by tr(Sh). Simulation
shows that this procedure reduces the overfitting.

Semiparametric versions of other criteria also exist, but in practice an automatic
choice of h should typically be used as a starting-point for investigation, rather than
as a black box procedure.
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Inference

At first sight it seems that approximate pointwise confidence intervals for g(x0) can
be constructed using the mean and variance (10.38), simply by supposing that

ĝ(x0) − E {̂g(x0)}
v̂ar {̂g(x0)}1/2

.∼ N (0, 1).

Unfortunately, however, this leads to confidence statements for E {̂g(x0)} rather than
for the usual quantity of interest g(x0). If the bias E {̂g(x0)} − g(x0) is substantial, the
confidence interval may be centred in quite the wrong place. One way to deal with
this is to correct the interval using a bias estimate, for example taken from (10.41)
or found by comparing ĝ(x0) and a less biased estimate obtained using a smaller
bandwidth or higher k. These solutions tend to be complicated and can work poorly
in small samples. A simpler approach ignores the bias issue and constructs a (1 − 2α)
variability band, in which ±zα v̂ar{̂g(x0)}1/2 is added to ĝ(x0) to give an idea of its
variability. In effect this is a confidence band for E {̂g(x0)}.

Sometimes it is useful to construct an overall (1 − 2α) confidence band for g over
the set A of x-values. This requires two curves L(x) and U (x) such that

Pr {L(x) ≤ g(x) ≤ U (x), x ∈ A} = 1 − 2α,

which may be found by probability approximation to the distribution of
supx∈A |̂g(x) − g(x)|/v̂ar {̂g(x)}1/2. References to this are given in the bibliographic
notes.

It is useful to have a means of testing the overall significance of an apparent
departure from a given parametric form. Suppose that a non-local linear model has
yielded the fitted values ŷ = H y, where H is the corresponding hat matrix, and that
a more comprehensive, smooth, model has smoothing matrix Sh . Then it is natural
to compute a P-value for departures from the non-local model using the ratio of the
corresponding residual sums of squares

R(h) =
∑n

j=1(y j − ŷ j )2∑n
j=1{y j − ĝ(x j )}2

= yT(In − H )y

yT(In − Sh)T(In − Sh)y
.

If the observations are normal it turns out to be possible to compute good approxi-
mations to the corresponding P-value

pobs(h) = Pr0 {R(h) ≥ robs} , (10.43)

where robs is the observed value of R(h) (Problem 10.13). It is useful to plot a signif-
icance trace of pobs(h) as a function of h, to assess the strength of evidence against
the parametric model at different bandwidths.

Example 10.31 (Japanese earthquake data) The left panel of Figure 10.13 sug-
gests that the magnitude of an earthquake might depend on the conditional intensity
λ̂H(t) just before it, with a larger release of energy and hence a bigger shock when
the λ̂H(t) is small. To assess this we fit a local linear smoother with tricube kernel
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Figure 10.16 Smooth
analysis of earthquake
data. Upper left: local
linear regression of
magnitude on log intensity
just before quake (solid),
with 0.95 pointwise
confidence bands (dots).
Upper right: generalized
cross-validation criterion
GCV(h) as a function of
bandwidth h. Lower left:
relation between degrees
of freedom ν1 (solid), ν2

(dots), and h. Lower right:
significance traces for test
of no relation between
magnitude and log
intensity, based on
chi-squared
approximation (dots) and
saddlepoint
approximation (solid).
The horizontal line shows
the conventional 0.05
significance level.

(10.37) and bandwidth h = 2. The upper left panel of Figure 10.16 shows this fit,
with a 0.95 pointwise confidence interval. The width of the interval increases at the
boundaries and at the right of the panel, owing to the lower density of design points
x j . There is a suggestion of an increased magnitude at very low and high intensities,
but the evidence is not compelling.

The upper right panel shows that although the cross-validation criterion GCV(h)
is minimized when h

.= 5.5, the minimum changes little for h > 2. In the lower left
panel we see that h > 2 corresponds to fitting curves with at most 4 or so equivalent
degrees of freedom, while for h > 8 there are essentially two degrees of freedom,
corresponding to straight-line regression. The corresponding plots for AIC(h) and
AICc(h) decrease sharply and then tail off slowly, and also suggest that large band-
widths are appropriate.

The lower right panel of the figure shows two approximations to the significance
trace for an overall test of no relation between log intensity and magnitude. The
values of pobs(h) suggest that the evidence for such a relation varies from weak to
non-existent. The approximations rest on the assumption that the data are normal. The
large number of observations should mitigate the fact that this assumption is plainly
incorrect, and it is unlikely to be critical, at least in this case.
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These data show no relation between the fitted intensity just prior to an earthquake
and its magnitude. This conclusion is of course very tentative, because seismological
knowledge has not been incorporated. �

Extensions

The locally weighted polynomial fit arises naturally from a modified form of likeli-
hood. For if the ε j were independent and normal, the contribution from (x j , y j ) to
the overall log likelihood for a polynomial fit of degree k centred at x0 would be

� j (β, σ ; x0) ≡ − 1

2σ 2
{y j − β0 − β1(x j − x0) − · · · − βk(x j − x0)k}2 − 1

2
log σ 2,

and β̂ maximizes the local log likelihood

�(β, σ ; x0) =
n∑

j=1

1

h
w

(
x j − x0

h

)
� j (β, σ ; x0).

This idea extends fairly directly, for example to generalized linear and stochastic
process models, using the appropriate log likelihood contribution and estimating β̂

by iterative weighted least squares. The ideas described above then go through largely
unchanged, though for a generalized linear model AICc(h) must be changed to

AICc(h) =
n∑

j=1

d j {y j ; µ̂ j (h)} + n
1 + tr(Sh)/n

1 − {tr(Sh) + 2}/n
, (10.44)

where d j {y j ; µ̂ j (h)} is the deviance contribution from y j when the fitted value is
µ̂ j (h). This is a large topic, to which the bibliographic notes give some entry points.
The key ideas are summarized in the following example.

Example 10.32 (Toxoplasmosis data) Example 10.29 described how allowance
might be made for the overdispersion of the data in Table 10.19, to which
a logistic regression model with cubic dependence on rainfall was fitted. In
view of the implausibility of the cubic model shown in the right panel of Fig-
ure 10.12, we consider local fitting with binomial probability π (x) = exp{θ (x)}/[1 +
exp{θ (x)}] depending on a local log odds θ (x). We fit a Taylor series expan-
sion, θ (x)

.= β0 + β1(x − x0) + · · · + βk(x − x0)k/k!, and take β̂0 as the estimate
of θ (x0).

The local log likelihood is

�(β; x0, h) ≡
n∑

j=1

w j m j

φ

{
y j x

T
jβ − log

(
1 + exT

j β
)}

,

where m j is the binomial denominator, y j = r j/m j is the observed proportion
positive, xT

j = (1, x j − x0, . . . , (x j − x0)k), and taking φ > 0 will allow for overdis-
persion relative to the binomial model. The kernel function reduces the effective
value of m j to m j w j , so towns whose rainfall x j is far from x0 count for less in the
estimation of β.



528 10 · Nonlinear Regression Models

Rainfall (mm)

P
ro

po
rt

io
n 

po
si

tiv
e

1600 1800 2000 2200 2400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

•

•

•

•

•

•
•

•
••
•
•

•

•

•

••

•

••

•

• •

••

•

•

•

•

•

•

•

•
•

Rainfall (mm)

P
ro

po
rt

io
n 

po
si

tiv
e

1600 1800 2000 2200 2400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

•

•

•

•

•

•
•

•
••
•
•

•

•

•

••

•

••

•

• •

••

•

•

•

•

•

•

•

•
•

Figure 10.17 Local fits
to the toxoplasmosis data.
The left panel shows fitted
probabilities π̂ (x), with
the fit of local linear
logistic model with
h = 400 (solid) and 0.95
pointwise confidence
bands (dots). Also shown
is the local linear fit with
h = 300 (dashes). The
right panel shows the local
quadratic fit with h = 400
and its 0.95 confidence
band. Note the increased
variability due to the
quadratic fit, and its
stronger curvature at the
boundaries.

The local score function may be written X TW u(β), to be compared with
(10.18), and β̂ is obtained by applying iterative weighted least squares to the
binomial model with artificial denominators w j m j . A sandwich variance matrix
(X TW1 X )−1 X TW2 X (X TW1 X )−1 is required, where the j th elements of the diago-
nal matrices W1 and W2 are w j m j π̂ j (1 − π̂ j ) and w2

j m j π̂ j (1 − π̂ j ), with π̂ j the fitted
probabilities. The dispersion parameter φ does not appear in the local score equation,
and plays no role in the estimation of β, in the effective kernel, in the smoothing
matrix or the degrees of freedom. An estimator φ̂ is obtained by replacing the divi-
sor n − p in (10.20) by its counterpart n − 2ν1 + ν2, hence generalizing (10.39) to
accommodate the binomial variance function.

Figure 10.17 shows linear and quadratic local fits and their 0.95 pointwise confi-
dence bands, obtained with h = 400; the left panel also shows the fit with h = 300.
The confidence bands for the quadratic fit are appreciably wider, and the fit itself is
more curved, particularly at the boundaries. As might be expected, taking h = 300
gives a more locally adapted fit, whose effect is similar to increasing the order of the
polynomial. All the fits are more plausible than the polynomial shown in Figure 10.12.

The confidence bands are appreciably narrower when no allowance is made for the
overdispersion, and they suggest that the probability depends on rainfall. Overdis-
persion makes this much less plausible, and indeed a horizontal line would lie inside
the bands in both panels of Figure 10.17. Any evidence for a relation between the
probability and rainfall seems weak, though an analogue of (10.43) would be required
for a more definite conclusion. �

In some applications trigonometric or other expansions may be more appropriate
than polynomial expansions; they too may be fitted locally using kernel or nearest
neighbour weighting.

Similar ideas may be applied for smoothing in several dimensions, though the curse
of dimensionality can then become heavy. It is useful to scale the covariates so that
a common bandwidth can be used for them all, for example by using bandwidth hsr

on the r th axis, where sr is the standard deviation of the r th covariate.
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Computation of bias and variance
This can be omitted on a
first reading.

To express the lessons of Figure 10.15 in algebraic terms, we compute the mean and
variance of β̂. Taylor series expansion gives

g(x) = g(x0) + (x − x0)g′(x0) + · · · + 1

k!
(x − x0)k g(k)(x0)

+ 1

(k + 1)!
(x − x0)k+1g(k+1)(x) + · · ·

= β0 + (x − x0)β1 + · · · + (x − x0)kβk + b(x),

say, where the final term is the remainder. Consequently



g(x1)
g(x2)

...
g(xn)


 =




1 (x1 − x0) · · · (x1 − x0)k

...
...

...
1 (xn − x0) · · · (xn − x0)k







β0

β1
...

βk


 +




b(x1)
b(x2)

...
b(xn)


 ,

or equivalently g = Xβ + b, where b is the n × 1 vector whose j th element is b(x j ).
Let y, g, and ε represent the n × 1 vectors whose j th elements are y j , g(x j ), and
ε j , and recall that the ε j are independent with mean zero and variance σ 2. Then
y = g + ε = Xβ + b + ε, giving

E(̂β) = E{(X TW X )−1 X TW (Xβ + b + ε)} = β + (X TW X )−1 X TW b,

var(̂β) = σ 2(X TW X )−1 X TW 2 X (X TW X )−1,

Hence β̂ has a bias that depends on the polynomial terms of degree k + 1 and higher.
If g(x) is indeed a polynomial of degree k or lower then b = 0 and β̂ is unbiased.

For the local linear fit, k = 1, and the bias of β̂ is

(X TW X )−1 X TW b =
( ∑

w j
∑

w j (x j − x0)∑
w j (x j − x0)

∑
w j (x j − x0)2

)−1( ∑
w j b j∑

w j (x j − x0)b j

)
.

Hence the bias of β̂0 is∑
w j (x j − x0)2 ∑

w j b j − ∑
w j (x j − x0)

∑
w j (x j − x0)b j∑

w j
∑

w j (x j − x0)2 − {∑
w j (x j − x0)

}2 .

To approximate this, we suppose that the x j are sufficiently dense to have a well-
behaved smooth density, f (x), let n → ∞ and h → 0 in such a way that nh → ∞,
and replace the sums by integrals. We then see, for example, that

∑
w j (x j − x0)2 .= n

∫
1

h
w

(
x − x0

h

)
(x − x0)2 f (x) dx

= nh2
∫

w(u)u2 f (x0 + hu) du

.= nh2
∫

w(u)u2{ f (x0) + hu f ′(x0) + · · ·} du

.= nh2 f (x0) + O(nh4),
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on changing the variable of integration to u = (x − x0)/h and recalling that w has
unit variance and is symmetric. This calculation presupposes that x0 is sufficiently
far from the boundary relative to h that the range of integration for integrals such as∫

w(u)u du is effectively infinite; otherwise odd powers of h do not vanish and the
result is anh2 f (x0) + O(nh3), with 0 < a < 1. Provided the odd terms do cancel,
similar calculations give

∑
w j b j

.= 1

2
nh2 f (x0)g′′(x0),

∑
w j (x j − x0)

.= nh2 f ′(x0),∑
w j (x j − x0)b j

.= O(nh4),
∑

w j
.= n f (x0) (10.45)

and on putting the pieces together we find that β̂0 has bias whose leading term is
1
2 h2g′′(x0). It turns out that the bias has order h2 even when x0 is near the boundary,
but a similar calculation for the Nadaraya–Watson estimator (10.40) shows that its
bias near the boundary is O(h) (Exercise 10.7.6).

To get a handle on the variance of β̂0, it is simplest to orthogonalize X by replacing
the j th element of its second column with x j − xw , where xw = ∑

w j x j/
∑

w j . In
this parametrization the weighted least squares estimators are

γ̂ =
( ∑

w j 0
0

∑
w j (x j − xw )2

)−1 ( ∑
w j y j∑

w j (x j − xw )y j

)
,

and β̂0 = γ̂0 + (x0 − xw )γ̂1. This gives a simple explicit formula for β̂0, useful for
numerical work. Its variance is

var(̂β0) = σ 2

[ ∑
w2

j(∑
w j

)2 + (x0 − xw )2

∑
w2

j (x j − xw )2

{∑
w j (x j − xw )2

}2

]
,

the first term of which equals the variance of the local constant estimator (10.40).
It turns out that x0 − xw

.= h2 f ′(x0)/ f (x0) away from the boundary, and is O(h)
otherwise, and calculations like those above show that away from the boundary, both
local linear and constant estimators have the approximate variance given in (10.41).

10.7.2 Roughness penalty methods

Local polynomial fitting is brought under the likelihood umbrella by local weighting
of the log likelihood contributions. A different approach to curve estimation is based
on fitting a family of flexible functions to the data, with the most appropriate of these
specified indirectly by penalizing the roughness of the result. The idea is to fit a model
with potentially as many parameters as there are observations, but to constrain these
parameters to the extent desired.

To see how this might be done, we first consider suitably parametrized families of
smooth functions. Let the data consist of pairs (t1, y1), . . . , (tn, yn), where a = t0 <

t1 < · · · < tn < tn+1 = b. We seek a smooth summary g(t) of how the response y
depends on t over the interval [a, b]. We denote the covariate

by t rather than x for ease
of generalization below.

One approach is to use a natural cubic spline g(t) with knots t1, . . . , tn . Such a
function consists of separate cubic polynomials on each of the intervals [t1, t2], . . . ,
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Figure 10.18 Natural
cubic spline fits to n = 15
data pairs simulated from
the model y = 8x2 + ε.
Left panel: fit with 15
degrees of freedom (solid)
that interpolates the data,
with values of t j shown by
the vertical dashed lines.
Right panel: fits with
degrees of freedom 2
(solid), 7 (dashes), and 3.7
(dots); the latter is chosen
by cross-validation.

[tn−1, tn], constrained to be continuous and to have continuous first and second deriva-
tives at each knot. The spline is linear on the extreme intervals [a, t1] and [tn, b].

As there are 2 + 4(n − 1) + 2 coefficients for these polynomial pieces and 3n con-
straints, just n numbers specify the spline. It turns out to be convenient to express
it both in terms of its values gT = (g1, . . . , gn) at the knots and the second deriva-
tives γ T = (γ2, . . . , γn−1) at t2, . . . , tn−1, where g j = g(t j ) and γ j = g′′(t j ). The sec-Here and below, g′′(t) is

the second derivative of
g(t).

ond derivatives at t1 and tn are zero, so γ1 = γn = 0. In fact there exist n × (n − 2)
and (n − 2) × (n − 2) matrices Q and R, depending only on t1, . . . , tn , such that
QTg = Rγ ; R is positive definite and hence invertible, and both Q and R have simple
structure that makes numerical work with them very efficient (Problem 10.14).
Note that γ = R−1 QTg, so g(t) is completely determined by its values at the knots.

An example is shown in the left panel of Figure 10.18. As outlined above, the
spline g(t) is linear outside (t1, tn) and cubic between the vertical lines that show
the t j , with smooth joins between cubic portions. One way to imagine this is that
the spline adjusts to pass smoothly through beads — the y j — that move on vertical
wires fixed at the t j .

Penalized log likelihood

Although perhaps a useful numerical summary of the data in Figure 10.18, the spline
in the left panel is a poor statistical summary: we need a smoother fit. Suppose that
y j = g(t j ) + ε j , where the ε j are independent normal errors with common variance
σ 2, and g(t) is a natural cubic spline with its n parameters gT = (g1, . . . , gn), where
g j = g(t j ); let y denote the n × 1 vector of observed responses. Maximization of the
likelihood over g boils down to minimization of the sum of squares (y − g)T(y − g).
This is achieved when g j = y j , clearly overfitted.

When a similar difficulty arose in our discussion of model selection (Section 4.7),
we dealt with it by penalizing the log likelihood to account for model complexity, and
we apply this idea here as well. If we judge that a straight line is the acme of simplicity,
then one measure of the complexity of g(t) over the interval [a, b] is

∫ b
a {g′′(t)}2 dt ,

which would be zero for a linear fit. Rather than maximize the usual log likelihood,
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therefore, we maximize the penalized log likelihood

�λ(g, σ 2) =
n∑

j=1

log f {y j ; g(t j ), σ
2} − λ

2σ 2

∫ b

a
{g′′(t)}2 dt, λ ≥ 0. (10.46)

This trades off the increase in the log likelihood term for more complex g against the
second term, which penalizes nonlinearity. The extent of the trade-off is controlled
by λ, a dimensionless quantity related to the degrees of freedom of the maximizing
curve ĝλ(t). When λ = 0, no penalty is applied and there are n degrees of freedom,
corresponding to unconstrained variation of each element of the vector g. As λ → ∞,
the penalty becomes so large that g(t) becomes a straight line, which has two degrees
of freedom. Intermediate values give curves lying between these extremes. For now
we suppose that λ is fixed, deferring discussion of how to choose it.

It turns out that when g(t) is a natural cubic spline, the integral in (10.46) may
be expressed as γ T QTg = gT Q R−1 QTg = gT K g, say, where K is a n × n symmet-
ric matrix of rank n − 2 (Problem 10.14). For normal errors the j th log likelihood
contribution is

log f {y j ; g(t j ), σ
2} ≡ −1

2
σ−2{y j − g(t j )}2 − 1

2
log σ 2,

so ĝλ(t) is determined by the vector ĝ that minimizes the penalized sum of squares

(y − g)T(y − g) + λgT K g (10.47)

with respect to g. On completing the square we find that ĝ minimizes

{
(I + λK )−1 y − g

}T
(I + λK )

{
(I + λK )−1 y − g

}
, (10.48)

which differs from (10.47) only by a constant independent of g. It is straightforward to
see that ĝ = (I + λK )−1 y is the unique natural cubic spline that minimizes (10.48);
furthermore, as it turns out that it does so among all functions that are differentiable
on [a, b] and have absolutely continuous first derivative, ĝ is optimal in a large class
of smooth functions.

The structure of the matrix K can be exploited to give a fast algorithm for
fitting the spline. Recall that γ = R−1 QTg and K = Q R−1 QT. Hence ĝ is the solu-
tion to (I + λQ R−1 QT)g = y. Equivalently the corresponding γ̂ solves the system
(R + λQT Q)γ = QT y, which can be solved in O(n) operations because both R and
Q are band matrices; their only non-zero elements lie on the diagonal or just above
and below it.

Like a local polynomial fit, the spline is a linear smoother. Its smoothing
matrix is Sλ = (I + λK )−1. Note that K g = 0 for vectors of form g = β01n +
β1(t1, . . . , tn)T,because the roughness penalty is zero when g(t) is linear, and it follows
that Sλg = g for such vectors. Once again there are several definitions of the degrees
of freedom for the smooth fit, the most obvious being tr(Sλ).

The right panel of Figure 10.18 shows three fits, of which the linear fit is evidently
too smooth, and the one with seven degrees of freedom too rough. The fit with
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3.7 degrees of freedom, chosen by cross-validation as described below, seems more
plausible.

For later development we must deal with two complications. The first arises when
weights w j are attached to the cases (t j , y j ). Then (y − g)T(y − g) must be replaced
by (y − g)TW (y − g), where W = diag{w1, . . . , wn}; see Section 8.2.4. The second
occurs when some of the t j are tied. If so, we let s1 < · · · < sq denote the ordered
distinct values among t1, . . . , tn and denote by N the n × q incidence matrix whose
( j, k) element indicates whether t j = sk ; obviously q ≥ 2, and N = I if the t j are
distinct and ordered. With these changes (10.47) alters to

(y − Ng)TW (y − Ng) + λgT K g,

which is minimized at ĝ = N (N TW N + λK )−1 N TW y. The smoothing matrix Sλ =
N (N TW N + λK )−1 N TW reduces to the previous expression when W = N = I .

How much smoothing?

The smoothing parameter λ plays the same role as the bandwidth in a local polynomial
model, and it too is typically chosen by minimizing information or cross-validation
criteria such as

CV(λ) =
n∑

j=1

{
y j − ĝ(t j )

1 − Sj j (λ)

}2

, GCV(λ) =
n∑

j=1

{
y j − ĝ(t j )

1 − tr(Sλ)/n

}2

,

where both the diagonal elements Sj j (λ) of the smoothing matrix Sλ and the fitted
values g(t j ) depend on λ. As with other applications of smoothing, the goal is to trade
off fidelity to the data against smoothness of the fit. Once again a caveat is needed: the
results from an automatic procedure cannot always be trusted, and it is often valuable
to apply different levels of smoothing. As mentioned above, it is useful to know the
degrees of freedom of a smooth fit.

Example 10.33 (Spring barley data) Table 10.21 gives standardized yields from
an agricultural field trial in which three blocks of long narrow plots were sown with
75 varieties of spring barley in a random order within each block. The yield from
variety 27 in the third block is missing, but otherwise there are three replicates for
each variety. The plot of the yields in the left panel of Figure 10.19 shows strong
spatial patterns owing to fertility trends within each block, in addition to the variety
effects. For the moment we ignore differences among the varieties, and illustrate
how fitting a natural cubic spline can account for the fertility gradient in the first
block.

The left panel of Figure 10.19 shows some of the disadvantages of polynomial
fitting. The lower curve, for example, wiggles implausibly compared to a spline fit
with the same degrees of freedom, shown in the upper right panel. The lower right
panel shows how CV(λ) and GCV(λ) vary with the equivalent degrees of freedom,
for the three blocks. The fit to block 2 seems fairly reasonable, but block 3 is evidently
overfitted with 40 degrees of freedom, and block 1 is probably also overfitted. We
reconsider these data in Example 10.35. �
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Table 10.21 Spring
barley data (Besag et al.,
1995). Spatial layout and
plot yield at harvest y
(standardized to have unit
crude variance) in a final
assessment trial of
75 varieties of spring
barley. The varieties are
sown in three blocks, with
each variety replicated
thrice in the design. The
yield for variety 27 is
missing in the third block.

Block 1 Block 2 Block 3

Location t Variety Yield y Variety Yield y Variety Yield y

1 57 9.29 49 7.99 63 11.77
2 39 8.16 18 9.56 38 12.05
3 3 8.97 8 9.02 14 12.25
4 48 8.33 69 8.91 71 10.96
5 75 8.66 29 9.17 22 9.94
6 21 9.05 59 9.49 46 9.27
7 66 9.01 19 9.73 6 11.05
8 12 9.40 39 9.38 30 11.40
9 30 10.16 67 8.80 16 10.78

10 32 10.30 57 9.72 24 10.30
11 59 10.73 37 10.24 40 11.27
12 50 9.69 26 10.85 64 11.13
13 5 11.49 16 9.67 8 10.55
14 23 10.73 6 10.17 56 12.82
15 14 10.71 47 11.46 32 10.95
16 68 10.21 36 10.05 48 10.92
17 41 10.52 64 11.47 54 10.77
18 1 11.09 63 10.63 37 11.08
19 64 11.39 33 11.03 21 10.22
20 28 11.24 74 10.85 29 10.59
21 46 10.65 13 11.35 62 11.35
22 73 10.77 43 10.25 5 11.39
23 37 10.92 3 10.08 70 10.59
24 55 12.07 53 10.25 13 11.26
25 19 11.03 23 9.57 11 11.79
26 10 11.64 62 11.34 44 12.25
27 35 11.37 52 10.19 36 12.23
28 26 10.34 12 10.80 52 10.84
29 17 9.52 2 10.04 60 10.92
30 71 8.99 32 9.69 68 10.41
31 8 8.34 22 9.36 3 10.96
32 62 9.25 42 9.43 19 9.94
33 44 9.86 72 11.46 67 11.27
34 53 9.90 73 9.29 59 11.79
35 74 11.04 25 10.10 2 11.51
36 20 10.30 45 9.53 75 11.64
37 56 11.56 15 10.55 27 —
38 29 9.69 35 11.34 43 9.78
39 2 10.68 66 11.36 51 8.86
40 47 10.91 5 10.88 10 10.28
41 11 10.05 56 11.61 35 12.15
42 38 10.80 46 10.33 74 10.36
43 65 10.06 71 10.53 66 9.59
44 13 10.04 51 8.67 34 10.53
45 31 10.50 21 9.56 18 11.26
46 40 9.51 1 9.95 50 10.37
47 4 9.20 31 11.10 42 10.10
48 67 9.74 11 10.11 1 9.95
49 22 8.84 41 9.36 58 9.80
50 49 9.33 61 10.23 26 10.58
51 58 9.51 55 11.38 41 9.31
52 43 9.35 14 11.30 25 9.29
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Table 10.21 (cont.)
Block 1 Block 2 Block 3

Location t Variety Yield y Variety Yield y Variety Yield y

53 7 9.01 44 10.90 33 10.03
54 25 10.58 34 10.97 9 9.49
55 61 11.03 54 12.22 17 11.52
56 16 9.89 24 10.10 57 12.24
57 52 11.39 4 11.22 65 11.64
58 70 11.24 65 10.01 49 10.74
59 34 12.18 75 10.29 73 10.29
60 42 10.21 38 10.95 7 10.25
61 24 11.08 17 9.66 23 11.39
62 33 11.05 68 9.31 72 13.34
63 51 10.29 7 8.84 55 12.73
64 60 10.57 27 10.64 31 12.62
65 69 10.42 58 9.45 39 10.19
66 15 10.49 48 9.66 47 11.61
67 6 10.00 28 9.85 15 10.52
68 63 9.23 60 9.24 20 9.07
69 54 10.57 30 10.11 61 10.76
70 18 10.27 70 9.63 28 9.91
71 45 8.86 20 9.04 53 10.17
72 72 9.45 9 8.43 69 8.68
73 9 8.03 40 10.97 45 8.74
74 36 9.22 50 8.98 12 9.15
75 27 8.70 10 9.88 4 9.39

10.7.3 More general models

We now consider how the discussion above should be modified when there are ex-
planatory variables as well as a smooth variable, treating certain covariates nonpara-
metrically and others not, and allowing the response to have a density other than the
normal.

Let the data consist of independent triples (x1, t1, y1), . . . , (xn, tn, yn), with j th log
likelihood contribution � j (η j , κ), where η j = xT

jβ + g(t j ); for now we suppress
dependence on κ . Then the analogue of (10.47) is the penalized log likelihood

�λ(β, g) =
n∑

j=1

� j (η j ) − 1

2
λ

∫ b

a
{g′′(t)}2 dt, λ > 0, (10.49)

where a and b are chosen so that a < t1, . . . , tn < b. If all the t j are distinct and λ = 0,
the maximum is obtained by choosing g j = g(t j ) to maximise the j th log likelihood
contribution, but this is not useful because the resulting model has n parameters and
is too rough. The integral in (10.49) penalizes roughness of g(t), so λ has the same
interpretation as before.

If the ordered distinct values of t1, . . . , tn are s1 < · · · < sq and if g(t) is a natural
cubic spline with knots at the si , then the integral in (10.49) may be written gT K g,
where the q × 1 vector g has i th element gi = g(si ). Given a value of λ, our aim
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Figure 10.19 Spring
barley data analysis. Left
panel: yield y as a
function of location x for
the three blocks. Yields
for blocks 2, 3 have been
offset by adding 4, 8
respectively. The smooth
solid lines are the fits of
polynomials of degree 20,
10 and 40 to the data from
blocks 1, 2 and 3. Upper
right: yields for block 1,
with smoothing spline fit
with 18 degrees of
freedom. Lower right:
cross-validation (solid)
and generalized
cross-validation (dots)
criteria for smoothing
spline fits to blocks 1, 2
and 3, with minima at
roughly 20, 10 and
40 equivalent degrees of
freedom.

is to find values of β and g that maximize �λ(β, g). As the n × 1 vector of linear
predictors may be written η = Xβ + Ng, where N is the n × q incidence matrix for
the elements of g and the n × p matrix X has j th row xT

j , the score equations are

(
∂�λ (̂β, ĝ)/∂β
∂�λ (̂β, ĝ)/∂g

)
=

(
X Tu (̂η)

N Tu (̂η) − λK ĝ

)
= 0, (10.50)

where the n × 1 vector u(η) has j th element ∂� j (η j )/∂η j . The usual Taylor series
expansion (Sections 4.4.1, 10.2.2) then gives

(
X TW X X TW N
N TW X N TW N + λK

) (
β̂

ĝ

)
.=

(
X TW z
N TW z

)
, (10.51)

where W = diag{w1, . . . , wn}, with w j = E{−∂2� j (η j )/∂η2
j } and where z =

W −1u(η) + η is the n × 1 adjusted dependent variable. Fisher scoring would solve
(10.51) iteratively starting from suitable initial values of β and g, but here there are
p + q regressors, where q is typically comparable to n, and an approach known as
backfitting is generally used instead. The idea is to alternate between the two matrix
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equations in (10.51), rewritten as

(X TW X )̂β
.= X TW (z − N ĝ), (10.52)

(N TW N + λK )̂g
.= N TW (z − X β̂). (10.53)

Given initial values β0 and g0 of β and g, we calculate η, W , and z, replace ĝ in
(10.52) by g0, and then obtain an approximate value of β̂ by regressing z − Ng0 =
W −1u + Xβ0 on the columns of X with weights W . We then recalculate η = X β̂ +
Ng0, W , and z, and solve (10.53) by applying the matrix (N TW N + λK )−1 N TW to
z − X β̂ = W −1u + Ng0, thus obtaining an approximate value of ĝ. We then set β0

and g0 equal to β̂ and ĝ and iterate the cycle to convergence.

Example 10.34 (Partial spline model) The case where y j is normal with mean
η j and variance σ 2 is known as a partial spline model. Here u(η) = σ−2(y − η) and
W = σ−2 In , so z = y (Example 10.4).

The first backfitting step is least squares regression of y − Ng0 on the columns
of X . The second applies the linear smoother (N T N + σ 2λK )−1 N T to the residual
y − X β̂ from the first step; the effective penalty is thus λ′ = σ 2λ. At each step of the
iteration either least squares or linear smoothing is applied to the residual from the
previous operation, continuing until any systematic structure has been removed from
both y − X β̂ and y − N ĝ. �

Example 10.36 gives a further illustration of such fitting.
Backfitting yields parameter estimates, but unless the fit is purely exploratory other

quantities are required for inference. The deviance is defined in the usual way, and
the error degrees of freedom of a fit are

n − νλ = n − tr(Sλ) − tr[{X TW (I − Sλ)X}−1 X TW (I − Sλ)2 X ],

where this and the smoothing matrix

Sλ = N (N TW N + λK )−1 N TW

are computed at convergence. The usual chi-squared theory is often used for approx-
imate comparison of nested models, even though it has no firm theoretical basis.
Standard errors for elements of β̂ and the fitted ĝ(t) are generally obtained using the
approximate linearization entailed by (10.51).

As usual in semiparametric modelling, the degree of smoothing is critical. Various
forms of the cross-validation and generalized cross-validation criteria for choice of λ

have been suggested. One approach takes

CV(λ) =
n∑

j=1

(y j − ŷ j )2

v j {1 − h j j (λ)}2
, GCV(λ) =

n∑
j=1

(y j − ŷ j )2

v j {1 − tr(Hλ)/n}2
,

where v j is the estimated variance of y j , ŷ j is the j th fitted value, and h j j (λ) is the
partial derivative of ŷ j with respect to y j , analogous to the earlier role of Sj j (h).
Another possibility is to cross-validate the approximating linear problem obtained at
each step of the fitting algorithm.
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When several covariates might be treated nonparametrically, say t , u, and v , we can
take the linear predictor to be xTβ + g1(t) + g2(u) + g3(v) and fit smoothing splines
or other nonparametric curves with a version of backfitting in which β and the gs are
iteratively estimated in succession. Such a setup is known as a generalized additive
model, to which the same ideas apply as outlined above. The degrees of smoothing
are controlled by separate penalties for each of the gs, and the corresponding λs may
be estimated by minimizing a cross-validation or similar criterion. Surfaces g(t, u)
can also be fitted using similar ideas.

In some cases it is necessary to diminish the computational burden by reducing the
number of knots and hence the number of parameters q that specify the fitted curve.
Although the resulting fit no longer has the optimality properties of the natural cubic
spline, this is typically unimportant in practice.

Example 10.35 (Spring barley data) In addition to their strong spatial dependence,
the spring barley yields in Table 10.21 depend on variety effects. The simplest model
that would accomodate these is a two-way layout with variety and block effects, in
which the response is

yvb = τb + βv + εvb, v = 1, . . . , 75, b = 1, 2, 3, where εvb
iid∼ N (0, σ 2).

This has residual sum of squares 94.87 on 147 degrees of freedom, giving σ̂ 2 = 0.645,
while the standard error for a difference of variety effects β̂v1 − β̂v2 is 0.655.

As the two-way layout ignores the spatial variation, it greatly overestimates σ 2,
thereby decreasing the sensitivity of comparisons among the varieties. Moreover the
variety effect estimators may be biased if all three replicates of a particular variety
happen to fall where the fertilities are higher than average. It seems more sensible
to fit a model in which the yield for the vth variety in the bth block depends on its
location tvb through

yvb = gb(tvb) + βv + εvb, v = 1, . . . , 75, b = 1, 2, 3,

where gb(t) is a smooth function that determines how the fertility pattern in block b
depends on location t . When this model is fitted using smoothing splines with 40 knots
for each of the gb, 77 degrees of freedom are needed to account for the variety and
block effects, the degrees of freedom that minimize the generalized cross-validation
criterion are 16.4, 8.3, and 25.2 for b = 1, 2, and 3, the residual sum of squares is 16.85
on 224 − 77 − 16.4 − 8.3 − 25.3 = 97 degrees of freedom, and σ̂ 2 = 0.174, about
one quarter of the value for the two-way layout. The standard errors for differences
of variety effects are roughly 0.41, so more precise comparisons are possible than in
the simpler fit. Fewer degrees of freedom are needed to model the spatial variation
here than the 20, 10, and 40 required for the three blocks in Example 10.33, because
allowance for variety effects enables smoother fertility trends to be used.

Figure 10.20 shows how this model decomposes the original data into fertility
trends, variety effects, and residuals. As their degrees of freedom would suggest, the
estimate ĝ2(t) is appreciably smoother than the fertility trends in blocks 1 and 3. The
best-yielding varieties in decreasing order of β̂v are 35, 56, 31, 54, 72, 55, 47, 18,
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Figure 10.20 Spring
barley data analysis.
Block 1 is shown on the
left and block 3 on the
right. The panel shows,
from the top, the original
yields y, the fertility trend
and variety effect
estimates ĝb(t) and β̂v ,
both offset for display,
and the crude residuals.
The varieties with the ten
largest β̂v are marked.

40, and 26, but as a 0.95 confidence interval for differences of two variety effects has
width 1.61, there is no clear-cut best variety.

A probability plot of the residuals shows nothing to undermine normality of the
errors, but the correlograms and partial correlograms of residuals from blocks 1 and 3
show slight negative correlations, suggesting that ĝ1(t) and ĝ3(t) may be overfitted. A
more complete analysis would try and remedy this by refitting the model with fewer
degrees of freedom for the fertility trends in blocks 1 and 3. �

Exercises 10.7

1 Explain how the derivatives g′(x0), . . . , g(k)(x0) may be estimated using the least squares
estimator β̂ from a local polynomial fit of degree k.

2 What is the bias of the local fit of a polynomial of degree k to a function that is polynomial of
degree l ≤ k? How would you measure the disadvantage of this relative to an unweighted
fit?

3 By writing
∑{y j − ĝ(x j )}2 = (y − ĝ)T(y − ĝ) and recalling that y = g + ε and ĝ = Sy,

where S is a smoothing matrix, show that

E

[
n∑

j=1

{y j − ĝ(x j )}2

]
= σ 2(n − 2ν1 + ν2) + gT(I − S)T(I − S)g.

Hence explain the use of s2(h) as an estimator of σ 2. Under what circumstances is it
unbiased?

4 (a) If S11(h), . . . , Snn(h) are the leverages of a smoothing matrix Sh , establish

ν1 =
n∑

j=1

Sj j (h), ν2 =
n∑

i, j=1

Si j (h)2 = σ−2
n∑

j=1

var
{̂
g(x j )

}
.

(b) Show that S(x j ; x j , h) is proportional to the (1, 1) element of (X TW X )−1, and let the in-
fluence function of the smoother be I (x) = w(0)eT

1(X TW X )−1e1, where eT
1 = (1, 0, . . . , 0)

has length k + 1. Show that

σ−2var {̂g(x)} ≤ I (x),
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and deduce that ν2 ≤ ν1.
(c) Let I1(x) and I2(x) be the influence functions corresponding to bandwidths h1 < h2,
and let the corresponding weight matrices be W1 and W2. Show that W1 ≤ W2 compo-
nentwise and deduce that I2(x) ≥ I1(x).

5 Consider a linear smoother with n × n smoothing matrix Sh , so ĝ = Sh y, and show that
the function a j (u) giving the fitted value at x j as a function of the response u there satisfies

a j (u) =
{

ĝ(x j ), u = y j ,
ĝ− j (x j ), u = ĝ− j (x j ).

Explain why this implies that Sj j (h){y j − ĝ− j (x j )} = ĝ(x j ) − ĝ− j (x j ), and hence obtain
(10.42).

6 (a) Check (10.45), and hence verify that E(̂β0) − g(x0)
.= 1

2 h2g′′(x0) far from a boundary.
Do the corresponding calculation for x0 near a boundary.
(b) Show that the bias of the Nadarayah–Watson estimator (10.40) may be expressed as∑

w j

{
(x j − x0)g′(x0) + 1

2 (x j − x0)2g′′(x0) + · · ·}∑
w j

,

and deduce that this is approximately hg′(x0)a near a boundary, where a �= 0, and
1
2 h2{g′′(x0) + f ′(x0)g′(x0)} elsewhere.

7 Develop the details of local likelihood smoothing when a linear polynomial is fitted to
Poisson data, using link function log µ = β0 + β1(x − x0).

10.8 Survival Data

10.8.1 Introduction

Survival or event history analysis concerns the times of events. Such data are par-
ticularly common in medicine and the social sciences, but also arise in many other
domains. As we saw in Section 5.4, the responses may be incompletely observed
owing to censoring or truncation. Here we give an introduction to regression analy-
sis of such data in the simplest and most common situation, with just one event per
individual. Throughout we use the term ‘failure’ to describe the event of interest, and
refer to the time to failure as a survival time.

Let the data available on the j th of n independent individuals be (x j , y j , d j ), where
x j is a p × 1 vector of explanatory variables, d j = 1 indicates that y j is an observed
survival time, and d j = 0 indicates that the survival time is right-censored at y j .
Consider a parametric model under which the survival time has density f (y; x, β),
survivor function F(y; x, β) = 1 − F(y; x, β), and hazard and cumulative hazard
functions h(y; x, β) and H (y; x, β) = − logF(y; x, β). Assume that the censoring
mechanism is uninformative, that is, independent of the failure time and uninformative
about β. Then the discussion in Section 5.4 implies that the log likelihood may be
written as

�(β) =
n∑

j=1

{d j log h(y j ; x j , β) − H (y j ; x j , β)}, (10.54)

from which maximum likelihood estimates β̂ may be obtained by iterative weighted
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least squares. Any additional parameters φ may be estimated by interleaving updates
to β̂ and φ̂. As usual with incomplete data, confidence intervals should be based on
observed information, as in Example 4.47.

Residuals are important for model checking. The relation F(y; x, β) = 1 −
exp{−H (y; x, β)} implies that if Y is continuous and uncensored with distribution
function F(y; x, β), then H (Y ; x, β) is exponentially distributed with unit mean.
This suggests that for diagnostic purposes the Cox–Snell residuals H (y j ; x, β̂) canAfter Cox and Snell

(1968). be regarded as an exponential random sample. For observations censored at c, we
argue that as E{H (Y ; x, β) | Y > c} = H (c; x, β) + 1, an appropriate residual is
H (c; x, β̂) + 1. This yields modified Cox–Snell residuals

r j = H (y j ; x, β̂) + 1 − d j . (10.55)

Other residuals may be defined for the proportional hazards model, described below.
Case diagnostics discussed in Section 10.2.3 may also be useful.

Accelerated life models

One notion used particularly in reliability studies is that time to failure may be ac-
celerated or retarded relative to some baseline. Let Y and Y0 denote failure times
for individuals with covariates x and x = 0. Then the accelerated life model posits
the existence of a positive function τ (β; x) such that Y and τ (β; x)Y0 have the same
distribution; equivalently Y/τ (β; x)

D= Y0, a baseline random variable. An individual
with τ (β; x) < 1 will ‘wear out’ at a faster rate than the baseline, and conversely. If Y0

has survivor, density, and hazard functionsF0(y), f0(y), and h0(y), the corresponding
functions for Y are

F0 {y/τ (β; x)} , τ (β; x)−1 f0 {y/τ (β; x)} , τ (β; x)−1h0 {y/τ (β; x)} . (10.56)

This is a scale model, so obvious possibilities are to let Y0 be an exponen-
tial, gamma, Weibull, log-normal, or log-logistic variable. If τ (β; x) = exp(xTβ),
then log Y

D= xTβ + ε, where ε = log Y0. The regression-scale model xTβ + σε is
equivalent to taking (Y/τ )1/σ D= Y0. Any of these gives a linear model for the log
responses, and if there is no censoring this can be fitted using least squares, though
typically information will be lost by doing so. However there is no special difficulty
with maximum likelihood estimation by iterative weighted least squares, if the density
of ε or equivalently of Y0 is known.

Example 10.36 (Leukaemia data) Table 10.22 contains data on the survival of
acute leukaemia victims. The covariate x is log10 white blood cell count at time of
diagnosis, and the patients are grouped according to the presence or not of a morpho-
logic characteristic of their white blood cells. Within each group suppose that survival
time Y is exponential with mean τ = exp(η), where η = β0 + β1 I (Group = 1) + β2x .
This is a generalized linear model with gamma errors, log link function, and dispersion
parameter φ = 1.
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Table 10.22 Survival
times y (weeks) for two
groups of acute leukaemia
patients, together with
x = log10 white blood cell
count at time of diagnosis
(Feigl and Zelen, 1965).
Patients in group 1 had
Auer rods and/or
significant granulation of
the leukaemic cells in the
bone marrow at the time
of diagnosis; those in
group 2 did not.

Group 1 Group 2

x y x y x y x y

1 3.36 65 10 3.85 143 18 3.64 56 27 4.45 3
2 2.88 156 11 3.97 56 19 3.48 65 28 4.49 8
3 3.63 100 12 4.51 26 20 3.60 17 29 4.41 4
4 3.41 134 13 4.54 22 21 3.18 7 30 4.32 3
5 3.78 16 14 5.00 1 22 3.95 16 31 4.90 30
6 4.02 108 15 5.00 1 23 3.72 22 32 5.00 4
7 4.00 121 16 4.72 5 24 4.00 3 33 5.00 43
8 4.23 4 17 5.00 65 25 4.28 4
9 3.73 39 26 4.43 2
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Figure 10.21 Plots of
data and fitted means for
generalized linear (left)
and generalized additive
(right) models fitted to
two groups of survival
times for leukaemia
patients: group 1 (solid);
group 2 (dashed).

When this model is fitted the deviance drops by 17.82 to 40.32, and the degrees
of freedom drop from 32 to 30. The parameter estimates and standard errors are
β̂0 = 5.81 (1.29), β̂1 = 1.02 (0.35), and β̂2 = −0.70 (0.30). The mean survival time
drops rapidly with x , but is increased in group 1; both effects are significant. The
fitted means τ̂ and data are shown in the left panel of Figure 10.21. An exponential
probability plot of the residuals y/̂τ casts no doubt on the model. This can be verified
more formally by fitting gamma, Weibull, and log-logistic distributions, none of which
improves on the exponential.

Inspection of the left panel of Figure 10.21 suggests some lack of fit of the system-
atic part of the model and we use this to illustrate the fitting of a generalized addi-
tive model with linear predictor η = β0 + β1 I (Group = 1) + s(x), where the smooth
function s(x) is a natural cubic spline. The right panel shows smooth dependence
on x with 3.36 degrees of freedom, found by generalized cross-validation starting
from a cubic spline with 6 knots equi-spaced along the range of x . With this model
β̂0 = 2.80 (0.24) and β̂1 = 1.15 (0.31); the value of β̂0 changes because s(x) is
parametrized to be orthogonal to a constant. The deviance is 31.68 with 27.63 equiv-
alent degrees of freedom, so the F statistic for comparison of this with the fully
parametric model is (40.32 − 31.68363)/2.37/(31.68/27.63) = 3.18 on 2.37 and
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27.63 degrees of freedom, giving significance level 0.05. Here chi-squared asymp-
totics are of dubious relevance, and as simulation from the parametric model gives a
rather larger significance level, there is no reason to choose the more complex gen-
eralized additive model, particularly as increased mean survival time at the highest
white blood cell counts seems implausible. �

Often called the Cox
model, because
introduced by Cox (1972).

10.8.2 Proportional hazards model

In medical applications the focus of interest is typically on how treatments or clas-
sifications of the units affect survival, the form of the survival distribution being of
secondary importance. This suggests that we seek inferences that will be valid for
any such distribution. This is difficult for accelerated life models, and instead we let
the covariates act directly on the hazard. Suppose that an individual with baseline
covariate x0 has hazard function h0(y) after a time y on trial, while an individual withWe can take x0 = 0

without loss of generality. covariate x has hazard function h(y) = ξ (β; x)h0(y), where ξ (β; x) is a positive func-
tion sometimes called a risk score; usually ξ (β; x) = exp(xTβ). The ratio h(y)/h0(y)
does not involve h0. This proportional hazards assumption turns out to be crucial,
but it is strong and must be checked in practice.

The basic relationship between the survivor and hazard functions, F(y) =
exp{−H (y)}, where H (y) = ∫ y

0 h(u) du, implies that the survival time for an in-
dividual with covariate x has survivor and density functions

F0(y)ξ (β;x), ξ (β; x)h0(y)F0(y)ξ (β;x).

Thus whereas accelerated life models scale the axis of a baseline survivor function,
F0, proportional hazards raise the baseline survivor function to a power.

The action of the covariates being of primary interest, we seek a likelihood on which
to base inference for β, regardless of h0(y). To motivate the argument below, note
that if the hazard function was entirely arbitrary, then inference could only be based
on events where failures actually occurred, because the hazard might in principle
be zero at every other time. Thus it suffices to estimate the baseline cumulative
hazard function by a step function H0(y) = ∑

j :y j ≤y h j , where h j = h0(y j ) > 0 only
at observed failure times.

Suppose there are no ties, take 0 < y1 < · · · < yn without loss of generality, and
let R j denote the risk set of individuals still available to fail at the instant before y j ,
that is, all except those who have previously failed or been censored; see Figure 5.8.
For brevity set ξ j = ξ (β; x j ). Then the log likelihood is

n∑
j=1

{d j log(ξ j h j ) − ξ j H0(y j )} =
n∑

j=1

{
d j log(ξ j h j ) − ξ j

j∑
i=1

hi

}

=
n∑

j=1

(
d j log ξ j + d j log h j − h j

∑
i∈R j

ξi

)
.

With β fixed the h j have maximum likelihood estimators ĥ j = d j/
∑

i∈R j
ξi , positive
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only when d j = 1, so the profile log likelihood for β is

�p(β) = max
h1,...,hn

�(β, h1, . . . , hn) ≡
n∑

j=1

d j log

(
ξ j∑

i∈R j
ξi

)
. (10.57)

The corresponding profile likelihood is

n∏
j=1

{
ξ (β; x j )∑

i∈R j
ξ (β; xi )

}d j

=
∏

failures

ξ (β; x j )∑
i∈R j

ξ (β; xi )
. (10.58)

Alternatively we may reason that the probability of the particular failure observed to
occur at y j , conditional on a failure occurring then, is

ξ j h0(y j )∑
i∈R j

ξi h0(y j )
= ξ j∑

i∈R j
ξi

, (10.59)

and hence (10.58) is the probability that failures occur in the observed order, condi-
tional on their occurrence times and margining over times of censoring. Thus (10.58)
is the product of a nested sequence of multinomial variables. There is a close con-
nection to the discussion of Poisson variables and log-linear models on page 501.

Expression (10.58) is known as a partial likelihood. In Section 12.2 it is derived
as a marginal likelihood based on the observed ranking of failure times. Although
a mathematically complete derivation is beyond our scope, it turns out that despite
the maximization over n nuisance parameters, (10.58) can be treated as an ordinary
likelihood: the maximum partial likelihood estimator β̂ is consistent for β under mild
conditions, and standard errors can be based on the inverse observed information
matrix.

Information contained in the failure times is lost, because they are treated as fixed
in constructing the partial likelihood. The loss of information compared to using the
correct parametric model turns out to be small in most cases, however, so standard
errors from partial likelihood are close to those obtained under the true model. Partial
likelihood inferences make essentially no assumptions about h0, and are in this sense
semiparametric.

Tied failure times have probability zero for continuous distributions, but neverthe-
less they arise in data due to rounding. Three possible modifications of the partial
likelihood to adjust for the simultaneous failure of a elements of the risk set R j at
time y j are to include a term corresponding to each failure occurring first, to compute
the exact probability of a failures, and to use an approximation to this. Thus (10.59)
is replaced by one of

a∏
i=1

ξi∑
k∈R j

ξk
,

∏a
i=1 ξi∑ ∏a

k=1 ξlk

,

a∏
i=1

ξi∑
k∈R j

ξk − i−1
a

∑a
k=1 ξk

, (10.60)

where the sum in the exact central formula is over all subsets of R j of size a. The
first of these arises from applying the profile likelihood argument above to tied data.
In practice these corrections often give similar results.
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Example 10.37 (Leukaemia data) Consider the data in Table 10.22 with ξ =
exp{β0 + β1 I (Group = 1) + β2x}. Now β0 cancels from the partial likelihood, max-
imization of which gives β̂1 = −1.07 (0.43) and β̂2 = 0.85 (0.31). These are similar
to the values for the exponential model, apart from the sign change because the hazard
and mean survival time are inversely related. Note in particular that the standard er-
rors barely differ, confirming our comments about the efficiency of partial likelihood
estimation.

These data have 17 ties. The estimates above result from using the third, approxi-
mate, term in (10.60), while the second, exact, formula gives β̂1 = −1.08 (0.45) and
β̂2 = 0.90 (0.34), and the simple first approximation gives β̂1 = −1.02 (0.42) and
β̂2 = 0.83 (0.31). There is little to choose among these, but rather more to choose
among the likelihood ratio statistics for inclusion of the two covariates, which are 15.6
using the second and third terms, and 14.6 using the first. The third term in (10.60)
thus seems preferable to the first, as both require the same computational effort.

It may be useful to contrast two types of semiparametric procedure. Partial like-
lihood inference requires no assumptions about the baseline hazard and distribution
function, and in a sense relaxes the vertical axis of Figure 10.21. Use of splines or
other smoothing procedures can also be described as semiparametric, but it relaxes
the horizontal axis of the figure, which relates the covariate and response. Spline
terms can be introduced into the linear predictor of the proportional hazards model,
replacing β2x by s(x), but this does not improve significantly on the exponential
model. �

The baseline cumulative hazard and survivor functions may be estimated by

Ĥ0(y) =
∑

j :y j ≤y

d j∑
i∈R j

ξ̂i
, F̂0(y) =

∏
j :y j ≤y

(
1 − d j∑

i∈R j
ξ̂i

)
, (10.61)

where ξ̂ j = ξ (̂β; x j ). These are needed to assess fit and to predict survival probabilities
for individuals from a fitted model. The estimated survivor function for an individual
with covariates x+ is F+(y) = exp{−ξ (̂β; x+)Ĥ0(y)}, from which the probability of
survival beyond a given point can be read off, with standard errors found using the
delta method.

The construction above extends to stratified data, with the baseline hazard varying
between strata but the parameter being common to all strata. This is useful in checking
proportionality of hazards.

Log rank test

We now briefly discuss use of the proportional hazards model to construct tests for
equality of survival distributions. When ξ (β; x) = exp(xTβ), the log partial likelihood
(10.57) equals

�p(β) =
∑

failures

[
xT

jβ − log

{ ∑
i∈R j

exp
(
xT

i β
)}]

=
∑

failures

{
xT

jβ − log A j (β)
}
,
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say, with first derivative

U (β) =
∑

failures

{
x j −

∑
i∈R j

xi exp
(
xT

i β
)

A j (β)

}
=

∑
failures

{
x j − B j (β)

A j (β)

}
, (10.62)

say, and negative second derivative

J (β) =
∑

failures

{∑
i∈R j

xi xT
i exp

(
xT

i β
)

A j (β)
− B j (β)B j (β)T

A j (β)2

}
. (10.63)

Suppose the data fall into two groups with respective hazard functions h0(y) and
h(y) = eβh0(y). Then a score test for β = 0, that is, equality of survival distributions,
is obtained by letting x j be scalar, with x j = 1 or 0 indicating that failure j belongs to
groups 1 or 0, and taking U (0)

.∼ N {0, J (0)} or equivalently U (0)2/J (0)
.∼ χ2

1 . This
is known as the log rank test.

Now A j (0) and B j (0) respectively equal

∑
i∈R j

exp
(
xT

i β
)
∣∣∣∣∣∣
β=0

= m0 j + m1 j ,
∑
i∈R j

xi exp
(
xT

i β
)
∣∣∣∣∣∣
β=0

= m1 j ,

the total number of individuals and the number of group 1 individuals available to
fail at time y j . Thus

U (0) =
∑

failures

(
R j − m1 j

m0 j + m1 j

)
, J (0) =

∑
failures

m0 j m1 j

(m0 j + m1 j )2
,

where R j = 1 if the individual failing at time y j belongs to group 1 and R j = 0
otherwise. Hence the score statistic is a sum of centred binary variables. These are
not independent but under mild conditions the normal limiting distribution above will
nonetheless hold.

An alternative argument proceeds by cross-classifying the risk set at each failure
time by group membership and failure/survival, and using the hypergeometric distri-
bution for the number of group 1 failures conditional on the row and column totals in
the resulting 2 × 2 table. This applies also when there are ties, and yields

U (0) =
∑

failures

(
R j − m1 j a j

m0 j + m1 j

)
,

J (0) =
∑

failures

m0 j m1 j a j (m0 j + m1 j − a j )

(m0 j + m1 j )2(m0 j + m1 j − 1)
,

with R j now the number of group 1 failures at y j among the total number of failures
a j at the j th failure time; see the discussion after (10.28). This reduces to the previous
version when there are no ties, that is, a j ≡ 1.

Example 10.38 (Mouse data) Figure 5.11 compares cumulative hazard functions
for subsets of the data of Table 5.7. The values of U (0)2/J (0) for the left and right
panels are 3.3 and 40.1, each to be treated as χ2

1 . The first has significance level 0.07,
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weak evidence that the distributions differ. The second strongly supports the visual
impression of quite different distributions. �

The log rank test generalizes to quantitative covariates x , to multiple survival
distributions, and to weighted sums

∑
failures

w j

(
R j − m1 j a j

m0 j + m1 j

)
,

where the w j can depend on the failure times, on m0 j , m1 j , and on a j . Such statis-
tics can give better power against alternatives other than proportional hazards. Their
variances may be found using ideas from Section 7.2.3.

Time-dependent covariates

Thus far we have supposed that the covariate vector x j takes the same value throughout
the period over which the j th individual is observed. This is appropriate for variables
such as age on entry, sex, and summaries of medical history prior to entry to the
study, but it is also necessary to be able to accommodate explanatory variables that
vary during the study. Quantities such as a patient’s blood pressure may be available
at various points over the observation period, for example, or a treatment may be not
allocated until well after the study has begun, or changed during the trial. In reliability
trials the key explanatory variable may be cumulative stress, or perhaps instantaneous
stress, both of which may change during the experiment.

The interpretation of effects of covariates that may be influenced by the treatments
demands careful thought. Consider for example a study in which treatments for hy-
pertension are compared, blood pressure being an explanatory variable. Use of initial
blood pressure as a covariate should increase the precision with which the treatment
effects can be estimated, but interest would focus on the treatments, the estimated
effect of blood pressure being of little direct interest. Use of blood pressure monitored
after treatment allocation, by contrast, would allow the analyst to assess the extent
to which treatments affect survival by influencing blood pressure; the estimate might
then be of prime concern.

Time-varying covariates may also be constructed for technical reasons, for instance
to check adequacy of the proportional hazards assumption by including y or log y in
the linear predictor.

Whatever the interpretation, use of time-dependent covariates leads to replacement
of the p elements x j1, . . . , x jp of x j by functions x j1(y), . . . , x jp(y), 0 ≤ y ≤ y j .
These may be indicator variables, for example showing the treatment being applied
at time y. The covariates are typically measured only at certain times, so the func-
tion x jr (y) is usually obtained by interpolation. Let x j (y) denote the p × 1 vector
(x j1(y), . . . , x jp(y))T. The hazard function ξ{β; x j )h0(y) becomes ξ{β; x j (y)}h0(y),
and our previous argument shows that the log partial likelihood is

�p(β) =
n∑

j=1

d j

(
ξ{β; x j (y j )} − log

[ ∑
i∈R j

ξ{β; xi (y j )}
])

,
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the outer sum being over failure times y j . Thus rather than x j , the covariates needed
for the j th individual are {x j (yi ) : yi ≤ y j }, where the failure times yi are those at
which case j lies in the risk set.

Standard large-sample likelihood results may be used for inference on β.

Model checking

When the data contain two groups, a graphical check on proportional hazards may be
based on their estimated cumulative hazard functions. If the cumulative hazard func-
tions for the two groups are H0(y) and H (y), then proportional hazards asserts that
H (y) = ξ (β; x)H0(y). Thus log Ĥ (y) − log Ĥ0(y) should appear independent of y.

Various residuals can be defined. The modified Cox–Snell residuals (10.55)
equal r j = Ĥ j (y j ) + 1 − d j , where the estimated cumulative hazard function for
the j th individual under a proportional hazards model with constant covariates is
Ĥ j (y) = ξ (̂β; x j )Ĥ0(y j ) and Ĥ0 is given at (10.61). Plots of the r j for subsets of the
observations may cast light on interactions, but are not useful for assessing distribu-
tional assumptions in the proportional hazards model because H0(y) is not specified
parametrically.

If Y j is a continuous random variable with censoring indicator D j and cumulative
hazard function Hj (y), then I (Y j ≤ y, D j = 1) − Hj {min(y, Y j )} is a zero-mean
continuous-time martingale; see page 552. With y = ∞ this gives D j − Hj (Y j ), and
implies that a martingale residual may be constructed as d j − Ĥ j (y j ) = 1 − r j , just
the residual above apart from a location and sign change. The functional form of a
covariate in a proportional hazards model with ξ (β; x) = exp(xTβ) can be checked
by plotting 1 − r j computed with the covariate omitted against the covariate itself.

The strong negative skewness of martingale residuals can be reduced by transfor-
mation, giving deviance residuals

sign{d j − Ĥ j (y j )}[2{Ĥ j (y j ) − d j − d j log Ĥ j (y j )}]1/2,

which are useful for checking for outliers; they are formally equivalent to treating the
D j as Poisson variables with means Hj (Y j ).

An approach based on (10.62) uses components of the contributions

x j −
∑

i∈R j
xi exp

(
xT

i β̂
)

∑
i∈R j

exp
(
xT

i β̂
) ,

to the score vector, thus giving a residual for each covariate and for each individual
seen to fail. These p × 1 vectors can be scaled by pre-multiplication by Jj (̂β), where
the p × p matrix Jj (β) is the contribution to (10.63) from the j th failure. They
are closely related to the influence measures (8.29) and (10.13), and plots of their
components help to determine which of the observations are influential for elements
of β̂. They are also useful for assessing adequacy of proportional hazards. A natural
way in which hazards might not be proportional is h(y) = h0(y) exp{xTβ(y)}, that is,
the coefficient of x depends on time. If this is the case, and there are no tied failures,
then E(Sj ) + β̂

.= β(y j ), where Sj is a standardized version of the score contributions
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computed using only the risk set at time y j . A non-constant plot of observed Sj against
y j suggests this type of model failure.

These and other diagnostics for the proportional hazards model can be extended to
time-dependent covariates.

Example 10.39 (PBC data) Primary biliary cirrhosis (PBC) is a chronic fatal dis-
ease of the liver, with an incidence of about 50 cases per million. Controlled clinic
trials are hard to perform with very rare diseases, so the double-blinded randomized
trial conducted at the Mayo Clinic from 1974–1984 is a valuable resource for liver
specialists. A total of 424 patients were eligible for the trial, and the 312 who con-
sented to take part were randomized to be treated either with the drug D-penicillamine
or with a placebo. Although basic data are available on all 424 patients, we consider
only these 312 individuals. Covariates available on each of them at recruitment in-
clude the demographic variables sex and age; clinical variables, namely presence or
absence of ascites, hepatomegaly, spiders, and a ternary varable edtrt whoseEdema is the

accumulation of fluids in
body tissues.

values 0, 1/2, 1 indicate no, mild, and severe edema; and biochemical variables,
namely levels of serum bilirubin (mg/dl), serum cholesterol (mg/dl), albumin
(gm/dl), urine copper (µg/day), alkaline phosphatase (U/ml), SGOT (U/ml), and
triglycerides (mg/dl), platelet count (coded), prothombin time (seconds), and the
histologic stage of the disease (1–4). There are 28 missing values of serum choles-
terol and 30 of triglycerides, and we ignore these covariates. Four missing values
of platelets and two of urine copper were replaced by the medians of the remain-
ing values; this should have little effect on the analysis. At the time at which the
data considered here became available, 125 patients had died, with just 11 deaths
not due to PBC, eight patients had been lost to follow-up, and 19 had undergone
a liver transplant. As the response is time to death, these patients are regarded as
censored.

The upper left panel of Figure 10.22 shows that estimated survivor functions for
the patients with the drug and the placebo are very close, and it is no surprise that the
log-rank statistic has value 0.1, insignificant when treated as χ2

1 . This is borne out by
the estimated treatment effect of −0.057 (0.179) for a fit of the proportional hazards
model with treatment effect only. Analysis stratified by sex gives an estimate of
−0.045 (0.179). Neither differs significantly from zero. The corresponding baseline
survival function estimates in the upper right panel of Figure 10.22 suggest no need
to stratify.

Similar analyses for subgroups of the data and the corresponding log-rank statistics
also show no significant treatment effects.

Having established that treatment has no effect on survival, we try constructing a
model for prediction of survivor functions for new patients. This should be useful in
assessing for whom liver transplant is a priority. The first step is to see which readily
accessible covariates are highly predictive of survival. We exclude histologic stage,
which requires a liver biopsy, and urine copper and SGOT, which are frequently un-
measured. The product-limit estimates and log rank statistics show strong dependence
of failure on the other variables individually, so we fit a proportional hazards model
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Table 10.23 Parameter
estimates and standard
errors for proportional
hazards models fitted to
the PBC data. The full fit
is reduced by backwards
elimination. In the last
two columns log
transformation is applied
to alb, bili, and
protime.

Estimate (SE)

Variable Full Reduced Transformed Final

age 0.028 (0.009) 0.030 (0.009) 0.033 (0.009) 0.041 (0.009)
alb −0.97 (0.027) −1.09 (0.24) −3.06 (0.72) −3.07 (0.72)
alkphos 0.015 (0.035)
ascites 0.29 (0.31)
bili 0.11 (0.02) 0.11 (0.02) 0.88 (0.10) 0.88 (0.10)
edtrt 0.69 (0.32) 0.77 (0.31) 0.79 (0.30) 0.69 (0.30)
hepmeg 0.49 (0.22) 0.50 (0.22) 0.25 (0.22)
platelet −0.61 (1.02)
protime 0.24 (0.08) 0.25 (0.08) 3.01 (1.02) 3.57 (1.13)
sex −0.48 (0.26) −0.55 (0.25)
spiders 0.29 (0.21) 0.30 (0.21)
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Figure 10.22 PBC data
analysis (Fleming and
Harrington, 1991). Top
left: product-limit
estimates for control
(solid) and treatment
(dots) groups. Top right:
estimates of baseline
survivor function for data
stratified by sex, men
(dots), women (solid). The
heavy line shows the
unstratified estimate.
Lower left: profile
likelihood for Box–Cox
transformations of
bilirubin (solid), albumin
(dots), and prothrombin
time (dashes); the
horizontal line indicates
95% confidence limits for
the transformation
parameter. Lower right:
martingale residuals from
the model with terms age,
log(alb), edtrt,
log(protime) against
log bilirubin, and lowess
smooth with p = 2/3.

with all but the excluded covariates. Table 10.23 suggests that serum bilirubin is
most significant and that several other covariates can be dropped. Backward selection
based on AIC leads to the reduced model in the table. The likelihood ratio statistic
for comparison of the two models is 1.22, plainly insignificant. Dropping sex and
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spiders also leads to a likelihood ratio statistic of 7.29, with significance level 0.20
when treated as χ2

5 . Bearing in mind the tendency of AIC to overfit, we now ignore
these covariates.

To investigate whether transformation is worthwhile we apply the Box–Cox
approach (Example 8.23) to alb, bili, and protime. The lower left panel of
Figure 10.22 clearly indicates log transformation of bili, but not of the other vari-
ables. The need for transformation of bili can also be assessed through the plot of
martingale residuals obtained when it is dropped, given in the lower right panel of the
figure. Note the strong negative skewness of the residuals. The near-linearity of the
lowess smooth shows the appropriateness of the transformation. The corresponding
plot against bili itself is harder to read because the points are bunched towards zero.
The plots for alb and protime are more ambiguous. If we take logs of all three
variables, then the maximized log partial likelihood increases by 13.8 and hepmeg

can be dropped; see Table 10.23.
A model with terms age+log(alb)+log(bili)+edtrt+log(protime) is med-

ically plausible. As the disease progresses, the liver’s ability to produce albumin
decreases, leading to the negative coefficient for alb, while damage to the bile ducts
reduces excretion of bilirubin and so increases its level in the body. Edema is of-
ten associated with the later stages of the disease, while prothrombin is decreased,
leading to slower clotting of the blood. Finally and unsurprisingly, risk increases
with age.

The upper panels of Figure 10.23 show deviance residuals plotted against age and
prothrombin time. Inspection of those in the left panel lying outside the 0.01 and 0.99
normal quantiles reveals an error in the data coding; case 253 has residual −2.55
but his age should be 54.4 rather than 78.4. The right panel shows an unusually high
prothrombin time of 17.1, which should have been 10.7. The estimates after these
corrections are shown in the final column of Table 10.23.

The lower left panel of Figure 10.23 shows the scaled scores plotted against pro-
thrombin time. There is some suggestion of non-proportionality, but it is too limited
to suggest model failure. Such plots for the other variables cast no doubt on propor-
tionality of hazards, and we accept the model.

To illustrate prediction, consider an individual with age=60, alb=4, bili=1,
edtrt=0, and protime=8, for whom xTβ̂ = −1.618 and whose hazard is reduced by
a factor exp(xTβ̂) = 0.20 compared to baseline. Setting edtrt=1 and bili=20 gives
estimated risk scores of 0.4 and 2.8. The lower right panel of Figure 10.23 shows how
the survivor functions then vary. The median estimated lifetime in each case can be
found by solving for y the equation F̂0(y)exp(xTβ̂) = 0.5. �

The proportional hazards model has been broadened in many directions. Suppose,
for instance, that individuals move between states 1 and 2 and back again, baseline
time-dependent transition rates γ12(y) and γ21(y) being modified to γ12(y)ξ12(β; x)
and γ21(y)ξ21(β; x) for an individual with explanatory variables x . The partial like-
lihood for β is a product of terms corresponding to each of the observed transitions
between states. For instance, the contribution from transition 1 → 2 at time y by an
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Figure 10.23 PBC data
analysis. Upper panels:
deviance residuals plotted
against age and
prothrombin time, with
horizontal lines showing
0.01 and 0.99 standard
normal quantiles. Lower
left: scaled scores S∗

j
plotted against
prothrombin time, with
lowess smooth and
approximate 0.95
pointwise confidence
bands (curved lines). Also
shown are overall estimate
and 0.95 confidence
interval (horizontal lines).
Lower right: baseline
survivor function estimate
(heavy), with predicted
survivor functions for
individuals with risk
factors 0.2, 0.4, and 2.8
(top to bottom).

individual with covariates x j is

γ12(y)ξ12(β; x j )∑
γ12(y)ξ12(β; xk)

= ξ12(β; x j )∑
ξ12(β; xk)

,

the sum being over individuals in state 1 at time y. Individuals unobserved at y, or
not in state 1, do not appear in the sum. Such extensions of partial likelihood enable
inference for many types of partially observed and censored multi-state data, but
details cannot be given here.

Counting processes and martingale residuals
This can be skipped at a
first reading.Consider a random variable Y with censoring indicator D and hazard function h(y),

and let

V (y) = I (Y ≥ y), N (y) = I (Y ≤ y, D = 1),

be random variables that indicate whether Y is in view at time y, and whether failure
has been observed by y. As V (y) is left-continuous, its value at time y can be predicted
the moment before, y−, whereas the counting process N (y) is right-continuous and
so is not predictable. Let {Hy : y ≥ 0} denote the history of the process up to time y.
This is known as a filtration or increasing collection of sigma-algebras: Hx ⊂ Hy for
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x ≤ y; knowledge accumulates. Define also d N (y) = N {(y + dy)−} − N (y), which
equals 1 if failure is observed to occur at y, and otherwise equals 0. Then

E{d N (y) | Hy−} = Pr{d N (y) = 1 | Hy−} = h(y)V (y), y ≥ 0; (10.64)

the mean failure rate at y can be predicted from the history to y−. However potential
dependence on Hy− makes h(y)V (y) a random variable.

Now (10.64) implies that d M(y) = d N (y) − h(y)V (y) is a zero-mean continuous-
time martingale with respect to Hy− , for all y > 0. This implies that

M(y) =
∫ y

0
d M(y) = N (y) −

∫ y

0
h(u)V (u) du = N (y) − H{min(y, Y )},

has the property that for any y ≥ x ,

E{M(y) | Hx } − M(x) = E

{∫ y

x
d M(u)

∣∣∣∣Hx

}

=
∫ y

x
E[E{d M(u) | Hu−} | Hx ] = 0,

and is therefore a martingale. Thus E{M(y)} = 0 for all y, and in particular
E{M(∞)} = E{D − H (Y )} = 0.

Let independent variables Y1, . . . , Yn with cumulative hazard functions Hj (y)
and censoring indicators D1, . . . , Dn be observed, and set Vj (y) = I (Y j ≥ y)
and N j (y) = I (Y j ≤ y, D j = 1). The corresponding continuous-time martingale is
M j (y) = N j (y) − Hj {min(y, Y j )}, from which martingale residuals are obtained by
setting y = ∞ and replacing unknowns with estimates.

Developments of the above formulation are central to mathematical treatments of
time-to-event data, references to which are given in Section 10.9.

Exercises 10.8

1 Show that if Y is continuous with cumulative hazard function H (y), then H (Y ) has the unit
exponential distribution. Hence establish that E{H (Y ) | Y > c} = 1 + H (c), and explain
the reasoning behind (10.55).

2 Let Y be a positive continuous random variable with survivor and hazard functions F(y)
and h(y). Let ψ(x) and χ (x) be arbitrary continuous positive functions of the covariate x ,
with ψ(0) = χ (0) = 1. In a proportional hazards model, the effect of a non-zero covariate
is that the hazard function becomes h(y)ψ(x), whereas in an accelerated life model, the
survivor function becomesF{yχ (x)}. Show that the survivor function for the proportional
hazards model is F(y)ψ(x), and deduce that this model is also an accelerated life model if
and only if

log ψ(x) + G(τ ) = G{τ + log χ (x)},
where G(τ ) = log{− logF(eτ )}. Show that if this holds for all τ and some non-unit χ (x),
we must have G(τ ) = κτ + α, for constants κ and α, and find an expression for χ (x)
in terms of ψ(x). Hence or otherwise show that the classes of proportional hazards and
accelerated life models coincide if and only if Y has a Weibull distribution.
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3 In the usual notation for a linear regression model, X T(y − X β̂) = 0. By writing the partial
likelihood corresponding to (10.62) as

∑n
j=1 d j {xT

j β − log A j (β)}, show that

n∑
j=1

x j

{
d j − exp

(
xT

j β̂
)

Ĥ0(y j )
}

= 0.

Which type of residual for a proportional hazards model is analogous to the raw residual
in a linear model?

4 Suppose that survival data data consist of independent observations (Y j , C j ), j = 1 . . . , n,
where Y j is an exponential random variable with mean exp(xT

j β), censored at random,
and the censoring indicator is C j , which equals 0 if Y j is censored and equals 1 otherwise.
Show that the likelihood for these data is the same as if the counts C j had Poisson
distributions with means y j exp(−xT

j β). Hence show that maximum likelihood estimates
for the censored data model, and their standard errors based on observed information, can
be obtained by regarding the censoring variable as having the Poisson distribution with
log link function and offset log y j .

5 Write down the partial likelihood contributions from failure times y = 1, 2, for the data
in Table 10.22, using the model ξ = exp{β0 + β1 I (Group = 1) + β2x}.

6 Suppose that the continuous-time proportional hazards model holds, but that the failure
times are grouped into intervals 0 = u0 < u1 < · · · < um = ∞. Show that the correspond-
ing grouped hazards

hi (x) = Pr(Y < ui | Y ≥ ui−1; x), i = 1, . . . , m,

satisfy

log{1 − hi (x)} = ξ (β; x) log{1 − hi (0)},
and write down the corresponding log likelihood when ξ (β; x j ) = exp(xT

j β). Hence find
the maximum likelihood estimator of β when the hi (0) are treated as nuisance parameters.
Does this have the usual properties if n → ∞ and m is fixed?
(Prentice and Gloeckler, 1978)

10.9 Bibliographic Notes

Driven by the needs of applications, the literature on regression models has expanded
hugely over the last 30 years, and most of the development has been in nonlin-
ear modelling. Generalized linear models were first explicitly formulated by Nelder
and Wedderburn (1972), though others had previously suggested special cases. The
resulting conceptual unification of apparently disparate models has had a major influ-
ence on subsequent developments, not least because of the part played by the iterative
weighted least squares algorithm, for which Green (1984) is a standard reference.
McCullagh and Nelder (1989) give an excellent account of generalized linear models
and their ramifications, while Dobson (1990) is more elementary. Shorter accounts
of generalized linear models and corresponding diagnostics are Firth (1991), ?), and
Davison and Tsai (1992). Jørgensen (1997b) describes more general classes of expo-
nential family-like distributions.

Data with binary responses are discussed by Collett (1991) and by Cox and Snell
(1989).

Bishop et al. (1975) and Fienberg (1980) are standard references to log-linear
models, though their approach is rather different to that adopted here. Log-linear and
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marginal models are discussed in Chapter 6 of McCullagh and Nelder (1989), with
more recent work by Liang et al. (1992), Glonek and McCullagh (1995), and others.
Generalized estimating equations and marginal modelling are of great importance in
longitudinal data, a good discussion of which is given in Diggle et al. (1994). Agresti
(1984) discusses models for ordinal data.

Quasi-likelihood was introduced by Wedderburn (1974) in a seminal article. For
subsequent developments see McCullagh (1991), the useful survey by Firth (1993),
and Davison (2001). Heyde (1997) gives a longer more theoretical account. See also
the bibliographic notes for Chapter 7.

There are now many books on semiparametric regression. Bowman and Azzalini
(1997) give an elementary account of kernel methods, with an applied emphasis, while
Wand and Jones (1995) contains a more theoretical treatment, and Simonoff (1996)
gives an excellent general discussion. Fan and Gijbels (1996) describe the theory of
local polynomial modelling in detail, while the more practical account by Loader
(1999) includes references to purpose-written software for local fitting. Hastie and
Loader (1993) give a shorter more intuitive account of the properties of these methods.
The account of spline methods in Section 10.7.2 is based on Green and Silverman
(1994). Hastie and Tibshirani (1990) give a book-length account of generalized ad-
ditive models. Wood (2000) gives a recent account of smoothing parameter selection
for penalized likelihood procedures.

Survival data analysis has developed very rapidly over the last three decades. A
major impetus was given by the introduction of the proportional hazards model by
Cox (1972), which led to greatly increased interest in the area, the use of point process
methods by Aalen (1978), and a flood of subsequent work. Fleming and Harrington
(1991) and Andersen et al. (1993) are standard references to this topic, the latter also
treating event history analysis in other areas. Therneau and Grambsch (2000) is an
excellent recent book highlighting computation for proportional hazards models and
their extensions, while Hougaard (2000) is an account of more advanced topics such
as frailty and multistate models. See also Klein and Moeschberger (1997). Although
most developments have centred on the proportional hazards model, it is not always
suitable in practice, and many other possibilities have been suggested. See also the
bibliographic notes to Chapter 5.

10.10 Problems

1 Suppose that Y has a density with generalized linear model form

f (y; θ, φ) = exp

{
yθ − b(θ )

a(φ)
+ c(y; φ)

}
,

where θ = θ (η) and η = βTx .
(a) Show that the weight for iterative weighted least squares based on expected information
is

w = b′′(θ )(dθ/dη)2/a(φ),

and deduce that w−1 = V (µ)a(φ){dg(µ)/dµ}2, where V (µ) is the variance function, and
that the adjusted dependent variable is η + (y − µ)dg(µ)/dµ.
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Note that initial values are not required for β, since w and z can be determined in terms
of η and µ; initial values can be found from y as µ1 = y and η1 = g(y).
(b) Give explicit formulae for the weight and adjusted dependent variable when R = mY
is binomial with denominator m and probability π = eη/(1 + eη).

2 The independent observations Y j , j = 1, . . . , n, have Poisson distributions with means
µ j , where g(µ j ) = η j , g(·) is the link function, and η j is the linear predictor xT

j β. The
x j are p × 1 vectors of known covariates such that the matrix X whose j th row is xT

j
has rank p. Show that the likelihood equation for the maximum likelihood estimator β̂ of
β can be written

X Ts (̂β) = 0,

and hence derive the iterative weighted least squares algorithm for estimation of β, giving
explicit formulae for the weight matrix and the adjusted dependent variable.
In a set of data on faults in lengths of textile, there were y faults in independent samples of
length x . Five pairs (y, x) were (6, 5.5), (4, 6.5), (17,8.3), (9, 3.8), and (14, 7.2). Suppose
that the Y j are independent Poisson variables with means η j , and η j = β0 + β1x j . Give the
link function for this model, verify that the maximum likelihood estimates are β̂0 = 1.006
and β̂1 = 1.437, and calculate their asymptotic covariance matrix. Is there evidence that
β0 �= 0?

3 For a generalized linear model with known dispersion parameter φ and canonical link
function, write the deviance as

∑n
j=1 d2

j , where d2
j is the contribution from the j th obser-

vation. Also let

u j (β) = ∂ log f (y j ; η j , φ)/∂η j , w j = −∂2 log f (y j ; η j , φ)/∂η2
j ,

denote the elements of the score vector and observed information, let X denote the
n × p matrix whose j th row is xT

j , where η j = βTx j , and let H denote the matrix
W 1/2 X (X TW X )−1 X TW 1/2, where W = diag{w1, . . . , wn}. Recall Exercise 8.5.2.

(a) Let β̂(k) be the solution of the likelihood equation when case k is deleted,∑
j �=k

x j u j

(
β̂(k)

) = 0, (10.65)

and let β̂ be the maximum likelihood estimate based on all n observations. Use first-order
Taylor series expansion of (10.65) about β̂ to show that

β̂(k)
.= β̂ − (X TW X )−1xk

uk (̂β)

1 − hkk
.

Express β̂(k) in terms of the standardized Pearson residual rPk = uk/{wk(1 − hkk)}1/2.
(b) Use a second order Taylor series expansion of the deviance to show that the change in
the deviance when the kth case is deleted is approximately rGk = sign(yk − µ̂k )

√
r2

Gk

is called a jackknifed
deviance residual.r 2

Gk = (1 − hkk)r 2
Dk + hkkr 2

Pk,

where rDk is the standardized deviance residual dk/(1 − hkk)1/2.
(c) Suppose models A and B have deviances DA and DB . Use (b) to find an expression
for the change in the likelihood ratio statistic DA − DB , when the kth case is deleted.
(d) Show that your results (a)–(c) are exact in models with normal errors.

4 In a study on the relation between social class, education, and income, m independently
sampled individuals are classified according to the social class of their parents, their income
group, and their level of education. m is fixed in advance. The number of individuals with
parents in class j , income group k, and with educational level l is y jkl , where j = 1, . . . , J ,
k = 1, . . . , K and l = 1, . . . , L . Show that the joint multinomial distribution for the y jkl

which is appropriate to this sampling scheme is equivalent to that derived by treating the
y jkl as independent Poisson random variables with means µ jkl , conditional on

∑
k jl y jkl =

m, and give the multinomial probabilities in terms of the µ jkl .
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One possible model for such data would be that the multinomial probabilities π jkl may be
written in the form α j (βγ )kl , where

∑
j α j = ∑

kl (βγ )kl = 1. Show that the maximum
likelihood estimate for α j is then y j ··/m, where a dot indicates summation over the cor-
responding subscript, and find the maximum likelihood estimates of the (βγ )kl . Derive
the deviance statistic to test the adequacy of this model, and show that for large m it is
equivalent to

1

m

∑
jkl

(myjkl − y j ·· y·kl )2

y j ·· y·kl
,

when the model is correct.

5 The rate of growth of an epidemic such as AIDS for a large population can be estimated
fairly accurately and treated as a known function g(t) of time t . In a smaller area where
few cases have been observed the rate is hard to estimate because data are scarce. However
predictions of the numbers of future cases in such an area must be made in order to allocate
resources such as hospital beds. A simple assumption is that cases in the area arise in a
non-homogeneous Poisson process with rate λg(t), for which the mean number of cases
in period (t1, t2) is λ

∫ t2
t1

g(t)dt . Suppose that N1 = n1 individuals with the disease have
been observed in the period (−∞, 0), and that predictions are required for the number N2

of cases to be observed in a future period (t1, t2).
(a) Find the conditional distribution of N2 given N1 + N2, and show it to be free of λ. De-
duce that a (1 − 2α) prediction interval (n−, n+) for N2 is found by solving approximately
the equations

α = Pr(N2 ≤ n−|N1 + N2 = n1 + n−),
α = Pr(N2 ≥ n+|N1 + N2 = n1 + n+).

(b) Use a normal approximation to the conditional distribution in (a) to show that for
moderate to large n1, n− and n+ are the solutions to the quadratic equation

(1 − p)2n2 + p(p − 1)
(
2n1 + z2

α

)
n + n1 p

{
n1 p − (1 − p)z2

α

} = 0,

where �(zα) = α and

p =
∫ t2

t1

g(t)dt/

{∫ t2

t1

g(t)dt +
∫ 0

−∞
g(t)dt

}
.

(c) Find approximate 0.90 prediction intervals for the special case where g(t) = 2t/2, so
that the doubling time for the epidemic is two years, n1 = 10 cases have been observed
until time 0, and t1 = 0, t2 = 1 (next year) (Cox and Davison, 1989).

6 Let R0 and R1 be independent binomial variables with denominators m0 and m1 and
probabilities π0 and π1, and let � = {π1(1 − π0)}/{π0(1 − π1)} be the odds ratio for the
2 × 2 table (R0, m0 − R0; R1, m1 − R1). Let A = R0 + R1, and let Y (s) = Y (Y − 1) · · ·
(Y − s + 1) = Y !/(Y − s)!, with Y (s) = 0 if Y + 1 ≤ s.
(a) Show that E{R(s)

1 (m0 − R0)(s) | A = a} = �sE{R(s)
0 (m1 − R1)(s) | A = a}, and that

when � = 1, E(R(s)
1 | A = a) = m(s)

1 a(s)/(m0 + m1)(s).
(b) When � = 1, show that

E(R1 | A = a) = m1a

m0 + m1
, var(R1 | A = a) = m0m1a(m0 + m1 − a)

(m0 + m1)2(m0 + m1 − 1)
.

(c) Show that unconditionally {E(R1)E(m0 − R0)}/{E(R0)E(m1 − R1)} = �, whereas
conditionally on A,

{E(R1)E(m0 − R0) + var(R1)}/{E(R0)E(m1 − R1) + var(R1)} = �.

What does this indicate about the conditional maximum likelihood estimate of � relative
to the unconditional one?
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(d) Show that conditional on A, R1 has a generalized linear model density with

b(θ ) = log

{
u+∑

u=u−

(
m1

u

)(
m0

a − u

)
euθ

}
, u− = max{0, a − m0}, u+ = min{m1, a}.

Deduce that a score test of � = 1 based on data from n independent 2 × 2 tables
(R0 j , m0 j − R0 j ; R1 j , m1 j − R1 j ) is obtained by treating

∑
R1 j as approximately nor-

mal with mean and variance
n∑

j=1

m1 j a j

m0 j + m1 j
,

n∑
j=1

m0 j m1 j a j (m0 j + m0 j − a j )

(m0 j + m1 j )2(m0 j + m1 j − 1)
;

when continuity-corrected this is the Mantel–Haenszel test.
(Mantel and Haenszel, 1959)

7 Suppose that the cumulant-generating function of X can be written in the form m{b(θ +
t) − b(θ )}. Let E(X ) = µ = mb′(θ ) and let κ2(µ) and κ3(µ) be the variance and third
cumulant respectively of X , expressed in terms of µ; κ2(µ) is the variance function V (µ).
(a) Show that

κ3(µ) = κ2(µ)κ ′
2(µ) and

κ3

κ2
2

= d

dµ
log κ2(µ).

Verify that the binomial cumulants have this form with b(θ ) = log(1 + eθ ).
(b) Show that if the derivatives of b(θ ) are all O(1), then Y = g(X ) is approximately
symmetrically distributed if g satisfies the second-order differential equation

3κ2
2 (µ)g′′(µ) + g′(µ)κ3(µ) = 0.

Show that if κ2(µ) and κ3(µ) are related as in (a), then

g(x) =
∫ x

κ
−1/3
2 (µ)dµ.

(c) Hence find symmetrizing transformations for Poisson and binomial variables.
(McCullagh and Nelder, 1989, Section 4.8)

8 Show that the chi-squared density with known degrees of freedom ν,

yν/2−1

2ν/2σ ν�(ν/2)
exp

(
− y

2σ 2

)
, y > 0, σ > 0, ν = 1, 2, . . . ,

can be written in generalized linear model form (10.14) , where θ and φ are functions, to
be found, of ν and σ 2. Hence derive an expression for its r th cumulant, r ≥ 1.
The yield of an industrial process was measured ri times independently at m different
temperatures ti . The resulting yields Zi j , i = 1, . . . , m, j = 1, . . . , ri may be assumed to
be independent and normally distributed with both means ζi and variances τi dependent
on ti . Explain how the sums of squares Yi = ∑ri

j=1(Zi j − Zi )2, where Zi = r−1
i

∑ri
j=1 Zi j ,

may be used to assess the dependence of variance on temperature in a suitable generalized
linear model. Briefly discuss the advantages and disadvantages of the canonical link
function of your model.

9 At each of the doses x1 < x2 < · · · < xn of a drug, m animals are tested. At dose xi , ri

animals respond. Derive the maximum likelihood equation when the linear predictor takes
the form η = βx when a probit link function is used. If only one dosage x0 > 0 is used,
show that

β̂ = 1

x0
�−1(r/m), var(̂β)

.= �(βx0){1 − �(βx0)}
mx2

0 {φ(βx0)}2
,

where φ and � are the standard normal density and distribution functions. Plot the function
�(η){1 − �(η)}/φ(η)2 for η in the range −3 ≤ η ≤ 3, and comment on the implications
for the choice of x0 if there is some prior knowledge of the likely value of β.
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Table 10.24 Simulated
data with two covariates,
binary response, and fitted
values.

Case x1 x2 y ŷ

1 3.7 0.83 1 0.999
2 3.5 1.09 1 0.999
3 1.25 2.50 1 0.875
4 0.75 1.50 1 0.066
5 0.8 3.2 1 0.886
6 0.7 3.5 1 0.921
7 0.6 0.75 0 0.005
8 1.1 1.70 0 0.320
9 0.9 0.75 0 0.017

10 0.9 0.45 0 0.008

10 Let Y be binomial with probability π = eλ/(1 + eλ) and denominator m.
(a) Show that m − Y is binomial with λ′ = −λ. Consider

λ̃ = log

(
Y + c1

m − Y + c2

)

as an estimator of λ. Show that in order to achieve consistency under the transformation
Y → m − Y , we must have c1 = c2.
(b) Write Y = mπ + √

mπ (1 − π )Z , where Z = Op(1) for large m. Show that

E{log(Y + c)} = log(mπ ) + c

mπ
− 1 − π

2mπ
+ O(m−3/2).

Find the corresponding expansion for E{log(m − Y + c)}, and with c1 = c2 = c find the
value of c for which λ̃ is unbiased for λ to order m−1.
What is the connection to the empirical logistic transform?
(Cox, 1970, Section 3.2)

11 Arcturian society is surprisingly similar to ours, the main differences being that Arcturians
have three eyes (left, centre, and right) and are better at quantum physics. Their statis-
tics is relatively rudimentary. On a recent study visit to our planet an Arcturian statis-
tician encountered marginal models and decided to use one for visual impairmentHe usually comes

disguised as Elvis, but
attends statistical
congresses in the guise of
an eminent statistician;
this may account for the
other-worldly discussion.

data similar to those in Table 10.16. He set up a 2 × 2 × 2 table of probabilities
(π000, π001; π010, π011; π100, π101; π110, π111) and used logistic models with marginal prob-
abilities πL = π100 + π101 + π110 + π111 and so forth, and odds ratios

γLC = Pr(L = C = 1)Pr(L = C = 0)

Pr(L = 1, C = 0)Pr(L = 0, C = 1)
,

γL R = Pr(L = R = 1)Pr(L = R = 0)

Pr(L = 1, R = 0)Pr(L = 0, R = 1)
.

Show that the corresponding odds ratio γC R may be expressed as

Pr(C = R = 1) {1 − πC − πR + Pr(C = R = 1)}
{πC − Pr(C = R = 1)} {πR − Pr(C = R = 1)} ,

and that Pr(C = R = 1) lies between min(πC , πR) and max(0, Pr(L = C = 1) + Pr(L =
R = 1) − πL ). Deduce that if πL , πC , πR , γLC and γL R are fixed, then the range of values
that γC R can take is limited by the other parameters. What problems of fitting and inter-
pretation might be encountered with such a model? Compare this with the corresponding
log-linear model.

12 The data in Table 10.24 are from an experiment with a binary response in which two covari-
ates are fitted. The parameter estimates and their standard errors are β̂0 = −9.530(3.224),
β̂1 = 3.882(1.425), and β̂2 = 2.649(0.9121). The table gives the data and fitted values for
the first ten of the 39 observations. The overall deviance for the model is 29.77.



560 10 · Nonlinear Regression Models

Give a careful interpretation of the effect of the covariates on the response.
Verify that the fitted value for case 8 is correct.
Is the deviance a useful guide to the fit of the model?

13 (a) In (10.43), show that pobs(h) = Pr0(yT Ay ≥ 0), where A is a n × n real symmetric
matrix.
(b) Let y ∼ Nn(µ, �), where � = L LT and L is a non-singular lower triangular matrix.

If µ = 0, then show that yT Ay
D= ∑n

j=1 λ j U 2
j , where U1, . . . , Un

iid∼ N (0, 1) and λ1 ≥
· · · ≥ λn are the eigenvalues of LT AL . Deduce that the r th cumulant of yT Ay equals
κr = 2r−1(r − 1)!tr{(�A)r }. Show that the same is true whenever µ lies in the null space
of A.
(c) For a simple approximation to the distribution of yT Ay, we match its frst three cu-
mulants with those of the random variable aW + c,where W ∼ χ2

b . Show that this gives
a = |κ3|/(4κ2), b = 8κ3

2 /κ2
3 and c = κ1 − ab. Outline how this can be used to approximate

pobs(h).
(d) Compute the cumulant-generating function of yT Ay, and develop a saddlepoint ap-
proximation to its distribution.
(Azzalini et al., 1989; Azzalini and Bowman, 1993; Kuonen, 1999)

14 In the penalized least squares setup of Section 10.7.2, with t0 < t1 < · · · < tn < tn+1, set
h j = t j+1 − t j for each j = 1, . . . , n − 1, let g1, . . . , gn and γ1, . . . , γn be arbitrary real
numbers, and define

g(t) = (t − t j )g j+1 + (t j+1 − t)g j

h j

−1

6
(t − t j )(t j+1 − t)

{(
1 + t − t j

h j

)
γ j+1 +

(
1 + t j+1 − t

h j

)
γ j

}

on each interval t j ≤ t ≤ t j+1, j = 1, . . . , n − 1.
(a) Show that on each such interval g(t) is a cubic function with g(t j ) = g j .
(b) Show that

lim
t↓t j

g′(t) = g j+1 − g j

h j
− 1

6
h j (2γ j + γ j+1),

lim
t↑t j+1

g′(t) = g j+1 − g j

h j
+ 1

6
h j (γ j + 2γ j+1),

and

g′′(t) = (t − t j )γ j+1 + (t j+1 − t)γ j

h j
, g′′′(t) = h−1

j (γ j+1 − γ j ), t j ≤ t ≤ t j+1,

and hence deduce that g′′(t j ) = γ j .
(c) Show that

g′(t1) = g2 − g1

t2 − t1
− 1

6
(t2 − t1)γ2, g′(tn) = gn − gn−1

tn − tn−1
− 1

6
(tn − tn−1)γn−1,

and deduce that if g(t) is to be a natural cubic spline, then we must define

g(t) =
{

g1 − (t1 − t)g′(t1), t ≤ t1,
gn + (t − tn)g′(tn), t ≥ tn ,

independent of the values of t0 and tn+1. Deduce that γ1 = γn = 0.
(d) We have seen that g(t) is continuous, with continuous first derivative at t1 and tn , and
that limt↑t j g′′(t) = limt↓t j g′′(t) = γ j for each j . If g(t) is to be a natural cubic spline,
it must also satisfy limt↑t j g′(t) = limt↓t j g′(t) for each j = 2, . . . , n − 1. Show that this
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implies that

g j+1 − g j

h j
− g j − g j−1

h j−1
= 1

6
h j−1γ j−1 + 1

3
(h j−1 + h j )γ j + 1

6
h jγ j+1,

j = 2, . . . , n − 1,

and that this system of equations may be rewritten as QTg = Rγ , where gT = (g1, . . . , gn),Recall that γ1 = γn = 0.

γ T = (γ2, . . . , γn−1), and Q and R have dimensions n × (n − 2) and (n − 2) × (n − 2);
it is necessary to label the columns of Q from 2 to n − 2 and both rows and columns of
R likewise, so their top left elements are respectively q12 and r22.
(e) Use integration by parts to show that the integral in (10.46) may be written

∫ tn+1

t0

{g′′(t)}2 dt =
n−1∑
j=1

γ j+1 − γ j

h j
(g j − g j+1),

and deduce that the integral may be written γ T QTg = gT K g.
(f) Write down Q and R when n = 5 and h1 = · · · = hn−1 = 1. Show that R is then
invertible, and give K = Q R−1 QT.
(Green and Silverman, 1994, pp. 22–25)

15 (a) Let U1, . . . , Un be independent exponential variables with parameters λ1, . . . , λn , and
let H0(u) be a differentiable monotone increasing function of u > 0, with derivative h0(u).
Show that Y1 = H0(U1), . . . , Yn = H0(Un) have joint density

n∏
j=1

λ j h0(y j ) exp{−λ j H0(y j )}.

(b) Show that the joint density of U1, . . . , Un may be written as

n∏
j=1

λ( j)∑n
i= j λ(i)

×
n∏

j=1

(
n∑

i= j

λ(i)

)
exp(−λ( j)u( j)), (10.66)

where the elements of the rank statistic R = {(1), . . . , (n)} are determined by the ordering
on the failure times, U(1) < · · · < U(n). Establish that the first term of this product is
invariant to transformations Y = H0(U ) but that the second is not.
(c) Suppose that λ j = exp(xT

j β). Give an argument why inference for β should be based
on the first term of (10.66) only.

16 In Figure 5.8, let y represent time on trial and t calendar time, and suppose that the hazard
function for an individual with covariates x has form h0(y)h†

0(t) exp(xTβ), where h0(y)
represents a baseline hazard for time on trial and h†

0(t) a baseline hazard for calendar time.
Discuss how partial likelihood inference might be generalized to account for inclusion of
h†

0(t), which is included to allow for changes in medical practice during the course of the
trial.

17 Consider independent exponential variables Y j with densities λ j exp(−λ j y j ), where λ j =
exp(β0 + β1x j ), j = 1, . . . , n, where x j is scalar and

∑
x j = 0 without loss of generality.

(a) Find the expected information for β0, β1 and show that the maximum likelihood
estimator β̂1 has asymptotic variance (nm2)−1, where m2 = n−1

∑
x2

j .
(b) Under no censoring, show that the partial log likelihood for β1 equals

−
n∑

j=1

log

{
n∑

i= j

exp
(
β1x(i)

)}
,

where the elements of the rank statistic R = {(1), . . . , (n)} are determined by the ordering
on the failure times, y(1) < · · · < y(n). Deduce the information in the partial likelihood is

IR(β1) =
n∑

j=1

ER{m2, j (β1) − m1, j (β1)2},
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where the expectation is over the distribution of R and

mk, j (β1) =
∑n

i= j xk
(i) exp

(
β1x(i)

)
∑n

i= j exp
(
β1x(i)

) .

Show that when β1 = 0,

ER{m2, j (β1)} = m2, ER{m1, j (β1)2} = m2

n − 1

n∑
i=1

i − 1

n − i + 1
,

and hence find the efficiency of partial likelihood estimation of β1 relative to maximum
likelihood estimation. Compute this for n = 2, 5, 10, 20, 50, 100, and comment.
(c) It can be shown that as n → ∞ for small β1, the relative efficiency equals exp(−m2β

2
1 ).

Show that in the two-sample problem with equal numbers of observations in each group
and x j = ±1/2, the relative efficiency exceeds 0.75 when |β1| < 1.07, corresponding to
a ratio of failure rates between the two groups in the range (1/3, 3). Discuss.
(Kalbfleisch, 1974)

18 Suppose that n independent Poisson processes of rates λ j (y) are observed simultaneously,
and that the m events occur at 0 < y1 < · · · < ym < y0, in processes j1, . . . , jm .
(a) Show that the probabilities that the first event occurs at y1 and that given this it has
type j1 are respectively{

n∑
j=1

λ j (y1)

}
exp

{
−

n∑
j=1

∫ y1

0
λ j (u) du

}
,

λ j1 (y1)∑n
j=1 λ j (y1)

.

Hence interpret the quantities

exp

{
−

n∑
j=1

∫ y0

0
λ j (u) du

}
m∏

i=1

{
n∑

j=1

λ j (yi )

}
,

m∏
i=1

λ ji (yi )∑n
j=1 λ j (yi )

. (10.67)

(b) Now suppose that λ j (y) = h0(y)ξ{β; x j (y)}Vj (y), where h0(y) is a baseline hazard
function, ξ{β; x j (y)} depends on parameters β and time-varying covariates x j (y), and
Vj (y) is a predictable process, with Vj (y) = 1 if the j th process is in view at time y, and
Vj (y) = 0 if not. Thus if the j th process is censored at time c j , Vj (y) = 0, y > c j . If Ri

is the set { j : Vj (yi ) = 1}, show that the second term in (10.67) equals

m∏
i=1

ξ{β; x ji (yi )}∑
j∈Ri

ξ{β; x j (yi )} .

How does this specialize for time-varying explanatory variables in the proportional hazards
model?

19 Two individuals with cumulative hazard functions u H1(y1) and u H2(y2) are independent
conditional on the value u of a frailty U whose density is f (u).
(a) For this shared frailty model, show that

F(y1, y2) = Pr(Y1 > y1, Y2 > y2) =
∫ ∞

0
exp {−u H1(y1) − u H2(y2)} f (u) du.

If f (u) = λαuα−1 exp(−λu)/�(α), for u > 0 is a gamma density, then show that

F(y1, y2) = λα

{λ + H1(y1) + H2(y2)}α , y1, y2 > 0,

and deduce that in terms of the marginal survivor functions F1(y1) and F2(y2) of Y1 and
Y2,

F(y1, y2) = {
F1(y1)−1/α + F2(y2)−1/α − 1

}−α
, y1, y2 > 0.

What happens to this joint survivor function as α → ∞?
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(b) Find the likelihood contributions when both individuals are observed to fail, when one
is censored, and when both are censored.
(c) Extend this to k individuals with parametric regression models for survival.

20 A positive stable random variable U has E(e−sU ) = exp(−δsα/α), 0 < α ≤ 1.
(a) Show that if Y follows a proportional hazards model with cumulative hazard function
u exp(xTβ)H0(y), conditional on U = u, then Y also follows a proportional hazards model
unconditionally. Are β, α, and δ estimable from data with single individuals only?
(b) Consider a shared frailty model, as in the previous question, with positive stable U .
Show that the joint survivor function may be written as

F(y1, y2) = exp
(− [{− logF1(y1)}1/α + {− logF2(y2)}1/α

]α)
, y1, y2 > 0,

in terms of the marginal survivor functions F1 and F2. Show that if the conditional cumu-
lative hazard functions are Weibull, u Hr (y) = uξr yγ , γ > 0, r = 1, 2, then the marginal
survivor functions are also Weibull. Show also that the time to the first event has a Weibull
distribution.

21 Consider individuals arising in k independent clusters of sizes n1, . . . , nk , and such that
conditional on the values u1, . . . , uk of unobserved frailties U1, . . . , Uk , the individuals in
the i th cluster have survival times independently distributed according to a proportional
hazards model with cumulative hazards uiξi j H0(yi j ), for j = 1, . . . , ni , where ξi j is short-
hand for ξ (β; xi j ), xi j being a vector of explanatory variables. Let h0(y) be the derivative
of H0(y), and suppose that the Ui are independent gamma variables with unit means and
shape parameter θ .
(a) If the survival times are subject to non-informative censoring, show that the joint
density of Ui and the (survival time, censoring indicator) pairs (Yi j , Di j ) for the i th cluster
is

ni∏
j=1

{uiξi j h0(yi j )}di j × exp

{
−

n∑
j=1

uiξi j H0(yi j )

}
× θθ uθ−1

i

�(θ )
exp(−θui ),

and deduce that the conditional means of Ui and of log Ui given the observed data are
wi (θ, β) = Ai/Bi and ψ(Ai ) − log Bi , where

Ai = θ + di ·, Bi = θ +
ni∑

j=1

ξi j H0(yi j ), di · =
ni∑

j=1

di j , ψ(α) = d log �(α)/dα.

Discuss the merits and demerits (if any) of inference in terms of ψ = θ−1: what happens
as ψ → 0?
(b) Show that a step of the EM algorithm for estimation of (θ, β) involves updating (θ ′, β ′)
by maximization of �1(β, H0) + �2(θ ) over β, H0, and θ , where

�1(β, H0) =
k∑

i=1

ni∑
j=1

[di j {log ξi j + log h0(yi j )} − w ′
iξi j H0(yi j )],

�2(θ ) =
k∑

i=1

{(θ + di · − 1)(ψ(A′
i ) − log B ′

i ) − Aiθ/B ′
i } + k{θ log θ − log �(θ )},

w ′
i = wi (θ ′, β ′) and A′

i and B ′
i are evaluated at (θ ′, β ′). Extend the argument leading to

(10.57) to establish that the step for β involves maximizing the partial likelihood that is a
product over individuals of terms{

w ′
iξ (β; xi j )∑

k∈Ri j
w ′

iξ (β; xk)

}di j

,

with the risk set Ri j containing those individuals from every cluster available to fail at
failure time yi j . When ξ (β; x) = exp(xTβ), show that this amounts to using an offset in the
proportional hazards model. Find the form of Ĥ0(y), and give an algorithm for estimation
of β and θ .
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(c) Show that the joint survivor function for the individuals in a cluster is

Pr(Yi1 > yi1, . . . , Yini > yini ) = θθ

{
θ +

ni∑
j=1

ξi j H0(y j )

}−θ

,

and hence give the log likelihood contribution from (yi j , di j ), for j = 1, . . . , ni . Explain
how to use this to obtain the observed information matrix for θ and β based on the estimates
obtained in (b).
(Klein, 1992)

22 Let Y1, . . . , Yn be independent exponential variables with hazards λ j = exp(βTx j ).
(a) Show that the expected information for β is X T X , in the usual notation.
(b) Now suppose that Y j is subject to uninformative right censoring at time c j , so that y j

is a censoring time or a failure time as the case may be. Show that the log likelihood is

�U (β) =
∑

f

βTx j −
n∑

j=1

exp(βTx j )y j ,

where
∑

f denotes a sum over observations seen to fail. If the j th censoring-time is
exponentially distributed with rate κ j , show that the expected information for β is X T X −
X TC X , where C = diag{c1, . . . , cn}, and c j = κ j/(κ j + λ j ) is the probability that the j th
observation is censored. What is the implication for estimation of β if the c j are constant?
(c) Sometimes a variable W j has been measured which can act as a surrogate response
variable for censored individuals. We formulate this as W j = Z j/U j , where Z j is the
unobserved remaining life-time of the j th individual from the moment of censoring, and
U j is a noise component which has a fixed distribution independent of the censoring time
and of x j . Owing to the exponential assumption, the excess life Z j is independent of Y j

if censoring occurred. If U j has gamma density

ακuκ−1 exp(−αu)/�(κ), α, κ > 0, u > 0,

show that W j has density

λ jκακ/(α + λ j w)κ+1, w > 0.

Show that the log likelihood for the data, including the additional information in
the W j , is

�(β) = LU (β) +
∑

c

{
βTx j + log κ + κ log α − (κ + 1) log

(
α + eβT

x j w j

)}
,

where
∑

c denotes a sum over censored individuals, and we have assumed that α and κ
are known. Show that the expected information for β is

X T X − 2/(κ + 2)X TC X,

and compare this with (b). Explain qualitatively in terms of the variability of the distribution
of U why the loss of information decreases as κ increases.
(Cox, 1983)
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Bayesian Models

Every statistical investigation takes place in a context. Information about what ques-
tion is to be addressed will suggest what data are needed to give useful answers. Before
the data are available, one role for this information is to suggest suitable probability
models. There may also be information about the values of unknown parameters,
and if this can be expressed as a probability density, an approach to inference based
on Bayes’ theorem is possible. Many statisticians make the stronger claim that this
theorem provides the only entirely consistent basis for inference, and insist on its use.

This chapter outlines some aspects of the Bayesian approach to modelling. We first
give an account of basic uses of Bayes’ theorem and of the role and construction
of prior densities. We then turn to inference, dealing with analogues of confidence
intervals, tests, approaches to model criticism, and model uncertainty. Until recently
computational difficulties placed realistic Bayesian modelling largely out of reach,
but over the last 20 years there has been rapid progress and complex models can
now be fitted routinely. Section 11.3 gives an account of Bayesian computation, first
of analytical approaches based on integral approximations, and then of Monte Carlo
methods. The chapter concludes with brief introductions to hierarchical and empirical
Bayesian procedures.

11.1 Introduction

11.1.1 Bayes’ theorem

Let A1, . . . , Ak be events that partition a sample space, and let B be an arbitrary event
on that space for which Pr(B) > 0. Then Bayes’ theorem is

Pr(A j | B) = Pr(B | A j )Pr(A j )∑k
i=1 Pr(B | Ai )Pr(Ai )

.

This reverses the order of conditioning by expressing Pr(A j | B) in terms of
Pr(B | A j ) and the marginal probability Pr(B) in the denominator. For continuous

565
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random variables Y and Z ,

fZ |Y (z | y) = fY |Z (y | z) fZ (z)∫
fY |Z (y | z) fZ (z) dz

, (11.1)

provided the marginal density f (y) > 0, with integration replaced by summation for
discrete variables.

Inference

To see how Bayes’ theorem is used for inference, suppose that there is a probability
model f (y | θ ) for data y. In earlier chapters we have written f (y | θ ) = f (y; θ ),
but here we use the conditional notation to emphasize that the probability model is a
density for the data given the value of θ . Suppose also that we are able to summarize
our beliefs about θ in a prior density, π (θ ), constructed separately from the data y.
This implies that we think of the unknown value θ that underlies our data as the
outcome of a random variable whose density is π (θ ), just as our probability model is
that the data y are the observed value of a random variable Y with density f (y | θ ).
Once the data have been observed, our beliefs about θ are contained in its conditional
density given that Y = y,

π (θ | y) = π (θ ) f (y | θ )∫
π (θ ) f (y | θ ) dθ

. (11.2)

This is the posterior density for θ given y. Note that f (y | θ ) is the likelihood for θ

based on y, so that in terms of θ , we have posterior ∝ prior × likelihood.
Frequentist inference treats θ as an unknown constant, whereas the Bayesian ap-

proach treats it as a random variable. We make this distinction explicit by using π to
denote a density for θ , which thus has prior and posterior densities π (θ ) and π (θ | y),
rather than f (θ ) and f (θ | y).

It is useful to note that any quantity that does not depend on θ cancels from the
denominator and numerator of (11.2). This implies that if we can recognise which
density is proportional to (11.2), regarded solely as a function of θ , we can read off the
posterior density of θ . Furthermore, the factorization criterion (4.15) implies that the
posterior density depends on the data solely through any minimal sufficient statistic
for θ .

Example 11.1 (Bernoulli trials) Suppose that conditional on θ , the data y1, . . . , yn

are a random sample from the Bernoulli distribution, for which Pr(Y j = 1) = θ and
1 − Pr(Y j = 0) = −θ , where 0 < θ < 1. The likelihood is

L(θ ) = f (y | θ ) =
n∏

j=1

θ y j (1 − θ )1−y j = θ r (1 − θ )n−r , 0 < θ < 1,

where r = ∑
y j .

A natural prior here is the beta density with parameters a and b,

�(a) = ∫ ∞
0 ua−1e−u du is

the gamma function; see
Exercise 2.1.3.

π (θ ) = 1

B(a, b)
θa−1(1 − θ )b−1, 0 < θ < 1, a, b > 0, (11.3)

where B(a, b) is the beta function �(a)�(b)/�(a + b). Figure 5.4 shows (11.3) for
various values of a and b.
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The posterior density of θ conditional on the data is given by (11.2), and is

π (θ | y) = θ r+a−1(1 − θ )n−r+b−1/B(a, b)∫ 1
0 θ r+a−1(1 − θ )n−r+b−1 dθ/B(a, b)

∝ θ r+a−1(1 − θ )n−r+b−1, 0 < θ < 1. (11.4)

As (11.3) has unit integral for all positive a and b, the constant normalizing (11.4)
must be B(a + r, b + n − r ). Therefore

π (θ | y) = 1

B(a + r, b + n − r )
θ r+a−1(1 − θ )n−r+b−1, 0 < θ < 1.

Thus the posterior density of θ has the same form as the prior: acquiring data has
the effect of updating (a, b) to (a + r, b + n − r ). As the mean of the B(a, b) density
is a/(a + b), the posterior mean is (r + a)/(n + a + b), and this is roughly r/n in
large samples. Hence the prior density inserts information equivalent to having seen
a sample of a + b observations, of which a were successes. If we were very sure
that θ

.= 1/2, for example, we might take a = b very large, giving a prior density
tightly concentrated around θ = 1/2, whereas taking smaller values of a and b would
increase the prior uncertainty.

To illustrate this, suppose that a = b = 1, so that the initial density of θ is the
uniform prior shown in the upper right panel of Figure 5.4, representing ignorance
about θ . Then data with n = 23 and r = ∑

y j = 14 update the prior density to the
posterior density in the lower right panel. �

The use of the beta density as prior for a model whose likelihood is proportional
to θ r (1 − θ )s leads to a posterior density that is also beta. This is an example of a
conjugate prior, an idea discussed in Section 11.1.3.

When the parameter takes one of a finite number of values, labelled 1, . . . , k, with
prior probabilities π1, . . . , πk , the posterior density is the probability mass function

Pr(θ = j | y) = π j f (y | θ = j)∑k
i=1 πi f (y | θ = i)

. (11.5)

Example 11.2 (Diagnostic tests) A disease occurs with prevalence γ in a pop-
ulation, and θ indicates that an individual has the disease. Hence Pr(θ = 1) = γ ,
Pr(θ = 0) = 1 − γ . A diagnostic test gives a result Y , whose distribution is F1(y) for
a diseased individual and F0(y) otherwise. The commonest type of test declares that
a person is diseased if Y > y0, say, where y0 is fixed on the basis of past data. The
probability that a person is diseased, given a positive test result, is

Pr(θ = 1 | Y > y0) = γ {1 − F1(y0)}
γ {1 − F1(y0)} + (1 − γ ){1 − F0(y0)} ;

this is sometimes called the positive predictive value of the test. Its sensitivity and
specificity are 1 − F1(y0) and F0(y0). These are the probabilities of correct classifica-
tion of diseased and non-diseased persons, while the false negative and false positive
ratios are F1(y0) and 1 − F0(y0). One aims to construct tests whose sensitivity and
specificity are as high as possible. �
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Prediction

Prediction of the value of a future random variable, Z , is straightforward when there
is a prior density for the parameters. The joint density of Z and the data Y may be
written

f (y, z) =
∫

f (z | y, θ ) f (y | θ )π (θ ) dθ,

and hence once Y has taken the value y, inference for Z is based on its posterior
predictive density,

f (z | y) =
∫

f (z | y, θ )π (θ | y) dθ =
∫

f (z | y, θ ) f (y | θ )π (θ ) dθ∫
f (y | θ )π (θ ) dθ

. (11.6)

This is (11.1) expanded to make explicit the integration over the posterior
density of θ .

Example 11.3 (Bernoulli trials) Heads occurs r times among the first n tosses in
a sequence of independent throws of a coin. What is the probability of a head on the
next throw?

Let θ be the unknown probability of a head and let Z = 1 indicate the event that
the next toss yields a head. Conditional on θ , Pr(Z = 1 | y, θ ) = θ independent of
the data y so far. If the prior density for θ is beta with parameters a and b, then

Pr(Z = 1 | y) =
∫ 1

0
Pr(Z = 1 | θ, y)π (θ | y) dθ

=
∫ 1

0
θ

θa+r−1(1 − θ )b+n−r−1

B(a + r, b + n − r )
dθ

= B(a + r + 1, b + n − r )

B(a + r, b + n − r )
= a + r

a + b + n
,

on using results for beta functions; see Example 11.1 and Exercise 2.1.3. As n, r →
∞, this tends to the sample proportion of heads r/n, so the prior information is
drowned by the sample. �

11.1.2 Likelihood principle

There have been many attempts to justify the use of Bayes’ theorem as a basis for
inference. One line of argument rests on axioms that individuals can use to make
optimal decisions in the face of uncertain events, and leads to the view that probability
is a measure of personal belief about the world, to be updated by additional knowledge
using Bayes’ theorem. An account of this would take us too far afield, and instead we
outline another argument, which centres on principles intended to guide inference.
The force of this is that two basic principles — the sufficiency and conditionality
principles — together imply a third — the likelihood principle — which is difficult
to apply except through Bayes’ theorem. Many statisticians do subscribe to the first
two, at least implicitly, thus setting them on the path to Bayesian inference.
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We begin by introducing the notion of an experiment E , which yields data y, on
which we wish to base inference about θ through the evidence Ev(E, y). The form of
this function need not be specified; we merely suppose that it exists and contains all
the information about θ based on E and y.

Sufficiency and conditionality principles

The form of the sufficiency principle we shall use is that if an experiment E could give
rise to y1 and y2, but that there is a statistic s(·) sufficient for θ such that s(y1) = s(y2),
then any inference for θ should be the same whether y1 or y2 is observed, that is
Ev(E, y1) = Ev(E, y2). This is widely accepted, as the factorization criterion (4.15)
implies that given the sufficient statistic, the data contain no further information
about θ .

A second principle can be motivated by the following classic example.

Example 11.4 (Measuring machines) Suppose that a physical quantity θ can be
measured by two machines, both giving normal measurements Y with mean θ . A
measurement from the first machine has unit variance, but one from the second
has variance 100. The more precise machine is often busy, while the second is
used only if the first is unavailable; the upshot is that each is equally likely to be
used. Thus if A takes value 1 or 2 depending on the machine used, Pr(A = 1) =
Pr(A = 2) = 1

2 .
Suppose that an observation obtained is from machine 1. Then clearly any inference

about θ should not take into account that machine 2 might have been used, when it
is known that it was not. Mathematically this is expressed by saying that the revelant
distribution for inference about θ is the conditional distribution of Y given A, rather
than the unconditional distribution of Y . For example, the conditional 95% confidence
interval for θ given that A = 1 is y ± 1.96, whereas the unconditional interval is
y ± 16.45, which is clearly much too long if it is known that y came from the N (θ, 1)
distribution. �

The lesson of this is formalized as follows. Suppose that an experiment E can
be thought of as arising in two stages. In the first stage we observe that a random
variable A with known distribution independent of θ takes value a, and in the second
stage we observe ya from a component experiment Ea . This is a mixture experiment,
for which the data are (a, ya). Then one form of the conditionality principle says
that Ev{E, (a, ya)} = Ev(Ea, ya): the evidence concerning θ based on the compound
experiment E is equal to the evidence from the component experiment Ea actually
performed, the results of other possible components being irrelevant. The key point is
that since the distribution of A does not depend on θ , conditioning on A does not lead
to a loss of information about θ , but selects the relevant component of the mixture
experiment. This principle is widely, even if sometimes unconsciously, accepted; we
discuss its implications in more detail in Chapter 12.



570 11 · Bayesian Models

Likelihood principle

Suppose that two experiments relating to θ , E1 and E2, give rise to data y1 and y2

such that the corresponding likelihoods are proportional, that is, for all θ ,

L(θ ; y1, E1) = cL(θ ; y2, E2).

Then according to one expression of the likelihood principle, Ev(E1, y1) =
Ev(E2, y2): inference should be based on the observed likelihood alone. Full ac-
ceptance of this means rejecting frequentist tools such as significance tests, as the
following example shows.

Example 11.5 (Bernoulli trials) Suppose that E1 consists of observing the number
y1 of successes in a fixed number n1 of independent Bernoulli trials. The likelihood
is then

L1(θ ) =
(

n1

y1

)
θ y1 (1 − θ )n1−y1 , 0 < θ < 1,

corresponding to the binomial number of successful trials.
Experiment E2 consists of conducting Bernoulli trials independently until y2 suc-

cesses occur, at which point there have been n2 trials. Here the likelihood,

L2(θ ) =
(

n2 − 1

y2 − 1

)
θ y2 (1 − θ )n2−y2 , 0 < θ < 1,

corresponds to the negative binomial number of trials up to y2 successes.
Now suppose that it happens that n1 = n2 = n and y1 = y2 = y, giving L1(θ ) ∝

L2(θ ). Then according to the likelihood principle, inferences based on the two exper-
iments should be the same. But consider testing the hypothesis H0 : θ = 1

2 against
the alternative that θ < 1

2 . In E1, the test statistic would be the random number of
successes, Y , and the P-value would be

Pr

(
Y ≤ y | θ = 1

2

)
=

y∑
r=0

(
n

r

)
2−n, (11.7)

while in E2 the test statistic would be the total number of trials, N , with P-value

Pr

(
N ≥ n | θ = 1

2

)
=

∞∑
m=n

(
m − 1

y − 1

)
2−m . (11.8)

The catch is that (11.7) and (11.8) need not be equal. For example, if y = 3 and n = 12,
the P-values are respectively 0.073 and 0.033, conveying different evidence against
H0. In particular, use of the fixed significance level 0.05 would lead to acceptance or
rejection of H0 depending on the experiment performed. The reason for this is that
(11.7) and (11.8) involve summation over portions of two different sample spaces.
This conflicts with the likelihood principle, according to which only the data actually
observed should contribute to the inference. �

Construction of tail probabilities such as (11.7) or (11.8), or of confidence inter-
vals, involves consideration of data not actually observed, and thereby disobeys the
likelihood principle. This poses a problem for frequentist procedures, because a ra-
tional statistician who rejects the likelihood principle should also reject one of the
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apparently reasonable sufficiency and conditionality principles, which together entail
the likelihood principle.

To see this, suppose that we accept the sufficiency and conditionality principles,
and that experiments E1 and E2 have yielded data y1 and y2 such that L(θ ; y1, E1) =
cL(θ ; y2, E2) for some c > 0 and all θ . Consider the mixture experiment E that
consists of observing (Ea, ya), where a is the observed value of the binary random
variable such that

Pr(A = 1) = 1

c + 1
, Pr(A = 2) = c

c + 1
;

the distribution of A is independent of θ . The outcomes for E are (E1, y1) and (E2, y2),
and the decomposition Pr(Ea, ya ; θ ) = Pr(ya | Ea ; θ )Pr(Ea) shows that the corre-
sponding likelihoods,

1

c + 1
L(θ ; y1, E1),

c

c + 1
L(θ ; y2, E2),

are equal for all θ . Since the likelihood function is itself a minimal sufficient statistic
for θ (Exercise 4.2.11), the sufficiency principle implies

Ev{E, (E1, y1)} = Ev{E, (E2, y2)}. (11.9)

But the conditionality principle implies

Ev{E, (E1, y1)} = Ev(E1, y1), Ev{E, (E2, y2)} = Ev(E2, y2),

and combined with (11.9) we get Ev(E1, y1) = Ev(E2, y2). Thus acceptance of the
sufficiency and conditionality principles implies acceptance of the likelihood princi-
ple. The converse is also true (Problem 11.6). In fact it can be shown that a stronger
version of the conditionality principle on its own implies the likelihood principle.

Statisticians attempting to weaken the force of this argument have criticized its cen-
tral notions of evidence and mixture experiments, or have insisted that the sufficiency
and conditionality principles apply only in a more limited way. They can then accept
some form of these principles but not the conclusion of the argument, and continue
to use such tools as confidence intervals and P-values. Others deny the validity of the
argument on the grounds that it applies only to models known to be true, and this is
rare in practice.

Statisticians who embrace the likelihood principle find themselves in an awkward
position: their inference should be based on the observed likelihood, L(θ ), but how
should it be expressed? In particular, what can be inferred about a scalar component
of vector θ? The obvious solution of profiling over the other components of θ can go
badly awry, as we shall see in Chapter 12, and the alternative of integrating them out
does not give a unique answer (Problem 11.7). Thus the idea of multiplying L(θ ) by
a prior density and applying the simple recipe of Bayes’ theorem starts to appear very
attactive. Moreover, we see from (11.2) that given a particular prior π (θ ), Bayesian
inference for θ does conform to the likelihood principle, because any constants in
f (y | θ ) do not appear in the posterior density.
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11.1.3 Prior information

Despite its conformity to the likelihood principle, inference based on Bayes’ theorem
has often been seen as controversial. This is not due to the result itself, which
simply states mathematically how the probability density of one random variable
changes when another has been observed, but because its use in statistical inference
for θ requires the investigator to treat θ as a random variable, and to specify a
prior density π (θ ) separate from the data. A key issue is the interpretation and
choice of π .

In some circumstances it is uncontroversial to treat θ as random. At one extreme
the data at hand may be the latest in a stream of similar datasets, each having an
underlying parameter that may be supposed to be drawn from a distribution. For
example, an accountant may wish to estimate the level of errors in a company’s
books, θ , based on a sample of transactions that reveals y errors. It will be sensible
to treat θ as randomly chosen from a density π (θ ) of error rates based on experience
with previous firms. Then inference on θ will use both y and π (θ ). An example in Despite this, the London

Court of Appeal (Regina
vs. Adams, 1996, 1997)
ruled that ‘introducing
Bayes’ theorem . . . into a
criminal trial plunges the
jury into inappropriate
and unnecessary realms of
complexity, deflecting
them from their proper
task’.

the use of forensic evidence is when there is a close match between DNA profile data
from the scene of a crime and a suspect. Then a database of prior profiles may help
to establish whether DNA found at the scene of the crime could plausibly have come
from someone else. In these applications the prior information has a frequentist basis,
so new issues of interpretation do not arise.

At the other end of the range of possibilities is the situation where the data are to
be used to make subjective decisions such as ‘should I bet on the outcome of this
race?’ Although likely to depend on how facts such as ‘Flatfoot has not won a race
this season’ are viewed, both model and prior information here reflect a personal
judgement. Here Bayes’ theorem provides the mechanism for updating prior beliefs
in the light of whatever data is available, but the inference is a personal assessment
of the evidence and has no claim to objective force.

The debate arises when the prior information does not have a frequency interpre-
tation, but the inference required is not purely personal. Many statisticians regard
the information in data as being qualitatively different from their prior beliefs about
model parameters, and hence find it unacceptable to use Bayes’ theorem to com-
bine the two. They argue that although the choice of probability model is usually
a matter of individual judgement, that judgement can be checked by comparing the
data and fitted model, while by definition prior information cannot be checked di-
rectly. To which a Bayesian might reply that the epistemological distinction between
data, model, and prior is unclear, because collection of any data must be based on
some prior belief, which will often include information about possible models and
the likely values of their parameters. Furthermore Bayes’ theorem provides a single
recipe for inference about unknowns, while frequentist notions such as confidence
intervals can violate what seem reasonable principles of inference. Much has been
written on this, but we shall avoid getting embroiled, simply noting that in many situ-
ations the Bayesian approach is simpler and more direct than frequentist alternatives,
and that when they can be compared, the inferences produced by Bayesian and good
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frequentist procedures are often rather similar, so that the practical consequences of
choosing between them are usually not critical. When a frequentist inference dif-
fers strongly from any conceivable Bayesian one, it seems wise to pause and reflect
awhile.

Whatever its interpretation, a prior must be specified in order for Bayesian analysis
to proceed. We now consider aspects of this.

Conjugate densities

In Example 11.1 the combination of a beta prior density for a probability and the
likelihood for several Bernoulli trials led to a beta posterior density. Although too
inflexible to encompass the range of prior knowledge that arises in applications, such
conjugate combinations of prior and likelihood are useful because of their simple
closed forms. They are closely tied to exponential family models.

Example 11.6 (Exponential family) Suppose that y1, . . . , yn is a random sample
from the exponential family (5.12)

f (y | ω) = exp {s(y)Tθ (ω) − b(ω)} f0(y),

so that in terms of s = ∑
s(y j ), the likelihood is proportional to

exp {sTθ (ω) − nb(ω)}. (11.10)

If the prior density for ω depends on the quantities ξ and ν and has form

π (ω) = exp {ξ Tθ (ω) − νb(ω) + c(ξ, ν)},
then the posterior density is proportional to

exp {(ξ + s)Tθ (ω) − (ν + n)b(ω) }.
Provided this is integrable the posterior density therefore must be

π (ω | y) = exp {(ξ + s)Tθ (ω) − (ν + n)b(ω) + c(ξ + s, ν + n)}.
Thus the prior parameters (ξ, ν) are updated to (ξ + s, ν + n) by the data. One inter-
pretation of the hyperparameters ξ and ν is that the prior information is equivalent to
ν prior observations summing to ξ .

For example, the Poisson density with mean ω has kernel exp(y log ω − ω), so the
conjugate prior must have kernel exp(ξ log ω − νω). For ξ, ν > 0, this is proportional
to the gamma density with mean ξ/ν, whose density is

π (ω) = νξωξ−1

�(ξ )
e−νω, ω > 0,

and which is therefore the conjugate prior for the Poisson mean. As the data update
(ξ, ν) to (ξ + s, ν + n), the posterior density

π (ω | y) = (ν + n)ξ+sωξ+s−1

�(ξ + s)
e−(ν+n)ω, ω > 0,

also has gamma form. �
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Example 11.7 (Normal distribution) Let y1, . . . , yn be a normal random sample
with mean µ and known variance σ 2. The likelihood is

y is the sample average
n−1 ∑

y j .

1

(2πσ 2)n/2
exp

{
− 1

2σ 2

n∑
j=1

(y j − µ)2

}
∝ exp

(
µ

ny

σ 2
− n

σ 2

1

2
µ2

)
,

which is of form (11.10) with s = ny/σ 2, k = n/σ 2, a(µ) = µ, and κ(µ) = 1
2µ2.

Therefore the conjugate prior is proportional to

exp

(
µ

µ0

τ 2
− 1

τ 2

1

2
µ2

)
,

and must be the normal density with mean µ0 and variance τ 2. The effect of the data
is to update (µ0τ

−2, τ−2) to (µ0τ
−2 + sσ−2, τ−2 + nσ−2), so the posterior density

for µ is normal with mean and variance

ny/σ 2 + µ0/τ
2

n/σ 2 + 1/τ 2
,

1

n/σ 2 + 1/τ 2
. (11.11)

On writing the mean in (11.11) as

ny + (σ 2/τ 2)µ0

n + σ 2/τ 2
,

we see that the prior injects information equivalent to σ 2/τ 2 observations with mean
µ0, and shrinks the sample average, y, towards the prior mean by an amount that
depends on the ratio of τ 2 to σ 2/n. As n → ∞ or τ 2 → ∞, corresponding to in-
creasing information in the data relative to the prior, the posterior density becomes
normal with mean y and variance σ 2/n, so the effect of the prior withers away. As
τ 2 → 0, corresponding to more definite prior knowledge, the posterior approaches
the normal density with mean µ0 and variance τ 2, which is the prior. �

Conjugate priors are often too restrictive for expression of realistic prior infor-
mation, but it is straightforward to establish that mixtures of conjugate densities are
also conjugate, and this considerably broadens the class of priors with closed-form
posterior densities (Problem 11.3).

Ignorance

Sometimes the prior density must express prior ignorance about a parameter. One
reason for this may be the need for a ‘baseline’ analysis as a basis for discussion.
Another is the belief that a non-informative prior will allow the data ‘to speak for
themselves’, though it seems optimistic to think that they will spill their secrets without
careful interrogation. Nevertheless it is important to weigh how much an inference
depends on the prior compared to the data. One way to do this is to contrast inferences
from a minimally informative prior with those from the prior actually used.

When θ has bounded support, as in Example 11.1, a uniform prior density, with
π (θ ) ∝ 1, seems an obvious choice. When the support of θ is unbounded, such a
prior has infinite integral and so is improper. An improper prior may nevertheless
lead to a proper posterior density. In Example 11.7, for example, we can represent
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complete ignorance about the prior value of µ by letting τ 2 → ∞, in which case the
prior is π (µ) ∝ 1 with support on the entire real line, and the posterior density of µ is
normal with mean y and variance σ 2/n, which is proper. Prior ignorance about σ in
models where the density of the data is of form σ−1g(u/σ ), u > 0, σ > 0, is usually
represented by the improper prior π (σ ) ∝ σ−1, σ > 0. Non-informative priors of
this sort exist for more general situations, but there is a fundamental difficulty in
representing ignorance in a way that is independent both of the data to be collected
and the parametrization of the model (Problem 11.4). The key question is: ignorance
about what? The following classic example illustrates this.

Example 11.8 (Bernoulli probability) The probability of success in a Bernoulli
trial lies in the interval [0, 1], so if we are completely ignorant of its true value, the
obvious prior to use is uniform on the unit interval: π (θ ) = 1, 0 ≤ θ ≤ 1. But if we
are completely ignorant of θ , we are also completely ignorant of ψ = log{θ/(1 − θ )},
which takes values in the real line. The density implied for ψ by the uniform prior
for θ is

π (ψ) = π{ψ(θ )} ×
∣∣∣∣ dθ

dψ

∣∣∣∣ = eψ

(1 + eψ )2
, −∞ < ψ < ∞ :

the standard logistic density. Far from expressing ignorance about ψ , this density
asserts that the prior probability of |ψ | < 3 is about 0.9. �

Jeffreys priors
Sir Harold Jeffreys
(1891–1989) studied first
in Newcastle and then in
Cambridge, where he
remained for the rest of
his life, becoming
Plumian Professor of
Astronomy. During World
War I he worked in the
Cavendish Laboratory,
and thereafter studied and
taught hydrodynamics and
geophysics, being the first
to claim that the core of
the earth is liquid. In an
important series of books
he championed objective
Bayesian inference long
before it became popular
(Jeffreys, 1961), and also
wrote important works on
geophysics and
mathematical physics. His
unassuming character
inspired deep affection.

Apparent paradoxes like that of Example 11.8 led to a widespread rejection of
Bayesian inference in the early twentieth century. The key difficulty is that the repre-
sentation of ignorance is not invariant under reparametrization. A solution to this is
to seek invariant priors. For scalar θ the best-known of these is the Jeffreys prior

π (θ ) ∝ |i(θ )|1/2, (11.12)

where i(θ ) = −E{d2�(θ )/dθ2} is the expected information for θ based on the log like-
lihood �(θ ); i(θ ) is positive in a regular statistical model. For a smooth reparametriza-
tion θ = θ (ψ) in terms of ψ , the expected information for ψ is

i(ψ) = −E

[
d2�{θ (ψ)}

dψ2

]
= −E

{
d2�(θ )

dθ2

}
×

∣∣∣∣ dθ

dψ

∣∣∣∣
2

= i(θ ) ×
∣∣∣∣ dθ

dψ

∣∣∣∣
2

.

Consequently |i(θ )|1/2dθ = |i(ψ)|1/2dψ : with the choice (11.12), prior informa-
tion does behave consistently under reparametrization; furthermore such priors give
widely-accepted solutions in some standard problems. When θ is vector, |i(θ )| is
taken to be the determinant of i(θ ).

This prior was initially proposed with the aim of giving an ‘objective’ basis for
inference, but after further paradoxes emerged its use was suggested for convenience,
a matter of scientific convention rather than as a logically unassailable expression of
ignorance about the parameter.
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Example 11.9 (Bernoulli probability) The log likelihood for a single Bernoulli trial
with success probability θ is y log θ + (1 − y) log(1 − θ ), and the Fisher information
is i(θ ) = θ−1(1 − θ )−1. Thus the Jeffreys prior is proportional to θ−1/2(1 − θ )−1/2,
and so equals the beta density (11.3) shown in the top left panel of Figure 5.4,
which while proper does not look uninformative. It can be interpreted as carrying
information equivalent to one trial, in which one-half of a success was observed. As
the prior information for n independent trials is ni(θ ), the Jeffreys prior is the same
because the constant of proportionality is independent of θ . �

Example 11.10 (Location-scale model) Suppose that y1, . . . , yn is a random sam-
ple from a location model f (y; η) = g(y − η), for real y and η. Then the log likelihood
is �(η) = ∑

log g(y j − η), so

i(η) = −n
∫ ∞

−∞

d2 log g(y − η)

dη2
g(y − η) dy.

The substitution u = y − η shows that i(η) is independent of η, and therefore the
Jeffreys prior is the constant non-informative prior π (η) ∝ 1 for all η.

A modification of this argument (Problem 11.2) shows that the Jeffreys prior for
f (y; τ ) = τ−1g(y/τ ), y, τ > 0, is π (τ ) ∝ τ−1, which is also widely accepted as
non-informative. Both π (τ ) and π (η) are improper.

A difficulty with this approach appears when we consider the location-scale model
f (y; η, τ ) = τ−1g{(y − η)/τ }. Its information matrix has form i(η, τ ) = nτ−2 A,
where the 2 × 2 matrix A is free of parameters, so π (η, τ ) = |i(η, τ )|1/2 ∝ τ−2. This
does not equal the prior τ−1 arising from taking independent Jeffreys priors for η and
τ separately.

The approach is here unsatisfactory because the prior τ−2 is not widely accepted
as a non-informative statement of uncertainty about τ . More generally this exam-
ple shows that a non-informative inference for a parameter of interest, η, say, may
depend on the model in which η is embedded, in the sense that the inference may
depend on the prior chosen for nuisance parameters, even when these are a priori
independent of η. �

Jeffreys’ general solution to the difficulty raised in Example 11.10 was to treat
location parameters as fixed when computing i(θ ). Let θ = (µ1, . . . , µp, ψ), where
the µr are location parameters and ψ contains all other parameters in the problem.
Then the prior he recommended is

π (µ1, . . . , µp, ψ) ∝
∣∣∣∣E

{
−∂2�(µ1, . . . , µp, ψ)

∂ψ∂ψT

}∣∣∣∣
1/2

,

which produces π (θ ) ∝ τ−1 in the location-scale model.
Numerous other approaches to representing prior ignorance have been proposed,

based for example on notions of invariance, of minimal information, or of matching
the coverage of Bayesian and frequentist confidence intervals. To a large extent these
are regarded as useful to the extent that they yield Jeffreys priors, and we shall not
consider them in detail. To be more explicit about links with the frequentist approach,
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however, note that if a uniform prior is taken in (11.11), corresponding to τ → ∞,
and we define Ay to be the interval with limits y ± zαn−1/2σ , then the posterior
probability Pr(θ ∈ Ay | y) = 1 − 2α. Thus Ay has posterior coverage (1 − 2α). But
Ay also has the same coverage for any fixed θ unconditional on y, so the uniform prior
yields an interval justifiable from both Bayesian and frequentist viewpoints. Exact
results such as this are unobtainable in more general settings, but nonetheless it can
be helpful to consider the extent to which Bayesian and frequentist procedures agree.

Some further aspects of Jeffreys priors are outlined in Problem 11.4.

Exercises 11.1

1 In Example 11.3, calculate the predictive probability for k future heads out of m tosses
based on r heads observed in n tosses, using a beta prior density.

2 Show that the limits of an unconditional confidence interval of level (1 − 2α) in
Example 11.4 involve the solutions to the equation

1

2
� {(y − θ )/10} + 1

2
�(y − θ ) = α, 1 − α.

Hence justify the approximate 0.95 interval given in the example.

3 (a) Let y1, . . . , yn be a Poisson random sample with mean θ , and suppose that the prior
density for θ is gamma,

π (θ ) = g(θ ; α, λ) = λαθα−1

�(α)
exp(−λθ ), θ > 0, λ, α > 0.

Show that the posterior density of θ is g(θ ; α + ∑
y j , λ + n), and find conditions under

which the posterior density remains proper as α ↓ 0 even though the prior density becomes
improper in the limit.
(b) Show that

∫
θg(θ ; α, λ) dθ = α/λ. Find the prior and posterior means E(θ ) and E(θ |

y), and hence give an interpretation of the prior parameters.
(c) Let Z be a new Poisson variable independent of Y1, . . . , Yn , also with mean θ . Find
its posterior predictive density. To what density does this converge as n → ∞? Does this
make sense?

4 How would you express prior ignorance about an angle? About the position of a star in
the firmament?

5 If Yi j ∼ N (µi , σ
2) independently for i = 1, . . . , k and j = 1, . . . , m, show that the

Jeffreys prior for µ1, . . . , µk, σ equals σ−(k+1). Discuss the form of posterior inferences
on σ 2 when m = 2. Is this prior reasonable? If not, suggest a better alternative.

6 According to the principle of insufficient reason probabilities should be ascribed uniformly
to finite sets unless there is some definite reason to do otherwise. Thus the most natural
way to express prior ignorance for a parameter θ that inhabits a finite parameter space
θ1, . . . , θk is to set π (θ1) = · · · = π (θk) = 1/k. Let πi = π (θi ).
Consider a parameter space {θ1, θ2}, where θ1 denotes that there is life in orbit around the
star Sirius and θ2 that there is not. Can you see any reason not to take π1 = π2 = 1/2?
Now consider the parameter space {ω1, ω2, ω3}, where ω1, ω2, and ω3 denote the
events that there is life around Sirius, that there are planets but no life, and that there
are no planets. With this parameter space the principle of insufficient reason gives
Pr(life around Sirius) = 1/3.
Discuss this partitioning paradox. What solutions do you see?
(Schafer, 1976, pp. 23–24)

7 Compute the prior and posterior means and variances for exponential family data with the
conjugate prior distribution, and discuss their interpretation.
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Table 11.1 Conjugate
prior densities for
exponential family
samling distributions.

f (y | θ ) Parameter Prior

Binomial success probability beta
Poisson mean gamma
Exponential mean gamma
Normal mean (known variance) normal
Normal variance (known mean) inverse gamma
Multinomial probabilities Dirichlet

8 Use Example 11.6 to verify the contents of Table 11.1.

9 Let θ be a randomly chosen physical constant. Such constants are measured on an arbitrary
scale, so transformations from θ to ψ = cθ for some constant c should leave the density
π (θ ) of θ unchanged. Show that this entails π (cθ ) = c−1π (θ ) for all c, θ > 0, and deduce
that π (θ ) ∝ θ−1.
Let θ̃ be the first significant digit of θ in some arbitrary units. Show that

Pr(θ̃ = d) ∝
∫ (d+1)10a

d10a
u−1 du, d = 1, . . . , 9,

and hence verify that Pr(θ̃ = d) = log10(1 + d−1). Check whether some set of physical
‘constants’ (e.g. sizes of countries or of lakes) fits this distribution.

11.2 Inference

11.2.1 Posterior summaries

If the information regarding θ is contained in its posterior density given the data y,
π (θ | y), how do we get at it? In principle this is easy: we simply use the posterior
density to calculate the probability of any event of interest. But some summary quan-
tities may be useful. For example, if θ = (ψ, λ) is a vector, and we are interested in
ψ , the marginal posterior density

π (ψ | y) =
∫

π (ψ, λ | y) dλ,

contains the marginal information in the model and prior concerning ψ . It is most
useful when ψ has dimension one or two, in which case it can be plotted. It condenses
further to moments, quantiles, or the mode of π (ψ | y).

Normal approximation

One simple approximate summary of a unimodal posterior rests on quadratic series
expansion of the log posterior density, analogous to expansion of the log likelihood.
In terms of �̃(θ ) = log L(θ ) + log π (θ ) and the posterior mode θ̃ , we have

�̃(θ )
.= �̃(θ̃ ) + (θ − θ̃ )T

∂�̃(θ̃ )

∂θ
+ 1

2
(θ − θ̃ )T

∂2�̃(θ̃ )

∂θ∂θ T
(θ − θ̃ )

= �̃(θ̃ ) − 1

2
(θ − θ̃ )T J̃ (θ̃ )(θ − θ̃ ),
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Table 11.2 Mortality
rates r/m from cardiac
surgery in 12 hospitals
(Spiegelhalter et al.,
1996b, p. 15). Shown are
the numbers of deaths r
out of m operations.

A 0/47 B 18/148 C 8/119 D 46/810 E 8/211 F 13/196
G 9/148 H 31/215 I 14/207 J 8/97 K 29/256 L 24/360

provided the mode lies inside the parameter space. Here J̃ (θ ) is the second deriva-
tive matrix of −�̃(θ ). This expansion corresponds to a posterior multivariate normal
density for θ , with mean θ̃ and variance matrix J̃ (θ̃ )−1, based on which an equitailed
(1 − 2α) confidence interval for the r th component θr of θ is θ̃ r ± zαṽ

1/2
rr , where ṽrr

is the r th diagonal element of J̃ (θ̃ )−1.
In large samples the log likelihood contribution is typically much greater than that

from the prior, so θ̃ and J̃ (θ̃ ) are essentially indistinguishable from the maximum like-
lihood estimate θ̂ and observed information J (̂θ ). Thus likelihood-based confidence
intervals may be interpreted as giving approximate Bayesian inferences, if the sample
is large. This approximation will usually be better if applied to the marginal posterior
of a low-dimensional subset of θ , because of the averaging effect of integration over
the other parameters. The same caveats apply when using this approximation as to use
of normal approximations for the maximum likelihood estimator; in particular, it may
be more suitable for a transformed parameter. We describe a more refined approach
in Section 11.3.1.

Other distributions may be used to approximate posterior densities, for example by
matching first and second moments.

Posterior confidence sets

The mean and mode of the posterior density are point summaries of π (θ | y), but
confidence regions or intervals are usually more useful. The Bayesian analogue of a
(1 − 2α) confidence interval is a (1 − 2α) credible set, defined to be a set, C , of values
of θ , whose posterior probability content is at least 1 − 2α. When θ is continuous this is

1 − 2α = Pr(θ ∈ C | y) =
∫

C
π (θ | y) dθ.

When θ is discrete, the integral is replaced by
∑

θ∈C π (θ | y). For scalar θ , such a set
is equi-tailed if it has form (θL , θU ), where θL and θU are the posterior α and 1 − α

quantiles of θ , that is, Pr(θ < θL | y) = Pr(θ > θU | y) = α.
Often C is chosen so that the posterior density for any θ in C is higher than

for any θ not in C . That is, if θ ∈ C , π (θ | y) ≥ π (θ ′ | y) for any θ ′ /∈ C . Such
a region is called a highest posterior density credible set, or more concisely a
HPD credible set.

Example 11.11 (Cardiac surgery data) Table 11.2 contains data on the mortality
levels for cardiac surgery on babies at 12 hospitals. A simple model treats the number
of deaths r as binomial with mortality rate θ and denominator m. At hospital A, for
example, m = 47 and r = 0, giving maximum likelihood estimate θ̂A = 0/47 = 0,
but it seems too optimistic to suppose that θA could be so small when the other rates
are evidently larger. If we take a beta prior density with a = b = 1, the posterior
density is beta with parameters a + r = 1 and b + m − r = 48, as shown in the
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surgery data. Left panel:
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0.95 highest posterior
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quantiles of π (θA | y)
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exact posterior beta
density for overall
mortality rate θ (solid)
and normal approximation
(dots).

left panel of Figure 11.1. The 0.95 HPD credible interval is (0, 6.05)%, while the
equitailed credible interval uses the 0.025 and 0.975 quantiles of π (θA | y) and is
(0.05, 7.40)%.

The right panel of Figure 11.1 shows the posterior density for the overall mortality
rate θ , obtaining by merging all the data, giving r = 208 deaths in m = 2814 oper-
ations. Here the prior parameters a and b have essentially no effect on the posterior,
and hence

θ̃ = a + r − 1

a + b + m − 2
.= r

m
, J̃ (θ̃ )−1 = (a + r − 1)(b + m − r − 1)

(a + b + m − 2)3

.= r (m − r )

m3
.

The figure shows the corresponding normal approximation to π (θ | y). Evidently
inferences from exact and approximate posterior densities will be equivalent for
practical purposes.

Both separate and pooled analyses of mortality rates seem unsatisfactory, because
although some variation among hospitals is plausible they are likely also to have
elements in common. Example 11.26 describes an approach intermediate between
those used here. �

Example 11.12 (Normal distribution) Consider a normal random sample
y1, . . . , yn with mean µ and variance σ 2 both unknown. We shall give them in-
dependent prior densities. As the posterior for (µ, σ 2) depends on y only through the
minimal sufficient statistic (y, s2), we have y = n−1 ∑

y j and s2 =
(n − 1)−1 ∑

(y j − y)2 are
the sample average and
variance.

π (µ, σ 2 | y, s2) ∝ f (y, s2 | µ, σ 2)π (µ, σ 2)

= f (y | µ, σ 2) f (s2 | µ, σ 2)π (µ, σ 2)

= f (y | µ, σ 2) f (s2 | σ 2)π (µ)π (σ 2)

∝ π (µ | y, σ 2) f (s2 | σ 2)π (σ 2), (11.13)

where the first step follows from Bayes’ theorem, the second from the conditional
independence of y and σ 2 given µ and σ 2, the third from the prior independence of
µ and σ 2 and the independence of s2 and µ, and the fourth on using Bayes’ theorem
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to get the posterior density for µ conditional on y and σ 2. Integration of (11.13)
with respect to µ shows that π (σ 2 | y, s2) ∝ f (s2 | σ 2)π (σ 2): the marginal posterior
density of σ 2 depends only on s2. However, as σ 2 appears in all three terms, integration
of (11.13) with respect to σ 2 shows that the marginal posterior for µ depends on both
y and s2.

Let us use the improper priors π (µ) ∝ 1, π (σ 2) ∝ σ−2. Example 11.7 shows that
the posterior density for µ when σ 2 is known is N (y, σ 2/n). Conditional on σ 2, the
distribution of (n − 1)s2 is σ 2χ2

n−1, so our choice of prior gives

π (σ 2 | s2) ∝ π (σ 2) f (s2 | σ 2)

∝ (σ 2)−1(σ 2)−(n−1)/2 exp

{
−1

2
(n − 1)s2/σ 2

}
, σ 2 > 0.

Thus the marginal posterior density of σ 2 is inverse gamma,

βα

�(α)xα+1
exp(−β/x), x > 0, α, β > 0, (11.14)

with x = σ 2, α = 1
2 (n − 1) and β = 1

2 (n − 1)s2; a useful shorthand for (11.14) is
I G(α, β). Its mean and variance are β/(α − 1) and β2/{(α − 1)2(α − 2)}, provided
that α > 2. Equivalently, the posterior distribution of σ 2 given s2 is that of (n −
1)s2/V , where V ∼ χ2

n−1. The joint posterior density for (µ, σ 2),

π (µ, σ 2 | y, s2) ∝ π (µ | y, σ 2)π (σ 2 | s2).

is proportional to

(σ 2)−1/2 exp
{
− n

2σ 2
(µ − y)2

}
× (σ 2)−(n−1)/2−1 exp

{
− (n − 1)s2

2σ 2

}
, (11.15)

integration of which over σ 2 yields the marginal posterior density for µ,

π (µ | y, s2) = �
(

n
2

)
�

(
n−1

2

)
{

n

(n − 1)s2π

}1/2 {
1 + n(µ − y)2

(n − 1)s2

}−n/2

.

Therefore n1/2(µ − y)/s ∼ tn−1 a posteriori. The corresponding frequentist result
treats y and s2 as random and µ as fixed; here the random variable is µ, with y and
s2 regarded as constants.

Figure 11.2 shows posterior densities for µ and σ 2 based on the height differences
for the 15 pairs of plants in Table 1.1; here y = 20.93 and s2 = 1424.64. Evidently
the posterior densities are not independent. While the HPD credible set for µ is
equi-tailed, that for σ 2 is not. �

A credible set may contain the same values of θ as a confidence interval, but its in-
terpretation is different. In the Bayesian framework the data are regarded as fixed and
the parameter as random, so the endpoints of the credible set are fixed and the probabil-
ity statement concerns the parameter, regarded as a random variable. The frequentist
approach treats the parameter as an unknown constant and the confidence interval
endpoints as random variables; the probability statement concerns their behaviour in
repeated sampling from the model.
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Figure 11.2 Posterior
densities of (µ, σ 2) of
normal model for maize
data. Left: contours of the
normalized log joint
posterior density. Right:
marginal posterior density
for µ, showing 95% HPD
credible set, which is the
set of values of µ whose
values of the posterior
density π (µ | y) lie above
the dashed line. The
shaded region has area
0.05.

11.2.2 Bayes factors

The frequentist approach to hypothesis testing compares a null hypothesis H0 with an
alternative H1 through a test statistic T that tends to be larger under H1 than under H0,
and rejects H0 for small values of the significance probability pobs = Pr0(T ≥ tobs),
where tobs is the value of T actually observed and the probability is computed as if
H0 were true.

The Bayesian approach attaches prior probabilities to the models corresponding to
H0 and H1 and compares their posterior probabilities

Pr(Hi | y) = Pr(y | Hi )Pr(Hi )

Pr(y | H0)Pr(H0) + Pr(y | H1)Pr(H1)
, i = 0, 1.

An obvious distinction between this and the frequentist approach is that Pr(H0 | y)
is the probability of H0 conditional on the data, whereas the P-value may not be
interpreted in this way. In Bayesian settings increasing amounts of data may lead to
increasing support for one hypothesis relative to the alternatives. This differs from the
frequentist approach, where non-rejection of H0 does not indicate increasing support
for it in large samples. A further important difference is that the P-value does not
depend on the particular alternative H1 under discussion. Indeed, whereas frequentist
testing does not require H1 to be fully specified, this is essential for Bayesian testing,
which is in this sense more restrictive.

For some purposes it is valuable to use the odds in favour of H1,

Pr(H1 | y)

Pr(H0 | y)
= Pr(y | H1)

Pr(y | H0)
× Pr(H1)

Pr(H0)
. (11.16)

The change in prior to posterior odds for H1 relative to H0 depends on data only
through the Bayes factor

B10 = Pr(y | H1)

Pr(y | H0)
. (11.17)

Thus analogous to the updating rule for inference on θ , we update evidence comparing
the models by the rule posterior odds = Bayes factor × prior odds.
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Table 11.3
Interpretation of Bayes
factor B10 in favour of H1

over H0. Since
B10 = B−1

01 , negating the
values of 2 log B10 gives
the evidence against H1.

B10 2 log B10 Evidence against H0

1–3 0–2 Hardly worth a mention
3–20 2–6 Positive

20–150 6–10 Strong
> 150 > 10 Very strong

The simplest situation is when both hypotheses are simple, in which case B10

equals the likelihood ratio in favour of H1. Usually, however, both hypotheses involve
parameters, say θ0 and θ1, and

Pr(y | Hi ) =
∫

f (y | Hi , θi )π (θi | Hi ) dθi , i = 0, 1,

where π (θi | Hi ) is the prior for θi under Hi . In this case the Bayes factor is a ratio
of weighted likelihoods. By analogy with the likelihood ratio statistic, the quantity
2 log B10 is often used to summarize the evidence for H1 compared to H0, with
the rough interpretation shown in Table 11.3. This contrasts with the interpretation
of a likelihood ratio statistic, whose null χ2 distribution for nested models would
depend on the difference in their degrees of freedom. The log Bayes factor log B10 is
sometimes called the weight of evidence.

Example 11.13 (HUS data) Example 4.40 introduced data on the numbers of cases
of haemolytic uraemic syndrome (HUS) treated at a clinic in Birmingham from 1970
to 1989. The data suggest a sharp rise in incidence around 1980. In that example
it was supposed that the annual counts y1, . . . , yn are realizations of independent
Poisson variables with means E(Y j ) = λ1 for j = 1, . . . , τ and E(Y j ) = λ2 for j =
τ + 1, . . . , n. Here the changepoint τ can take values 1, . . . , n − 1.

Suppose that our baseline model H0 is that λ1 = λ2 = λ, that is, no change, and
consider the alternative Hτ of change after year τ . Under Hτ we suppose that λ1 and
λ2 have independent gamma prior densities with parameters γ and δ. This density
has mean γ /δ and variance γ /δ2. Then Pr(y | Hτ ) equals

∫ ∞

0

τ∏
j=1

λ
y j

1

y j !
e−λ1 × δγ λ

γ−1
1

�(γ )
e−δλ1 dλ1

∫ ∞

0

n∏
j=τ+1

λ
y j

2

y j !
e−λ2 × δγ λ

γ−1
2

�(γ )
e−δλ2 dλ2,

or equivalently

δ2γ

�(γ )2
∏n

j=1 y j !

� (γ + sτ ) � (γ + sn − sτ )

(δ + τ )γ+sτ (δ + n − τ )γ+sn−sτ
,

where sτ = y1 + · · · + yτ .
Under H0 we assume that λ also has the gamma density with parameters γ and δ.

Then the Bayes factor for a changepoint in year τ is

Bτ0 = � (γ + sτ ) � (γ + sn − sτ ) δγ (δ + n)γ+sn

�(γ )�(γ + sn)(δ + τ )γ+sτ (δ + n − τ )γ+sn−sτ
, τ = 1, . . . , n − 1.

For completeness we set Bn0 = 1.
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Table 11.4 Bayes
factors for comparison of
model of change in
Poisson parameter after τ

years, Hτ , with model of
no change H0, for HUS
data y. There is very
strong evidence of change
in any year from 1976–86.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

y 1 5 3 2 2 1 0 0 2 1
2 log Bτ0, γ = δ = 1 4.9 −0.5 0.6 3.9 7.5 13 24 35 41 51
2 log Bτ0, γ = δ = 0.01 −1.3 −5.9 −4.5 −1.0 3.0 9.7 20 32 39 51
2 log Bτ0, γ = δ = 0.0001 −10 −15 −14 −10 −6.1 0.6 11 23 30 42

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

y 1 7 11 4 7 10 16 16 9 15
2 log Bτ0, γ = δ = 1 63 55 38 42 40 31 11 −2.9 −5.3 0
2 log Bτ0, γ = δ = 0.01 64 57 40 47 46 38 18 1.8 1.2 0
2 log Bτ0, γ = δ = 0.0001 55 48 31 38 37 29 8.8 −7.1 −7.7 0

Table 11.4 gives 2 log Bτ0 for τ = 1, . . . , 19, for values of γ and δ such that the
prior density for λ has unit mean and variances respectively 1, 102, 104, corresponding
to increasing prior uncertainty. Negative values of 2 log Bτ0 correspond to evidence
in favour of H0. There is very strong evidence for change in any year from 1976 to
1986, but the most plausible changepoint is just after 1980. The evidence for change
is overwhelming for all the priors chosen. See Practical 11.6. �

Example 11.14 (Forensic evidence) The following situation can arise when foren-
sic evidence is used in criminal trials: material y found on a suspect is similar to other
material, x , at the scene of the crime, and it is desired to know how this affects our
view of the case. For simplicity we shall suppose that if x and y come from the same
source, the suspect is guilty, an event we shall denote by G. Let E denote any other
evidence. Then the odds of guilt, conditional on E and the data, are

Pr(G | x, y, E)

Pr(G | x, y, E)
= Pr(x, y | G, E)

Pr(x, y | G, E)

Pr(G | E)

Pr(G | E)

= Pr(x, y | G)

Pr(x | G)Pr(y | G)
× Pr(G | E)

Pr(G | E)
, (11.18)

where we have supposed that x and y are independent of E , and that they are inde-
pendent given the event G that the suspect is not guilty. The first ratio on the right of
(11.18) is the Bayes factor due to the forensic evidence.

Let y and x represent single measurements on the refractive index of glass fragments
found on a suspect and at the scene of a burglary. We model the corresponding random
variables as

X | θ1 ∼ N (θ1, σ
2), Y | θ2 ∼ N (θ2, σ

2),

where θ1 and θ2 are the true refractive indexes and σ 2 is known. If the suspect is
guilty, then θ1 = θ2 = θ , say. We model natural variation among refractive indexes
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by supposing that θ is drawn from a population of types of glass whose true refractive
indexes are N (µ, τ 2), where µ and τ 2 
 σ 2 both known. Thus under G,

X, Y | θ
iid∼ N (θ, σ 2), θ ∼ N (µ, τ 2),

while under G, the true indexes θ1 and θ2 are independent, giving

X | θ1 ∼ N (θ1, σ
2), Y | θ2 ∼ N (θ2, σ

2), θ1, θ2
iid∼ N (µ, τ 2).

It turns out to be easier to work in terms of transformed observations u = x − y and
z = 1

2 (x + y), and to write the corresponding random variables as

U = θ1 − θ2 + ε1 − ε2, Z = 1

2
(θ1 + θ2 + ε1 + ε2), ε1, ε2

iid∼ N (0, σ 2).

Then U and Z are independent and normal both conditionally on θ1, θ2 and uncondi-
tionally. Under G, θ1 = θ2, so

U ∼ N (0, 2σ 2), Z ∼ N

(
µ, τ 2 + 1

2
σ 2

)
,

while under G,

U ∼ N (0, 2τ 2 + 2σ 2), Z ∼ N

(
µ,

1

2
τ 2 + 1

2
σ 2

)
.

As the Jacobian of the transform from (x, y) to (u, z) equals one under both G and
G, and τ 2 
 σ 2, the Bayes factor is roughly

(2σ 2)−1/2 exp{−u2/(4σ 2)}(τ 2)−1/2 exp{−(z − µ)2/(4τ 2)}
(2τ 2)−1/2 exp{−u2/(4τ 2)}(τ 2/2)−1/2 exp{−(z − µ)2/τ 2} ,

which equals
(

τ 2

2σ 2

)1/2

× exp

(
− u2

4σ 2

)
× exp

{
(z − µ)2

2τ 2

}
.

The interpretation of the second term is that if the difference u = x − y is large
relative to its variance 2σ 2, there is strong evidence that θ1 and θ2 differ, and this
favours G. The third term measures how typical x and y are. If z = 1

2 (x + y) is far
from its mean, µ, compared to its variance 1

2τ 2 under G, both x and y have similar but
unusual refractive indexes, and this strengthens the evidence for G. With τ/σ = 100,
u/(2σ 2)1/2 = 2, and (z − µ)/( 1

2τ 2)1/2 = 2, for example, these factors are respectively
0.135 and 2.718, and the overall Bayes factor is 26.01. Under G a frequentist test for
a difference between θ1 and θ2 based on u would suggest that θ1 �= θ2 at the 5% level,
but the Bayes factor gives strong evidence in favour of guilt, as the values of x and y
correspond to similar, unusual, types of glass.

A more realistic model would account for non-normality of the distribution of θ .
Other forms of evidence, such as DNA fingerprints or cloth samples, require more
complex likelihoods in the Bayes factor and use prior information from specially
tailored databases. Moreover when the probabilities being modelled are very small,
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it is important to allow for the possibility of events such as mistakes at the forensic
laboratory. �

We often wish to test nested hypotheses. In a typical example θ = (ψ, λ) for real
ψ , and λ varies in an open subset of IRp, with H0 : ψ = ψ0 and H1 : ψ �= ψ0. Then
if the same proper continuous prior π (ψ, λ) is used under both hypotheses, the prior
odds in favour of H1 are infinite because

Pr(H0) =
∫

π (ψ0, λ) dλ = 0

is an integral over a set of prior probability zero. Thus the posterior odds in favour of
H1 are infinite, whatever the data. This vexation can be eliminated by using different
prior densities, weighted according to prior belief in H0 and H1, giving overall prior

δ(·) is the Dirac delta
function.

π (ψ, λ) = δ(ψ − ψ0)π (ψ0, λ | H0)Pr(H0) + π (ψ, λ | H1)Pr(H1),

where ∫
π (ψ0, λ | H0) dλ =

∫
π (ψ, λ | H1) dψdλ = 1.

One result of this is that Bayes factors are more sensitive to the prior than are posterior
densities. In particular, improper priors cannot be used, as the Bayes factor depends
on the ratio of the two arbitrary constants of proportionality that appear in the priors.
One way to remove the arbitrariness is to fix the ratio of these constants using some
external argument.

A further difficulty is that when a large number of models must be compared, prior
probabilities and proper priors must be assigned to each. This can be hard in practice,
and the results may depend strongly on how it is done. This contrasts with frequentist
hypothesis testing, where such difficulties do not arise. An apparently even more
striking contrast is provided by the following example.

Example 11.15 (Jeffreys–Lindley paradox) Consider testing H0 : µ = 0 against Dennis Victor Lindley
(1923–) was educated at
Cambridge, and held
academic posts there, in
Aberwystwyth, and in
London. He is a strong
advocate of Bayesian
statistics. See Smith
(1995).

H1 : µ �= 0 based on a normal random sample y1, . . . , yn with mean µ and known
variance σ 2. The usual test is based on the normal distribution of n1/2Y/σ under

Y is the average of the
random variables
Y1, . . . , Yn ; its observed
value is y.

H0, and gives P-value p = �(−n1/2|y|/σ ). In the Bayesian framework, we write
π0 = Pr(H0), and suppose that under H1, µ is normal with mean zero and variance
τ 2. Then the posterior probabilities are

Pr(H0 | y) = π0

(2πσ 2)n/2
exp

(
− 1

2σ 2

n∑
j=1

y2
j

)
,

Pr(H1 | y) = 1 − π0

(2πσ 2)n/2(2πτ 2)1/2

∫
exp

{
− 1

2σ 2

n∑
j=1

(y j − µ)2 − µ2

2τ 2

}
dµ,

leading to Bayes factor

B01 =
(

1 + n
τ 2

σ 2

)1/2

exp

{
− ny2

2σ 2(1 + n−1σ 2/τ 2)

}
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Table 11.5 Dependence
of Bayes factor B01 on
sample size n for a test
with significance level
0.01.

n 1 10 100 1000 104 106 108

B01 0.269 0.163 0.376 1.15 3.63 36.2 362

in favour of H0. Now suppose that ny2/σ 2 = z2
α/2. The significance level of the

conventional test is α, but as n → ∞ we see that B01
.= n1/2τσ−1 exp(−z2

α/2/2),
giving increasingly strong evidence in favour of H0. Hence the paradox: although with
y corresponding to α = 10−6 we would reject H0 decisively, the Bayes factor gives
increasingly strong support for H0, because as n → ∞, the weight of the alternative
distribution is more and more widely spread compared to the distance from y to the
null hypothesis value of µ. Table 11.5 gives some values of B01 when τ 2 = σ 2.

One resolution of this hinges on noticing that a fixed alternative is not appropriate
as n → ∞. A test is used when there is doubt as to its outcome — when the data do
not evidently contradict the null hypothesis. Mathematically, this means that sensible
alternatives are O(n−1/2) distant from the null hypothesis. In this case we take τ 2 =
n−1δσ 2, so that as n → ∞ the range of alternatives is fixed relative to the null; sensible
values for δ might be in the range 5–20. Then the Bayes factor corresponding to
significance level α, B01 = (1 + δ)1/2 exp{− 1

2 z2
α/2/(1 + δ−1)}, does not increase with

n. If we take δ = 10 and α = 0.05, 0.01, 0.001, and 0.0001, B10 equals 1.73, 6.2,
41.4, and 293. According to Table 11.3 these correspond respectively to evidence
against H0 that is hardly worth mentioning, positive, strong, and very strong, broadly
agreeing with the usual interpretation of the P-values. �

11.2.3 Model criticism

The prior density π (θ ) introduces further information into the model, with the benefit
of directness of inference for θ . The corresponding disbenefit is the need to assess
the appropriateness of π (θ ) and the sensitivity of posterior conclusions to the prior,
added to the usual concerns about the sampling model f (y | θ ). Sensitivity analysis
is generally performed simply by comparing posterior inferences based on a range of
priors and models. The problems this poses are mainly computational, and we discuss
them briefly in Section 11.3.

When just a few parametrized alternative models are in view, the ideas for model
comparison outlined in Section 11.2.2 can be applied, supplemented with suitable
graphs. In practice, however, consideration of all possible models is usually infeasible,
not least because data can spring surprises on the investigator, and so we turn to model-
checking when the alternatives are not explicit.

Marginal inference

From a Bayesian viewpoint all information concerning the data and model is contained
in the joint density

f (y, θ ) = π (θ | y) f (y). (11.19)
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and this suggests that f (y) should be used to check the model. It is relatively clear how
to do this when there is a sufficient statistic s and s = (t, a), where a is a function of s
whose distribution does not depend on θ ; a is an ancillary statistic, a notion explored
in Section 12.1. Then we can write

f (y) = f (y | s) f (a)
∫

f (t | a, θ )π (θ ) dθ, (11.20)

the first two components of which do not depend on the prior, and hence can be used to
give information about the sampling model. The third component of (11.20), f (t | a),
can be regarded as carrying information about agreement between data and prior. In
simple models, consideration of the first two terms can yield standard model-checking
tools.

Example 11.16 (Location-scale model) Let y1, . . . , yn be a random sample from
the location-scale model y j = η + τε j , where the ε j have density g. In general, the
order statistics s = (y(1), . . . , y(n)) form a minimal sufficient statistic for θ = (η, τ )
based on y1, . . . , yn . They may be re-expressed as

t = θ̂ = (̂η, τ̂ ), a =
(

y(1) − η̂

τ̂
, . . . ,

y(n) − η̂

τ̂

)
,

where t consists of the maximum likelihood estimators of θ , and the joint distribution
of the maximal invariant a is degenerate but independent of η and τ . The suitability
of g can be checked by probability plots of a against quantiles of g. Similar ideas
extend to regression models.

Given a particular choice of g, agreement between the prior and data would be
assessed through the conditional density of θ̂ given a.

When g is normal, the minimal sufficient statistic is (y, s2) and the assumption
of normality is checked using the distribution of y given y and s2. Example 5.14
established that the raw residuals ((y1 − y)/s, . . . , (yn − y)/s) are independent of y
and s2.

The marginal joint distribution of y and s2 enables the prior to be criticized. For
instance, suppose that a joint conjugate prior is used for µ and σ 2, with I G(·, ·) denotes the

inverse gamma
distribution.

µ | σ 2 ∼ N (µ0, σ
2/k0), σ 2 ∼ I G

(
1

2
ν0,

1

2
ν0σ

2
0

)
.

Then integration shows that the marginal densities of y and s2 are given by

d1 = y − µ0

σ0
(
n−1 + k−1

0

)1/2 ∼ tν0 , d2 = s2

σ 2
0

∼ Fn−1,ν0 .

Values of d1 and d2 that are unusual relative to the distributions of the corresponding
random variables D1 and D2 can cast doubt on both prior and sampling models.
For example, if a probability plot cast no doubt on the assumption of normality, and
d1 = 100 nevertheless, the relevance of the prior values µ0 and σ 2

0 would be called
into question. But if the data were not normal but Cauchy, then y would have the
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same distribution as y1 and very large values of d1 could arise even if the prior and
data agreed about µ.

Consider again the data of Example 11.12, for which the model was normal. Sup-
pose that our prior is that conditional on σ 2, µ ∼ N (0, σ 2), and that the prior distribu-
tion for σ 2 is I G(3, 3 × 1002). Then d1 = 0.202 and d2 = 0.1424. The first is close
enough to zero to cast no doubt on the prior mean, but d2 is rather small relative to
the F14,6 distribution, and casts some doubt on the prior variance. The corresponding
Bayesian P-values are Pr(|D1| > |d1|) = 0.75 and Pr(D2 < d2) = 0.045; the data are
rather more precise than our prior information would suggest. �

One overall measure of the plausibility of the data under the model is the probability
Pr{ f (Y+) ≤ f (y)}, where f (y) is the marginal density of the data actually observed,
and Y+ is a set of data that might have been observed (Problem 11.12). Some contro-
versy surrounds this test and the P-values calculated in the previous example, as they
flout the likelihood principle. One view is that the essence of Bayesian inference is
to use Bayes’ theorem to update prior belief in light of the data. This entails using
posterior probabilities or equivalently Bayes factors to compare competing models,
and leaves no place for tail probability calculations. A contrary argument is that a
Bayes factor measures the relative support for two hypotheses and therefore requires
prior specification of each, while some model-checking techniques do not require
explicit alternatives: if my prior belief is that y1, . . . , y20

iid∼ N (0, 1), I am surprised
to learn that the smallest value is −10, even before considering how this could have
arisen. Furthermore, a strict interpretation of the argument for Bayes factors requires
the specification of a proper prior distribution over all reasonable alternatives, which
seems infeasible in practice. Finally, the argument for the likelihood principle as-
sumes that the model is correct and the case for strict adherence to the principle
seems weaker when assessing fit than when performing inference for a parameter.

Prediction diagnostics

Most models do not have a useful reduction in terms of exact minimal sufficient or
ancillary statistics, so the ideas outlined above cannot usually be applied. Moreover,
π (θ ) is often improper in practice and then f (y) is typically improper also, though
this need not undercut diagnostic use of f (y | s) f (a) if there is a useful sufficient
reduction. When π (θ ) is improper, posterior predictive distributions can be used to
diagnose both problems with individual cases and more general model failures. The
idea is to assess the posterior plausibility of suitable functions of the data.

One way to detect single outliers compares observations with their predicted values
conditional on the remaining data through the conditional predictive ordinates f (y j |
y− j ), where y− j consists of all the data except y j . Since these quantities may be
written in terms of ratios of densities, they depend less on the propriety of priors.
There is a close link to cross-validation.

Example 11.17 (Normal linear model) In the normal linear model with known
n × p design matrix X of rank p < n, the distribution of the n × 1 response vector y
conditional on the p × 1 vector of parameters β and the error variance σ 2 is normal
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with mean Xβ and covariance matrix σ 2 In , and the least squares estimates and residual
estimate of error

β̂ = (X T X )−1 X T y, s2 = (n − p)−1 yT{I − X (X T X )−1 X T}y,

are independent and minimal sufficient for β and σ 2.
It would be alarming if the usual standardized residuals r j had no Bayesian jus-

tification. Fortunately they do, as we now see. The simplest argument is that the
joint distribution of a = (r1, . . . , rn) is free of the parameters θ = (β, σ 2), for which
θ̂ = (̂β, s2) form a complete minimal sufficient statistic. Basu’s theorem (page 649)
implies that a is independent of θ̂ , so we infer from (11.20) that the sampling model Concentrationally-

challenged readers may
want to jump to (11.23).

can be checked by comparing a to its joint distribution. This justifies residual plots
and other tricks of the trade.

For a longer more tedious argument for Bayesian use of deletion residuals and
hence of the r j , we compute the conditional predictive ordinate f (y j | y− j ) under the
conjugate prior distribution for β and σ 2,

β | σ 2 ∼ N (γ, σ 2V ), σ 2 ∼ I G

(
1

2
ν,

1

2
ντ 2

)
,

where the hyperparameters are the p × 1 vector γ , the p × p positive definite sym-
metric matrix V , and the scalars ν and τ 2; these are all regarded as known. An
argument analogous to that leading to (11.13) gives

π (β, σ 2 | y) ∝ π (β | β̂, σ 2)π (σ 2 | s2),

so we need only find the posterior distributions of β given β̂ and σ 2 and of σ 2 given
s2. As the joint distribution of (βT, β̂T)T given σ 2 is

N2p

{(
γ

γ

)
, σ 2

(
V V
V V + (X T X )−1

)}
,

(3.21) and Exercise 8.5.2 shows that the posterior distribution of β given β̂ and σ 2 is
normal with mean and variance matrix

(X T X + V −1)−1(X T X β̂ + V −1γ ), σ 2(X T X + V −1)−1, (11.21)

which generalizes (11.11). As prior uncertainty about γ increases, V −1 → 0, and
then we see from (11.21) that the posterior mean and variance of β approach β̂ and
σ 2(X T X )−1. Direct calculation shows that the posterior distribution of σ 2 given s2 is
I G[(ν + n)/2, {ντ 2 + (n − p)s2}/2]. If the constant prior π (β) ∝ 1 is used, then the
posterior mean and variance of β given σ 2 are β̂ and σ 2(X T X )−1, but the posterior
density for σ 2 is I G[(ν + n − p)/2, {ντ 2 + (n − p)s2}/2]; letting ν → 0 gives the
effect of taking π (β, σ 2) ∝ σ−2.

For future reference we note that the distribution of y conditional on σ 2 is nor-
mal with mean Xγ and variance σ 2(I + X V X T), and that on integrating over the
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prior distribution for σ 2, we find that the marginal density f (y) has a multivariate
t form

�
(

n+ν
2

)
(ντ 2)ν/2

πn/2�
(

ν
2

) |I + X V X T|1/2
{ντ 2 + (y − Xγ )T(I + X V X T)−1(y − Xγ )}−(n+ν)/2.

(11.22)

To find the posterior predictive density of another observation y+ with p × 1 co-
variate vector x+, assumed independent of y conditional on β and σ 2, we write

f (y+ | y) =
∫

f (y+ | θ )π (θ | y) dθ

=
∫ ∫

f (y+ | β, σ 2)π (β | β̂, σ 2)π (σ 2 | s2) dβ dσ 2

=
∫

π (σ 2 | s2)
∫

f (y+ | β, σ 2)π (β | β̂, σ 2) dβ dσ 2.

Now

y+ | β, σ 2 ∼ N (xT
+β, σ 2),

β | β̂, σ 2 ∼ N {(X T X + V −1)−1(X T X β̂ + V −1γ ), σ 2(X T X + V −1)−1},
from which it follows that conditional on β̂ and σ 2, the distribution of y+ is normal
with mean and variance

xT
+(X T X + V −1)−1(X T X β̂ + V −1γ ), σ 2{1 + xT

+(X T X + V −1)−1x+}.
Integration over the posterior distribution of σ 2 shows that the posterior predictive
distribution of y+ conditional on y is given by

y+ − xT
+(X T X + V −1)−1(X T X β̂ + V −1γ )[{ (n−p)s2+ντ 2

n+ν

}{1 + xT+(X T X + V −1)−1x+}]1/2 ∼ tn+ν . (11.23)

For prediction of y j given the other observations y− j , based on the improper prior
π (β, σ 2) ∝ σ−2, we set V −1 = 0 and ν = 0 and replace y+ with y j , x+ with x j , n + ν

with n − p − 1, and β̂, s2 and X with the corresponding quantities β̂− j , s2
− j and X− j

based on y− j . Then (11.23) becomes

y j − xT
j β̂− j[

s2
− j

{
1 + xT

j

(
X T

− j X− j
)−1

x j
}]1/2 ∼ tn−p−1.

A straightforward calculation reveals that the term in braces in the denominator here
is (1 − h j )−1, where h j is the j th leverage based on the full model. Hence prediction
of y j given y− j may be based on the tn−p−1 distribution of the deletion residual

r∗
j =

(
y j − xT

j β̂− j
)
(1 − h j )1/2

s− j
.

Thus outlier detection based on the conditional predictive ordinate is conducted using
the usual deletion residuals r∗

j . As these are monotonic functions of the standardized
residuals r j , this supports Bayesian use of the r j . �
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More general diagnostics can be based on measures of discrepancy between data
and the model, d = d(y, θ ), compared to data Y+ that might have been generated by
the model. Posterior predictive checks are based on comparison of D+ = d(Y+, θ )
with its predictive distribution, via

Pr {d(Y+, θ ) ≥ d(y, θ ) | y} , (11.24)

where the averaging is over both Y+ and the posterior distribution of θ . Since Y+ is
independent of y given θ , we can write∫

Pr {D+ ≥ d(y, θ ) | y, θ} π (θ | y) dθ =
∫

Pr {D+ ≥ d(y, θ ) | θ} π (θ | y) dθ.

Thus a simple way to evaluate (11.24) is to calculate Pr {D+ ≥ d(y, θ ) | θ} for fixed
θ , and then to average this probability over the posterior density of θ . One omnibus
measure of discrepancy is the analogue of Pearson’s statistic,

d(y, θ ) =
n∑

j=1

{y j − E(Y j | θ )}2

var(Y j | θ )
,

but this may be inappropriate, and typically D+ is chosen with key aspects of the
model in mind. As mentioned above, authors differ over whether (11.24) should be
used, though unlike the use of the marginal density of y, inference based on (11.24)
does condition on the data.

11.2.4 Prediction and model averaging

In the Bayesian framework prediction is performed through the posterior predictive
density (11.6). In practice this is not as simple as it appears, because there may be a
number of possible models M1, . . . , Mk on which to the base the prediction. Condi-
tional on Mi , the predictive density for z based on y is f (z | y, Mi ), but this ignores
any uncertainty concerning the selection of Mi . This uncertainty can be incorpo-
rated by averaging over the posterior distribution of the model selected, to give the
model-averaged prediction

f (z | y) =
k∑

i=1

f (z | y, Mi )Pr(Mi | y) (11.25)

which is an average of the posterior distributions of z under the different models,
weighted according to their posterior probabilities

Pr(Mi | y) = f (y | Mi )Pr(Mi )∑k
l=1 f (y | Ml)Pr(Ml)

, (11.26)

where

f (y | Mi ) =
∫

f (y | θi , Mi )π (θi | Mi ) dθi ,

f (z | Mi , y) =
∫

f (z | y, θi , Mi ) f (y | θi , Mi )π (θi | Mi ) dθi

f (y | Mi )
.
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Here θi is the parameter for model Mi , under which the prior is π (θi | Mi ) and the
prior probability of Mi is Pr(Mi ). Formally, (11.25) is just a re-expression of (11.6)
in which the parameter splits into two parts, one a model indicator, Mi , and the other
the parameters conditional on Mi . In using (11.25) it is crucial that z is the same
quantity under all models considered, rather than one whose interpretation depends
on the model.

In practice the main obstacle to model averaging is computational. For each model,
the integrations involved must usually be done numerically using ideas described in
Section 11.3. Furthermore there can be many models in some applications — for
example, selecting among 15 covariates in a regression problem gives 215 = 32, 768
models, corresponding to inclusion or exclusion of each covariate separately, without
considering outliers, transformations, and so forth. Thus it may be difficult to find the
most plausible models, quite apart from the calculations conditional on each model
and the difficulties of specifing a prior over model space — giving the same weight
to all combinations of covariates will rarely be sensible.

Example 11.18 (Cement data) We fit linear models to the data in Table 8.1 with
n = 13 observations and four covariates. There are 24 possible subsets of the co-
variates, giving us models M1, . . . , M16, which for sake of illustration we regard as
equally probable a priori, though in practice we should hope that a small number
of covariates is more likely than a large number. The models are on different pa-
rameter spaces, so the discussion in Section 11.2.2 implies that proper, preferably
weak, priors should be used. We use the conjugate prior described in Example 11.17,
and without loss of generality centre and scale each covariate vector to have average
zero and unit variance. We then set V to be the 5 × 5 matrix with diagonal elements
φ2(v, 1, 1, 1, 1), where v is the sample variance of y, γ T = (y, 0, 0, 0, 0), ν = 2.58,
τ 2 = 0.28, and φ = 2.85. This choice implies that the elements of β are independent
a priori, and should give a weak but proper prior that is consistent between different
models and invariant to location and scale changes of the response and explanatory
variables.

The marginal density of y under this model is (11.22); for each subset of covariates
we use the corresponding submatrix of V . Table 11.6 shows the quantities 2 log B10,
where B10 = Pr(y | M1)/Pr(y | M0) is the Bayes factor in favour of a subset of co-
variates relative to the model with none, the posterior probabilities of each subset, and,
for comparison, the residual sums of squares under the usual linear models, which
are broadly in line with the probabilities.

Let us try and predict the value of a new response y+ with covariates xT
+ =

(1, 10, 40, 20, 30). Conditional on a particular subset of covariate vectors, the predic-
tive distribution for y+ is given by (11.23). Figure 11.3 shows these densities for the six
models shown in Table 11.6 to have non-negligible support, and the model-averaged
predictive density. �

A different approach to dealing with model uncertainty is to find a plausible model,
f (y | ψ)π (ψ), and then add further parameters λ whose variation allows for the most
uncertain aspects of the model, together with a prior that expresses belief about them.
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Table 11.6 Bayesian
prediction using model
averaging for the cement
data. For each of the 16
possible subsets of
covariates, the table shows
the log Bayes factor in
favour of that subset
compared to the model
with no covariates and
gives the posterior
probability of each model.
The values of the posterior
mean and scale
parameters a and b are
also shown for the six
most plausible models;
(y+ − a)/b has a posterior
t density. For comparison,
the residual sums of
squares are also given.

Model RSS 2 log B10 Pr(M | y) a b

– – – – 2715.8 0.0 0.0000
1 – – – 1265.7 7.1 0.0000
– 2 – – 906.3 12.2 0.0000
– – 3 – 1939.4 0.6 0.0000
– – – 4 883.9 12.6 0.0000
1 2 – – 57.9 45.7 0.2027 93.77 2.31
1 – 3 – 1227.1 4.0 0.0000
1 – – 4 74.8 42.8 0.0480 99.05 2.58
– 2 3 – 415.4 19.3 0.0000
– 2 – 4 868.9 11.0 0.0000
– – 3 4 175.7 31.3 0.0002
1 2 3 – 48.11 43.6 0.0716 95.96 2.80
1 2 – 4 47.97 47.2 0.4344 95.88 2.45
1 – 3 4 50.84 44.2 0.0986 94.66 2.89
– 2 3 4 73.81 33.2 0.0004
1 2 3 4 47.86 45.0 0.1441 95.20 2.97
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Figure 11.3 Posterior
predictive densities for
cement data. Predictive
densities for y+ based on
individual models are
given as dotted curves,
and the heavy curve is the
averaged prediction from
all 16 models.

This gives an expanded model f (y | ψ, λ)π (ψ, λ), to which (11.6) is then applied
with θ = (ψ, λ).

Exercises 11.2

1 Find elements θ̃ and J̃ (θ̃ ) of the normal approximation to a beta density, and hence check
the formulae in Example 11.11. Find also the posterior mean and variance of θ . Give an
approximate 0.95 credible interval for θ . How does this differ from a 0.95 confidence
interval? Comment.

2 Let Y1, . . . , Yn be a random sample from the uniform distribution on (0, θ), and take as
prior the Pareto density with parameters β and λ,

π (θ ) = βλβθ−β−1, θ > λ, β, λ > 0.

(a) Find the prior distribution function and quantiles for θ , and hence give prior one- and
two-sided credible intervals for θ . If β > 1, find the prior mean of θ .
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(b) Show that the posterior density of θ is Pareto with parameters n + β and
max{Y1, . . . , Yn, λ}, and hence give posterior credible intervals and the posterior mean
for θ .
(c) Interpret λ and β in terms of a prior sample from the uniform density.

3 Check the details of Example 11.7.

4 Two independent samples Y1, . . . , Yn
iid∼ N (µ, σ 2) and X1, . . . , Xm

iid∼ N (µ, cσ 2) are
available, where c > 0 is known. Find posterior densities for µ and σ based on prior
π (µ, σ ) ∝ 1/σ .

5 Verify (11.21), (11.22), and (11.23). How do (11.21) and (11.22) change when var(y j |
β, σ 2) = σ 2/w j , the w j being known weights?

6 Travelling in a foreign country, you arrive at midnight in a town you have never heard of.
You have no idea of its size. The first thing you see is a bus with the number y = 100.
What is a reasonable estimate of the total number θ of buses in the town, assuming that
they are numbered 1, . . . , θ?
(a) Explain why it is sensible to use the improper prior π (θ ) ∝ θ−1, θ = 1, 2, . . . . As-
suming that f (y | θ ) is uniform on 1, . . . , θ , show that θ has posterior density

π (θ | y) = θ−2∑∞
u=y u−2

, θ = y, y + 1, . . . .

(b) Show that the posterior mean of θ is infinite. Show also that the posterior distribution
function is approximately

Pr(θ ≤ v | y)
.=

∫ v+1/2
y−1/2 u−2 du∫ ∞
y−1/2 u−2 du

,

and that the posterior median is approximately 2y − 3/2. Give an equi-tailed 95% posterior
confidence interval and a 95% HPD interval for θ .
(c) What would you conclude if you saw two buses, numbered 100 and 30?

7 In Example 11.12, calculate the Bayes factor for H0 : µ ≤ 0 and H1 : µ > 0.

8 A forensic laboratory assesses if the DNA profile from a specimen found at a crime scene
matches the DNA profile of a suspect. The technology is not perfect, as there is a (small)
probability ρ that a match occurs by chance even if the suspect was not present at the
scene, and a (larger) probability γ that a match is reported even if the profiles are different;
this can arise due to laboratory error such as cross-contamination or accidental switching
of profiles.
(a) Let R, S, and M denotes the events that a match is reported, that the specimen does
indeed come from the suspect, and that there is a match between the profiles, and suppose
thatM denotes the

complement of M , and ∩
means ‘and’. Pr(R | M ∩ S) = Pr(R | M ∩ S) = Pr(R | M) = 1, Pr(M | S) = 0, Pr(R | S) = 1.

Show that the posterior odds of the profiles matching, given that a match has been reported,
depend on

Pr(R | S)

Pr(R | S)
= Pr(R | M ∩ S)Pr(M | S) + Pr(R | M ∩ S)Pr(M | S)

Pr(R | M ∩ S)Pr(M | S) + Pr(R | M ∩ S)Pr(M | S)
,

and establish that this equals {ρ + γ (1 − ρ)}−1.
(b) Tabulate Pr(R | S)/Pr(R | S) when ρ = 0, 10−9, 10−6, 10−3 and γ = 0, 10−4,
10−3, 10−2.
(c) At what level of posterior odds would you be willing to convict the suspect, if the only
evidence against them was the DNA analysis, and you should only convict if convinced
of their guilt ‘beyond reasonable doubt’? Would your chosen odds level depend on the
likely sentence, if they are found guilty? How does your answer depend on the prior odds
of the profiles matching, Pr(S)/Pr(S)?
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9 One way to set the ratio of arbitrary constants that appears when two models are compared
using Bayes factors and improper priors is by imaginary observations: we imagine the
smallest experiment that would enable the models to be discriminated but maximizes
evidence in favour of H0, and then choose the constants so that the Bayes factor equals
one for these data.
Consider data from a Poisson process observed on [0, t0], and let H0 and H1 represent the
models with rates λ(t) = ρ and λ(t) = µβ−1{1 − exp(−βt)}, where ρ, µ, β > 0. Take
improper priors π (ρ) = c0ρ

−1 and π (µ, β) = c1µ
−2, with c1, c0 > 0.

(a) Explain why the smallest experiment that enables the models to be discriminated must
have two events, and show that it gives Pr(y | H0) = c0/t2

0 . Find Pr(y | H1) and show that
it is minimized when both events occur at t0, with

Pr(y | H1) = c1

∫ ∞

0

βe−2βt0

1 − e−βt0
dβ = c1t−2

0

(
π 2

6
− 1

)
.

Deduce that the device of imaginary observations gives c0/c1 = π2/6 − 1.
(b) Compute the Bayes factor when these two models are compared using the data in
Table 6.13. Discuss.
(Section 6.5.1; Raftery, 1988; Spiegelhalter and Smith, 1982)

10 A random sample y1, . . . , yn arises either from a log-normal density, with log Y j ∼
N (µ, σ 2), or from an exponential density ρ−1e−y/ρ . The improper priors chosen are
π (ρ) = c0/ρ and π (µ, σ ) = c1/σ , for ρ, σ > 0 and c0, c1 > 0. Use imaginary obser-
vations to give a value for c1/c0.

11.3 Bayesian Computation

11.3.1 Laplace approximation

The goal of Bayesian data analysis is posterior inference for quantities of interest,
and this involves integration over one or more of the parameters. Usually the inte-
grals cannot be obtained in closed form and numerical approximations must be used.
Deterministic integration procedures such as Gaussian quadrature can sometimes be
applied, but they are typically useful only for low-dimensional integrals, and have
the drawback of requiring information about the position and width of any modes of
the integrand that unavailable in practice. The most powerful tool for approximate
calculation of posterior densities is numerical integration by Monte Carlo simulation,
to which we turn after describing an analytical approach known as Laplace’s method.

Consider the one-dimensional integral

In =
∫ ∞

−∞
e−nh(u) du, (11.27)

where h(u) is a smooth convex function with minimum at u = ũ, at which point
dh(ũ)/du = 0 and d2h(ũ)/du2 > 0. For compactness of notation we write h2 =
d2h(ũ)/du2, h3 = d3h(ũ)/du3, and so forth. Close to ũ a Taylor series expansion
gives h(u)

.= h(ũ) + 1
2 h2(u − ũ)2, so

In
.= e−nh(ũ)

∫ ∞

−∞
e−nh2(u−ũ)2/2 du

= e−nh(ũ)
∫ ∞

−∞
e−z2/2 du

dz
dz

=
(

2π

nh2

)1/2

e−nh(ũ),
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where the first and second equalities use the substitution z = (nh2)1/2(u − ũ) and
the fact that the normal density has unit integral. A more detailed accounting
(Exercise 11.3.2) gives

In =
(

2π

nh2

)1/2

e−nh(ũ) ×
{

1 + n−1

(
5h2

3

24h3
2

− h4

8h2
2

)
+ O(n−2)

}
. (11.28)

The leading term on the right of (11.28) is known as the Laplace approximation to
In , and we denote it by Ĩn .

There are several points to note about (11.28). First, as In/ Ĩn = 1 + O(n−1), the
error is relative, and Ĩn is often remarkably accurate. Second, Ĩn involves only h and
its second derivative at ũ, so it is relatively easy to obtain, numerically if necessary.
Third, the right-hand side of (11.28) is an asymptotic series for In , implying that its
partial sums need not converge, and that the approximation may not be improved
by including further terms of the series. And fourth, because the bulk of the normal
probability integral lies within three standard deviations of its centre, the limits of
the integral will not affect Ĩn provided they lie outside the interval with endpoints
ũ ± 3(nh2)−1/2 or so.

In the multivariate case, with h(u) again a smooth convex function but u a vector
of length p, the same argument but using the multivariate normal density shows that
the Laplace approximation to (11.27) is

(
2π

n

)p/2

|h2|−1/2e−nh(ũ), (11.29)

where ũ solves the p × 1 system of equations ∂h(u)/∂u = 0 and |h2| is the determi-
nant of the p × p matrix of second derivatives ∂2h(u)/∂u∂uT, evaluated at u = ũ, at
which point the matrix is positive definite.

In applications an approximation is often required to an integral of form

Jn(u0) =
( n

2π

)1/2
∫ u0

−∞
a(u)e−ng(u){1 + O(n−1)} du, (11.30)

where u is scalar, a(u) > 0, and in addition to possessing the properties of h(u) above,
g is such that g(ũ) = 0. The first step in approximating (11.30) is to change the
variable of integration from u to r (u) = sign(u − ũ){2g(u)}1/2; that is, r2/2 = g(u).
Then g′(u) = dg(u)/du and r (u) have the same sign, and rdr/du = g′(u), so

Jn(u0) =
( n

2π

)1/2
∫ r0

−∞
a(u)

r

g′(u)
e−nr2/2{1 + O(n−1)} dr

=
( n

2π

)1/2
∫ r0

−∞
e−nr2/2+log b(r ){1 + O(n−1)} dr,

where the positive quantity b(r ) = a(u)r/g′(u) is regarded as a function of r .
We now change variables again, from r to r∗ = r − (rn)−1 log b(r ), so

−nr∗2 = −nr2 + 2 log b(r ) − n−1r−2{log b(r )}2.



598 11 · Bayesian Models

The Jacobian of the transformation and the third term in −nr∗2 contribute only to the
error of Jn(u0), so

Jn(u0) =
( n

2π

)1/2
∫ r∗

0

−∞
e−nr∗2/2{1 + O(n−1)} dr∗

= �
(
n1/2r∗

0

) + O(n−1), (11.31)

where

r∗
0 = r0 + (r0n)−1 log

(
v0

r0

)
, r0 = sign(u0 − ũ){2g(u0)}1/2, v0 = g′(u0)

a(u0)
.

Variants on this expression play an important role in Chapter 12.
Here is a further approximation for later use. Let u = (u1, u2), where u1 is scalar

and u2 a p × 1 vector, and consider

(2π )−(p+1)/2c
∫ u0

1

−∞
du1

∫
du2 exp {−nh(u1, u2)} , (11.32)

where c is constant, the inner integral being over IRp. Here h has its previous smooth-
ness properties, is maximized at (ũ1, ũ2), and in addition h(ũ1, ũ2) = 0. We fix u1

and apply Laplace approximation to the inner integral, obtaining

(2π )−1/2c
∫ u0

1

−∞
|nh22(u1, ũ21)|−1/2 exp {−nh(u1, ũ21)} {1 + O(n−1)} du1,

where ũ21 = ũ2(u1) maximizes h(u1, u2) with respect to u2 when u1 is fixed, and
h22(u1, u2) = ∂2h(u1, u2)/∂u2∂uT

2 is the p × p Hessian matrix of h with respect to
u2. Apart from multiplicative constants, this integral has form (11.30), and so (11.31)
may be used to approximate to (11.32), with

r0 = sign
(
u0

1 − ũ1
) {

2h
(
u0

1, ũ20
)}1/2

, v0 = c−1 ∂h
(
u0

1, ũ20
)

∂u1

∣∣h22
(
u0

1, ũ20
)∣∣1/2

,

where ũ20 is the maximizing value of u2 when u1 = u0
1.

Although the formulation of (11.27), (11.30), and (11.32) in terms of n and the
O(1) functions h and g simplifies the derivation of (11.29) and (11.31) by clarifying
the orders of the various terms, for applications it is equivalent and usually simpler
to set n = 1 and allow h and g and their derivatives to be O(n).

Inference

One application of Laplace approximation is to the Bayes factor (11.17). For one
of the hypotheses we write Pr(y) = ∫

f (y | θ )π (θ ) dθ , with integrand expressed as
exp{−h(θ )}, where h(θ ) = −�m(θ ) and

�m(θ ) = log f (y | θ ) + log π (θ )

is the log likelihood modified by addition of the log prior. Typically the first term of
�m is O(n), and the second is O(1). The value θ̃ that minimizes h(θ ) is the maximum
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a posteriori estimate of θ — the value that maximizes the modified log likelihood —
and we can apply (11.29). The result is

log Pr(y)
.= log f (y | θ̃ ) + log π (θ̃ ) − 1

2
p log n + 1

2
p log(2π ) − 1

2
log

∣∣∣∣−∂2�m(θ̃ )

∂θ∂θ T

∣∣∣∣,
where p is the dimension of θ . To further simplify this, note that in large samples the
log prior is negligible relative to the log likelihood and θ̃ is roughly the maximum
likelihood estimate θ̂ , and if p is fixed we can drop terms that are O(1). Crudely
speaking, therefore,

−2 log Pr(y)
.= BIC = −2 log f (y | θ̂ ) + p log n.

This Bayes information criterion, which we met in Section 4.7, is used for rough
comparison of competing models.

For a more sophisticated application we write a vector parameter θ as (ψ, λT)T and
approximate the marginal posterior density for the scalar ψ ,

π (ψ | y) =
∫

f (y | ψ, λ)π (ψ, λ) dλ∫
f (y | ψ, λ)π (ψ, λ) dλdψ

, (11.33)

by applying Laplace’s method to each integral. The discussion above gives the approx-
imation to the denominator. For the numerator we take hψ (λ) = −�m(ψ, λ), where
the notation emphasises that the approximation is applied only to the integral over λ,
for a fixed value of ψ . The resulting approximation may be written as

π (ψ | y)
.=

( n

2π

)1/2




∣∣∣− ∂2�m (ψ̃,λ̃)
∂θ∂θT

∣∣∣∣∣∣− ∂2�m (ψ,λ̃ψ )
∂λ∂λT

∣∣∣




1/2

f (y | ψ, λ̃ψ )π (ψ, λ̃ψ )

f (y | ψ̃, λ̃)π (ψ̃, λ̃)
, (11.34)

where λ̃ψ is the maximum a posteriori estimate of λ for fixed ψ and the denom-
inator and numerator determinants are of Hessian matrices of sides (p − 1) and
p respectively.

The posterior marginal cumulative distribution for ψ may be approximated by
applying (11.31) to the integral of (11.34) over the range (∞, ψ0). We take u0 = ψ0,

g(ψ) = �m(ψ̃, λ̃) − �m(ψ, λ̃ψ ), a(ψ) =



∣∣∣− ∂2�m (ψ̃,λ̃)
∂θ∂θT

∣∣∣∣∣∣− ∂2�m (ψ,λ̃ψ )
∂λ∂λT

∣∣∣




1/2

,

and set r∗
0 = r0 + r−1

0 log(v0/r0), where

r0 = sign(ψ0 − ψ̃)[2{�m(ψ̃, λ̃) − �m(ψ0, λ̃ψ0 )}]1/2,

v0 = −∂�m(ψ0, λ̃ψ0 )

∂ψ




∣∣ − ∂2�m (ψ0,λ̃ψ0 )
∂λ∂λT

∣∣∣∣ − ∂2�m (ψ̃,λ̃)
∂θ∂θT

∣∣



1/2

;

here λ̃ψ0 is the maximum a posteriori estimate of λ when ψ is fixed at ψ0. It is often
convenient to find the derivatives numerically.
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Table 11.7 Numbers of
failures y of ten pumps in
x thousand operating
hours, with the crude rate
estimate y/x (Gaver and
O’Muircheartaigh, 1987).
The final column gives
empirical Bayes rate
estimates derived in
Problem 11.26.

Rate estimate (×102)

Case x y Crude Empirical Bayes

1 94.320 5 5.3 6.1
2 15.720 1 6.4 10.7
3 62.880 5 8.0 9.1
4 125.760 14 11.1 11.7
5 5.240 3 57.3 58.8
6 31.440 19 60.4 60.6
7 1.048 1 95.4 80.0
8 1.048 1 95.4 80.0
9 2.096 4 190.8 143.7

10 10.480 22 209.9 194.4

Numerous variant approaches are possible. For example, the ratio of priors in the
integral of (11.34) may be included in the function a(u) of (11.30), which case �m is
simply the log likelihood, θ̃ and λ̃ψ are maximum likelihood estimates, the Hessians
are observed information matrices, and r0 is the directed likelihood ratio statistic
for testing the hypothesis ψ = ψ0. The prior then appears only in v0. The resulting
approximation is generally poorer than that described above, but this idea does suggest
a quick way to assess sensitivity to the prior density. The key is to notice that the
approximate effect on (11.34) of taking a different prior, π1(ψ, λ), say, would be
to multiply (11.34) by the ratio c(ψ) = {π1(ψ, λ̃ψ )/π (ψ, λ̃ψ )}/{π1(ψ̃, λ̃)/π (ψ̃, λ̃)};
the effect is approximate because Laplace approximation based on π1 would not
lead to integrals maximized at λ̃ψ and (ψ̃, λ̃). On the other hand, the effect on these
maximizing values of changing the prior is often relatively small. Thus the effect
of modifying the prior from π to π1 may be gauged by changing v0 to v0/c(ψ0),
and recalculating r∗

0 and �(r∗
0 ). This involves no further maximization or numerical

differentation.

Example 11.19 (Pump failure data) Table 11.7 contains the numbers of failures y j

of n = 10 pumps in operating periods of x j thousands of hours. The pumps are from
several systems in the nuclear plant Farley 1; pumps 1, 3, 4, and 6 operate continuously,
while the rest operate only intermittantly or on standby. For now we suppose that the
pumps may be expected to have similar rates of failure, with the j th pump having
failure rate λ j , and that conditional on λ j , the numbers of failures y j have independent
Poisson distributions with means λ j x j . We further suppose that the λ j are independent
realizations of a gamma variable with parameters α and β, and that β itself has a prior
gamma distribution with parameters ν and φ. Thus

f (y | λ) =
n∏

j=1

(x jλ j )y j

y j !
e−x j λ j , π (λ | β) =

n∏
j=1

βαλα−1
j

�(α)
e−βλ j ,

(11.35)

π (β) = φνβν−1

�(ν)
e−φβ,
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Table 11.8 Integrals of
two approximate posterior
densities for β for the
pumps data. The first, Ĩ1,
involves a
one-dimensional Laplace
approximation to (11.36),
while Ĩ10 involves
ten-dimensional Laplace
approximation. The table
shows how the integral
changes when the
curvature of the likelihood
is increased by a.

a 1 2 3 4 5 10 20
Ĩ1 1.022 1.017 1.014 1.012 1.011 1.009 1.007
Ĩ10 1.782 1.309 1.183 1.127 1.096 1.042 1.019

so that the joint density of the data y, the rates λ, and β is

f (y | λ) f (λ | β)π (β) = c
n∏

j=1

{
λ

y j +α−1
j e−λ j (x j +β)

} × βnα+ν−1e−φβ, (11.36)

where c is a constant of proportionality.
To find the conditional density of β, we integrate over the λ j , to obtain

f (y, β) = c
n∏

j=1

{
(x j + β)−(y j +α)�(y j + α)

} × βnα+ν−1e−φβ, (11.37)

from which the marginal density of y is obtained by further integration to give

f (y) = c
n∏

j=1

�(y j + α) ×
∫ ∞

0
e−h(β) dβ,

where h(β) = φβ − (nα + ν − 1) log β + ∑
(y j + α) log(x j + β); we use I to de-

note the integral in this expression.
For sake of illustration we take a proper but fairly uninformative prior for β,

with ν = 0.1 and φ = 1, and take α = 1.8. Application of Laplace’s method to I
then results in the approximate posterior density for β, π̃ (β | y) = Ĩ −1 exp{−h(β)},
which has integral 1.022.

The accuracy of Laplace’s method can be tested by taking a different approach,
in which we first integrate (11.36) over β, and then apply the multivariate version of
Laplace’s method to the resulting ten-dimensional integral with respect to the λ j . In
this case the density approximation has integral 1.782, because the ten-dimensional
integral approximation, Ĩ10, is less accurate than Ĩ1. To compare the two approaches we
recalculate the approximations for data (ax j , ay j ) and various values of a. This leaves
unchanged the failure rates y j/x j , but increases by a factor a the Fisher information for
each of the λ j , thereby increasing the curvature of the log likelihood and the accuracy
of the approximation. The results in Table 11.8 show that Ĩ10 rapidly improves as a
increases, and that with counts about 4–5 times as large as those observed, Laplace’s
method gives adequately accurate answers, even in ten dimensions. In practice, of
course, Ĩ1 would be used.

To calculate approximate posterior densities for λ j , we integrate (11.36) over
λi , i �= j , and then apply Laplace’s method to the numerator and denominator
integrals of

π (λ j | y) = λ
y j +α−1
j e−λ j x j

∫ ∞
0 e−h j (β) dλ

�(y j + α)
∫ ∞

0 e−h(β) dβ
,
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Figure 11.4
Approximate posterior
densities for β and λ2 for
the pumps data, based on
Laplace approximation.

where

h j (β) = (φ + λ j )β − (nα + ν − 1) log β +
∑
i �= j

(yi + α) log(xi + β).

The resulting denominator is again Ĩ1, while the numerator must be recalculated at
each of a range of values of λ j . Figure 11.4 shows these approximate densities for
β and for λ2. That for λ2 has integral 1.0004 and is presumably closer to one because
it is based on a ratio of Laplace approximations. �

The ideal situation for Laplace approximation is when the posterior density is
strongly unimodal. When the posterior is multimodal, the approximation can be ap-
plied separately to each mode — provided they can all be found. Different approxi-
mations apply when the posterior is peaked at the end of its range (Exercise 11.3.5).

11.3.2 Importance sampling

Many Monte Carlo techniques may be applied in Bayesian computation. In this section
we discuss ideas based on importance sampling, and in the next section we turn to
iterative methods based on simulating Markov chains. Importance sampling gives
independent samples, and so measures of uncertainty for estimators are usually fairly
readily obtained, but it applies to a limited range of problems. Iterative methods are
more widely applicable but it can be difficult to assess their convergence and to give
statements of uncertainty for their output.

Suppose we wish to calculate an integral of form

µ =
∫

m(θ, y, z)π (θ | y) dθ.

If we take m(θ, y, z) = I (θ ≤ a), for example, then µ = Pr(θ ≤ a | y), while tak-
ing m(θ, y, z) = f (z | y, θ ) gives µ = f (z | y), the posterior predictive density for
z given the data. Suppose that direct computation of µ is awkward, but that it is
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straightforward both to generate a sample θ1, . . . , θS from a density h(θ ) whose sup-
port includes that of π (θ | y), and to calculate m(θ, y, z) and f (y | θ ). We can then
apply importance sampling for estimation of µ, obtaining the unbiased estimator
(Section 3.3.2)

µ̂ = S−1
S∑

s=1

m(θs, y, z)
π (θs | y)

h(θs)
= S−1

S∑
s=1

m(θs, y, z)w(θs), (11.38)

say, where w(θ ) = π (θ | y)/h(θ ) is an importance sampling weight. An important
advantage of µ̂ over the iterative procedures to be disussed later is that its variance is
readily obtained (Exercise 11.3.6).

In practice the importance sampling ratio estimator of µ,

µ̂rat =
∑S

s=1 m(θs, y, z)w(θs)∑S
s=1 w(θs)

,

is more commonly used. This is typically less variable than µ̂; indeed it performs
perfectly if m(θ, y, z) is constant, as is clear from its variance, given by (Example 2.25)

v̂ar(µ̂rat) = 1

S(S − 1)

S∑
s=1

{m(θs, y, z) − µ̂rat}2w(θs)2

w2 , w = S−1
S∑

s=1

w(θs).

As usual with importance sampling, a good choice of h(θ ) is crucial if the simula-
tion is to be useful. One possibility is a normal approximation to the posterior density
of θ , taking h(θ ) to be N

{̂
θ, J (̂θ )−1

}
, where θ̂ and J (̂θ ) are the maximum likelihood

estimate and the observed information. Normal approximation may be better if ap-
plied to a transformed parameter ψ = ψ(θ ), however, while the light-tailed normal
distribution typically gives too few simulations in the tail of the posterior density.
Hence it is usually better to generate the θs from a shifted and rescaled tν density.

Example 11.20 (Challenger data) Table 1.3 gives data on launches of the space
shuttle, including the ill-fated Challenger launch. In Examples 1.3, 4.5 and 4.33
we saw how these data may be modelled using a logistic regression model, under
which the number of O-rings suffering thermal distress when a launch takes place at
temperature x◦

1 F is binomial with denominator m = 6 and probability π (β + β1x1) =
exp(β0 + β1x1)/{1 + exp(β0 + β1x1)}. The likelihood (4.6) for this model is shown
in Figure 4.3. Let us represent the data for the 23 successful launches by y, with
likelihood f (y | θ ); here θ = (β0, β1).

One aspect of interest when deciding whether to launch the Challenger should
have been the number Z of distressed O-rings at its launch temperature of x1 = 31◦F.
We suppose that, conditional on θ , f (z | θ ) is binomial with denominator m = 6
and probability π (β0 + 31β1), independent of other launches. Then in the Bayesian
framework we should calculate the posterior predictive density for Z ,∫

f (z | θ ) f (y | θ )π (θ ) dθ∫
f (y | θ )π (θ ) dθ

,

where π (θ ) is the prior density on (β0, β1).
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Figure 11.5 Importance
sampling applied to
shuttle data. Left: pairs
(β0, β1) simulated from a
prior density, with log
likelihood contours
superimposed. Pairs
whose weight ws exceeds
(100S)−1 are shown as
blobs. The other pairs
have very low likelihoods
and hence essentially zero
posterior probabilities ws .
Right: posterior predictive
density for the number of
distressed O-rings for a
launch at 31◦F, using beta
prior with a = b = 0.5
(blobs), a = b = 1 (1) and
a = 1, b = 4 (2),
estimated by importance
sampling with
S = 10, 000.

The parameters β0 and β1 are difficult to interpret directly, and instead we consider
the probabilities π1 = π (β + 60β1) and π2 = π (β + 80β1) that a single O-ring will
be distressed at 60 and 80◦F. In practice specification of the joint prior density of π1

and π2 would require engineering expertise, but in default of this we simply suppose
that they have independent beta densities (11.3) with a = b = 1/2. For the initial step
of the importance sampling algorithm we generate 10,000 independent pairs (π1, π2)
and then set

β1 = 1

80 − 60
log

{
π2(1 − π1)

π2(1 − π1)

}
, β0 = log

{
π1

1 − π1

}
− 60β1.

The left panel of Figure 11.5 shows some of the resulting pairs θs = (β0, β1),
superimposed on contours of the log likelihood. Pairs whose weight ws exceeds one-
hundredth of its average are shown by blobs. About 30% of the simulated values
fall into this category, for which

∑
ws = 0.9996, so just 4/10,000ths of the posterior

probability is placed on the other 7000 pairs. This occurs both because the prior is
much more dispersed than the likelihood, and because they are mismatched, in the
sense that the prior value of β1 for a given β0 is generally too large — the mode of
f (β1 | β0) lies to the right of that of f (y | β1, β0), considered as a function of β1 for
fixed β0.

The right panel of Figure 11.5 shows the posterior probabilities of z = 0, . . . ,

6 distressed rings. There is appreciable probability of damage to most of the rings, as
Pr(Z ≥ 4 | y)

.= 0.65, with little dependence on the prior. �

This examples show both the strengths and weaknesses of importance sampling.
It is simple to apply, and because θ1, . . . , θS are independent it is easy to obtain a
standard error for µ̂, and then to increase S if necessary. On the other hand the prior
is sometimes so overdispersed relative to the likelihood that S must be huge before
an appreciable number of the ws are non-zero, and a better importance sampling
distribution must be found. This problem becomes acute when the dimension of θ

is large and the curse of dimensionality bites. There are clever ways to improve
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importance sampling in such situations, but Markov chain methods apply readily to
many high-dimensional problems, and to these we now turn.

11.3.3 Markov chain Monte Carlo

The idea of Markov chain Monte Carlo simulation is to construct a Markov chain that
will, if run for an infinitely long period, generate samples from a posterior distribution
π , specified implicitly and known only up to a normalizing constant. Although it
has roots in areas such as statistical physics, its application in mainstream Bayesian
statistics is relatively recent and the discussion below is merely a snapshot of a topic
in full spate of development. The reader whose memory of Markov chains is hazy
may find it useful to review the early pages of Section 6.1.1.

Gibbs sampler
The term Gibbs sampling
comes from an analogy
with statistical physics,
where similar methods are
used to generate states
from Gibbs distributions.
In that context it is called
the heat bath algorithm.

Let U = (U1, . . . , Uk) be a random variable of dimension k whose joint densityπ (u) is
unknown. Our goal is to estimate aspects of π (u), such as joint or marginal densities
and their quantiles, moments such as E(U1) and var(U1), and so forth. Although
π (u) itself is unknown, we suppose that we can simulate observations from the full
conditional densities π (ui | u−i ), where u−i = (u1, . . . , ui−1, ui+1, . . . , uk). Often in
practice the constant normalizing π (u) is unknown, but as it does not appear in the
π (ui | u−i ), this causes no difficulty. If π (u) is proper, then the Hammersley–Clifford
theorem implies that under mild conditions π (u) is determined by these densities;
this does not imply that any set of full conditional densities determines a proper joint
density. Gibbs sampling is successive simulation from the π (ui | u−i ) according to
the algorithm:

1. initialize by taking arbitrary values of U (0)
1 , . . . , U (0)

k .
2. Then for i = 1, . . . , I ,

(a) generate U (i)
1 from π

(
u1 | u2 = U (i−1)

2 , . . . , uk = U (i−1)
k

)
,

(b) generate U (i)
2 from π

(
u2 | u1 = U (i)

1 , u3 = U (i−1)
3 , . . . , uk = U (i−1)

k

)
,

(c) generate U (i)
3 from

π
(
u3 | u1 = U (i)

1 , u2 = U (i)
2 , u4 = U (i−1)

4 , . . . , uk = U (i−1)
k

)
,

...
(d) generate U (i)

k from π
(
uk | u1 = U (i)

1 , . . . , uk−1 = U (i)
k−1

)
.

Here we update each of the U j in turn, basing each value generated on the k − 1
previous simulations. This gives a stream of random variables

U (1)
1 , . . . , U (1)

k , U (2)
1 , . . . , U (2)

k , . . . , U (I−1)
1 , . . . , U (I−1)

k , U (I )
1 , . . . , U (I )

k ,

so for the j th component of U we have a sequence U (1)
j , . . . , U (I )

j .
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To see why we might hope that (U (I )
1 , . . . , U (I )

k ) is approximately a sample from
π (u), suppose that k = 2 and that U1 and U2 take values in the finite sets {1, . . . , n}
and {1, . . . , m}. We write their joint and marginal densities as

Pr(U1 = r, U2 = s) = π (r, s),

Pr(U1 = r ) = π1(r ) =
m∑

s=1

π (r, s), r = 1, . . . , n,

Pr(U2 = s) = π2(s) =
n∑

r=1

π (r, s), s = 1, . . . , m,

with π1(r ), π2(s) > 0 for all r and s. The conditional densities are

psr = Pr(U1 = r | U2 = s) = π (r, s)

π2(s)
, qrs = Pr(U2 = s | U1 = r ) = π (r, s)

π1(r )
,

which we express as an m × n matrix P21 with (s, r ) element psr and an n × m matrix
P12 with (r, s) element qrs . These transition matrices give the probabilities of going
from the m possible values of U2 to the n possible values of U1 and back again. As
they are ratios, prs and qrs do not involve the normalizing constant for π .

If f0 is an m × 1 vector containing the distribution of U (0)
2 , the distributions of

U (1)
1 , U (1)

2 , U (2)
1 , . . . , are f T

0 P21, f T
0 P21 P12, f T

0 P21 P12 P21, . . . . Thus each iteration of
step 2 of the algorithm corresponds to postmultiplying the current distribution of U (i)

2

by the m × m matrix H = P21 P12. Hence U (I )
2 has distribution f T

0 H I . Conditional
on U (i)

2 , U (i+1)
2 is independent of earlier values, so the sequence U (1)

2 , . . . , U (I )
2 is a

Markov chain with transition matrix H . If the chain is ergodic, then U (I )
2 has a unique

limiting distribution f as I → ∞, satisfying the equation f T H = f T. As this limit
is unique, we need only show that f is the marginal distribution of U2 to see that
the algorithm ultimately produces a variable with density π2. Now the r th element of
π T

2 H = π T
2 P21 P12 equals

n∑
t=1

m∑
s=1

π2(t)ptsqsr =
n∑

t=1

m∑
s=1

π2(t)
π (s, t)

π2(t)

π (r, s)

π1(s)
= π2(r ),

so π2 is indeed the unique solution to the equation f T H = f T. By symmetry,
U (1)

1 , . . . , U (I )
1 is a Markov chain with transition matrix P12 P21 and limiting dis-

tribution π1. Moreover the fact that π T
2 P21 = π T

1 ensures that the joint distribution
of (U (I )

1 , U (I )
2 ) converges to π (r, s) as I → ∞. Generalization to k > 2 works in an

obvious way.
Most of the densities π (u) met in applications are continuous, so this argument is

not directly applicable. However any continuous density can be closely approximated
by one with countable support, for which essentially the same results hold, so it is not
surprising that the ideas apply more widely, and from now on we shall assume that
they are applicable to our problems.

Such a simulation will only be useful if convergence to the stationary distri-
bution is not too slow. In discrete cases like that above, the convergence rate
is determined by the modulus of the second largest eigenvalue l2 of H , where
1 = l1 ≥ |l2| ≥ · · ·. If |l2| < 1, then convergence is geometrically ergodic; see (6.4).
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In the continuous case it can occur that |l2| = 1 or that l2 does not exist, either
of which will spell trouble. A reversible chain has real eigenvalues and satisfies
the detailed balance condition (6.5). Hence it can be useful to make the chain re-
versible, for example by generating variables in order 1, . . . , k, k − 1, . . . , 2, . . . or
by choosing the next update at random. Either involves modifying step 2 of the
algorithm.

Output analysis

The only sure way to know how long a Markov chain simulation algorithm should
be run is by theoretical analysis to determine its rate of convergence. This requires
knowledge of the stationary distribution being estimated, however, and is possible
only in very special cases. A more pragmatic approach is to declare that the algo-
rithm has converged when its output satisfies tests of some sort. Such convergence
diagnostics can at best detect non-convergence, however; they cannot guarantee that
the output will be useful. Both empirically- and theoretically-based diagnostics have
been proposed, and references to them are given in the bibliographic notes. Empirical
approaches include contrasting output from the start and the end of a run, and compar-
ing results from parallel independent runs whose initial values have been chosen to
be overdispersed relative to the target distribution. Theoretical approaches generally
assess whether the output satisfies known properties of stationary chains. In practice
it is sensible to use several diagnostics but also to scrutinize time series plots of the
output. As different parameters may converge at different rates, it is important to
examine all parameters of interest and also global quantities such as the current log
likelihood, prior, and posterior.

If stationarity seems to have been attained, then it is useful to examine correlograms
and partial correlograms of output. If the autocorrelations are high, then the statisti-
cal efficiency of the algorithm will be low. A chain with low correlations will yield
estimators with smaller variance, and is more likely to visit all regions of significant
probability mass. The algorithm may need modification to reduce high autocorrela-
tions, for example by reparametrization; see Example 11.24.

Multimodal target densities are awkward because it can be hard to know if all
significant modes have been visited. Use of widely separated starting values may
then be useful, and so too may be occasional insertion of large random jumps into
the algorithm, so that it effectively restarts from a location unrelated to its previous
position.

Suppose that the chain seems to have converged after B iterations and is run for a
total of I 
 B iterations. In general discussion below we suppose that I is so much
larger than B that inference can safely be based on all I iterations, but in practice
we use only output from iterations B + 1, . . . , I . Let the quantity of interest be µ =∫

m(u)π (u) du, where
∫ |m(u)|π (u) du < ∞. Unless there is qualitative knowledge

about π (u) this may involve an act of faith. For example, taking m(u) = u1 gives
µ = E(U1), which could be infinite although π (u) is proper. Hence unless properties
of the posterior density are known it is safer to base inferences on density and quantile
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estimates than on moments. If µ is finite then it can be estimated by the ergodic
average

µ̂ = I −1
I∑

i=1

m
(
U (i)

)
, (11.39)

where U (i) denotes (U (i)
1 , . . . , U (i)

k ). The ergodic theorem (6.2) implies that µ̂ con-
verges almost surely to µ as I → ∞, and under further conditions

I 1/2 (µ̂ − µ)
D−→ N

(
0, σ 2

m

)
, where 0 < σ 2

m < ∞, (11.40)

so µ̂ is approximately normal for large I . In that case

I × var(µ̂) = I −1
I−1∑

i=−I+1

(I − |i |) γi ∼ σ 2
m =

∞∑
i=−∞

γi = γ0

∞∑
i=−∞

ρi ,

where γi = cov{m(U (0)), m(U (i))} depends on π and on the construction of the chain,
and ρi = γi/γ0 is the i th autocorrelation. The marginal variance of m(U ) is γ0 =
varπ {m(U )}, which depends only on m and π . The effect of using correlated output is
to inflate var(µ̂) by a factor τ = ∑∞

−∞ ρi relative to an independent sample of size I ,
so an estimate τ̂ from a pilot run may suggest how large I should be. The obvious
estimator of τ based on the correlogram is inconsistent, but better ones exist. One
simple possibility is τ̂ = ∑M

i=−M ρ̂i , where M = �3̂τ� is found by iteration. �x� is the smallest integer
greater than or equal to x .Another approach splits the output into b blocks of k successive iterations, with

k taken so large that the block averages of the m(U (i)) have correlations lower than
0.05, say, and gives the standard error for µ̂ as if the block averages were a simple
random sample.

The density of U1 at u1 may be estimated by a kernel method (Section 7.1.2), or
by the unbiased estimator (7.12), written in this context as

I −1
I∑

i=1

π
(
u1 | U (i)

−1

)
. (11.41)

The discussion above presupposes a single long run of the chain. An alternative is
S independent parallel runs of length I , leading ultimately to S independent values
U (I ) from π (u). An estimate based on these may be less variable than one based on
SI dependent samples from a single chain, and its variance is more easily estimated.
Roughly SB iterations must be disregarded, however, compared to B when there is
only one chain. From this viewpoint a single run is preferable, but it is then harder to
detect lack of convergence.

Example 11.21 (Bivariate normal density) If (U1, U2) are bivariate normal with
means zero, variances one and correlation ρ, then φ denotes the standard

normal density.

π (u1 | u2) = 1

(1 − ρ2)1/2
φ

{
u1 − ρu2

(1 − ρ2)1/2

}
,

with a symmetric result for π (u2 | u1), and we can use the marginal standard
normal densities of U1 and U2 to assess convergence. The upper left panel of
Figure 11.6 shows the contours of the joint density when ρ = 0.75, together with a
sample path of the process starting from an initial value generated uniformly on the
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Figure 11.6 Gibbs
sampler for bivariate
normal density. Top left:
contours of the bivariate
normal density with
ρ = 0.75, with the first
five iterations of a Gibbs
sampler; the blobs are at
(u(i)

1 , u(i)
2 ), for

i = 0, . . . , 5, starting
from the top left of the
panel. Top right: sample
paths of U (i)

1 and U (i)
2 for

i = 1, . . . , 100. Bottom
left: kernel density
estimates of π1(u1) (heavy
solid) based on 100
parallel chains after I
iterations, with I = 0
(solid), 2 (dots), 5
(dashes), 10 (large
dashes), and 100 (largest
dashes); the bandwidth is
chosen by uniform
cross-validation. Bottom
right: estimates (dots) of
π1(u1) (heavy solid) after
100 iterations of 5
replicate chains, based on
(11.41).

square (−4, 4) × (−4, 4). The updating scheme forces the sample path to consist of
steps parallel to the coordinate axes. The upper right panel shows that the sample
paths of the Markov chains appear to converge rapidly to their limit distributions,
as the calculations in Problem 11.20 show will be the case. This is confirmed by
the estimated variance inflation factor τ̂

.= 3. The lower left panel shows rapid
convergence of the kernel density estimates to their target, based on S = 100 parallel
chains. The lower right panel illustrates the variability of (11.41), which here
performs better than the kernel estimator. �

Bayesian application

The essence of Bayesian inference is to treat all unknowns as random variables, and to
compute their posterior distributions given the data y. The Gibbs sampler is applied by
taking U1, . . . , Uk to be the unknowns, usually parameters, and simulating conditional
on y. The full conditional densities π (ui | u−i ) are typically of form π (θi | θ−i , y)
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and must be obtained before the algorithm can be applied. Fortunately this is often
possible for ‘nice’ models, where the full conditional densities have conjugate forms.

Example 11.22 (Random effects model) The sampling model in the simplest nor-
mal one-way layout is

ytr = θt + εtr , t = 1, . . . , T, r = 1, . . . , R,

where θ1, . . . , θT
iid∼ N (ν, σ 2

θ ) and independent of this εtr
iid∼ N (0, σ 2). The focus of

interest is usually σ 2 and σ 2
θ .

Bayesian analysis requires prior information, which we suppose to be expressed
through the conjugate densities

µ ∼ N (µ0, τ
2), σ 2 ∼ I G(α, β), σ 2

θ ∼ I G(αθ , βθ ).

The full posterior density is then

π
(
µ, θ, σ 2, σ 2

θ | y
) ∝ f (y | θ, σ 2) f

(
θ | µ, σ 2

θ

)
π (µ)π (σ 2)π

(
σ 2

θ

)
. (11.42)

We now take (U1, U2, U3, U4) = (σ 2
θ , σ 2, µ, θ), and calculate the full conditional

densities needed for Gibbs sampling, always treating the data y as fixed. Each calcu-
lation requires integration over just one parameter. For example,

π
(
σ 2

θ | σ 2, µ, θ, y
) = f (y | θ, σ 2) f

(
θ | µ, σ 2

θ

)
π (µ)π (σ 2)π

(
σ 2

θ

)
∫

f (y | θ, σ 2) f
(
θ | µ, σ 2

θ

)
π (µ)π (σ 2)π

(
σ 2

θ

)
dσ 2

θ

= f
(
θ | µ, σ 2

θ

)
π (µ)π

(
σ 2

θ

)
∫

f
(
θ | µ, σ 2

θ

)
π (µ)π

(
σ 2

θ

)
dσ 2

θ

= π
(
σ 2

θ | µ, θ
)
.

Similar calculations reveal that π (θ | σ 2
θ , σ 2, µ, y) does not simplify, but that

π
(
σ 2 | σ 2

θ , µ, θ, y
) = π (σ 2 | θ, y), π

(
µ | σ 2

θ , σ 2, θ, y
) = π

(
µ | σ 2

θ , θ
)
.

(11.43)
Arguments paralleling those in Example 11.12 lead to

σ 2
θ | µ, θ ∼ I G

(
αθ + 1

2
T, βθ + 1

2

T∑
t=1

(θt − µ)2

)
, (11.44)

σ 2 | θ, y ∼ I G

(
α + 1

2
T R, β + 1

2

T∑
t=1

R∑
r=1

(ytr − θt )
2

)
, (11.45)

µ | σ 2
θ , θ ∼ N

(
σ 2

θ µ0 + τ 2 ∑T

t=1 θt

σ 2
θ + T τ 2

,
σ 2

θ τ 2

σ 2
θ + T τ 2

)
. (11.46)

The conditional density π (θ | σ 2
θ , σ 2, µ, y) is most readily calculated by noting that

given µ, σ 2
θ and σ 2, the statistic yt is sufficient for θt , with distribution N (θt , σ

2/R),
while the prior density for θt given σ 2

θ , σ 2, and µ is N (µ, σ 2
θ ). Hence the posterior

density for θt is

θt | σ 2
θ , σ 2, µ, y ∼ N

(
Rσ 2

θ yt + σ 2µ

Rσ 2
θ + σ 2

,
σ 2

θ σ 2

Rσ 2
θ + σ 2

)
, t = 1, . . . , T, (11.47)

and the θt are conditionally independent.
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Table 11.9 Estimated
posterior means and
standard deviations for the
model fitted to the blood
data, and simple
frequentist estimates from
analysis of variance.

σ 2
θ σ 2 µ θ1 θ2 θ3 θ4 θ5 θ6

Estimate 23.8 126.4 41.9 53.9 43.0 34.9 39.9 41.3 38.6
Posterior mean 17.1 138.0 41.9 45.8 42.3 39.6 41.2 41.7 40.8
Posterior SD 30.3 33.8 2.4 4.1 2.9 3.4 2.9 2.9 3.0

µ2
0 τ2

θ a2
θ b2θ

2µ2
θ 2σ22

θ 2µ2
θ 2σ22

θ

2a2
θ 2θ2

θ 2θ2
θ

2σ2
θ 2y2

θ 2σ2
θ 2y2

θ

2b2θ

Figure 11.7 Graphs for
random effects model of
Example 11.22. Left:
directed acyclic graph
showing dependence of
random variables (circles)
on themselves and on
fixed quantities
(rectangles). Right:
conditional independence
graph, formed by
moralizing the directed
acyclic graph, that is,
joining parents and
dropping arrowheads.

Expressions (11.44)–(11.47) give the steps required for an iteration of the Gibbs
sampler. As the T updates in (11.47) are independent, they may all be performed at
once, if the programming language used permits simultaneous generation of several
non-identically-distributed normal variates.

Ideas from Section 6.2.2 render the structure of the full conditional densities more
intelligible. Figure 11.7 shows the directed acyclic graph and the corresponding con-
ditional independence graph for the present model. Each of µ, σ 2

θ , and σ 2 has two
hyperparameters, considered fixed, and µ and σ 2

θ are parents of θ1, . . . , θT . Each
iteration of the Gibbs sampler traverses the parameter nodes in the conditional inde-
pendence graph, simulating from the full conditional distribution corresponding to
each node with remaining parameters set at their current values. The data y are held
fixed throughout.

We applied this algorithm to the data in Table 9.22 on the stickiness of blood. For
illustration we took α = αθ = 0.5, β = βθ = 1, µ = 0, and τ 2 = 1000, and generated
starting-values for the parameters from the uniform distribution on (0, 100). We ran
25 independent chains with I = 1000.

Figure 11.8 shows simulated series for three parameters and estimates of their
posterior densities. The burn-in period seems to last for about B = 100 iterations,
after which the chains seem stable. The chain for σ 2

θ makes some large positive
excursions, but the others seem fairly homogeneous, though they both show fairly
strong autocorrelations. Estimated variance inflation factors are about 10 for σ 2

θ and µ,
but only 1–2.5 for the other parameters, consistent with the top left panels of the figure.

Table 11.9 shows the posterior means and standard deviations for the parameters,
with their frequentist estimates. The posterior mean for µ is essentially equal to the
overall average y, but the posterior densities of the θt are strongly shrunk towards
it, because there is evidence that σ 2

θ is small; its posterior 0.1, 0.5, and 0.9 quantiles
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Figure 11.8 Gibbs
sampler for normal
components of variance
model and blood data. Top
left: time plots of θ1, σ 2

θ ,
and σ 2. The other panels
show estimated posterior
densities for these
parameters, based on
applying analogues of
(11.41) to the last 200
estimates from each of 25
parallel chains of length
1000. Frequentist
estimates are shown as the
dotted vertical lines.

are 0.46, 7.1, and 42.1. The variability mostly comes from measurement error, not
inter-subject variation. �

Metropolis–Hastings algorithm

The Gibbs sampler is easy to program, but if the full conditional densities it involves
are unavailable or too nasty then a more general algorithm may be needed. A powerful
approach known as the Metropolis–Hastings algorithm works as follows. In order to
update the current value u of a Markov chain, a new value u′ is generated using
a proposal density q(u′ | u). Any density q can be used provided q(u′ | u) > 0 if
and only if q(u | u′) > 0 and the resulting chain has the properties desired. Having
generated u′, a move from u to u′ is accepted with probability

a(u, u′) = min

{
1,

π (u′)q(u | u′)
π (u)q(u′ | u)

}
,

but otherwise the chain remains at u. Hence the probability density for a move to u′,
given that the chain has current value u, is δ denotes the Dirac delta

function.

p(u′ | u) = q(u′ | u)a(u, u′) + r (u)δ(u − u′),
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where

r (u) = 1 −
∫

q(v | u)a(u, v) dv.

The first and second terms of p(u′ | u) are the probability density for a move from u
to u′ being proposed and accepted, and the probability that a move away from u is
rejected.

The Metropolis–Hastings update step satisfies the detailed balance condition (6.5),
because

π (u)p(u′ | u) = π (u)q(u′ | u) min

{
1,

π (u′)q(u | u′)
π (u)q(u′ | u)

}
+ π (u)r (u)δ(u − u′)

= π (u′)q(u | u′) min

{
π (u)q(u′ | u)

π (u′)q(u | u′)
, 1

}
+ π (u′)r (u′)δ(u′ − u)

= π (u′)p(u | u′).

Hence the corresponding Markov chain is reversible with equilibrium distribution π ,
provided it is irreducible and aperiodic. As π appears only in a ratio π (u′)/π (u) in the
acceptance probability a(u, u′), the algorithm requires no knowledge of the constant
that normalizes π .

If q(u′ | u) = q(u | u′), the kernel is called symmetric, and a(u, u′) =
min

{
1, π (u′)/π (u)

}
. This occurs in particular if u′ = u + ε, where ε is symmet-

ric with density g; then q(u′ | u) = g(u′ − u) = g(u − u′) = q(u | u′). This is called
random walk Metropolis sampling. It is often applied to transformations of u, or to
subsets of its elements, using a different proposal distribution for each subset.

The Gibbs sampler is a form of Metropolis–Hastings algorithm, the proposal den-
sity at the i th step of an iteration being

q(u′ | u) =
{

π (u′
i | u−i ), u′

−i = u−i ,
0, otherwise.

It then follows that

π (u′)q(u | u′)
π (u)q(u′ | u)

= π (u′)/π (u′
i | u−i )

π (u)/π (ui | u′
−i )

= π (u′)/π (u′
i | u′

−i )

π (u)/π (ui | u−i )
= π (u′

−i )

π (u−i )
= 1,

because u′
−i = u−i . Here the proposals always have u′

−i = u−i and are always ac-
cepted, because a(u, u′) = min[1, π (u′)q(u | u′)/{π (u)q(u′ | u)}] = 1.

Although there are few theoretical restrictions on the choice of q, practical con-
straints intervene. For example, if q(u′ | u) is so chosen that the acceptance probability
a(u, u′) is essentially zero, the chain will spend long periods without moving and its
output will be useless, and if the acceptance probability is close to one at each step
but the chain barely moves, the state space will be traversed too slowly. Hence it is
important to balance a reasonably high acceptance probability a(u, u′) with a chain
that moves around its state space quickly enough. This can demand creativity and
patience from the programmer.

Example 11.23 (Normal density) For illustration we take the toy problem of using
the Metropolis–Hastings algorithm to simulate from the standard normal density
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Figure 11.9 Sample
paths for
Metropolis–Hastings
algorithm. The stationary
density is standard normal
and the proposal density
q(u′ | u) is N (u, σ 2), with
σ = 0.1, 0.5, 2.4 and 10.
The initial value is
u0 = −10 and the same
seed is used for the
random number generator
in each case. Note the
dependence of the
acceptance rate and
convergence to
stationarity on σ . The
horizontal dashed lines
show the ‘usual’ range for
u.

φ(u) = π (u). The proposal density, q(u′ | u) = σ−1φ{(u′ − u)/σ }, depends on σ .
We take initial value u0 = −10 far from the centre of the stationary distribution. As
q(u′ | u) = q(u | u′), the acceptance probability is a(u, u′) = min{1, φ(u′)/φ(u)}.

Figure 11.9 shows sample paths u0, . . . , u500 for four values of σ . When σ =
0.1, only small steps occur but they are accepted with high probability because
φ(u′)/φ(u)

.= 1. Although u changes at almost every step, it moves so little that
the chain has not reached equilibrium after 500 iterations. When σ = 0.5 it takes 100
or so iterations to reach convergence and the chain then appears to mix fairly fast.
When σ = 2.4 convergence is almost immediate but as the acceptance probability is
lower the chain tends to get stuck for slightly longer. When σ = 10 the acceptance
probability is low and although the chain jumps to its stationary range almost at once,
it spends long periods without moving.

For comparison the experiment above was repeated 50 times, and the estimated
means of π (u) were compared. The estimator was the average of the last half of
u0, . . . , uI , with I = 500 iterations; that is, (11.39) with m(u) = u and B = 250.
Each of the 50 replicates used the same seed and initial value u0 for each σ ; the
values of u0 were generated from the t5 density. The estimated values of σ 2

m in (11.40)
were 170, 17.7, 6.2, and 8.0 for σ = 0.1, 0.5, 2.4, and 10; the larger values of σ

are preferable, but there is a large efficiency loss relative to the value σ 2
m = 1 for

independent sampling. This is because of the serial correlations of uB+1, . . . , uI ,
which were roughly 0.97, 0.89, 0.62, and 0.83 for σ = 0.1, 0.5, 2.4, and 10.

Exercise 11.3.11 sheds more light on this example. �
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Table 11.10 Motorette
data (Nelson and Hahn,
1972). Censored failure
times are denoted by +.

x (◦ F) Failure time (hours)

150 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+ 8064+
170 1764 2772 3444 3542 3780 4860 5196 5448+ 5448+ 5448+
190 408 408 1344 1344 1440 1680+ 1680+ 1680+ 1680+ 1680+
220 408 408 504 504 504 528+ 528+ 528+ 528+ 528+

Example 11.24 (Motorette data) Table 11.10 contains failure times yi j from an
accelerated life trial in which ten motorettes were tested at each of four temperatures,
with the objective of predicting lifetime at 130◦F. We analyse these data using a
Weibull model with

Pr(Yi j ≤ y; xi ) = 1 − exp {(y/θi )
γ } , θi = exp (β0 + β1xi ) , (11.48)

for i = 1, . . . , 4, j = 1, . . . , 10, where failure time is taken in units of hundreds of
hours and xi is log(temperature/100).

Here we describe a simple Bayesian analysis using the Metropolis–Hastings algo-
rithm. For illustration we take independent priors on the parameters, N (0, 100) on β0

and β1 and exponential with mean 2 on γ . Then the log posterior is

�m(β0, β1, γ ) ≡ −(
β2

0 + β2
1

)
/200 − γ /2

+
4∑

i=1

10∑
j=1

di j {log γ + γ log(yi j/θi )} − (yi j/θi )
γ ,

where di j = 0 for uncensored yi j .
For proposal distribution we update all three parameters simultaneously, by taking

(β ′
0, β

′
1, log γ ′) = (β0, β1, log γ ) + c(s1 Z1, s2 Z2, s3 Z3), where the sr are the standard

errors of the corresponding maximum likelihood estimates, Zr
iid∼ N (0, 1), and c can

be chosen to balance the acceptance probability and the size of the move. The ratio
q(u | u′)/q(u′ | u) reduces to γ ′/γ , so the acceptance probability equals

a
{
(β ′

0, β
′
1, γ

′), (β0, β1, γ )
} = min

[
1, exp

{
�m(β0, β1, γ ) − �m(β ′

0, β
′
1, γ

′)
}
γ ′/γ

]
.

The chain is clearly irreducible and aperiodic, so the ergodic theorem applies.
We take initial values near the maximum likelihood estimates, and run the chain

for 5000 iterations with c = 0.5. The sample path for β1 in the upper left panel of
Figure 11.10 shows that despite its acceptance probability of about 0.3, the chain
is not moving well over the parameter space. This is confirmed by the correlogram
and partial correlogram for successive values of β1, which suggest that the chain is
essentially an AR(1) process with ρ1

.= 0.99. In this case the variance inflation factor
is τ̂ = 199, so 5000 successive observations from the chain are worth about 25 inde-
pendent observations. Sample paths for the other parameters are similar, and varying c
does not improve matters. One reason for this is that β0 and β1 have correlation about
−0.97 a posteriori, and the proposal distribution does not respect this. It is better to
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Figure 11.10 Bayesian
analysis of motorette data
using
Metropolis–Hastings
algorithm. Upper panels:
sample paths for β1 using
two parametrizations, the
right one more nearly
orthogonal. Lower left:
kernel density estimates of
π (β1 | y) and of
π (Y+ | y), where Y+ is
failure time predicted for
130◦F.

reduce this correlation by replacing x by x − x , after which corr(β0, β1 | y)
.= −0.4.

The sample path for β1 from a run of the algorithm starting near the new maximum
likelihood estimates, with the new sr and with c = 2, is shown in the upper right panel
of Figure 11.10. This chain mixes much better, though its acceptance probability is
about 0.2. The usual plots suggest that β1 follows an AR(1) process with ρ

.= 0.9,
and likewise for the other parameters, whose chains show similar good behaviour.
Here τ̂ has the more acceptable value 19, though 5000 iterations would remain too
small in practice.

The lower panels of the figure show kernel density estimates of the posterior densi-
ties for β1 and for a predicted failure time Y+ for temperature 130◦F. Once convergence
has been verified, it is easy to obtain values for Y+, simply by simulating a Weibull
variable from (11.48) using the current parameter values at each iteration. Quantiles
of the simulated distributions may be used to obtain posterior confidence intervals for
the corresponding quantities.

The Metropolis–Hastings update described above changes all three parameters on
each iteration, or none of them. Alternatively we may attempt to update one parameter,
chosen at random. The resulting chain is also ergodic, but it does not improve on the
second approach described above. �
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Table 11.11 Accuracy
of Stirling’s formula and
related approximations.

α 0.5 1 2 3 4 5

Iα+1 0.8862 1 2 6 24 120
Ĩα+1/Iα+1 0.8578 0.9221 0.9595 0.9727 0.9794 0.9834
Ĩ ′
α+1/Iα+1 0.9905 0.9960 0.9987 0.9994 0.9996 0.9998

Metropolis–Hastings updates using an appropriate proposal distribution can be used
when the full conditional densities needed for particular steps of the Gibbs sampler
are not available. Generalizations can be constructed to jump between spaces of
differing dimensions, and these are valuable in applications where averaging over
various spaces or choosing among them is important. More details are given in the
bibliographic notes.

Exercises 11.3

1 Show that Laplace approximation to the gamma function

Iα+1 = �(α + 1) =
∫ ∞

0
uαe−u du

gives Stirling’s formula, �(α + 1)
.= Ĩα+1 = (2π )1/2αα+1/2e−α , and verify that the O(α−1)

term in (11.28) is (12α)−1. Show that this can be incorporated by modifying Ĩα+1 to
Ĩ ′
α+1 = (2π )1/2(α + 1

6 )1/2ααe−α , and check some of the numbers in Table 11.11.

2 Use the facts that if Z is a standard normal variable, E(Z 4) = 3 and E(Z 6) = 15, to check
(11.28). Use properties of normal moments to explain why (11.28) is an expansion with
terms in increasing powers of n−1 rather than n−1/2.

3 Let f (y; θ ) be a unimodal density with mode at ỹθ . Show that
∫ y

−∞ f (u; θ ) du may be
approximated by (11.31), with

g(u) = log f (ỹθ ; θ ) − log f (u; θ ), a(u) = (2π )1/2 f (ỹθ ; θ ),

and verify that the approximation is exact for the N (θ, σ 2) density. Investigate its accuracy
numerically for the gamma density with shape parameter θ > 1, and for the tν density.

4 Consider predicting the outcome of a future random variable Z on the basis of a random
sample Y1, . . . , Yn from density λ−1e−u/λ, u > 0, λ > 0. Show that π (λ) ∝ λ−1 gives
posterior predictive density

f (z | y) =
∫

f (z, y | λ)π (λ) dλ∫
f (y | λ)π (λ) dλ

= nsn/(s + z)n+1, z > 0,

where s = y1 + · · · + yn .
Show that when Laplace’s method is applied to each integral in the predictive density the
result is proportional to the exact answer, and assess how close the approximation is to a
density when n = 5.

5 Consider the integral

In =
∫ u2

u1

e−nh(u) du,

where h(u) is a smooth increasing function with minimum at u1, at which point its deriva-
tives are h1 = h′(u1) > 0, h2 = h′′(u1) and so forth. Show that

In = 1

nh1
e−nh(u1)

{
1 − e−nh1(u2−u1) + O(n−1)

}
,
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and deduce that ∫ u2

u1

e−nh(u) du/

∫ ∞

u1

e−nh(u) du
.= 1 − e−nh1(u2−u1).

A posterior density has form π (θ | y) ∝ θ−m−1, for θ > θ1 (Exercise 11.2.2). Find the
approximate and exact posterior density and distribution functions of θ , and compare
them numerically when m = 5, 10, 20 and θ1 = 1. Discuss.
Investigate how the approximation will change if h1 = 0.

6 Give an approximate variance for the importance sampling estimator (11.38), and verify
the formula for var(µ̂rat).

7 Sampling-importance resampling (SIR) works as follows: instead of using (11.38) as an
estimator of µ, an independent sample θ∗

1 , . . . θ∗
Q of size Q � S is taken from θ1, . . . , θS

with probabilities proportional to w(θ1), . . . , w(θS). The estimator of µ is µ̂∗ = Q−1
∑

θ∗
q .

(a) Discuss SIR critically when the initial sample is taken from the prior π (θ ); this is
sometimes called the Bayesian bootstrap. Give an explicit discussion in the case of an
exponential family model and conjugate prior.
(b) Show that E∗(µ̂∗) = µ̂rat, and find its variance. Use the Rao–Blackwell theorem to
show that the variance of µ̂∗ exceeds that of µ̂rat.
Under what circumstances would it be sensible to use SIR anyway?
(Rubin, 1987; Smith and Gelfand, 1992; Ross, 1996)

8 Show that the Gibbs sampler with k > 2 components updated in order

1, . . . , k, 1, . . . , k, 1, . . . , k, . . .

is not reversible. Are samplers updated in order 1, . . . , k, k − 1, . . . , 1, 2, . . ., or in a
random order reversible?

9 Show that the acceptance probability for a move from u to u′ when random walk Metropolis
sampling is applied to a transformation v = v(u) of u is

min

{
1,

π (u′)|dv/du|
π (u)|dv′/du′|

}
.

Hence verify the form of q(u | u′)/q(u′ | u) given in Example 11.24.
Find the acceptance probability when a component of u takes values in (a, b), and a
random walk is proposed for v = log{(u − a)/(b − u)}.

10 Suppose that Y1, . . . , Yn are taken from an AR(1) process with innovation variance σ 2

and correlation parameter ρ such that |ρ| < 1. Show that

var(Y ) = σ 2

n2(1 − ρ2)

{
n + 2

n−1∑
j=1

(n − j)ρ j

}
,

and deduce that as n → ∞ for any fixed ρ, nvar(Y ) → σ 2/(1 − ρ)2.
What happens when |ρ| = 1?
Discuss estimation of var(Y ) based on (n − 1)−1

∑
(Y j − Y )2 and an estimate ρ̂.

11 In Example 11.23, show that the probability of acceptance of a move starting from u > 0
equals

1

2
+ (1 + σ 2)−1/2 exp(a2/2) {�(a) + � (b)} − � (−2u/σ ) ,

where

a = − σu√
1 + σ 2

, b = −(2 + σ 2)u√
σ 2(1 + σ 2)

.
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Show that the expected move size may be written as

exp

(
a2

2

) [
σ

1 + σ 2
{φ (a) − φ (b)} − σ 2u

(1 + σ 2)3/2
{� (a) + � (b)}

]

+σ

{
φ

(−2u

σ

)
− φ(0)

}
.

Plot these functions over the range 0 ≤ u ≤ 15 for σ = 0.1, 1, 2.4, 10, and also with
0 ≤ σ ≤ 10 for u = 0, 1, 2, 3, 10. What light do these plots cast on the behaviour of the
chains in Figure 11.9?

11.4 Bayesian Hierarchical Models

Hierarchical models are useful when data have layers of variation. The incidence of
a disease may vary from region to region of a country, for instance, while within
regions there is variation due to differences in poverty, pollution, or other factors.
If the regional and local incidence rates are regarded as random, we can imagine a
hierarchy in which the numbers of diseased persons depend on random local rates,
which themselves depend on random regional rates. Such models were discussed
briefly from a frequentist viewpoint in Section 9.4. Here we outline the Bayesian
approach, using the notion of exchangeability.

The random variables U1, . . . , Un are called finitely exchangeable if their density
has the property

f (u1, . . . , un) = f
(
uξ (1), . . . , uξ (n)

)
for any permutation ξ of the set {1, . . . , n}. Then the density is completely symmetric
in its arguments and in probabilistic terms the U1, . . . , Un are indistinguishable; this
does not mean that they are independent. An infinite sequence U1, U2, . . . , is called
infinitely exchangeable if every finite subset of it is finitely exchangeable.

A key result in this context is de Finetti’s theorem, whose simplest form says that ifBruno de Finetti
(1906–1985) was born in
Innsbruck and studied in
Milan and Rome, where
he eventually became
professor, after working in
Trieste as an actuary and
at the University of
Padova. His main
contribution to statistics
was to develop
personalistic probability,
teaching that ‘probability
does not exist’. (You may
think this should have
been made clear on page 1
of the book!) He argued
that probability
distributions express a
person’s view of the
world, with no objective
force. His ideas have
strongly influenced
Bayesian thought.

U1, U2, . . ., is an infinitely exchangeable sequence of binary variables, taking values
u j = 0, 1, then for any n there is a distribution G such that

f (u1, . . . , un) =
∫ 1

0

n∏
j=1

θu j (1 − θ )1−u j dG(θ ) (11.49)

where

G(θ ) = lim
m→∞ Pr{m−1(U1 + · · · + Um) ≤ θ}, θ = lim

m→∞ m−1(U1 + · · · + Um).

This is justified at the end of this section. It implies that any set of exchangeable
binary variables U1, . . . , Un may be modelled as if they were independent Bernoulli
variables, conditional on their success probability θ , this having distribution G and
being interpretable as the long-run proportion of successes. More general versions
of (11.49) hold for real U j , for example. The upshot is that a judgement that certain
quantities are exchangeable implies that they may be represented as a random sample
conditional on a variable that itself has a distribution. This provides the basis of a
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case in favour of Bayesian inference, because it implies that the conditional density
Pr(Un+1 | U1, . . . , Un) for a future variable Un+1 given the outcomes of U1, . . . , Un ,
may be represented as a ratio of two integrals of form (11.49), and this is formally
equivalent to Bayesian prediction using a prior density on θ .

The essence of hierarchical modelling is to treat not data but particular sets of
parameters as exchangeable. For if our model contains parameters θ1, . . . , θn , and if
we believe a priori that these are to be treated completely symmetrically, then they
are exchangeable and may be thought of as a random sample from a distribution that
is itself unknown. In principle that distribution might be anything, but in practice a
tractable one is often chosen.

Example 11.25 (Normal hierarchical model) A prototypical case is the normal
model under which y1, . . . , yn satisfy

y j | θ j
ind∼ N (θ j , v j ), θ1, . . . , θn | µ

iid∼ N (µ, σ 2), µ ∼ N (µ0, τ
2),

where v1, . . . , vn , σ 2, µ0 and τ 2 are known; the last two are hyperparameters that
control the uncertainty injected at the top level of the hierarchy. The y j have different
variances, but their means θ j are supposed indistinguishable and hence are modelled as
exchangeable, being normal with unknown mean µ. As the joint density of (µ, θ T, yT)T

is multivariate normal of dimension 2n + 1, with mean vector and covariance matrix

µ012n+1,


 τ 2 τ 21T

n τ 21T
n

τ 21n τ 21n1T
n + σ 2 In τ 21n1T

n + σ 2 In

τ 21n τ 21n1T
n + σ 2 In V + τ 21n1T

n + σ 2 In


 , (11.50)

where V = diag(v1, . . . , vn), the posterior density of (µ, θ T)T given y is also normal.
Unenlightening matrix calculations give

E(µ | y) = µ0/τ
2 + ∑

y j/(σ 2 + v j )

1/τ 2 + ∑
1/(σ 2 + v j )

, var(µ | y) = 1

1/τ 2 + ∑
1/(σ 2 + v j )

,

and

E(θ j | y) = E(µ | y) + σ 2

σ 2 + v j
{y j − E(µ | y)}.

The posterior mean of µ is a weighted average of its prior mean µ0 and of the y j ,
weighted according to their precisions conditional on µ. Typically τ 2 is very large,
and then E(µ | y) is essentially a weighted average of the data. Even when v j → 0
for all j there is still posterior uncertainty about µ, whose variance is σ 2/n because
y1, . . . , yn is then a random sample from N (µ, σ 2).

The posterior mean of θ j is a weighted average of y j and E(µ | y), showing
shrinkage of y j towards E(µ | y) by an amount that depends on v j . As v j → 0,
E(θ j | y) → y j , while as v j → ∞, E(θ j | y) → E(µ | y). This is a characteristic
feature of hierarchical models, in which there is a ‘borrowing of strength’ whereby
all the data combine to estimate common parameters such as µ, while estimates of
individual parameters such as the θ j are shrunk towards common values by amounts
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that depend on the precision of the corresponding observations, here represented by
the v j . �

Example 11.26 (Cardiac surgery data) Table 11.2 contains data on mortality of
babies undergoing cardiac surgery at 12 hospitals. Although the numbers of operations
and the death rates vary, we have no further knowledge of the hospitals and hence no
basis for treating them other than entirely symmetrically, suggesting the hierarchical
model

r j | θ j
ind∼ B(m j , θ j ), j = A, . . . , L , θA, . . . , θL | ζ

iid∼ f (θ | ζ ), ζ ∼ π (ζ ).

Conditional on θ j , the number of deaths r j at hospital j is binomial with probability
θ j and denominator m j , the number of operations, which plays the same role as v−1

j

in Example 11.25: when m j is large then a death rate is relatively precisely known.
Conditional on ζ , the θ j are a random sample from a distribution f (θ | ζ ), and ζ itself
has a prior distribution that depends on fixed hyperparameters.

One simple formulation is to let β j = log{θ j/(1 − θ j )} ∼ N (µ, σ 2), conditional
on ζ = (µ, σ 2), thereby supposing that the log odds of death have a normal distribu-
tion, and to take µ ∼ N (0, c2) and σ 2 ∼ I G(a, b), where a, b, and c express proper
but vague prior information. For sake of illustration we let a = b = 10−3, so σ 2 has
prior mean one but variance 103, and c = 103, giving µ prior variance 106. The joint
density then has form

∏
j

(
m j

r j

)
er j β j

(1 + eβ j )m j

1

(2πσ 2)1/2
exp

{
− 1

2σ 2
(β j − µ)2

}
× π (µ)π (σ 2),

so the full conditional densities for µ and σ 2 are normal and inverse gamma. Apart
from a constant, the full conditional density for β j has logarithm

r jβ j − m j log(1 + eβ j ) − (β j − µ)2

2σ 2
,

and as this is a sum of two functions concave in β j , adaptive rejection sampling may
be used to simulate β j given µ, σ 2, and the data; see Example 3.22.

This model was fitted using the Gibbs sampler with 5500 iterations, of which the
first 500 were discarded. Convergence appeared rapid.

Figure 11.11 compares results for the hierarchical model with the effect of treating
each hospital separately using uniform prior densities for the θ j . Shrinkage due to the
hierarchical fit is strong, particularly for the smaller hospitals; the posterior mean of
θA, for example, has changed from about 2% to over 5%. Likewise the posterior means
of θH and θB have decreased considerably towards the overall mean. By contrast, the
posterior mean of θD barely changes because of the large value of m D . Posterior
credible intervals for the hierarchical model are only slightly shorter but they are
centred quite differently. The posterior mean rate is about 7.3%, with 0.95 credible
interval (5.3, 9.4)%. �

In some cases the hierarchical element is merely a component of a more complex
model, as the following example illustrates.
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Figure 11.11 Posterior
summaries for mortality
rates for cardiac surgery
data. Posterior means and
0.95 equitailed credible
intervals for separate
analyses for each hospital
are shown by hollow
circles and dotted lines,
while blobs and solid lines
show the corresponding
quantities for a
hierarchical model. Note
the shrinkage of the
estimates for the
hierarchical model
towards the overall
posterior mean rate,
shown as the solid vertical
line; the hierarchical
intervals are slightly
shorter than those for the
simpler model.

Example 11.27 (Spring barley data) Table 10.21 contains data on a field trial
intended to compare the yields of 75 varieties of spring barley allocated randomly to
plots in three long narrow blocks. The data were analysed in Example 10.35 using a
generalized additive model to accommodate the strong fertility trends over the blocks.
In the absence of detailed knowledge about the varieties it seems natural to treat them
as exchangeable, and we outline a Bayesian hierarchical approach. We also show how
the fertility patterns may be modelled using a simple Markov random field.

Let y = (y1, . . . , yn)T denote the yields in the n = 225 plots and let ψ j denote the
unknown fertility of plot j . Let X denote the n × p design matrix that shows which
of the p = 75 variety parameters β = (β1, . . . , βp)T have been allocated to the plots.
Then a normal linear model for the yields is

y | β, ψ, λy ∼ Nn(ψ + Xβ, In/λy), (11.51)

where ψ is the n × 1 vector containing the fertilities and λy is the unknown precision
of the ys.

We take the prior density of λy to be gamma with shape and scale parameters a
and b, G(a, b), so that its prior mean and variance are a/b and a/b2, where a and
b are specified. As there is no special treatment structure, we take for the βr the
exchangeable prior β ∼ Np(0, Ip/λ

−1
β ), with λβ ∼ G(c, d) and c, d specified. For

the fertilities we take the normal Markov chain of Example 6.13, for which

π (ψ | λψ ) ∝ λ
n/2
ψ exp

{
−1

2
λψ

∑
i∼ j

(ψi − ψ j )
2

}
, λψ > 0, (11.52)

the summation being over pairs of neighbouring plots and λ−1
ψ being the variance of

differences between fertilities. Each ψ j occurs in n j terms, where n j = 1 or 2 is the
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number of plots adjacent to plot j . The sum in (11.52) equals ψTWψ , where W is
the n × n tridiagonal matrix with elements

wi j =



ni , i = j ,
−1, i ∼ j ,
0, otherwise.

Thus W is block diagonal, with three blocks like the matrix V in Example 6.13
with τ = 0, corresponding to the three physical blocks of the experiment. We take
λψ ∼ G(g, h), with g and h specified.

With these conjugate prior densities, the joint posterior density is

π (β, ψ, λ) ∝ λn/2
y exp

{
−1

2
λy(y − ψ − Xβ)T(y − ψ − Xβ)

}

×λ
p/2
β exp

(
−1

2
λββTβ

)
× λ

p/2
ψ exp

(
−1

2
λψψTWψ

)

×λa−1
y exp(−bλy) × λc−1

β exp(−cλβ) × λ
g−1
ψ exp(−hλψ ),

where λ = (λy, λβ, λψ )T. The full conditional densities turn out to be

β | ψ, λ, y ∼ N
{
λy Q−1

β X T(y − ψ), Q−1
β

}
, (11.53)

ψ | β, λ, y ∼ N
{
λy Q−1

ψ (y − Xβ), Q−1
ψ

}
, (11.54)

λy | ψ, β, y ∼ G{a + n/2, b + (y − Xβ − ψ)T(y − Xβ − ψ)/2}, (11.55)

λβ | ψ, β, y ∼ G(c + p/2, d + βTβ/2), (11.56)

λψ | ψ, β, y ∼ G(g + n/2, h + ψTWψ/2), (11.57)

where

Qβ = λy X T X + λβ Ip, Qψ = λy In + λψ W.

The elements of λ are independent conditional on the remaining variables. The
relatively simple form of the densities in (11.53)–(11.57) suggests using a time-
reversible Gibbs sampler, in which β, ψ , and λ are updated in a random order at
each iteration. The most direct approach to simulation in (11.53) and (11.54) is
through Cholesky decomposition of Qβ and Qψ : in (11.53), for example, we find
the lower triangular matrix L such that L LT = Q−1

β , generate ε ∼ Np(0, Ip), and let

β = λy Q−1
β X T(y − ψ) + Lε. The block diagonal structure of W means that the ψs

for different blocks can be updated separately, so the largest Cholesky decomposition
needed is that of a 75 × 75 matrix. An alternative is to update individual ψ j s in a
random order, but although the computational burden is smaller, the algorithm then
converges more slowly than with direct use of (11.54).

Note the strong resemblance of (11.53) and (11.54) to the steps of the backfitting
algorithm for the corresponding generalized additive model.

The missing response in block 3 is simply a further unknown whose value may be
simulated using the relevant marginal density of (11.51). This adds a fourth component
to the simulation in random order of β, ψ , and λ at each iteration; there are no other
changes to the algorithm.
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Figure 11.12 Posterior
summaries for fertility
trend ψ for the three
blocks of spring barley
data, shown from left to
right. Above: median
trend (heavy) and overall
0.9 posterior credible
bands. Below: 20
simulated trends from
Gibbs sampler output.

If the matrix X T X is diagonal, then the full conditional density for the r th variety
effect has form

βr | ψ, λ, y ∼ N

(
λymr zr

λβ + λymr
,

1

λβ + λymr

)
,

where zr is the current average of y j − ψ j for the mr plots receiving variety r . Thus the
βr are shrunk towards zero by an amount that depends on the ratio λβ/λy ; with λβ = 0
the mean for β in (11.53) is the least squares estimate computed by regressing y − ψ

on the columns of X . Unlike in Example 11.25, however, the normal distributions of
the βr are here averaged over the posterior densities of ψ , λy and λβ .

The algorithm described above was run with random initial values for 10,500
iterations. Time series plots of the parameters and log likelihood suggested that it had
converged after 500 iterations, and inferences below are based on the final 10,000
iterations. The variance inflation factors τ̂ were less than 4 for ψ and β, about 44, 6
and 30 for λy , λτ and λψ , and about 6 for y187. Thus estimation for λy is least reliable,
being based on a sample equivalent to about 220 independent observations. A longer
run of the algorithm would seem wise in practice. Based on this run, the posterior
0.9 credible intervals for λy , λψ and λβ were (5.2, 12.4), (5.0, 11.5) and (2.7, 5.7)
respectively, and differences of two variety effects have posterior densities very close
to normal with typical standard deviation of 0.35. The corresponding standard error for
the generalized additive model was 0.41, so use of a hierarchical model and injection
of prior information has increased the precision of these comparisons.

Figure 11.12 shows some simulated values of ψ and pointwise 0.90 credible en-
velopes for the true ψ . These envelopes are constructed by joining the 0.05 quantiles
of the fertilities simulated from the posterior density, for each location, and likewise
with the 0.95 quantiles. By contrast with the analysis in Example 10.35, the effective
degrees of freedom for ψ , controlled by λψ , are here equal for each block, lead-
ing to apparent overfitting of the fertilities for block 2 compared to the generalized
additive model. A difference between the models is that the current model corresponds
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Table 11.12 Posterior
probabilities that a variety
is ranked among the best r
varieties, estimated from
10,000 iterations of Gibbs
sampler.

Variety

r 56 35 72 31 55 47 54 18 38 40

1 0.327 0.182 0.149 0.129 0.075 0.055 0.019 0.015 0.012 0.006
2 0.518 0.357 0.299 0.270 0.174 0.136 0.050 0.042 0.035 0.020
5 0.814 0.690 0.643 0.621 0.486 0.416 0.234 0.183 0.153 0.106

10 0.959 0.908 0.887 0.871 0.795 0.743 0.560 0.497 0.429 0.344

to first differences of ψ being a normal random sample, while in the earlier model
the second differences are a normal random sample, giving a smoother fit.

The posterior probabilities that certain varieties rank among the r best are given in
Table 11.12. The ordering is somewhat different from that in Example 10.35, perhaps
due to the slightly different treatment of fertility effects. As mentioned previously, no
single variety strongly outperforms the rest, and future field experiments would have
to include several of those included in this trial. This type of information is difficult to
obtain using frequentist procedures, but is readily found by manipulating the output
of the simulation algorithm described above.

This analysis is relatively easily modified when elements of the model are changed.
Indeed the priors and other components chosen largely for convenience should be
varied in order to assess the sensitivity of the conclusions to them; see Exercise 11.3.6.
Metropolis–Hastings steps would then typically replace the Gibbs updates in the
algorithm. �

As mentioned above, more complicated hierarchies involve several layers of nested
variation. Such models are widely used in certain applications, but their assessment
and comparison can be difficult. For instance, shrinkage makes it unclear just how
many parameters a hierarchical model has. Hierarchical modelling is an active area
of current research.

Justification of (11.49)

To establish (11.49), suppose that r lies in 0, . . . , n and that m > n. Then exchange-
ability of U1, . . . , Um implies that the conditional probability

Pr(U1 + · · · + Un = r | U1 + · · · + Um = s)

equals the probability of seeing r 1’s in n draws without replacement from an urn
containing s 1’s and m − s 0’s, which is

(m
n

)−1(s
r

)(m−s
n−r

)
for s = r, . . . , m − (n − r )

and zero otherwise. Hence

Pr(U1 + · · · + Un = r ) =
m−(n−r )∑

s=r

(
m

n

)−1(s

r

)(
m − s

n − r

)
Pr(U1 + · · · + Um = s)

=
(

n

r

) m−(n−r )∑
s=r

s(r )(m − s)(n−r )

m(n)
Pr(U1 + · · · + Um = s),
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where s(r ) = s(s − 1) · · · (s − r + 1) and so forth. If Gm(θ ) denotes the distribution
putting mass Pr(U1 + · · · + Um = s) at s/m, for s = 0, . . . , m, then

Pr(U1 + · · · + Un = r ) =
(

n

r

) ∫ 1

0

(mθ )(r ){m(1 − θ )}(n−r )

m(n)
dGm(θ ).

As m → ∞,

(mθ )(r ){m(1 − θ )}(n−r )

m(n)
→ θ r (1 − θ )n−r ,

and in fact there is an infinite subsequence of values of m such that Gm converges to
a limit G that is a distribution function. To establish (11.49) we simply note that(

n

r

)
f
(
uξ (1), . . . , uξ (n)

) = Pr(U1 + · · · + Un = r )

for any permutation ξ of {1, . . . , n} such that uξ (1) + · · · + uξ (n) = r , giving

f (u1, . . . , un) =
∫ 1

0
θ r (1 − θ )n−r dG(θ ) =

∫ 1

0

n∏
j=1

θu j (1 − θ )1−u j dG(θ )

as desired.

Exercises 11.4

1 Two balls are drawn successively without replacement from an urn containing three white
and two red balls. Are the outcomes of the first and second draws independent? Are they
exchangeable?

2 Under what conditions are the Bernoulli random variables Y1 and Y2 = 1 − Y1 exchange-
able? What about Y1, . . . , Yn given that Y1 + · · · + Yn = m?

3 Establish (11.50), and use it and (3.21) to verify the given formulae for the posterior mean
and variance for µ.

4 Describe how a Metropolis–Hastings update could be used to avoid adaptive rejection
sampling from the full conditional density for β in Example 11.26. Compare and contrast
the two approaches.

5 In a variant on the hierarchical Poisson model in Example 11.19, let Y1, . . . , Yn be in-
dependent Poisson variables with means θ1, . . . , θn , let θ1, . . . , θn be a random sample
from the density βe−θβ , θ > 0, and let the prior density of β be uniform on the positive
half-line. Find E(θ j | y, β), and show that if ny > 1 then the posterior distribution of
γ = 1/(1 + β) is Beta with parameters ny − 1 and n + 1. Hence show that the posterior
mean of θ j is (y j + 1)(ny − 1)/(ny + n). Under what condition is this greater than the
estimate θ̂ j = y j obtained under the classical model with no link among the θs? Explain.

6 (a) Give the directed acyclic and conditional independence graphs for the model in
Example 11.27, and verify (11.53)–(11.57).
(b) What changes to the algorithm are needed if (11.52) is replaced by

π (ψ | λψ ) ∝ λ
n/2
ψ exp

{
−1

2
λψ

∑
i∼ j

∣∣ψi − ψ j

∣∣
}

, λψ > 0?

What changes are needed if (11.51) specifies that the y j have independent tν densities, for
some known ν?
(c) How would you allow different degrees of smoothing for the different blocks?
(Besag et al., 1995)
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11.5 Empirical Bayes Inference

11.5.1 Basic ideas

The borrowing of strength achieved by hierarchical Bayes models increases the preci-
sion of parameter estimation at the cost of specifying prior distributions at two levels.
This can be bothersome in practice, because priors on hyperparameters are difficult to
verify and it is natural to worry about their effect on subsequent inferences. Sensitivity
analysis, comparing results from different priors, is valuable, but another possibility
in some cases is to estimate the hyperparameters from the data. Many Bayesians
deprecate this empirical Bayes approach as essentially frequentist; we shall skirt this
issue and simply sketch the main ideas.

Consider the model

y1, . . . , yn | θ1, . . . , θn
ind∼ f (y1 | θ1), . . . , f (yn | θn), θ1, . . . , θn

iid∼ π (θ | γ ).

A fully Bayesian specification would add a prior density π (γ ) for γ , with inference
for the θ j based on the marginal posterior densities π (θ j | y). If we do not add this
further level of complexity, then the data have marginal density

f (y1, . . . , yn | γ ) =
n∏

j=1

∫
f (y j | θ j )π (θ j | γ ) dθ j

from which we might estimate γ . An obvious approach is to use the maximum
likelihood estimator γ̂ found from this density, and then to base inferences on the
posterior densities π (θ j | y, γ̂ ), for example computing posterior moments

E
(
θ r

j | y, γ̂
) =

∫
θ r

j f (y j | θ j )π (θ j | γ ) dθ j∫
f (y j | θ j )π (θ j | γ ) dθ j

∣∣∣∣∣
γ=γ̂

.

Numerical methods are generally needed to evaluate the integrals. Full Bayesian
analysis would integrate out γ with respect to its prior density, thereby accounting
for uncertainty about γ rather than simply setting it to γ̂ .

Example 11.28 (Normal distribution) Consider the model

y1, . . . , yn | θ1, . . . , θn
ind∼ N (θ j , v j ), θ1, . . . , θn

iid∼ N (µ, τ 2),

where the v j are known positive constants, and suppose initially that τ 2 > 0 is also
known. The conditional distribution of θ j given y is

N (ξ jµ + (1 − ξ j )y j , (1 − ξ j )v j ), with ξ j = v j

v j + τ 2
, j = 1, . . . , n, (11.58)

and the y j are marginally independent with N (µ, v j + τ 2) densities. The maximum
likelihood estimate of µ is therefore

µ̂ = µ̂(τ 2) =
∑n

j=1 y j/(v j + τ 2)∑n
j=1 1/(v j + τ 2)

,
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and the empirical Bayes estimate of θ j is found by substituting this into E(θ j | y), to
give

θ̃ j = ξ j µ̂ + (1 − ξ j )y j = µ̂ + (1 − ξ j )(y j − µ̂). (11.59)

When ξ j = 0 then θ̃ j = y j is unbiased for θ j . Taking ξ j > 0 gives non-zero shrinkage
and biased estimation of θ̃ j , but the hope is that the borrowing of strength induced by
shrinkage towards a common mean will reduce overall mean squared error. The degree
of shrinkage towards µ̂ depends on v j/τ

2. This is disquieting because the amount of
shrinkage bears no relation to the data. Thus if the y j were very different doubt would
be cast on the model, but the formulation pays no heed to this.

When τ 2 is unknown, its profile log likelihood is

�p(τ 2) ≡ −1

2

n∑
j=1

log(v j + τ 2) − 1

2

n∑
j=1

{y j − µ̂(τ 2)}2/(v j + τ 2), τ 2 ≥ 0,

from which the maximum likelihood estimate τ̂ 2 can be obtained. If τ̂ 2 = 0 then
the data give no evidence of variation in the θ j , all the y j have mean µ, and all the
θ̃ j are shrunk to µ̂. If τ̂ 2 > 0, then ξ j is replaced by v j/(v j + τ̂ 2) in (11.59). As
0 ≤ v j/(v j + τ̂ 2) ≤ 1, θ̃ j lies between y j and µ̂.

Confidence intervals for the θ j may be computed by replacing µ and τ 2 in (11.58)
by estimates, but their coverage will be lower than the nominal level because the
variability of µ̂ and τ̂ 2 is unaccounted for. Approaches to overcoming this have been
proposed, but we shall not treat them here. �

Example 11.29 (Toxoplasmosis data) Example 10.29 discusses estimation of lev-
els of toxoplasmosis in 34 cities in El Salvador. For a simple analysis of these data,
we let y j = log{(r j + 1/2)/(m j − r j + 1/2)} represent empirical logistic transforma-
tions of the binomial responses giving the level of toxoplasmosis, with approximate
variances v j = (r j + 1/2)−1 + (m j − r j + 1/2)−1 treated as known. We generalize
Example 11.28 to encompass regression by taking

y1, . . . , yn | θ1, . . . , θn
ind∼ N (θ j , v j ), θ j | β

ind∼ N (xT
jβ, v′

j ), j = 1, . . . , n,

so that the θ j vary around means xT
jβ. Then

θ j | y, β, v′
j

ind∼ N
{
(1 − ξ j )y j + ξ j x

T
jβ, v j (1 − ξ j )

}
, ξ j = v j/(v j + v′

j ),

and marginally y j
ind∼ N (xT

jβ, v j + v′
j ), for j = 1, . . . , n. Maximum likelihood yields

the weighted least squares estimator β̂ = (X TW X )−1 X TW y, where W is the diag-
onal matrix with elements w j = (v j + v′

j )
−1, leading to shrinkage estimators θ̃ j =

(1 − ξ j )y j + ξ j xT
j β̂ of the θ j , with estimated variances v j (1 − ξ j ).

The v′
j typically depend on unknown parameters that may be estimated from the

profile likelihood. Here we take v′
1 = · · · = v′

n = τ 2. If xTβ equals a constant, then
τ̂ 2 = 0.17, but it is better to let xTβ be a cubic function of rainfall, leading to τ̂ 2 = 0.1.
Figure 11.13 shows strong shrinkage of the individual estimates y j towards their
regression counterparts x j β̂. The average variance reduces by a factor of almost ten,
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Table 11.13
Shakespeare’s word type
frequencies (Efron and
Thisted, 1976; Thisted
and Efron, 1987). Entry r
is nr , the number of word
types used exactly r times.
There are 846 word types
which appear more than
100 times, for a total of
31,534 word types.

r 1 2 3 4 5 6 7 8 9 10 Total

0+ 14376 4343 2292 1463 1043 837 638 519 430 364 26305
10+ 305 259 242 223 187 181 179 130 127 128 1961
20+ 104 105 99 112 93 74 83 76 72 63 881
30+ 73 47 56 59 53 45 34 49 45 52 513
40+ 49 41 30 35 37 21 41 30 28 19 331
50+ 25 19 28 27 31 19 19 22 23 14 227
60+ 30 19 21 18 15 10 15 14 11 16 169
70+ 13 12 10 16 18 11 8 15 12 7 122
80+ 13 12 11 8 10 11 7 12 9 8 101
90+ 4 7 6 7 10 10 15 7 7 5 78

Estimate

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

• • •• •• ••• • ••

Figure 11.13 Shrinkage
of individual estimates
(lower blobs) towards
regession estimates (upper
blobs) for toxoplasmosis
data.

from v = 0.68 to v(1 − ξ̂ ) = 0.07, and one would expect a large decrease in overall
mean squared error.

The empirical Bayes estimates of the toxoplasmosis levels themselves are obtained
by inverse logistic transformation, with standard errors from the delta method. A more
detailed analysis, or simulation, would be needed to account for the uncertainty in β̂

and τ̂ 2. �

The previous examples illustrate parametric empirical Bayes inference, in which
the prior for θ is taken from a parametrized family of distributions. In practice an
alternative is to try and estimate the prior nonparametrically. The resulting estimators
are generally unstable if the data are not extensive, and some form of smoothing may
be needed.

Example 11.30 (Shakespeare’s vocabulary data) The canon of Shakespeare’s
accepted works contains 884,647 words, with 31,534 distinct word types. A word
type is a distinguishable arrangement of letters, so ‘king’ is different from ‘kings’
and ‘alehouse’ different from both ‘ale’ and ‘house’. Table 11.13 shows how many
word types occurred once, twice, and so on in the canon: 14,376 appear just once,
4343 appear twice, and so forth. If nr is the number of word types appearing r times,
then

∑∞
r=1 nr = 31,534.

If a new body of work containing 884,647t words was found, how many new word
types might it contain? Taking t = 1 corresponds to finding a new set of works the
same size as the canon, while setting t = ∞ enables us to estimate Shakespeare’s
total vocabulary.
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Finding a new word type in a body of work is analogous to finding a new species
of animal among those caught in a trap. Suppose that there are S species in total,
and that after trapping over the period [−1, 0] we have ys members of species s. We
assume that they enter the trap according to a Poisson process of rate λs per unit
of time, so ys is Poisson with mean λs , and let nr = ∑

s I (ys = r ) be the number
of species observed exactly r times in the trapping period [−1, 0]. Let G(λ) be the
unknown distribution function of λ1, . . . , λS . Then the expected number of species
seen in (0, t] that were seen exactly r times in the previous interval [−1, 0] is

νr (t) = S
∫ ∞

0
e−λ λr

r !
(1 − e−λt )dG(λ)

= S
∫ ∞

0
e−λ λr

r !

{
λt − (λt)2

2!
+ (λt)3

3!
− · · ·

}
dG(λ)

=
∞∑

k=1

(−1)k+1

(
r + k

k

)
t kηr+k, (11.60)

where

ηr = E(nr ) = S
∫ ∞

0

λr

r !
e−λ dG(λ), r = 1, 2, . . . .

The convergence of (11.60) will depend on t , but if it does converge, then an unbiased
nonparametric empirical Bayes estimator ν̃r (t) is obtained by replacing the ηr by
estimates η̃r = nr obtained from the marginal distribution across the species. If the
S Poisson processes are independent, then the nr will be approximately independent
Poisson variables with means ηr . Thus for example,

var {ν̃0(t)} = var(n1t − n2t2 + n3t3 − · · ·) .=
∞∑

r=1

ηr t2r .=
∞∑

r=1

nr t2r

provides a standard error for ν̃0(t).
For the data in Table 11.13, ν̃0(1) = 11,430 with standard error 178. It turns out

not to be possible to give an upper bound for the size of Shakepeare’s vocabulary, but
a fairly realistic lower bound can be established of about 35,000 word types that he
knew but which do not appear in the canon.

Parametric empirical Bayes models employ parametric distributions for G, one
candidate being gamma with mean and variance ξ/β and ξ/β2. Then

ηr = η1
�(r + ξ )

r !�(1 + ξ )

(
β

1 + β

)r−1

, r = 1, 2, . . . ,

proportional to the negative binomial density truncated so that r > 0. In the negative
binomial case ξ > 0, but here any value of ξ > −1 is possible; ξ = 0 gives the
logarithmic series distribution, the first to be fitted to species abundance data. The
parameters can be estimated by maximum likelihood fitting of the multinomial dis-
tribution of n1, . . . , nr0 , for some suitable r0. Taking r0 = 40 yields η̂1 = 14,376,
ξ̂ = −0.3954 and β̂ = 104.3. The fit to Table 11.13 is then remarkably good, giving
ν̃0(1)

.= 11,483, very close to the nonparametric empirical Bayes estimate.
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In 1985 a previously unknown nine-stanza poem was found in the Bodleian Library
in Oxford. It consists of 429 words with 258 word types, of which nine do not
appear in the canon. The empirical counts can be compared with the values ν̃r (t) with
t = 429/884,647; for example ν̃0(t) = 6.97 is in fair agreement with the observed
number of nine new words. Detailed work suggests that at least on the basis of the word
counts, the poem might be attributable to Shakespeare. Scholarly debate continues,
however, as word usage in the new poem differs from that in the canon. �

Shrinkage improves estimators in many models. Before discussing an unexpected
consequence of this, we outline some key notions of decision theory.

11.5.2 Decision theory

Sometimes data are gathered in order to decide among decisions whose payoffs are
known explicitly. The decision chosen will depend on the data y, and the choice is
made according to a decision rule δ(y), which takes a value in a decision space D.
Thus δ is a mapping from the sample space Y to D.

The fact that some decisions have better consequences than others is quantified
through a loss function l(d, θ ), which represents the loss due to making decision d
when the true state of nature is θ . A bad decision incurs a big loss, a better decision
a smaller one.

At the time a decision is taken its loss is unknown because of uncertainty about θ .
Nevertheless, provided we have prior information on θ , we can calculate the posterior
expected loss,

E {l(d, θ ) | y} =
∫

l(d, θ )π (θ | y) dθ =
∫

l(d, θ ) f (y | θ )π (θ ) dθ∫
f (y | θ )π (θ ) dθ

.

This is a function of d and y. If we want to make a decision leading to as small a
loss as possible, one strategy is to choose the decision d that minimizes the posterior
expected loss for the particular y that has been observed. Thus δ(y) = d, where
E{l(d ′, θ ) | y} ≥ E {l(d, θ ) | y} for every d ′ ∈ D. This is called the Bayes rule for
loss function l with respect to prior π .

Example 11.31 (Discrimination) Suppose we must decide whether or not a patient
with measurements y has a disease that has prevalence γ in the population. Let θ = 1
indicate the event that he is diseased. Then

Pr(θ = 1) = γ, Pr(θ = 0) = 1 − γ,

and y has densities f1(y) and f0(y) according to the unknown value of θ , which
represents the state of nature. The possible decisions are

d0 = ‘patient is not diseased’, d1 = ‘patient is diseased’,

and a decision rule δ(y) is a procedure that chooses one of these.
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Let li j denote the loss made when θ = i and decision d j is made. We set l00 =
l11 = 0, so there is no loss when a decision is correct, and assume that l10, l01 > 0.
The posterior expected losses associated with d0 and d1 are

E {l(d0, θ ) | y} = l00(1 − γ ) f0(y) + l10γ f1(y)

(1 − γ ) f0(y) + γ f1(y)
= l10γ f1(y)

(1 − γ ) f0(y) + γ f1(y)

and

E {l(d1, θ ) | y} = l01(1 − γ ) f0(y) + l11γ f1(y)

(1 − γ ) f0(y) + γ f1(y)
= l01(1 − γ ) f0(y)

(1 − γ ) f0(y) + γ f1(y)
.

The posterior expected loss is minimized by d0 if l10γ f1(y) < l01(1 − γ ) f0(y) and
otherwise by d1; we are indifferent if l10γ f1(y) = l01(1 − γ ) f0(y).

This Bayes rule can be expressed in more familiar terms: choose d0 if

f0(y)

f1(y)
>

l10γ

l01(1 − γ )
,

and otherwise choose d1. This is reminiscent of the Neyman–Pearson lemma, though
here the value determining the decision involves γ and the loss function rather than
a null distribution for y. �

The set-up described thus far applies to decisions to be made once the data are
known. But actions must sometimes be taken before any data are available — for
example, an experimental design should be chosen to maximize the information in
future data. It then seems wise to average the loss incurred over the future data. The
expected loss due to using decision rule δ(y) when the true state of nature is θ is called
the risk function of δ,

Rδ(θ ) =
∫

l{δ(y), θ} f (y | θ ) dy.

If we have prior density π (θ ) for θ , the overall expected loss due to using δ is the
Bayes risk, ∫

Rδ(θ )π (θ ) dθ =
∫

π (θ )
∫

l{δ(y), θ} f (y | θ ) dy dθ

=
∫

f (y)
∫

l{δ(y), θ}π (θ | y) dθ dy.

For any given y this is minimized by the decision δ(y) minimizing the inner integral,
and this choice of δ is the Bayes rule for the prior π (θ ). Thus the Bayes rule minimizes
expected loss for both post-data and pre-data decisions.

If we view estimation as a decision problem, then a decision is a choice of the
value θ̃ to be used to estimate θ , and the loss depends on θ and θ̃ . A common choice
is squared error loss, l(θ̃ , θ ) = (θ̃ − θ )2. The Bayes rule then uses as estimator the
posterior mean of θ ,

m(y) =
∫

θπ (θ | y) dθ.
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To see why, let θ̃ (y) be any other estimator, and note that as

{θ̃ (y) − θ}2 = {θ̃ (y) − m(y)}2 + 2{θ̃ (y) − m(y)} {m(y) − θ} + {m(y) − θ}2 ,

the posterior expected loss∫
{θ̃ (y) − θ}2π (θ | y) dθ = {θ̃ (y) − m(y)}2 +

∫
{m(y) − θ}2 π (θ | y) dθ

(11.61)
is minimized by choosing θ̃ (y) = m(y).

Admissible decision rules

We saw above that if a prior density for θ is available, one should choose the decision
that minimizes the posterior expected loss with respect to that prior. But if no prior is
available then we must attempt to make a good decision whatever the value of θ . We
can compare two decision rules δ and δ′ through their risk functions. If Rδ′ (θ ) ≥ Rδ(θ )
for all θ , with strict inequality for some θ , then we say that δ′ is inadmissible — it
is beaten by another rule. If no such rule can be found, δ′ is said to be admissible.
Provided the decision formulation is accepted and considerations such as robustness
may be ignored, we should clearly restrict attention to admissible decision rules.

The Bayes rule δB corresponding to a proper prior π (θ ) is always admissible. For if
not, there is a rule δ′ such that Rδ′ (θ ) ≤ RδB (θ ), with strict inequality for some set of
values of θ to which π attaches positive probability. The corresponding Bayes risks
satisfy ∫

π (θ )Rδ′ (θ ) dθ <

∫
π (θ )RδB (θ ) dθ,

contradicting the fact that δB minimizes the Bayes risk with respect to π (θ ).
In a particular setting there may be many admissible decision rules. We can choose

among them by minimizing supθ Rδ(θ ). This generally very conservative choice is
called a minimax rule. An admissible decision rule δ with constant risk is minimax.
For otherwise there exists a rule δ′ such that for all θ ,

Rδ′ (θ ) ≤ sup
θ

Rδ′ (θ ) < sup
θ

Rδ(θ ).

But if δ has constant risk, then the right-hand side of this expression is constant, and
δ must be inadmissible, which is a contradiction.

Example 11.32 (Normal distribution) Suppose that Y1, . . . , Yn is a random sample
from the N (µ, σ 2) distribution with known σ 2 and that we wish to choose an estimator
µ̃ of µ among

1. δ1(Y ) = Y , the sample average;
2. δ2(Y ) is the median of Y1, . . . , Yn; and
3. δ3(Y ) = (nY/σ 2 + µ0/τ

2)/(n/σ 2 + 1/τ 2), the posterior mean for µ under the
prior N (µ0, τ

2); see (11.11).

We take loss function (µ̃ − µ)2, so δ(Y ) has risk Rδ(µ) equal to its mean squared
error, E[{δ(Y ) − µ}2], the expectation being over Y for fixed µ.
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The average δ1(Y ) has mean and variance µ and σ 2/n, while the median δ2(Y ) has
approximate mean and variance µ and πσ 2/(2n). Their risks are

Rδ1 (µ) = σ 2/n, Rδ2 (µ)
.= πσ 2/(2n).

The posterior mean δ3(Y ) has bias and variance

nµ/σ 2 + µ0/τ
2

n/σ 2 + 1/τ 2
− µ,

n/σ 2

(n/σ 2 + 1/τ 2)2
,

and so

Rδ3 (µ) = n/σ 2 + (µ − µ0)2/τ 2

(n/σ 2 + 1/τ 2)2
.

As Rδ2 (µ) > Rδ1 (µ) for all µ, δ2 is inadmissible. It can be shown that δ1 is ad-
missible, and as it has constant risk it is minimax. The rule δ3 is Bayes and hence
admissible. If τ 2 is small, δ3 will be greatly preferable to δ1 for values of µ close to
the prior mean µ0. Contrariwise if τ 2 is large, corresponding to weak prior informa-
tion, then Rδ3 (µ) < Rδ1 (µ) over a wide range, but the improvement is small. When
τ → ∞, we see that δ3 → δ1. �

Shrinkage and squared error loss

Having set up machinery for the comparison of estimators using risk, we investigate
the gains due to shrinkage when using empirical Bayes estimation.

Let Y1, . . . , Yn be independent normal variables with means θ1, . . . , θn and unit
variance. We consider estimation of θ1, . . . , θn by θ̃1, . . . , θ̃n using as risk function
the sum of squared errors

Rθ̃ (θ ) = E

{
n∑

j=1

(θ̃ j − θ j )
2

}
, (11.62)

the expectation being over Y with θ fixed. At first sight this formulation seems highly
artificial, but in fact it is paradigmatic of many situations, one being the semiparametric
models discussed in Section 10.7. The maximum likelihood estimators arise when
θ̃ j = Y j and have risk Rθ̃ (θ ) = n. Are better estimators available?

One possibility stems from taking (11.59) when v1 = · · · = vn . Then µ̂ = Y does
not depend on τ 2, whose maximum likelihood estimator is given by

τ̂ 2
+ = max(n−1W − 1, 0), W =

n∑
j=1

(Y j − Y )2.

The eventual conclusion is unchanged but the computations below simplify if we
replace τ̂ 2

+ by W/b, where we choose b to minimize the risk. Substitution into (11.59)
gives the shrinkage estimators

θ̃ j = Y + (1 − b/W )(Y j − Y ), j = 1, . . . , n. (11.63)

These are more appealing than (11.59), because the degree of shrinkage depends on
the data, being small if the Y j are widely separated and W is large. ‘Overshrinkage’
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occurs if b/W > 1, so in practice one would use a non-negative estimator such
as τ̂+.

We show below that the risk of (11.63) using squared error loss is

Rθ̃ (θ ) = n + b {b − 2(n − 3)} E(W −1). (11.64)

This has minimum value n − (n − 3)2E(W −1) when b = n − 3, and as E(W −1) > 0
this risk is uniformly less than n when n > 3. That is, when means of four or more
normal variables are estimated simultaneously using (11.63) and squared error loss,
the maximum likelihood estimator is inadmissible: the paragon of point estimation
should not be used. This risk improvement is often called the Stein effect after its
chief discoverer.Charles Stein (1920–)

studied at Chicago and
Columbia universities and
since 1953 has worked at
Stanford University. He
has made important
contributions to
mathematical statistics.
See DeGroot (1986b).

This striking result rests on the cumulation of risk across observations; the chosen
risk function would not be sensible if interest focused on a single θ j . The extent to
which shrinkage reduces the risk depends on the distribution of W , which is non-
central chi-squared with non-centrality parameter ρ = ∑

(θ j − θ )2. If ρ = 0, that is,
all the θ j are equal, then E(W −1) = (n − 3)−1 and Rθ̃ (θ ) = 3 independent of n. In this
case shrinkage yields a dramatically improved estimator. If ρ is large, then the means
of the Y j are widely separated and E(W −1) is small, so Rθ̃ (θ ) is only slightly less than
n: the gain from shrinkage is then small. When Y in (11.63) and in W is replaced
by a fixed prior value µ, then essentially the same result applies, with the maximum
likelihood estimator then inadmissible when n > 2. The amount of shrinkage then
depends on the distance from θ to the prior mean µ, and is large if this distance is
small.

Similar results apply more generally, for example to regression and to multivariate
situations. The broad lesson is that frequentist estimation of related quantities may
be improved by using shrinkage procedures.

Derivation of (11.64)

Note first that with θ̃ j given in (11.63),
∑

(θ̃ j − θ j )2 equals

n∑
j=1

{Y + (1 − b/W )(Y j − Y ) − θ j }2 =
n∑

j=1

{Y j − θ j − b(Y j − Y )/W }2

and this equals

n∑
j=1

(Y j − θ j )
2 − 2bW −1

n∑
j=1

(Y j − θ j )(Y j − Y ) + b2W −1. (11.65)

The first term has expectation n and the last appears in (11.64), so we must deal with
the middle term.

Consider E
{
(Y j − θ j )h j (Y )

}
, where h j (y) is a sufficiently well-behaved func-

tion. Integration by parts, recalling that Y j
ind∼ N (θ j , 1), and that dφ(z)/dz = −zφ(z),

implies that E{(Y j − θ j )h j (Y )} = E{∂h j (Y )/∂Y j }. Setting

h j (Y ) = Y j − Y

W
= Y j − Y∑

i (Yi − Y )2
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yields

∂h j (Y )

∂Y j
= 1 − n−1

W
− 2

(Y j − Y )2

W 2
,

and a little algebra establishes that the central term in (11.65) has expectation
−2b(n − 3)E(W −1). Expression (11.64) follows directly.

Exercises 11.5

1 In Example 11.29, suppose that v′
j = τ 2v j . Show that an unbiased estimator of τ 2 is then

SS/(n − p) − 1, where SS is the residual sum of squares and p is the dimension of β,
and explain why a better estimator is max{SS/(n − p) − 1, 0}.
Find also the profile log likelihood when v′

j = τ 2.

2 Consider estimating the success probability θ for a binomial variable R with denominator
m, using a beta prior distribution with parameters a, b > 0.
(a) Show that the marginal probability Pr(R = r | µ, ν) has beta-binomial form

�(ν)

�(νµ)�{ν(1 − µ)}
(

m

r

)
�(r + νµ)�{m − r + ν(1 − µ)}

�(m + ν)
, r = 0, . . . , m,

where µ = a/(a + b) and ν = a + b, and deduce that

E(R/m) = µ, var(R/m) = µ(1 − µ)

m

(
1 + m − 1

ν + 1

)
.

(b) Show that methods of moments estimators based on a random sample R1, . . . , Rn all
with denominator m are

µ̂ = R, ν̂ = µ̂(1 − µ̂) − S2

S2 − µ̂(1 − µ̂)/m
,

where R and S2 are the sample average and variance of the R j .
(c) Find the mean and variance of the conditional distribution of θ given R, and show
that the mean can be written as a shrinking of R/m towards µ. Hence give the empirical
Bayes estimates of the θ j .

3 Consider a logistic regression model for Example 11.29. Show that the marginal log
likelihood for β, τ 2 may be written as

n∑
j=1

log
∫

er j θ

(1 + eθ )m j
φ

(
θ − xT

j β

τ

)
dθ − log τ.

Use Laplace approximation to remove the integrals, and outline how you would then
estimate β and τ 2. Give also a Laplace approximation for the posterior mean of θ j given
the data, β and τ .

4 Consider the exponential family density f (y | θ ) = θ ye−κ(θ ) f0(y) for integer y, where
f0(y) is known. If π (θ ) is any prior on θ , show that

E(θ | y) =
∫

θ y+1e−κ(θ )π (θ ) dθ∫
θ ye−κ(θ )π (θ ) dθ

= Prπ (Y = y + 1) f0(y)

Prπ (Y = y) f0(y + 1)
,

where Prπ (Y = y) is the marginal probability that Y = y, averaged over π . Given a sample
y1, . . . , yn from the corresponding empirical Bayes model, explain why E(θ j | y j ) may
be estimated by

f0(y j )
∑n

i=1 I (yi = y j + 1)

f0(y j + 1)
∑n

i=1 I (yi = y j )
.
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Do you think this estimator will be numerically stable? Check by simulating some data
and trying it out.

5 Let X1, . . . , Xn be a Poisson random sample with mean µ. Previous experience suggests
prior density

π (µ) = 1

�(ν)
µν−1e−µ, 0 < µ < ∞, ν > 0.

If the loss function for an estimator µ̃ of µ is (µ̃ − µ)2, determine an estimator that
minimizes the expected loss and compare its bias and variance with those of the maximum
likelihood estimator.

6 The proportion θ of defective items from a production process varies because of fluctua-
tions in the the raw material. Records show that the prior density for θ is proportional to
θ (1 − θ )4. A hundred items are inspected from a large batch all made from a homogeneous
batch of raw material, and six are found to be defective.
Find the posterior density function for the proportion θ of defectives in the batch. The cost
of estimating θ by θ̂ is θ2(̂θ − θ )2. Find also the value of θ̂ which minimizes the expected
cost, and the value of the minimum expected cost.

7 The loss when the success probability θ in Bernoulli trials is estimated by θ̃ is (θ̃ −
θ )2θ−1(1 − θ )−1. Show that if the prior distribution for θ is uniform and m trials result in
r successes then the corresponding Bayes estimator for θ is r/m. Hence show that r/m
is also a minimax estimator for θ .

8 A population consists of k classes θ1, . . . , θk and it is required to classify an individual on
the basis of an observation Y having density fi (y | θi ) when the individual belongs to class
i = 1, . . . , k. The classes have prior probabilities π1, . . . , πk and the loss in classifying
an individual from class i into class j is li j .
(a) Find the posterior probability πi (y) = Pr(class i | y) and the posterior risk of allocating
the individual to class i .
(b) Now consider the case of 0–1 loss, that is, li j = 0 if i = j and li j = 1 otherwise. Show
that the risk is the probability of misclassification.
(b) Suppose that k = 3, that π1 = π2 = π3 = 1/3 and that Y is normally distributed with
mean i and variance 1 in class i . Find the Bayes rule for classifying an observation. Use
it to classify the observation y = 2.2.

9 Let Y j
ind∼ N (θ j , 1), j = 1, . . . , n, let µT = (µ1, . . . , µn) be a constant vector, and consider

the estimator of θ1, . . . , θn given by

θ̃ j = µ +
{

1 − b
/∑

(Yi − µi )
2
}

(Y j − µ), j = 1, . . . , n.

Show that the risk under squared error loss, (11.62), reduces to (11.64) with n − 3 replaced
by n − 2. Discuss the consequences of this.

11.6 Bibliographic Notes

The Bayesian approach to statistics, then called the inverse probability approach,
played a central role in the early and middle parts of the nineteenth century, and was
central to Laplace’s work. It then fell into disrepute after strong attacks were made
on the principle of insufficient reason and remained there for many years. During
the 1920s and 1930s R. A. Fisher strongly criticised the use of prior distributions
to represent ignorance. The publication in 1939 of the first edition of the influential
Jeffreys (1961) marked the start of a resurgence of interest in Bayesian inference,
which was consolidated by further important advocacy in the 1950s, particularly
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after difficulties with frequentist procedures emerged. Interest has mounted especially
strongly since serious Bayesian computation became routinely possible.

Introductory books on the Bayesian approach are O’Hagan (1988), Lee (1997),
and Robert (2001), while the excellent Carlin and Louis (2000) and Gelman et al.
(1995) are more oriented towards applications; see also Box and Tiao (1973), and
Leonard and Hsu (1999). More advanced accounts are Berger (1985) and Bernardo
and Smith (1994), while De Finetti (1974, 1975) is de rigeur for the serious reader. The
likelihood principle and its relation to the Bayesian approach is discussed at length
by Berger and Wolpert (1988). Bayesian model averaging is described by Hoeting
et al. (1999), who give other references to the topic.

The role and derivation of prior information has been much debated. For some
flavour of this, see Lindley (2000) and its discussion. A valuable review of arguments
for non-subjective representations of prior ignorance is given by Kass and Wasserman
(1996). The elicitation of priors is extensively discussed by Kadane and Wolfson
(1998), O’Hagan (1998), and Craig et al. (1998).

Laplace approximation is a standard tool in asymptotics, with close links to sad-
dlepoint approximation. A statistical account is given by Barndorff-Nielsen and Cox
(1989), which gives further references. It has been used sporadically in Bayesian con-
texts at least since the 1960s. Tierney and Kadane (1986) and Tierney et al. (1989)
raised its profile for modern readers. The same idea can be applied to other distribu-
tions; see for example Leonard et al. (1994).

Markov chain Monte Carlo methods originated in statistical physics. The origi-
nal algorithm of Metropolis et al. (1953) was broadened to what is now called the
Metropolis–Hastings algorithm by Hastings (1970), a paper astonishingly overlooked
for two decades, though known to researchers in spatial statistics and image analysis
(Geman and Geman, 1984; Ripley, 1987, 1988). The last decade has made up for this
oversight, with rapid progress being made in the 1990s following Gelfand and Smith
(1990)’s adoption of the Gibbs sampler for mainstream Bayesian application. Valu-
able books on Bayesian use of such procedures are Gilks et al. (1996), Gamerman
(1997), and Robert and Casella (1999), while Brooks (1998) and Green (2001) give
excellent shorter accounts. Example 11.27 is taken from Besag et al. (1995), while fur-
ther interesting applications are contained in Besag et al. (1991) and Besag and Green
(1993). Tanner (1996) describes a number of related algorithms, including variants on
the EM algorithm and data augmentation. Green (1995) and Stephens (2000) describe
procedures that may be applied when the parameter space has varying dimension.

Spiegelhalter et al. (1996a) describe software for Bayesian use of Gibbs sampling
algorithms, with many examples in the accompanying manuals (Spiegelhalter et al.,
1996b,c). Cowles and Carlin (1996) and Brooks and Gelman (1998) review numerous
convergence diagnostics for Markov chain Monte Carlo output.

Decision theory is treated by Lindley (1985), Smith (1988), Raiffa and Schlaifer
(1961), and Ferguson (1967). Hierarchical modelling is discussed in many of the
above references. Carlin and Louis (2000) give a modern account of empirical
Bayes methods, while the more theoretical Maritz and Lwin (1989) predates modern
computational developments. The discovery of the inadmissibility of the maximum
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likelihood estimator by Stein (1956) and the effects of shrinkage spurred much work;
see Morris (1983) for a review.

11.7 Problems

1 Show that the integration in (11.6) is avoided by rewriting it as

f (z | y) = f (z | y, θ )π (θ | y)

π (θ | y, z)
.

Note that the terms on the right need be calculated only for a single θ .
Use this formula to give a general expression for the density of a future observation in an
exponential family with a conjugate prior, and check your result using Example 11.3.
(Besag, 1989)

2 (a) Consider a scale model with density f (y) = τ−1g(y/τ ), y > 0, depending on a positive
parameter τ . Show that this can be written as a location model in terms of log y and log τ ,
and infer that the non-informative prior for τ is π (τ ) ∝ τ−1, for τ > 0.
(b) Verify that the expected information matrix for the location-scale model f (y; η, τ ) =
τ−1g{(y − η)/τ }, for real η and positive τ , has the form given in Example 11.10, and
hence check the Jeffreys prior for η and τ given there.

3 Show that if y1, . . . , yn is a random sample from an exponential family with conjugate
prior π (θ | λ, m), any finite mixture of conjugate priors,

k∑
j=1

p jπ (θ, λ j , m j ),
∑

j

p j = 1, p j ≥ 0,

is also conjugate. Check the details when y1, . . . , yn is a random sample from the Bernoulli
distribution with probability θ .

4 Inference for a probability θ proceeds either by observing a single Bernoulli trial, X ,
with probability θ , or by observing the outcome of a geometric random variable, Y ,
with density θ (1 − θ )y−1, y = 1, 2, . . . ,. Show that the corresponding Jeffreys priors are
θ−1/2(1 − θ )−1/2 and θ−1(1 − θ )−1/2, and deduce that although the likelihoods for X and
Y are equal, subsequent inferences may differ. Does this make sense to you?

5 Let y1, y2 be the observed value of a random variable from the bivariate density

f (y1, y2; θ ) = π−3/2 exp{−(y1 + y2 − 2θ )2/4}
1 + (y1 − y2)2

, −∞ < y1, y2, θ < ∞.

Show that the likelihood for θ is the same as for two independent observations from the
N (θ, 1) density, but that confidence intervals for θ based the average y are not the same
under both models, in contravention of the likelihood principle.

6 Show that acceptance of the likelihood principle implies acceptance of the sufficiency and
conditionality principles.

7 Consider a likelihood L(ψ, λ), and suppose that in order to respect the likelihood principle
we base inferences for ψ on the integrated likelihood∫

L(ψ, λ) dλ.

(a) Compare what happens when X and Y have independent exponential distributions
with means (i) λ−1 and (λψ)−1, (ii) λ and λ/ψ . Discuss.
(b) Suppose that the parameters in (i) are given prior density π (ψ, λ) and that we compute
the marginal posterior density for ψ . Establish that if the corresponding prior density is
used in the parametrization in (ii), the problems in (a) do not arise.
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8 Obtain expressions for the mean, variance, and mode of the inverse gamma density (11.14),
and express its quantiles in terms of those of the gamma density. Use your results to
summarize the posterior density of σ 2 in Example 11.12. Calculate also 95% HPD and
equi-tailed credible sets for σ 2.

You may like to check that
for b > 0, the function
g(u) = au − beu is
concave with a maximum
at a finite u if a > 0, but
that if a < 0, it is
monotonic decreasing.

9 (a) Let y be Poisson with mean θ and gamma prior λνθν−1 exp(−λθ )/�(ν), for θ > 0.
Show that if ν = 1

2 and y = 0, the posterior density for θ has mode zero, and that a HPD
credible set for θ has form (0, θU ).
(b) Show that a HPD credible set for φ = log θ has form(φL , φU ), with both endpoints
finite. How does this compare to the interval transformed from (a)? Why does the difference
arise?
(c) Compare the intervals in (a) and (b) with the use of quantiles of π (θ | y) to construct
an equi-tailed credible set for θ , and with confidence intervals based on the likelihood
ratio statistic.

10 Use (11.15) to show that the joint conjugate density for the normal mean and variance has
µ ∼ N (µ0, σ

2/k) conditional on σ 2, with σ 2 having an inverse gamma density. Give in-
terpretations of the hyperparameters, and investigate under what conditions the conjugate
prior approaches the improper prior in which π (µ, σ 2) ∝ σ−2.
Consider instead replacing the prior variance σ 2/k of µ by a known quantity τ 2. Is the
resulting joint prior conjugate?

11 Two competing models for a random sample of count data y1, . . . , yn are that they are
independent Poisson variables with mean θ , or independent geometric variables with
density θ (1 − θ )y−1, for y = 0, 1, . . ., with 0 < θ < 1; this density has mean θ−1. Give
the posterior odds and Bayes factor for comparison of these models, using conjugate priors
for θ in both cases.
What are your prior mean and variance for the numbers of seedlings per five foot square
quadrat in a fir plantation? Use them to deduce the corresponding parameters of the con-
jugate priors for the Poisson and geometric models. Calculate your prior odds and Bayes
factor for comparison of the two models applied to the data in Table 11.14. Investigate
their sensitivity to other choices of prior mean and variance.

12 Consider a random sample y1, . . . , yn from the N (µ, σ 2) distribution, with conjugate prior
N (µ0, σ

2/k) for µ; here σ 2 and the hyperparameters µ0 and k are known. Show that the
marginal density of the data

f (y) ∝ σ−(n+1)(σ 2n−1 + σ 2k−1)1/2 exp

[
−1

2

{
(n − 1)s2

σ 2
+ (y − µ0)2

σ 2/n + σ 2/k

}]

∝ exp

{
−1

2
d(y)

}
,

say. Hence show that if Y+ is a set of data from this marginal density, Pr{ f (Y+) ≤ f (y)} =
Pr{χ 2

n ≥ d(y)}. Evaluate this for the sample 77, 74, 75, 78, with µ0 = 70, σ 2 = 1, and
k0 = 1

2 . What do you conclude about the model?
Do the corresponding development when σ 2 has an inverse gamma prior.
(Box, 1980)

13 Suppose that y1, . . . , yn is a random sample from the Poisson distribution with mean θ ,
and that the prior information for θ is gamma with scale and shape parameters λ and ν.
Show that the marginal density of y is

f (y) = s!∏n
j=1 y j !

n−s × �(s + ν)

�(ν)s!

λνns

(λ + n)ν+s
, y1, . . . , yn ≥ 0,

where s = ∑
j y j , and give an interpretation of it.

Suppose that the data in Table 11.14 are treated as Poisson variables, and that prior
information suggests that λ = 1 and ν = 1

2 . Is this compatible with the data? Do the data
seem Poisson, regardless of the prior?
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Table 11.14 Counts of
of balsam-fir seedlings in
five feet square quadrats.

0 1 2 3 4 3 4 2 2 1
0 2 0 2 4 2 3 3 4 2
1 1 1 1 4 1 5 2 2 3
4 1 2 5 2 0 3 2 1 1
3 1 4 3 1 0 0 2 7 0

14 In the usual normal linear regression model, y = Xβ + ε, suppose that σ 2 is known and
that β has prior density

π (β) = 1

|�|1/2(2π )p/2
exp{−(β − β0)T�−1(β − β0)/2},

where � and β0 are known. Find the posterior density of β.

15 Show that the (1 − 2α) HPD credible interval for a continuous unimodal posterior density
π (θ | y) is the shortest credible interval with level (1 − 2α).

16 An autoregressive process of order one with correlation parameter ρ is stationary only
if |ρ| < 1. Discuss Bayesian inference for such a process. How might you (a) impose
stationarity through the prior, (b) compute the probability that the process underlying data
y is non-stationary, (c) compare the models of stationarity and non-stationarity?

17 Study the derivation of BIC for a random sample of size n. Investigate the sizes of the
neglected terms for nested normal linear models with known variance. Suggest a better
model comparison criterion that is almost equally simple.

18 The lifetime in months, y, of an individual with a certain disease is thought to be expo-
nential with mean 1/(α + βx), where α, β > 0 are unknown parameters and x a known
covariate. Data (x j , y j ) are observed for n independent individuals, some of the lifetimes
being right-censored. The prior density for α and β is

π (α, β) = ab exp(−αa − βb), α, β > 0,

where a, b > 0 are specified. Show that an approximate predictive density for the uncen-
sored lifetime, z, of a future individual with covariate t is

f̂ (z|t, y1, . . . , yn) = (̂α + β̂t) exp{−(̂α + β̂t)z}, z > 0,

where α̂ and β̂ satisfy the equations

b +
n∑

j=1

x j y j =
∑
j∈U

x j

α + βx j
, a +

n∑
j=1

y j =
∑
j∈U

1

α + βx j
,

and U denotes the set of uncensored individuals.

19 Suppose that (U1, U2) lies in a product space, of form U1 × U2.
(a) Show that

π (u1) = π (u1 | u2)

π (u2 | u1)
π (u2), for any u1 ∈ U1, u2 ∈ U2,

and deduce that for each u2 ∈ U2 and an arbitrary u′
1 ∈ U1,

π (u2) =
{∫

π (u1 | u2)

π (u2 | u1)
du1

}−1

= π (u2 | u′
1)

π (u′
1 | u2)

{∫
π (u2 | u′

1)

π (u′
1 | u2)

du2

}−1

.

(b) If U 1
2 , . . . , U S

2 is a random sample from π (u2 | u′
1), show that

π̂ (u2) = π (u2 | u′
1)

π (u′
1 | u2)

{
S−1

S∑
s=1

π
(
u′

1 | U s
2

)−1

}−1
P−→ π (u2) as S → ∞.

(c) Verify that the code below applies this approach to the bivariate normal model in
Example 11.21.
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S <- 1000; rho <- 0.75; u1p <- -2 # u1p is u1prime
z <- seq(from=-4,to=4,length=200)
plot(z,dnorm(z),type="l",ylim=c(0,1.5))
for (r in 1:20) # 20 replicates of the simulation
{ u2.sim <- rnorm(S, rho*u1p, sqrt(1-rho^2))
if (r==1) rug(u2.sim) # rug with one of the u2 samples
const <- mean( 1/dnorm(u1p,rho*u2.sim,sqrt(1-rho^2)) )
dz <- dnorm(z,rho*u1p,sqrt(1-rho^2))/dnorm(u1p,rho*z,sqrt(1-rho^2))
lines(z, dz/const) }

Does this work well? Why not? Try with u′
1 = −2, −1, 0.

What lesson does this example suggest for the use of this approach in general?

20 (a) Let (U1, U2) have a joint density π , marginal densities π1 and π2, and conditional
densities π1|2 and π2|1. Show that π1 satisfies the integral equation

π1(u) =
∫

h(u, v)π1(v) dv, where h(u, v) =
∫

π1|2(u | w)π2|1(w | v) dw .

(b) In Example 11.21, establish that the conditional distributions of U (i+1)
2 | U (i)

1 = v,
U (i+1)

1 | U (i+1)
2 = w , and U (i+1)

1 | U (i)
1 = v, i = 1, . . . , I − 1, are those of

ρv + (1 − ρ2)1/2ε1, ρw + (1 − ρ2)1/2ε2, ρ2v + (1 − ρ4)1/2ε3,

where ε j
iid∼ N (0, 1). Hence write down h(u, v) for this problem.

(c) Show by induction that the conditional distribution of U (I+1)
1 | U (1)

1 = v is the same
as that of ρ2I v + (1 − ρ4I )1/2ε4, and hence show that (i) the Markov chain U (1)

1 , U (2)
1 , . . .

is in equilibrium when U (0)
2 has the standard normal density, and (ii) the chain will reach

equilibrium provided U (0)
2 may not equal ±∞.

21 The unmodified Gibbs sampler can be a poor way to generate values from a posterior
density with several widely separated modes. Let U = (U1, U2)T and consider

π (u) = γφ(u1 − δ)φ(u2 − δ) + (1 − γ )φ(u1 + δ)φ(u2 + δ),

where u = (u1, u2)T, 0 < γ < 1 and δ > 0; this is a mixture of two bivariate normal
densities whose separation depends on δ and whose relative sizes depend on γ .
(a) When γ = 1/2, sketch contours of π and the conditional density of U1 given U2 = u2

for u2 = −2δ, δ, 0, δ, 2δ. Sketch also some sample paths for a Gibbs sampling algorithm.
What problem do you foresee if δ > 4, say?
(b) Show that the conditional density of U1 given U2 = u2 may be written

α(u2)φ(u1 − δ) + {1 − α(u2)}φ(u1 + δ), where α(u2) = γ e2δu2

1 − γ + γ e2δu2
,

and write down a Gibbs sampling algorithm for π .
(c) If c > 0 is large enough that �(−c) is negligible, show that the probability that the
sampler stays in the same mode during R iterations of the sampler is bounded below by

exp{−2R(γ −1 − 1)e−2δc},
and compute this for δ = 2, 3 and some suitable values of c. Comment.
(d) Find the joint distribution of V = (V1, V2)T = 2−1/2(U1 + U2, U1 − U2)T and show
that if simulation is performed in terms of V , convergence is immediate. Comment on the
implications for implementing the Gibbs sampler.

22 Table 5.9 gives data from k clinical trials as 2 × 2 tables (RT j , mT j ; RC j , mC j ), where RT j

is the number of deaths in the treatment group of mT j patients and similarly in the control
group, for j = 1, . . . , k. As a model for such data, ignoring publication bias, assume that
RC j and RT j are independent binomial variables with denominators mC j and mT j and
probabilities

exp(µ j )

1 + exp(µ j )
,

exp(µ j + δ j )

1 + exp(µ j + δ j )
, j = 1, . . . , k,
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where δ j
iid∼ N (γ, τ 2) represent the treatment effects. Suitable prior densities are assumed

for µ1, . . . , µk , γ and τ 2.
(a) Write down the directed acyclic graph for this model, derive its conditional indepen-
dence graph, and hence give steps of a Markov chain Monte Carlo algorithm to sample from
the posterior density of µ1, . . . , µk , γ and τ 2. If any steps require Metropolis–Hastings
sampling, suggest how you would implement it and give the acceptance probabilities.
(b) How does your sampler change if one of the RC s is missing?
(c) How should your sampler be modified to generate from the posterior predictive density
of δ+, the value of δ for a new trial?
(d) How should your algorithm be modified if an hierarchical model is used for the µ j ?

23 A Poisson process with rate

λ(t) =
{

λ0, 0 < t ≤ τ ,
λ1, τ < t ≤ t0,

where τ is known, is observed on the interval (0, t0]. Let n0 and n1 denote the numbers
of events seen before and after τ , and suppose that λ0 and λ1 are independent gamma
variables with parameters ν and β, where ν is specified and β has a gamma prior density
with specified parameters a and b.
(a) Check that the joint density of n0, n1, λ0, λ1, and β is

(λ0τ )n0

n0!
e−λ0τ {λ1(t0 − τ )}n1

n1!
e−λ1(t0−τ ) λ

ν−1
0 βν

�(ν)
e−λ0β λν−1

1 βν

�(ν)
e−λ1β βa−1ba

�(a)
e−bβ .

Show that λ0, λ1, and β have gamma full conditional densities, and hence give a reversible
Gibbs sampler algorithm for simulating from their joint posterior density. Extend this to
a process with known multiple change points τ1, . . . , τk , for which

λ(t) =




λ0, 0 < t ≤ τ1,
λ1, τ1 < t ≤ τ2,
· · · · · ·
λk, τk < t ≤ t0.

(b) Now suppose that ν is unknown, with prior gamma density with specified parameters
c and d. Show that a random walk Metropolis–Hastings move to update log ν to log ν ′ has
acceptance probability

min

[
1,

{
�(ν)

�(ν ′)

}k+1 (
ν ′

ν

)c (
e−dβk+1

∏
λ j

)ν′−ν

]
.

How would you add this to the algorithm in (a) to retain reversibility?
(c) Now suppose that although k is known, τ1, . . . , τk are not. Show that the joint density
of the even order statistics from a random sample of size 2k + 1 from the uniform density
on (0, t0) is proportional to

τ1(τ2 − τ1) · · · (τk − τk−1)(t0 − τl ), 0 < τ1 < · · · < τk < t0.

Suppose that this is taken as the prior for the positions of the k changepoints, and that
these are updated singly with proposals in which τ ′

i is drawn uniformly from (τi−1, τi+1),
with obvious changes for τ1 and τk . Find the acceptance probabilities for these moves.

24 In a Bayesian formulation of Problem 6.16, we suppose that the computer program is one
of many to be debugged, and that the mean number of bugs per program has a Poisson
distribution with mean µ/β, where µ, β > 0. The actual number of bugs in a particular
program is m, and each gives rise to a failure after an exponential time with mean β−1,
independent of the others. On failure, the corresponding bug is found and removed at
once.
(a) Debugging takes place over the interval [0, t0] and failures are seen to occur at times
0 < t1 < · · · < tn < t0. Show that

f (y | m, β) = m!

(m − n)!
βn exp {−βt0(m + s/t0 − n)} , β > 0, m = n, n + 1, . . . ,
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where y represents the failure times and s = ∑n
j=1 t j .

(b) We take prior π (µ, β) ∝ µ−2, µ > 0. Show that

π (y, m) =
∫ ∞

0

∫ ∞

0
f (y | m, β) f (m | β, µ)π (β, µ) dβdµ

∝ (m − n + s/t0)−n
n−2∏
i=1

(m − n + i), m = n, n + 1, . . . ,

and give expressions for the posterior probabilities (i) that the program has been entirely
debugged and (ii) that there are no failures in [t0, t0 + u].
(c) Use the data in Table 6.13 to give a 95% HPD credible interval for the number of bugs
remaining after 31 failures. Compute the probability that the program had been entirely
debugged (i) after 31 failures and (ii) after 34 failures. Should the program have been
released when it was?
(d) Discuss how the appropriateness of the model might be checked.
(Example 2.28; Raftery, 1988)

25 Let Y1, . . . , Yn be independent normal variables with means µ1, . . . , µn and common
variance σ 2. Show that if the prior density for µ j is δ is the Dirac delta

function.
π (µ j ) = γ τ−1φ(µ j/τ ) + (1 − γ )δ(µ j ), τ > 0, 0 < γ < 1,

with all the µ j independent a priori, then π (µ j | y j ) is also a mixture of a point mass and
a normal density, and give an interpretation of its parameters.
(a) Find the posterior mean and median of µ j when σ is known, and sketch how they vary
as functions of y j . Which would you prefer if the signal is sparse, that is, many of the µ j

are known a priori to equal zero but it is not known which?
(b) How would you find empirical Bayes estimates of τ , γ , and σ?
(c) In applications of the tails of the normal density might be too light to represent the
distribution of non-zero µ j well. How could you modify π to allow for this?

26 Suppose that y1, . . . , yn are independent Poisson variables with means λ j x j , where the x j

are known constants, and that the λ j are a random sample from the gamma density with
mean ξ/ν.
(a) Show that the marginal density of y j is

f (y j ; ξ, ν) = �(y j + ξ )

�(ξ )y j !

x
y j
j νξ

(x j + ξ )y j +ξ
, y j = 0, 1, . . . , ξ, ν > 0,

and give its mean. Say how you would estimate ξ and ν based on y1, . . . , yn .
(b) Establish that

E(λ j | y, ξ, ν) = y j + ξ

x j + ν
, var(λ j | y, ξ, ν) = y j + ξ

(x j + ν)2
,

and give an interpretation of this.
(c) Check that the code below computes the maximum likelihood estimates ξ̂ and ν̂, and
yields the empirical Bayes estimates in Table 11.7. Discuss.

x <- c(94.32,15.72,62.88,125.76,5.24,31.44,1.048,1.048,2.096,10.48)
y <- c(5,1,5,14,3,19,1,1,4,22)
L <- function(p, y, x)

-sum(dnbinom(y, size=p[1], prob=p[2]/(x+p[2]), log=T))
fit <- nlm(L, p=c(1,1), y=y, x=x) # marginal maximum likelihood
xi <- fit$estimate[1]
nu <- fit$estimate[2]
ests <- (y+xi)/(x+nu)
vars <- (y+xi)/(x+nu)^2
cbind(ests,vars)
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Conditional and Marginal Inference

In most models the parameter vector can be split into two parts, θ = (ψ, λ), where
ψ is the interest parameter or parameter of interest and λ is a nuisance or incidental
parameter. The former is the focus of enquiry, while the latter summarizes aspects
of the model that are not of central concern, but which are nevertheless essential to
realistic modelling. Usually ψ has small dimension, often being scalar, while λ may
be of high dimension. Different elements of θ may be nuisance or interest parameters
at different stages of an investigation. We suppose throughout the discussion below
that ψ and λ are variation independent, that is, the parameter space has form � × �,
so knowledge about the range of λ imparts no information about ψ . In many cases
it is desirable that inferences be invariant to interest-preserving reparametrizations,
that is, one-one maps between (ψ, λ) and (η(ψ), ζ (ψ, λ)).

Example 12.1 (Log-normal mean) If X ∼ N (µ, σ 2), then the log-normal variable
Y = exp(X ) has mean and variance

E(Y ) = exp(µ + σ 2/2) = ψ, var(Y ) = exp(2µ + σ 2){exp(σ 2) − 1} = λ,

say. A confidence interval (ψ−, ψ+) for ψ should transform to (log ψ−, log ψ+) if the
model is expressed in terms of η = log ψ and ζ = ζ (ψ, λ) = σ 2. �

In many important cases the density of data Y may be factorized as

f (y; ψ, λ) ∝ f (t1 | a; ψ) f (t2 | t1, a; ψ, λ),

or as

f (y; ψ, λ) ∝ f (t1 | t2, a; ψ) f (t2 | a; ψ, λ),

where terms free of the parameters have been neglected. The quantity a may not be
present, but if it is, it is usually chosen to be an ancillary statistic, a notion discussed in
Section 12.1. If such a factorization holds, it is natural to base inference for ψ on the
leading term on its right side. Information about ψ can then be extracted from the data
without needing to estimate or otherwise account for λ. Leaving aside the presence
of a, these terms are respectively marginal and conditional densities of T1, and can be

645
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viewed as a marginal likelihood and a conditional likelihood for ψ . One reason for
considering them is that when λ is high-dimensional, the standard likelihood methods
described in Chapter 4 and used throughout the book can become unreliable or fail
utterly, as in the following classic example.

Example 12.2 (Neyman–Scott problem) The log likelihood based on data yi j , So-called because first
pointed out by Neyman
and Scott (1948).

i = 1, . . . , m, j = 1, . . . , k, supposed to be realized values of independent normal
variables with means µi and common variance σ 2, is

	(µ1, . . . , µm, σ 2) ≡ − 1
2

m∑
i=1

{
k log σ 2 + 1

σ 2

k∑
j=1

(yi j − µi )
2

}

= − 1
2

m∑
i=1

{
k log σ 2 + 1

σ 2

k∑
j=1

(yi j − yi ·)
2 + k

σ 2
(yi · − µi )

2

}
.

As the maximum likelihood estimate of µi is yi · = k−1 ∑
j yi j , the maximum

likelihood estimate of σ 2 is σ̂ 2 = (mk)−1 ∑
i j (yi j − yi ·)2. The sums of squares∑

j (yi j − yi ·)2 are independently distributed as σ 2χ2
k−1, so

E(σ̂ 2) = σ 2 (k − 1)

k
, var(σ̂ 2) = 2σ 4 (k − 1)

mk2
.

Thus if k is fixed and m increases, σ̂ 2 converges to the wrong value. When k = 2,
for example, σ̂ 2 P−→ σ 2/2, so σ̂ 2 is both biased in small samples and inconsistent as
m → ∞.

The problem here is that the number of parameters increases with the sample
size, but the information about each of the µi stays fixed. Moreover, even though the
expected information for σ 2 does increase with m, it gives a misleading impression of
the precision with which σ 2 can be estimated. This is an extreme situation, but similar
difficulties arise in many other models. Here they could be eliminated by replacing k
by k − 1 in the denominator of σ̂ 2, but such a repair is impossible in general. It turns
out, however, that use of marginal likelihood rescues the situation. �

This chapter gives an introduction to conditional and marginal inference. In Sec-
tion 12.1 we define ancillary statistics and discuss their properties, and in Sections 12.2
and 12.3 describe marginal and conditional likelihoods, which have their major ap-
plications for group transformation and exponential family models respectively. In
many cases these likelihoods are difficult to construct exactly. Highly accurate ap-
proximations to them may be based on saddlepoint procedures, which are closely
related to the Bayesian use of Laplace approximation, and these are described in
Section 12.3. Finally Section 12.4 gives a brief account of modifications intended to
improve inferences based on the profile likelihood.

12.1 Ancillary Statistics

Conditioning arguments have several important roles in statistics. One is to re-
strict the sample space under consideration, thereby ensuring that repeated sampling
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comparisons are made within a so-called relevant subset of the full sample space. The
conditionality principle (Section 11.1.2) suggests that this will often result in infer-
ences that are close to Bayesian ones, but without the need to specify a prior density
that may be difficult to justify. A second role of conditioning is the elimination of
nuisance parameters; see Sections 5.2.3, 7.3.3, and 12.3. In this section we focus on
the use of conditioning for ensuring relevance of tests and confidence intervals.

Consider a statistical model for data Y that depends on a parameter θ , and suppose
that the minimal sufficient statistic for θ is S = s(Y ). The factorization theorem
implies that inference for θ may be based on the density of S. If we can write S =
(T, A), where the distribution of A does not depend on θ , then A is said to be ancillary
for θ , or, more loosely, an ancillary statistic. Note our requirement that A be a function
of the minimal sufficient statistic. Some authors do not impose this, and say that any
function of Y whose distribution does not depend on θ is ancillary, but we reserve
the term distribution constant for such statistics; see Section 5.3. We shall see below
that in a particular sense ancillary statistics determine the amount of information in the
data, and as a result they play a central role in conditional inference.

The likelihood for θ may be written

L(θ ) ∝ f (s; θ ) = f (t, a; θ ) = f (a) f (t | a; θ ),

suggesting that inference for θ be based on the conditional distribution of T given
the observed value a of A. One argument for this is that, in principle at least, the
experiment that generates S may be regarded as having two stages. The first stage
consists of observing a value a from the marginal density of A. In the second stage a
value for T is observed from the conditional density of T given that A = a. As the
distribution of A does not depend upon θ , the conditionality principle implies that
inference for θ should be based only on the second stage, which contributes f (t | a; θ )
to the likelihood. According to this argument the subset of the sample space relevant to
inference for θ is the set {y : a(y) = aobs}, where aobs denotes the value of A actually
observed.

Example 12.3 (Uniform density) Let Y1, . . . , Yn be a random sample from the
density uniform on (θ − 1/2, θ + 1/2), with θ unknown. Then the likelihood,

L(θ ) =
{

1, θ − 1
2 ≤ y1, . . . , yn ≤ θ + 1

2 ,
0, otherwise,

can be re-expressed as

L(θ ) =
{

1, max(y j ) − 1
2 ≤ θ ≤ min(y j ) + 1

2 ,
0, otherwise,

so the minimal sufficient statistic consists of the smallest and largest order statistics,
S = (Y(1), Y(n)). The joint density of V = Y(n) and U = Y(1) is

f (u, v) = n(n − 1)(v − u)n−2, θ − 1
2 ≤ u < v < θ + 1

2 ,
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and on changing variables from (v, u) to (a, t), where a = v − u = y(n) − y(1) and
t = (y(1) + y(n))/2, we obtain

f (t, a) = n(n − 1)an−2, θ − 1−a
2 ≤ t ≤ θ + 1−a

2 , 0 ≤ a ≤ 1;

the random variable T = (Y(1) + Y(n))/2 is an unbiased estimator of θ . The support of
the joint density for (t, a) is a triangle with vertices (θ, 1) and (θ ± 1/2, 0). Straight-
forward calculations give

f (t) = n (1 − 2|t − θ |)n−1 , θ − 1
2 ≤ t ≤ θ + 1

2 , (12.1)

f (a) = n(n − 1)(1 − a)an−2, 0 ≤ a ≤ 1,

f (t | a; θ ) = 1

1 − a
, θ − 1−a

2 ≤ t ≤ θ + 1−a
2 . (12.2)

Thus A is ancillary, as is clear from its location-invariance. Conditional on A = a, the
density of T is uniform on an interval of length 1 − a centred at θ . From (12.2) we see
that the conditional likelihood for θ equals (1 − a)−1 on the interval with endpoints
t ± (1 − a)/2 and is zero elsewhere. Thus a

.= 0 conveys little information about θ ,
whereas a

.= 1 pins down θ very precisely.
For example, a sample of size n = 2 with y(1) = −0.25 and y(2) = 0.45 has t = 0.1

and a = 0.7. The unconditional equi-tailed 0.9 confidence interval for θ based on
(12.1) is (−0.242, 0.442) (Exercise 12.1.2), while the 0.9 conditional interval based on
(12.2) is (−0.035, 0.235); their respective lengths are 0.68 and 0.27. The unconditional
interval is logically inconsistent with the data, because it includes values such as
θ = 0.3 for which y(1) = −0.25 could not be observed. The conditional interval takes
the observed value of A into account and eliminates such absurdities. �

Example 12.4 (Regression model) In many regressions the observed explanatory
variables x and responses y could both be regarded as realizations of random variables
X and Y , in the sense that different values (x, y) might have occurred. This is clearest
in an observational study, where individuals each have a number of variables recorded,
some being later regarded as explanatory and others as responses. Unless the values
of the Xs are restricted, the data collection scheme implies that they may be modelled
as random variables. If, however, the joint density of (X, Y ) factorizes as

f (y | x ; ψ) f (x),

and properties of the marginal distribution of X are not of interest, it will be appro-
priate to treat X as fixed throughout the analysis, and this is what is generally done
in practice. Notice that ψ is a parameter of the conditional density of Y given X ;
analysis based on f (y | x ; ψ) alone would not be appropriate if ψ also entered the
distribution of X .

Consider the linear model Y = xβ + σε, where Y and x are the vector of responses
and the observed design matrix, respectively. The least squares estimator of β is In this example (only) we

depart from our
convention that X is the
observed design matrix.

(xTx)−1xTY , and conditional on X = x , it has variance σ 2(xTx)−1. Thus the estimator
and its variance both depend on the explanatory variables actually observed, and not
on those that might have been observed but in fact were not. For example, if certain
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parameters cannot be estimated from the design matrix actually used, it is irrelevant
that with another design they might have been estimable. �

Basu’s theoremSee Basu (1955, 1958).

If S is a complete minimal sufficient statistic, then it is independent of any distribution
constant statistic C . To see this in the discrete case, note that for any c and θ the
marginal density of C may be written as

fC (c) =
∑

s

fC |S(c | s) fS(s; θ ),

where the sum is over all possible values of s. This implies that for all θ

∑
s

{
fC (c) − fC |S(c | s)

}
fS(s; θ ) = 0,

and completeness of S gives fC (c) = fC |S(c | s) for every c and s. Hence C and S are
independent. This result is useful, because it assures independence without the effort
of computing the joint density of C and S. The argument in the continuous case is
analogous.

Example 12.5 (Normal linear model) The minimal sufficient statistic in the nor-
mal linear model y = Xβ + ε consists of β̂ = (X T X )−1 X T y and the rescaled sum of
squares S2 = (y − X β̂)T(y − X β̂)/(n − p). That the pair (̂β, S2) is complete and min-
imal sufficient follows from properties of the exponential family; see Example 7.10.
The standardized residuals

y j − xT
j β̂

S(1 − h j )1/2
, j = 1, . . . , n,

have a (degenerate) joint distribution that does not depend on β and σ 2. Basu’s theorem
implies that this distribution is independent of β̂ and S2; see Example 5.14. �

Location model

Suppose that y1, . . . , yn is a random sample from the continuous density f (y; θ ) =
g(y − θ ), where −∞ < θ < ∞ and the density g is known. Here θ determines the
location of f , and we can write a random variable from f as Y = θ + ε, where
ε has density g. Except for certain special choices of g, such as the normal and
uniform densities, the minimal sufficient statistic for θ consists of the order statistics
Y(1) < · · · < Y(n), whose joint density is

f (y(1), . . . , y(n); θ ) = n!
n∏

j=1

g(y( j) − θ ), y(1) < · · · < y(n).

We now discuss conditional inference for θ based on the maximum likelihood es-
timator θ̂ . Although rarely of interest in applications, the simplicity of this model
brings out the main ideas without unnecessary complication, and helps to motivate
later developments.
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We assume that θ̂ is the sole solution to the score equation

0 =
n∑

j=1

∂ log g(Y( j) − θ̂ )

∂θ
=

n∑
j=1

∂ log g(A j )

∂θ
, (12.3)

where A j = Y( j) − θ̂ . As θ̂ is equivariant, the random variables A1, . . . , An form a
maximal invariant, which is of course distribution constant. Moreover the configu-
ration A = (A1, . . . , An) is a function of the minimal sufficient statistic. Hence it is
ancillary. The discussion above suggests that inference be based on the conditional
distribution of θ̂ given the value a of A. Equivariance of θ̂ means that Z (θ ) = θ̂ − θ

is a pivot, so if we let zα(a) denote the α quantile of the conditional distribution of
Z (θ ), a (1 − 2α) conditional confidence interval for θ will have limits

θ̂ − z1−α(a), θ̂ − zα(a)

that depend on the observed a.
Another possibility is to use the unconditional distribution of Z (θ ), whose quantiles

zα and z1−α do not depend on a. These quantiles are readily estimated by simulation,
but the zα(a) are not. In fact the conditional distributions of θ̂ and hence of Z (θ ) are
fairly easily found, as we now see.

Owing to the constraint (12.3), the density of A is degenerate, and there exists a
function h such that a1 = h(a2, . . . , an); this is assumed sufficiently smooth for the
development below. Thus

y(1) = θ̂ + h(a2, . . . , an), y( j) = θ̂ + a j , j = 2, . . . , n.

The Jacobian for transformation from (y(1), . . . , y(n)) to (̂θ, a2, . . . , an) is∣∣∣∣∣∣∣∣∣∣

∂y(1)

∂θ̂

∂y(2)

∂θ̂
· · · ∂y(n)

∂θ̂
∂y(1)

∂a2

∂y(2)

∂a2
· · · ∂y(n)

∂a2

...
... · · · ...

∂y(1)

∂an

∂y(2)

∂an

. . . ∂y(n)

∂an

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 1 · · · 1
h1 1 · · · 0
...

...
. . .

...
hn 0 · · · 1

∣∣∣∣∣∣∣∣
= H (a),

say, where h j = ∂h(a2, . . . , an)/∂a j . Hence the joint density of θ̂ and A is

f (̂θ, a; θ ) = n!H (a)
n∏

j=1

g(y( j) − θ )
∣∣

y( j)=θ̂+a j
= n!H (a)

n∏
j=1

g(a j + θ̂ − θ ),

so for a1 ≤ · · · ≤ an and θ̂ real,

f (̂θ | a; θ ) = f (̂θ, a; θ )

f (a)
=

∏n
j=1 g(a j + θ̂ − θ )∫ ∞

−∞
∏n

j=1 g(a j + u) du
. (12.4)

This conditional density contains all the information in the data concerning θ , appro-
priately conditioned. Changing variables to z(θ ) = θ̂ − θ and integrating gives

Pr {Z (θ ) ≤ z | A = a} =
∫ z
−∞

∏n
j=1 g(a j + u) du∫ ∞

−∞
∏n

j=1 g(a j + u) du
.
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Figure 12.1 Conditional
inference for location in
two samples of size n = 5
from the t3 density.
Conditional density of
pivot Z (θ ) = θ̂ − θ given
configuration ancillary
(solid), and unconditional
density of Z (θ ) (dots).
The blobs show the
observed configuration,
and the rug the expected
configuration.

This function can be obtained by evaluating the integrand on a grid of values, or by
more sophisticated methods. Once it has been approximated the quantiles zα(a) are
easily found.

Example 12.6 (Student t distribution) Figure 12.1 shows the conditional densi-
ties of Z (θ ) for two samples of size five from the t3 density. In the left panel the
configuration is very asymmetric, and hence so is the conditional density of θ̂ . In
the right panel the configuration is quite symmetric but underdispersed relative to a
typical configuration. Hence the conditional density of Z (θ ) is more peaked than the
unconditional density, thereby giving more precise inferences.

In the left panel the conditional 0.025 and 0.975 quantiles are −2.11 and 1.03, so if
θ̂ = 0 the 0.95 confidence interval, (−1.03, 2.11), is asymmetric in the same direction
as the configuration. The corresponding confidence interval for the right panel would
be (−1.13, 1.18), to be compared to the unconditional interval (−1.61, 1.61). �

It is suggestive to express f (̂θ | a; θ ) using the log likelihood for the model, which
we write as 	(θ ; θ̂ , a) to stress its dependence on the data through θ̂ and a. Setting
u = θ + θ̂ − v we see that (12.4) becomes

f (̂θ | a; θ ) = exp
{
	(θ ; θ̂ , a)

}
∫ ∞
−∞ exp

{
	(v; θ̂ , a)

}
dv

. (12.5)

Laplace approximation to the integral (Section 11.3.1) gives

f (̂θ | a; θ ) = (2π )−1/2|J (̂θ ; θ̂ , a)|1/2 exp
{
	(θ ; θ̂ , a) − 	(̂θ ; θ̂ , a)

} {
1 + O(n−1)

}
.

(12.6)
where J (̂θ ; θ̂ , a) equals −∂2	(θ ; θ̂ , a)/∂θ2 evaluated at θ = θ̂ . In fact the quantity
J (̂θ ; θ̂ , a) does not depend on θ̂ , because the log likelihood may be written as 	(̂θ − θ ).
By (12.5) we see that renormalizing (12.6) to have unit integral will recover the exact
expression, givingThis is called the p∗

formula or
Barndorff-Nielsen’s
formula.

f (̂θ | a; θ ) = (2π )−1/2c(a)|J (̂θ ; θ̂ , a)|1/2 exp
{
	(θ ; θ̂ , a) − 	(̂θ ; θ̂ , a)

}
. (12.7)

Detailed analysis of the Laplace expansion shows that c(a) = 1 + O(n−1).
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Formula (12.7) expresses the conditional density of θ̂ in terms of the log likelihood
and its derivatives and is the basis for much further development. It is exact for group
transformation models and approximately true more generally, though we shall prove
neither of these assertions; see instead the bibliographic notes.

If we accept that (12.7) is correct, how may it be used for inference? One possibility
is to obtain conditional confidence intervals for θ by transforming θ̂ to a normally-
distributed pivot. To do this, we write the integral of (12.6) in form (11.30), taking
a(u) = |J (u; u, a)|1/2 and g(u) = 	(u; u, a) − 	(θ ; u, a). Then the argument leading
to (11.31) gives

Pr(̂θ ≤ t | A = a; θ ) = �
{
r∗(θ )

} + O(n−1), (12.8)

where r∗(θ ) = r (θ ) + r (θ )−1 log{v(θ )/r (θ )}, with

r (θ ) = sign(t − θ ) [2 {	(t ; t, a) − 	(θ ; t, a)}]1/2 , v(θ ) = 	;̂θ (t ; t, a) − 	;̂θ (θ ; t, a)

|J (t ; t, a)|1/2
.

The last of these involves a sample space derivative of 	,

	;̂θ (θ ; θ̂ , a) = ∂	(θ ; θ̂ , a)

∂θ̂
.

In order to obtain this, 	 must be expressed as a function of θ̂ and a so that it can be
differentiated partially with respect to θ̂ , holding a fixed. Usually this re-expression is
difficult, and approximations to such derivatives are needed. For the location model,
however, 	;̂θ (t ; t, a) = 0 for any t , and

	;̂θ (θ ; θ̂ , a) = −∂	(θ ; θ̂ , a)

∂θ
= −	θ ;(θ ; θ̂ , a),

say. Thus v(θ ) = 	θ ;(θ ; t, a)/|J (t ; t, a)|1/2 is the score statistic.
More detailed computations show that in a moderate deviation region, where

n1/2(t − θ̂ ) = O(1), the error in (12.8) is relative and of order O(n−3/2): the right-
hand side is in fact � {r∗(θ )} {

1 + O(n−3/2)
}
. In a large deviation region, for which

t − θ̂ = O(1), the error remains relative but becomes O(n−1). The relative error
property helps explain why the extraordinary accuracy of this type of approximation
persists far into the tails of the distribution of θ̂ .

Expression (12.8) shows that the random quantity R∗(θ ) corresponding to r∗(θ )
is an approximate pivot, conditional on A = a, because its distribution is almost
standard normal. As this distribution is essentially independent of a, R∗(θ ) is also
approximately normal unconditionally. The limits of a (1 − 2α) confidence interval
for θ may be found as those θ for which �{r∗(θ )} = α, 1 − α; equivalently we may
solve for θ the equations r∗(θ ) = �−1(α) and r∗(θ ) = �−1(1 − α).

Owing to the structure of the location model, R∗(θ ) is a monotone function of
Z (θ ) = θ̂ − θ , so both Z (θ ) and R∗(θ ) yield the same conditional confidence intervals;
R∗(θ ) can be regarded as a transformation of θ̂ − θ to normality. Such transformations
have the same effect in much greater generality. There is a close link to the Bayesian
approximations of Section 11.3.1.
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dashes) to construct 0.95
confidence intervals for
location based on two
samples of size 5. The
dotted horizontal lines
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normal distribution, and
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mark the limits of the
confidence interval based
on r∗(θ ). Note how the
confidence intervals based
on r∗(θ ) and r (θ ) take
account of the skewness
of the configuration
ancillary.

The approximate pivot R∗(θ ) = R(θ ) + RINF(θ ), where

RINF(θ ) = R(θ )−1 log {V (θ )/R(θ )} , (12.9)

is a modified form of the signed likelihood ratio statistic

R(θ ) = sign(̂θ − θ )
[
2

{
	(̂θ ; θ̂ , a) − 	(θ ; θ̂ , a)

}]1/2
.

As R(θ ) has an approximate normal distribution with absolute error of O(n−1/2)
rather than relative error of O(n−3/2), RINF(θ ) can be regarded as a correction to
R(θ ) that gives an improved normal approximation; although R∗(θ ) is slightly more
complicated, it yields inferences that are much more accurate. It can be useful to
compute values rINF(θ ) of RINF(θ ) for the plausible range of values of θ .

Example 12.7 (Student t distribution) The log likelihood contribution for the tν
density is g(u) = − 1

2 (ν + 1) log(1 + u2/ν), so the log likelihood and its derivatives
are

	(θ ; θ̂ , a) = −ν + 1

2

n∑
j=1

log
{
1 + (a j + θ̂ − θ )2/ν

}
,

	θ ;(θ ; t, a) = (ν + 1)
n∑

j=1

(a j + t − θ )/
{
ν + (a j + t − θ )2

}
,

J (t ; t, a) = (ν + 1)
n∑

j=1

(ν − a2
j )/(ν + a2

j )
2,

from which r (θ ), v(θ ), and r∗(θ ) may be found.
The data used in the left panel of Figure 12.1 have n = 5, θ̂ = 0.22, and configura-

tion a = (−0.71, −0.54, −0.47, 2.39, 3.28). The left panel of Figure 12.2 compares
the values of R∗(θ ), R(θ ) and the approximate pivot Z1(θ ) = J (̂θ ; θ̂ , a)1/2(̂θ − θ )
derived from the large-sample N (θ, J (̂θ ; θ̂ , a)−1) distribution of θ̂ . All three decrease
as functions of θ , but r∗(θ ) and r (θ ) are curved for positive θ and shifted upwards rel-
ative to z1(θ ), reflecting the asymmetry of the configuration. The limits of confidence
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intervals based on R∗(θ ) are read off as those values for which r∗(θ ) = zα, z1−α , and
likewise with r (θ ) and z1(θ ). Thus 0.95 confidence intervals based on r∗(θ ), r (θ ),
and z1(θ ) are (−0.83, 2.45), (−0.87, 2.08), and (−1.00, 1.44). These intervals reflect
the upward shift and curvature in r∗(θ ), as the corresponding interval is moved to the
right and quite asymmetric.

The right panel of Figure 12.2 shows that for the symmetric configuration in the right
of Figure 12.1, confidence intervals based on Z (θ ), R(θ ), and R∗(θ ) are essentially
identical. �

Applications are usually much more complicated than this, and though it nicely
illustrates how conditioning can affect inference, one might wonder how relevant the
above toy example is to a real world in which models contain nuisance parameters
and have no exact ancillary statistics. In practice a key aspect is not the number of
observations, but the information they contain. If ten parameters are estimated from
50 observations, say, then one may worry that inference for one key parameter is
weakened by having to deal with the other nine: the proportion of parameters to
observations is the same as in the example above. Then small-sample procedures
may in some cases provide reassurance that standard inferences are adequate, while
giving improvements when they are not.

Difficulties with ancillaries

One difficulty in a general treatment of conditional inference is that some statistical
models admit no exact ancillary statistic, while others have several. An instance of
this is the location model, where any subset of the configuration is ancillary, but there
it is clear that the sample space is partitioned most finely by conditioning on the entire
configuration, which is a maximal ancillary statistic. Such arguments may not always
be applied, however.

Example 12.8 (Multinomial distribution) Consider the multinomial distribu-
tion with denominator m and responses R1, . . . , R4 corresponding to cells with
probabilities

π1 = 1
6 (1 + θ ), π2 = 1

6 (1 − θ ), π3 = 1
6 (2 + θ ), π4 = 1

6 (2 − θ ), −1 < θ < 1.

The minimal sufficient statistic is S = (R1, R2, R3), but A1 = R1 + R2 and
A2 = R2 + R3 are binomial with success probabilities 1

3 and 1
2 . As A1 and A2 are

functions of S whose distributions are free of θ , both are ancillary. They are not
jointly ancillary, however (Problem 12.6).

Conditioning on A1 = a1 splits the multinomial likelihood into two binomial
contributions, one from R1 with denominator a1 and probability 1

2 (1 + θ ), and
the other from R3 with denominator m − a1 and probability 1

4 (2 + θ ), so the ex-
pected information is the sum of the information from the two binomials, that is
I1(θ ) = 4a1/(1 − θ2) + 16(m − a1)/(2 − θ2). Conditioning on A2 gives a similar
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split, but the conditional expected information is

I2(θ ) = 9a2/{(1 − θ )(2 + θ )} + 9(m − a2)/{(1 + θ )(2 − θ )}.
Evidently there is no reason that I1(θ ) should equal I2(θ ), and therefore conditional
large-sample confidence intervals for θ would depend on whether A1 or A2 was
used. �

This lack of uniqueness is annoying in principle but turns out not to be crucial
in applications. More awkward difficulties arise when there is no exact ancillary.
Then it is necessary to construct approximate ancillaries, and several approaches
to this have been proposed. One conceptually simple notion can be used when
the model under study can be regarded as nested within a density f (y; θ, λ), with
λ = λ0 corresponding to the model under study. Suppose that the likelihood for the
larger model may be expressed as a function of the data through (̂θ, λ̂, a0), where
θ̂ and λ̂ are maximum likelihood estimators and a0 is ancillary for (θ, λ). Let θ̂0

be the maximum likelihood estimator of θ when λ = λ0. Then if the model under
study is correct, the likelihood ratio statistic 2

{
	(̂θ, λ̂; a0) − 	(̂θ0, λ0; a0)

}
has an

approximate chi-squared distribution whatever the value of θ and so is approximately
ancillary. More elaborate variants of this argument are required to produce ancillary
statistics on which conditioning can readily be performed in practice, for example
by decomposing the ancillary into a sum of squared approximate standard normal
variables, and conditioning on these. It may also be necessary to modify these
variables to have a joint normal distribution to higher order. The details are tedious
and since explicit forms of these ancillaries are not needed below we shall not delve
into them. Although there are different forms of approximate ancillary, most of the
approximations in later sections do not depend on the particular one used.

Exercises 12.1

1 Let Y1, . . . , Yn
iid∼ N (µ, c2µ2), with c known. Show that Y/S is ancillary for µ.

2 In Example 12.3, show that (1 − 2α) equi-tailed conditional and unconditional confidence
intervals are t ± (1/2 − α)(1 − a) and t ± {(2α)1/n − 1}/2. Hence verify the intervals
given in the example.

3 If Y1, . . . , Yn is an exponential random sample, show that the joint distribution of
Y1/S, . . . , Yn/S is independent of that of S = ∑

Y j , without computing it. Is this true
when S is replaced by any other equivariant estimator of scale?

4 Let Y1, . . . , Yn
iid∼ N (µ, σ 2) with σ 2 known. Show that (Y1 − Y , . . . , Yn − Y ) is distribu-

tion constant, and deduce that Y and
∑

(Y j − Y )2 are independent.

5 When is the configuration (Y1 − η̂)/̂τ , . . . , (Yn − η̂)/̂τ in a location-scale model ancillary
as well as maximal invariant?

6 Show that conditional and unconditional inference for the mean of the normal location-
scale model are the same.

7 Give expressions for the quantities needed to compute r∗(θ ) for the location model when
the data have the Gumbel density, so g(u) = −u − e−u . Hence find confidence intervals
based on r (θ ), r∗(θ ), and z1(θ ) with the data −0.32, −0.49, −0.25, 2.61, 3.50 from
Example 12.6.
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12.2 Marginal Inference

Consider a model for data with minimal sufficient statistic (T1, T2, A), where A is
ancillary, and for which

f (y; ψ, λ) ∝ f (t1, t2, a; ψ, λ) = f (a) f (t1 | a; ψ) f (t2 | t1, a; ψ, λ).

As the density of T1 conditional on A depends only on ψ , inference for ψ may be
based on the marginal likelihood Lm(ψ) = f (t1 | a; ψ). In many cases there is no
ancillary, and then Lm(ψ) is simply the marginal density of T1. There may be some
loss of information about ψ due to neglecting the third term in the decomposition
above, but the complications in retrieving it are presumed to outweigh the benefits.

We have already encountered marginal likelihood and maximum marginal likeli-
hood estimators in several contexts. Such estimators and derived statistics will have
the usual large-sample distributions provided that the usual regularity conditions apply
to f (t1 | a; ψ).

Example 12.9 (Normal linear model) Consider the usual normal linear model
y = Xβ + σε, where the ε j are independent standard normal variables and β has
dimension p × 1. The minimal sufficient statistics for (β, σ 2) are

T1 = S2 = (n − p)−1(y − X β̂)T(y − X β̂), T2 = β̂ = (X T X )−1 X T y,

and these are independent, with (n − p)S2/σ 2 having a χ2
n−p distribution. If the

interest parameter is σ 2, and β is the nuisance parameter, we have

f (y; σ 2, β) = f (y | β̂, s2) f (̂β; β, σ 2) f (s2; σ 2).

As the density of S2 depends only on σ 2, we may base inference for σ 2 on the
corresponding marginal likelihood

Lm(σ 2) = f (s2; σ 2) =
(

n − p

2σ 2

)(n−p)/2 (s2)(n−p)/2−1

�
( n−p

2

) exp

{
− (n − p)s2

2σ 2

}
,

where σ 2 > 0, s2 > 0. The marginal maximum likelihood estimate of σ 2 is s2, with
expected information (n − p)/(2σ 4) from the marginal likelihood. These give infer-
ences for σ 2 essentially equivalent to those described in Chapter 8.

This argument applies to any normal linear model, and in particular to Exam-
ple 12.2, where p = k and

S2 = 1

n − p
(y − X β̂)T(y − X β̂)

= 1

m(k − 1)

m∑
i=1

k∑
j=1

(yi j − yi )
2 ∼ σ 2

m(k − 1)
χ2

m(k−1).

Here marginal likelihood automatically produces corrected inferences for σ 2. �

Example 12.10 (Partial likelihood) The partial likelihood used with the propor-
tional hazards model (Section 10.8.2) is a marginal likelihood. Suppose that survival
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time Y has hazard ξh(y), so its density may be written ξh(y) exp{−ξ H (y)}, where
H (y) = ∫ y

0 h(u) du is the baseline cumulative hazard. Observe that∫ ∞

u
h(s)e−γ H (s) ds = γ −1e−γ H (u).

To illustrate the argument, consider n = 4 continuous observations that fall in the
order 0 < Y2 < Y +

3 < Y1 < Y4, where Y +
3 is right-censored. With nothing known

about the baseline hazard h(y), a minimal sufficient statistic is the set of failure times
and censoring indicators (Y1, 1), (Y2, 1), (Y3, 0), (Y4, 1); these are in 1–1 correspon-
dence with the order statistics (Y(1), Y(2), Y(3), Y(4)) and inverse ranks (2, 3+, 1, 4), the
j th of the inverse ranks giving the original index of Y( j) and its censoring status. We
shall compute the probability of seeing this particular realization of inverse ranks. If
Y3 had been observed, the joint density of the Y j would be

ξ2h(y2)e−ξ2 H (y2) × ξ3h(y3)e−ξ3 H (y3) × ξ1h(y1)e−ξ1 H (y1) × ξ4h(y4)e−ξ4 H (y4),

so the probability that 0 < Y2 < Y1 < Y4 with Y3 censored somewhere to the right of
Y2 is

ξ2h(y2)e−ξ2 H (y2) × e−ξ3 H (y2) × ξ1h(y1)e−ξ1 H (y1) × ξ4h(y4)e−ξ4 H (y4).

Hence the probability that the uncensored observations fail in the order observed,
with Y3 censored to the right of Y2, is

ξ2ξ1ξ4

∫ ∞

0
dy2

∫ ∞

y2

dy1

∫ ∞

y1

dy4 h(y2)h(y1)h(y4)e−(ξ2+ξ3)H (y2)−ξ1 H (y1)−ξ4 H (y4),

and this equals

ξ2

ξ1 + ξ2 + ξ3 + ξ4
× ξ1

ξ1 + ξ4
=

∏
j

ξ j∑
i∈R j

ξi
,

where the product is over those j for which Y j is uncensored and R j denotes the
risk set of individuals available to fail at the j th failure time. This last expression is
simply the partial likelihood (10.58) in this case. Plainly this argument generalizes to n
failures, the only complication being notational. Thus partial likelihood is a marginal
likelihood based on the inverse ranks of the failure and censoring times. �

Restricted maximum likelihood

An important application of marginal likelihood is to normal mixed models, which
we met in Section 9.4.2. There the response vector may be written

y = Xβ + Zb + ε, (12.10)

where the n × p and n × q matrices X and Z are known, β is an unknown p × 1
parameter vector, and the q × 1 and n × 1 random vectors b and ε are independent
with respective Nq (0, �b) and Nn(0, σ 2 In) distributions. Suppose that the variance
matrix σ 2ϒ−1 = σ 2 In + Z�b Z T exists and that ϒ depends on parameters ψ but not
on β. We aim to construct a marginal likelihood for σ 2 and ψ , eliminating the nuisance
parameter β.
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We can write y = Xβ + ζ , where ζ ∼ Nn(0, σ 2ϒ−1). If ψ and hence ϒ were
known, the maximum likelihood estimator of β would be

β̂ψ = (X Tϒ X )−1 X Tϒy = β + (X Tϒ X )−1 X Tϒζ,

whose distribution is Np(β, σ 2(X Tϒ X )−1).
Let H denote the n × n matrix X (X T X )−1 X T; it satisfies H X = X . A natural ba-

sis for building a marginal likelihood is the vector of residuals (In − H )y, whose
distribution does not depend on β, but as In − H has rank (n − p) this distribution
is degenerate and it seems better to take just (n − p) linearly independent residu-
als. Consider therefore the (n − p) × 1 random variable U = BT y, where B is any
n × (n − p) matrix with B BT = In − H and BT B = In−p (Exercise 12.2.3); B has
rank (n − p). Now BT y = BT B BT y = BT(In − H )y is a linear combination of the
residuals. Furthermore

BT X = BT B BT X = BT(In − H )X = 0,

giving

U = BT y = BT(Xβ + ζ ) = BTζ,

whose distribution does not depend on β. Moreover U and β̂ψ are normal variables,
with covariance

E
{
U (̂βψ − β)

} = BTE(ζ ζ T)ϒ X (X Tϒ X )−1

= σ 2 BTϒ−1ϒ X (X Tϒ X )−1 = 0,

because BT X = 0. Hence U and β̂ψ are independent, and therefore

f (u; ψ) = f (u; ψ) f (̂βψ ; β, ψ)

f (̂βψ ; β, ψ)
= f (u, β̂ψ ; β, ψ)

f (̂βψ ; β, ψ)
= f (y; β, ψ)

f (̂βψ ; β, ψ)

∣∣∣∣ ∂y

∂(u, β̂ψ )

∣∣∣∣ ,
(12.11)

while the Jacobian for the change of variable from (u, β̂ψ ) to y is∣∣∣∣∂(u, β̂ψ )

∂y

∣∣∣∣ = | B X (X T X )−1 |

=
∣∣∣∣
(

BT

(X T X )−1 X T

)
( B X (X T X )−1 )

∣∣∣∣
1/2

=
∣∣∣∣
(

BT B BT X (X T X )−1

(X T X )−1 X T B (X T X )−1

)∣∣∣∣
1/2

=
∣∣∣∣
(

In−p 0
0 (X T X )−1

)∣∣∣∣
1/2

= |X T X |−1/2.

On substituting this and the normal densities of y and β̂ψ into (12.11), we find

f (u; ψ) = |X T X |1/2|ϒ |1/2

(2πσ 2)(n−p)/2|X Tϒ X |1/2
exp

{
− 1

2σ 2
(y − X β̂ψ )Tϒ(y − X β̂ψ )

}
,

(12.12)
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in which B does not appear. Hence (12.12) is independent of the choice of B and
therefore of the linear combination of elements of (In − H )y used.

Expression (12.12) is the marginal likelihood on which inference for ψ is based.
It is also known as the restricted likelihood, because its parameter space involves σ 2It is also called the

residual likelihood.
Restricted maximum
likelihood estimation is
often abbreviated to
REML.

and ψ alone. The log restricted likelihood is

	m(ψ, σ 2) ≡ 1
2 log |ϒ | − 1

2 log |X Tϒ X | − 1

2σ 2
(y − X β̂ψ )Tϒ(y − X β̂ψ )

− n − p

2
log σ 2, (12.13)

where ϒ and β̂ψ depend on ψ . This can be maximized with respect to ψ by a
Newton–Raphson procedure, leading to a restricted iterative generalized least squaresOr RIGLS algorithm.

algorithm, or using the slower but more stable EM algorithm. Computational consid-
erations are often important in practice, because the matrices involved can be very
large.

The profile log likelihood for ψ and σ 2 based directly on the density of y is

	p(ψ, σ 2) ≡ 1

2
log |ϒ | − 1

2σ 2
(y − X β̂ψ )Tϒ(y − X β̂ψ ) − n

2
log σ 2,

from which 	m(ψ) differs by the addition of the term p
2 log σ 2 − 1

2 log |X Tϒ X |, of
order p. Thus if the dimension of β is large, the residual maximum likelihood estima-
tor obtained from 	m(ψ) may differ substantially from the usual maximum likelihood
estimator from 	p(ψ). When the term Zb does not appear in (12.10), ϒ = In and the
estimator of σ 2 obtained by maximizing (12.13) is the usual unbiased quantity (Exer-
cise 12.2.4). Thus the argument leading to (12.13) generalizes that in Example 12.9.

We now illustrate how restricted likelihood can lead to modified inferences; see
also Example 9.18.

Example 12.11 (Short time series) Consider m independent individuals on each
of which k measurements yi j are available from the distribution




Yi1
...

Yik


 ∼ Nk







µi
...

µi


 ,

σ 2

1 − ρ2




1 ρ · · · ρk−1

ρ 1 · · · ρk−2

...
...

. . .
...

ρk−1 ρk−2 · · · 1







, i = 1, . . . , m.

Denote the matrix here by �0. Its determinant is (1 − ρ2)k−1 and its inverse has
tridiagonal form

1

1 − ρ2




1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ
. . . 0

0 −ρ
. . .

. . .
. . .

...
...

. . .
. . .

. . . −ρ 0

0
. . . −ρ 1 + ρ2 −ρ

0 0 · · · 0 −ρ 1




.
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This formulation is typical of that arising in longitudinal data, where individuals are
measured at successive time points. Correlation among measurements on a single
individual is represented by �0, here corresponding to a first-order Markov chain; see
Example 6.13. To illustrate the argument above, we construct the profile and marginal
log likelihoods for the correlation parameter ρ, with m + 1 nuisance parameters
µ1, . . . , µm, σ 2.

The matrices X and σ 2ϒ−1 are of side mk × m and mk × mk respectively and

X =




1k 0 · · · 0
0 1k · · · 0
...

...
. . .

...
0 0 · · · 1k


 , σ 2ϒ−1 = σ 2(1 − ρ2)−1diag {�0, . . . , �0} ,

and some algebra gives

1
2 log |ϒ | = m

2
log(1 − ρ2), − 1

2 log |X Tϒ X | = −m

2
log [(1 − ρ) {k − (k − 2)ρ}] .

More algebra establishes that µ̂i = yi , so

(y − X β̂ψ )Tϒ(y − X β̂ψ ) =
m∑

i=1

Ti (yi , ρ),

where

Ti (µ, ρ) =
k∑

j=1

(yi j − µ)2 + ρ2
k−1∑
j=2

(yi j − µ)2 − 2ρ

k−1∑
j=1

(yi j − µ)(yi, j+1 − µ).

Thus the profile log likelihood for ρ is given by

	p(ρ) = m

2
log(1 − ρ2) − mk

2
log σ̂ 2

p (ρ), σ̂ 2
p (ρ) = 1

mk

m∑
i=1

Ti (yi , ρ),

while the marginal log likelihood (12.13) when profiled gives

max
σ 2

	m(ρ, σ 2) = −m

2
log

{
k − (k − 2)ρ

1 + ρ

}
− m(k − 1)

2
log σ̂ 2

m(ρ),

where σ̂ 2
m(ρ) = kσ̂ 2

p (ρ)/(k − 1). As σ̂ 2
m(ρ) > σ̂ 2

p (ρ), there is an upward bias correction
like that in Example 12.9. Let ρ̂ and ρ̂m denote the estimators from maximizing the
usual and marginal likelihoods for ρ.

Figure 12.3 shows the profile log likelihood and the profile marginal log likelihood
for 20 samples with m = 10, k = 5 and ρ = 0.7. Most of the ordinary maximum
likelihood estimates ρ̂ are much smaller than ρ, but the marginal maximum likelihood
estimator ρ̂m is much less downwardly biased, as is confirmed by further simulation.
Some values of ρ̂m equal the upper limit of ρ = 1, so the small-sample distributions
of ρ̂m and the marginal likelihood ratio statistic will be poorly approximated by
asymptotic results. �

Despite its artificiality, this example illustrates how estimation using restricted like-
lihood can give substantial bias corrections, and it is generally preferable to ordinary
likelihood for variance estimation in complex models.
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Regression-scale model

Consider the linear regression model Y = Xβ + eτ ε, where the errors ε1, . . . , εn are
independent, the n × p design matrix X has rank p and rows xT

1, . . . , xT
n , τ is scalar

and β is a p × 1 vector of parameters. Exact results for this linear regression model
were discussed in Chapters 8 and 9 for normal errors, but are typically unavailable
otherwise. Accurate approximations to distributions needed for inference may be
found, however. Let d be the negative log density of ε, and note that the log likeli-
hood is

	(β, τ ; y) = −nτ −
n∑

j=1

d
{
e−τ (y j − xT

jβ)
}
.

The minimal sufficient statistic is typically the full set of responses Y1, . . . , Yn . Dif-
ferentiation of the log likelihood shows that the maximum likelihood estimators β̂

and τ̂ are determined by the score equations
n∑

j=1

x j d
′ (A j

) = 0, n −
n∑

j=1

A j d
′ (A j

) = 0, (12.14)

where d ′(u) is the derivative of d(u) with respect to u, and A j = e−τ̂ (Y j − xT
j β̂),

for j = 1, . . . , n. Evidently A = (A1, . . . , An)T is distribution constant, and as β̂

and τ̂ are functions of the minimal sufficient statistic, A is in general also ancillary.
Its distribution is degenerate, with p + 1 constraints imposed by (12.14), so just
n − p − 1 of the A j are needed to determine them all. Let A0 denote such a subset,
say, A0 = (A1, . . . , An−p−1).

We now consider how conditional tests and confidence intervals may be derived for
an element of β, say β1 without loss of generality. The idea is to construct a marginal
density that depends only on β1, by using the joint density of β̂ and τ̂ conditional on
A to obtain

f (u1, u2 | a; β, τ ) = f (̂β, τ̂ | a; β, τ )

∣∣∣∣ ∂ (̂β, τ̂ )

∂(u1, u2)

∣∣∣∣ ,
where U1 = e−τ̂ (̂β1 − β1), U2 denotes the p × 1 vector with elements τ̂ − τ and
e−τ̂ (̂β−1 − β−1), and β−1 denotes (β2, . . . , βp)T. We shall see that U1 and U2 are
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pivots, and that the distribution of U1 conditional on the ancillary statistic A forms
the basis of conditional tests and confidence intervals forβ1. These are readily obtained
using p∗-type approximations.

As a preliminary step, we write the log likelihood as

	(β, τ ; y) = 	
{
e−τ̂ (β − β̂), τ − τ̂ ; a

} − nτ̂ ; (12.15)

its maximized value is 	(̂β, τ̂ ; a) = −nτ̂ − ∑n
j=1 d(a j ). For later use define

ha(u1, u2) = 	(0, 0; a) − 	 (u1, u2; a)

= 	(0, 0; a) − 	
{
e−τ̂ (β − β̂), τ − τ̂ ; a

}
,

and observe that its second derivative matrix with respect to (u1, u2) has determinant
of form e−2̂τ Ha(u1, u2), and

∂ha(u1, u2)

∂u1
= ∂	(β, τ ; y)

∂β1
.

We now compute the density of (̂β, τ̂ ) conditional on A. An extension of the
argument giving (5.19) shows that the Jacobian for the transformation y 
→ (̂β, τ̂ , a0)
may be written e(n−p)̂τ J (a), so

f (̂β, τ̂ , a0; β, τ ) = J (a) exp {(n − p)̂τ + 	(β, τ ; y)}
= J (a) exp

[−pτ̂ + 	
{
e−τ̂ (β − β̂), τ − τ̂ ; a

}]
.

Hence

f (̂β, τ̂ | a; β, τ ) = exp
[−pτ̂ + 	

{
e−τ̂ (β − β̂), τ − τ̂ ; a

}]
∫

exp
[−pτ̂ + 	

{
e−τ̂ (β − β̂), τ − τ̂ ; a

}]
dβ̂d τ̂

,

the domain of integration being IRp+1. We now change variables in the integral from
(̂β, τ̂ ) to (u1, u2), with Jacobian exp(pτ̂ ). Thus the integral may be written∫

exp {	(0, 0; a) − ha(u1, u2)} du1du2

and this equals

(2π )(p+1)/2

∣∣∣∣∂
2ha(0, 0)

∂u∂uT

∣∣∣∣
−1/2

e	(0,0;a)
{
1 + O(n−1)

}

by Laplace approximation, the O(n−1) term depending only on a, and the conditional
density f (̂β, τ̂ | a; β, τ ) equals

c(a)(2π )−(p+1)/2

∣∣∣∣∂
2ha(0, 0)

∂u∂uT

∣∣∣∣
1/2

τ̂−p exp
[
	
{
e−τ̂ (β − β̂), τ − τ̂ ; a

} − 	(0, 0; a)
]
,

where c(a) = 1 + O(n−1) depends only on a. On changing variables to u1 and u2,
we have

f (u1, u2 | a; β, τ ) = c(a)(2π )−(p+1)/2

∣∣∣∣∂
2ha(0, 0)

∂u∂uT

∣∣∣∣
1/2

exp {−ha(u1, u2)} ,
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and as the the right-hand side does not depend on the parameters, U1(β1) and
U2(β−1, τ ) are pivots. Note that the inferences below are not parametrization in-
variant, because the accuracy of Laplace approximation depends on the closeness of
h to quadratic; taking τ̂ − τ should give better results than the more obvious pivot
σ̂ /σ .

Consider testing the hypothesis that β1 takes value β0
1 . If so, the observed value of

U1 is u0
1 = e−τ̂ (̂β1 − β0

1 ), with corresponding tail probability

Pr
(
U1 ≤ u0

1 | A = a
) = c(a)

∣∣∂2ha(0, 0)/∂u∂uT
∣∣1/2

(2π )(p+1)/2

∫ u0
1

−∞
du1

∫
du2e−ha (u1,u2),

the inner integral being over IRp. This expression has form (11.32), so

Pr
(
U1 ≤ u0

1 | A = a
) = �

{
r∗(β0

1 )
} {

1 + O(n−1)
}
, (12.16)

where r∗(β0
1 ) = r (β0

1 ) + r (β0
1 )−1 log{v(β0

1 )/r (β0
1 )}, and

r (β0
1 ) = sign(u0

1)
{
2ha(u0

1, ũ20)
}1/2

,

v(β0
1 ) = ∂ha(u0

1, ũ20)

∂u1

∣∣∣∣∂
2ha(u0

1, ũ20)

∂u2∂uT
2

∣∣∣∣
1/2 ∣∣∣∣∂

2ha(0, 0)

∂u∂uT

∣∣∣∣
−1/2

,

where ũ20 is the value of u2 that maximizes ha(u0
1, u2) with u0

1 = e−τ̂ (̂β1 − β0
1 ) fixed.

It is straightforward to check that in terms of the log likelihood and its derivatives,

r (β0
1 ) = sign(̂β1 − β0

1 )
[
2

{
	(̂β, τ̂ ; y) − 	(̂β0, τ̂ 0; y)

}]1/2
,

v(β0
1 ) = ∂	(̂β0, τ̂ 0; y)

∂β1

∣∣Jλλ (̂β0, τ̂ 0; y)
∣∣1/2

∣∣J (̂β0, τ̂ 0; y)
∣∣1/2 ×

∣∣J (̂β0, τ̂ 0; y)
∣∣1/2

∣∣J (̂β, τ̂ ; y)
∣∣1/2 , (12.17)

say, where β̂0 = (β0
1 , β̂0

−1), β̂0
−1 and τ̂ 0 are the maximum likelihood estimates of β−1

and τ when β1 = β0
1 , J (β, τ ; y) is the observed information matrix for β and τ , and

Jλλ(β, τ ; y) is the observed information matrix corresponding to λ = (β−1, τ ) only.
Note that r (β0

1 ) = v(β0
1 ) = 0 when β0

1 = β̂1; it turns out that r∗(β0
1 ) has a finite limit

as β0
1 → 0.

Our argument has established that the conditional tail probability (12.16) depends
on the signed likelihood ratio statistic r (β0

1 ) and a modified score statistic v(β0
1 ) for

testing the hypothesis β1 = β0
1 . Expression (12.17) may be written as a product, γ C ,

say, where the first term is a score statistic standardized by its standard error and the
second contains information matrix determinants. Then r∗(β0

1 ) may be decomposed as

r∗ = r + r−1 log(γ /r ) + r−1 log C = r + rINF + rNP, (12.18)

say, where dependence on β0
1 has been suppressed. The discussion around (12.9)

suggests that rINF should be regarded as a correction that improves the normal ap-
proximation to the distribution of the signed likelihood ratio statistic. The presence
of λ introduces the term rNP, large values of which indicate that strong correction for
nuisance parameters is required. Although rINF is typically small in applications, the
nuisance parameter correction rNP can be substantial.
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Figure 12.4
Small-sample inference
on parameter β1 for
partial turnkey guarantee
for nuclear plant data,
using regression-scale
model with t5 errors. Left:
approximate pivots r (β1)
(solid), r∗(β1) (heavy),
and (̂β1 − β1)/v1/2

11
(dashes) as functions of
β1. Horizontal dotted lines
are at 0 and ±1.96, so
their intersections with the
diagonal lines show the
limits of approximate 0.95
confidence intervals.
Right: small-sample
corrections rNP (solid) and
rINF (dashes) as functions
of β1. The horizontal lines
at ±0.2 give a crude rule
of thumb for ‘large’
corrections.

The limits of an equi-tailed (1 − 2α) conditional confidence interval for β1 are the
values β+

1 , β−
1 that satisfy

Pr
{

U1 ≤ e−τ̂ (̂β1 − β1)
∣∣ a

} .= �
{
r∗(β1)

} = α, 1 − α.

The likelihood ratio confidence limits are obtained by replacing r∗(β1) with r (β1)
in this expression, so computation of v(β1) for use in r∗(β1) is the only addition
needed for small-sample conditional inference. Routines for large-sample likeli-
hood inference on the model using r (β1) compute most of the quantities involved
for small-sample conditional inferences using r∗(β1), so rather little extra work is
needed.

Example 12.12 (Nuclear plant data) To illustrate the effect of these small-sample
modifications, we fit the model with six covariates chosen in Example 8.31 to the
data in Table 8.13. We focus on the effect of the partial turnkey guarantee, PT, the
coefficient of which under the normal model is −0.266 with standard error 0.144,
giving an exact 0.95 confidence interval (−0.46, 0.01). The evidence for inclusion
of this effect is somewhat marginal under the normal model, and it is interesting to
see the effect of using a t5 error distribution instead. Computations that generalize
those in Example 12.7 lead to the results shown in Figure 12.4, the left panel of which
shows how r (β1) and r∗(β1) depend on the parameter β1 for the partial turnkey effect.
The 0.95 confidence intervals based on these pivots are respectively (−0.47, −0.07)
and (−0.48, −0.03), while that based on normal approximation to the maximum
likelihood estimator β̂1 is (−0.47,−0.08). The more accurate interval based on the
small-sample approximation is rather wider than the others, and the right panel of the
figure shows that this is primarily due to the nuisance parameter adjustment.

None of the intervals differs much from that found with normal errors, however,
giving some reassurance that conclusions found using the normal model are valid
more broadly, at least for this example. �
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Exercises 12.2

1 Suppose that Y1, . . . , Yn are independent Poisson variables with means ψπ j , where 0 <
π j < 1 and

∑
π j = 1. Find a marginal likelihood for ψ based on Y1, . . . , Yn , and show

that no information about ψ is lost by using the marginal likelihood rather than the full
likelihood.

2 Verify the argument in Example 12.10 by writing down the partial likelihood for obser-
vations 0 < Y4 < Y +

1 < Y +
3 < Y5 < Y +

2 from the proportional hazards model, and then
deriving it by the reasoning in the example.

3 Use the spectral decomposition to show that an n × (n − p) matrix B exists such that
BT B = In − H , and B BT = In−p , where H = X (X T X )−1 X T is the projection matrix for
a linear model with n × p design matrix X of rank p.

4 Show that the maximum likelihood estimator of σ 2 based on (12.13) is given by

σ̂ 2
m = 1

n − p
(y − X β̂ψ )Tϒ(y − X β̂ψ ), β̂ψ = (

X Tϒ X
)−1

X Tϒy.

Deduce that when Zb does not appear in (12.10), the restricted maximum likelihood
estimator of σ 2 is (y − X β̂)T(y − X β̂)/(n − p).

5 Find marginal likelihoods for σ 2 and for ψ = (β0, σ
2) in Example 8.10.

6 Check the details of Example 12.11.

7 Verify the p∗ formula (12.7) for the regression-scale model, replacing (2π )−1/2 by
(2π )−(p+1)/2.

8 (a) Express the quantities r (β0
1 ) and v(β0

1 ) defined after (12.16) in terms of the log likeli-
hood and its derivatives.
(b) Compute the modified signed likelihood ratio statistic for inference on τ .
(c) Find r∗(β1) for the regression-scale model when d(u) = u2/2.

12.3 Conditional Inference

12.3.1 Exact conditioning

Thus far this chapter has focused on the use of conditioning to ensure the relevance
of tests and confidence intervals. In exponential family models there is typically no
ancillary statistic and conditioning has the somewhat different purpose of removing
a nuisance parameter from consideration; see Sections 10.4.2, 10.5, and 10.8.2. If the
model density may be factorized as

f (y; ψ, λ) ∝ f (t1 | t2; ψ) f (t2; ψ, λ), (12.19)

then although both terms on the right contain information on ψ , it may not be worth-
while to try and extract it from the second term. Moreover in Section 7.3.3 we saw
that similar critical regions for tests on ψ must be based on the conditional density
of T1 given T2. These considerations suggest that we restrict consideration to this
density, which we treat as a conditional likelihood for ψ . Exact inference is typically
infeasible, however.

Example 12.13 (Logistic regression) Let Y1, . . . , Yn be independent binary vari-
ables having p × 1 covariate vectors x j and satisfying a logistic regression model.
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The minimal sufficient statistic
∑

x j Y j = S = (S1, . . . , Sp)T has joint density

Pr(S1 = s1, . . . , Sp = sp; β) = c(s1, . . . , sp) exp
(
s1β1 + · · · + spβp

)
∑n

j=1

{
1 + exp(xT

jβ)
} ,

found by summing the joint density (10.23) of the Y j over all c(s1, . . . , sp) binary
sequences of length n that yield the same value of S as did the data. If βp is taken
as the parameter of interest and the other β j are treated as nuisance parameters, then
they do not appear in the conditional density

Pr(Sp = sp | S1 = s1, . . . , Sp−1 = sp−1; βp) = c(s1, . . . , sp)espβp∑
c(s1, . . . , sp−1, u)euβp

,

where the sum is over the possible values of u for which s1, . . . , sp−1 are fixed.
Exact tests and confidence intervals may be obtained by adapting the argument on
page 495, but rely on ready computation of the combinatorial coefficients. In principle
these may be obtained by considering the coefficients of ws1

1 · · · w
sp
p in the expansion

of the generating function

n∏
j=1

(
1 + w

x j1

1 · · · w
x jp
p

)
,

where x jr is the r th element of x j . Recourse to computer algebra or special algorithms
is needed for all but the simplest problems, however, and typically the computational
burden puts exact inference out of reach. �

In subsequent sections we discuss accurate analytical approximations to exact con-
ditional inferences, but we first illustrate how Markov chain Monte Carlo simulation
(Section 11.3.3) may be used to explore a conditional sample space.

Example 12.14 (Several 2 × 2 tables) Consider n independent 2 × 2 tables con-
taining the numbers of successes R1 j and R0 j in m1 j and m0 j independent Bernoulli
trials with success probabilities

π1 j = eλ j +ψ j

1 + eλ j +ψ j
and π0 j = eλ j

1 + eλ j
, j = 1, . . . , n.

The overall joint density is

n∏
j=1

(
m1 j

r1 j

)(
m0 j

r0 j

)
er1 j (λ j +ψ j )(

1 + eλ j +ψ j
)m1 j

er0 j λ j(
1 + eλ j

)m0 j
.

Suppose we wish to test whether the log odds ratios are equal for each table, that is
ψ1 = · · · = ψn = ψ , where ψ is unknown. Let W = w(R) be a statistic constructed
to test this against the alternative of unequal ψ j . Under the null hypothesis the statis-
tics Sj = R1 j + R0 j and T = R11 + · · · + R1n are associated with λ j and ψ , and
as we wish to test homogeneity of the log odds ratios regardless of the values of
λ1, . . . , λn, ψ , we should use the conditional distribution of W given the values of
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S1, . . . , Sn, T that were actually observed, namely s1, . . . , sn, t . It is straightforward
to establish that

Pr(R | S, T ) =
∏n

j=1

(m1 j

r1 j

)( m0 j

s j −r1 j

)
∑ ∏n

j=1

(m1 j

u j

)( m2 j

s j −u j

) = C−1
n∏

j=1

c j (r1 j ), (12.20)

say, where the sum is over the set

U = {
(u1, . . . , un) : u j,− ≤ u j ≤ u j,+, u j ∈ ZZ, u1 + · · · + un = t

}
,

with u j,− = max(0, s j − m0 j ) and u j,+ = min(m1 j , s j ). If the 2 × 2 tables were
stacked on top of one another, then this conditioning would amount to fixing all three
margins of the stack. We would like to use (12.20) to calculate the tail probability
Pr{w(R) ≥ w | S = s, T = t}, but enumeration of U in order to find the normalising
constant in (12.20) is typically difficult. A simplifying feature is that any 2 × 2 table
for which s j equals zero or m0 j + m1 j is conditionally constant and can be ignored.

One possibility is to use the Metropolis–Hastings algorithm. The idea is to update
the stack of 2 × 2 tables with contents r to have contents r ′, while holding its margins
constant. Although it is hard to simulate directly from (12.20), it is straightforward to
generate from the conditional distribution of R1i given R1 j + R1i , which is univariate
with density

Pr(R1i = r | R1 j + R1i = v) = ci (r )c j (v − r )∑
ci (u)c j (v − u)

,

where the sum is over values of R1i = u for which R1 j + R1i = v is possible. The
algorithm starts with original data r and repeats the following steps for k = 1, . . . , K .

1. For l = 1, . . . , L ,
� select two tables in the current stack at random, say i and j ;
� generate proposal data r ′ by leaving the remaining 2 × 2 tables intact and

generating a value r ′
1i from the conditional distribution of R1i given R1i + R1 j ;

then set r ′
1 j = r1i + r1 j − r ′

1i .
� Set r ← r ′ with probability

p = min

{
1,

π (r ′)q(r | r ′)
π (r )q(r ′ | r )

}
. (12.21)

2. Calculate w∗
k = w(r ) based on the current data r .

The estimated P-value is then {∑ I (w∗
k ≥ wobs) + 1}/(K + 1), where wobs is the

observed value of w(R).
The target density is

π (r ) ∝
∏

j

c j (r1 j )

and the transition density for the Markov chain is

q(r ′ | r ) ∝ ci (r
′
1i )c j (r1i + r1 j − r ′

1i )
∑

u

ci (u)c j (r1i + r1 j − u),
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so the ratio in (12.21) is

π (r ′)q(r | r ′)
π (r )q(r ′ | r )

= ci (r ′
1i )c j (r ′

1 j )ci (r1i )c j (r1 j )

ci (r1i )c j (r1 j )ci (r ′
1i )c j (r ′

1 j )
= 1.

Thus the proposal r ′ is always accepted.
In order to assess whether the parameters ψ j for recurrent bleeding vary across the

41 studies in Table 10.11, we apply this algorithm to the 40 non-degenerate tables;
the last one is conditionally constant. We take W to be the likelihood ratio statistic for
testing the null hypothesis. Its observed value is w = 177.6 on 39 degrees of freedom,
which is highly significant relative to its asymptotic χ2

39 distribution. Values w∗ of
W ∗ calculated every L = 100 steps using the algorithm above were uncorrelated, and
are compared with the asymptotic distribution in Figure 12.5. The evidence that the
ψ j vary across the tables is overwhelming relative to either distribution, but as the
distributions are rather different, conflict between asymptotic and exact P-values could
arise for other such sets of data; then the P-value based on W ∗ would be preferred.
Such a P-value is called Monte Carlo exact: it would be exact if the number of Monte
Carlo replicates was infinite. �

Algorithms of this type provide powerful tools for testing hypotheses in contingency
tables with low counts, and can be adapted to provide Monte Carlo approximations to
conditional likelihoods. A difficulty with exact conditioning, however, is that in some
cases the inference depends very sharply on the conditioning event, giving likelihoods,
significance levels and so forth that are highly sensitive to the exact data values. This
raises the question whether some form of approximate conditioning would be more
stable. Below we outline how conditional inferences in exponential families may be
approximated using saddlepoint methods.

12.3.2 Saddlepoint approximation

Saddlepoint approximation to density and distribution functions is the basis of many
highly accurate small-sample procedures. In this section we describe informally the



12.3 · Conditional Inference 669

x

P
D

F

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

C
D

F

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0Figure 12.6 Saddlepoint

approximations to the
density and distribution
functions of an average of
n U (−1, 1) variables. Left
panel: exact density
functions (solid) and their
basic (dots) and
normalized (dashes)
approximations for
n = 2, 5; the peakier
curves are for n = 5.
Right panel: exact
distribution function
(solid) and its
approximation (dots) for
n = 2.

underlying ideas. Initially we state the basic approximations, leaving their justification
to the end of the section.

Let X denote the average of a random sample of continuous scalar random variables
X1, . . . , Xn , each having cumulant-generating function K (u). Then the saddlepoint
approximation to the density of X at x is

fX (x)
.=

{
n

2π K ′′(ũ)

}1/2

exp [n {K (ũ) − ũx}] , (12.22)

where ũ = ũ(x), known as the saddlepoint, is the unique value of u satisfying the sad-
dlepoint equation K ′(u) = x , and K ′(u) and K ′′(u) are the first and second derivatives
of K (u) with respect to u. There is a corresponding approximation to the cumulative
distribution function of X , namely

Pr
(
X ≤ x

) .= �
{
r∗(x)

}
, (12.23)

where r∗(x) = r (x) + r (x)−1 log{v(x)/r (x)} depends on

r (x) = sign(ũ) [2n {ũx − K (ũ)}]1/2 , v(x) = ũ
{
nK ′′(ũ)

}1/2
.

Calculation of (12.22) and (12.23) requires knowledge of K (u) and computation of ũ
for each x of interest, but such approximations are often extremely accurate far into
the tails of the density of X . A more accurate density approximation can be obtained
by renormalizing (12.22), that is, dividing by its integral, which is usually obtained
numerically.

Example 12.15 (Uniform distribution) If X has the uniform distribution on
(−1, 1), then K (u) = log{sinh(u)/u}. The left panel of Figure 12.6 compares the
exact density function of X with its saddlepoint approximations when n = 2 and
n = 5. Numerical integrals of the density approximations are 1.097 and 1.034, and
the renormalized densities are also shown; that for n = 5 seems essentially exact.
The distribution function approximation (12.23) is very accurate even in the ex-
treme situation n = 2, although (12.22) fails to capture the cusp in the density at the
origin. �
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These basic approximations can be generalized in various ways. For our purpose
the most useful is to the situation where the X j are vectors of length p, in which case
u is a p × 1 vector. Then (12.22) extends to

fX (x)
.=

{
n p

(2π )p|K ′′(ũ)|
}1/2

exp
[
n

{
K (ũ) − ũTx

}]
, (12.24)

where now the p × 1 saddlepoint ũ solves the p × 1 system of equations

K ′(ũ) = ∂K (ũ)

∂u
= x,

and K ′′(u) = ∂2 K (u)/∂u∂uT is the p × p matrix of second derivatives of K (u).
Let X T = (X1, X T

2), where X2 has dimension (p − 1) × 1, and split uT into (u1, uT
2)

conformably with X T; both X1 and u1 are scalar. Then the marginal density of X2 at
x2 is obtained by saddlepoint approximation using the marginal cumulant-generating
function K (0, u2) of X2, and is

fX2
(x2)

.=
{

n p−1

(2π )p−1|K ′′
22(ũ0)|

}1/2

exp
[
n

{
K (ũ0) − (0, xT

2)ũ0
}]

, (12.25)

where ũT
0 = (0, ũT

2) is the solution to the (p − 1) × 1 system of equations
∂K (0, u2)/∂u2 = x2, and K ′′

22 is the (p − 1) × (p − 1) corner of K ′′ correspond-
ing to u2. Division of (12.24) by (12.25) gives an approximation to the conditional
density fX1|X2

(x1 | x2), the double saddlepoint approximation

( n

2π

)1/2 |K ′′
22(ũ0)|1/2

|K ′′(ũ)|1/2
exp

[
n

{
K (ũ) − ũTx − K (ũ0) + (0, xT

2)ũ0
}]

, (12.26)

corresponding to which is the distribution function approximation

Pr(X1 ≤ x1 | X2 = x2)
.= �

{
r∗(x1)

}
, (12.27)

where again r∗(x1) equals r (x1) + r (x1)−1 log{v(x1)/r (x1)}, but now with

r (x1) = sign(ũ1)
[
2n

{
K (ũ0) − (0, xT

2)ũ0
} − n

{
K (ũ) − ũTx

}]1/2
,

v(x1) = ũ1n1/2|K ′′(ũ)|1/2/|K ′′
22(ũ0)|1/2.

These formulae break down when x1 = E(X1) and a different more complicated
approximation is then available. In practice it is simplest to evaluate r∗(x1) for at a
grid of values of x1 excluding any too close to E(X1), and then to interpolate them
using a spline or other numerical method.

Example 12.16 (Poisson distribution) Let V1 and V2 be independent Poisson vari-
ables with means λ1 and λ2, and set X1 = V1, X2 = V1 + V2. Then the joint cumulant-
generating function of X1 and X2 is K (u) = λ1 exp(u1 + u2) + λ2 exp(u2), and the
exact density of X1 given X2 = x2 is binomial with probability π = λ1/(λ1 + λ2)
and denominator x2.

Figure 12.7 shows the conditional density and distribution of X1, when λ1 = 1,
λ2 = 2.5, and x2 = 15. The saddlepoint density gives a continuous approximation to
the discrete binomial density of X1 given X2, which it closely matches on the support
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of X1. For x1 = 0, . . . , 15, the distribution function approximation �{r∗(x1)} agrees
closely with

Pr(X1 ≤ x1 − 1 | X2) + 1
2 Pr(X1 = x1 | X2),

a quantity akin to the mid-p significance level (10.28). Continuity correction applied
by taking �{r∗(x1 + 1/2)} approximates Pr(X1 ≤ x1 | X2) well. �

In applications saddlepoint formulae are sometimes used simply by taking the
cumulant-generating function for a variable of interest, and formally setting n = 1,
as we shall do below.

The rest of this section sketches derivations of the approximations above and can be
skipped on a first reading. No attempt is made at a rigorous treatment; the intention is
to give some justification for the approximations, and the flavour of the manipulations
involved.

Edgeworth series
Francis Ysidro Edgeworth
(1845–1926) was born in
Longford, Ireland, studied
in Dublin and Oxford,
where he took a first-class
degree in classics, and
then became a London
barrister. In 1880 he began
a university career as a
mathematician, eventually
holding professorships of
political economy in
London and Oxford. His
pioneering articles
systematically applied
ideas from the theory of
errors to social science
and economics.

Although they have practical disadvantages compared to saddlepoint approximations,
Edgeworth series play a central role in theoretical discussions of small-sample infer-
ence. As we shall see below, they allow a relatively simple derivation of saddlepoint
approximations.

Let X1, . . . , Xn be a random sample of continuous variables with cumulant-
generating function K (u) and finite cumulants κr , let ρr = κr/κ

r/2
2 denote the r th

standardized cumulant, and let Zn = (Sn − nκ1)/(nκ2)1/2 denote the standardized
version of Sn = X1 + · · · + Xn . The large-sample distribution of Zn may be found
by noting that its cumulant-generating function is

u2/2 + n−1/2ρ3u3/3! + n−1ρ4u4/4! + · · · .
Thus its moment-generating function is

exp(u2/2)

{
1 + 1

6ρ3n−1/2u3 +
(

ρ2
3

72
+ ρ4

24

)
n−1u4 + O(n−3/2)

}
. (12.28)
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All that remains when n → ∞ is the leading term, which is the moment-generating
function of the standard normal density. The continuity theorem and uniqueness of
moment-generating functions then yield the limiting standard normal distribution
of Zn .

To find better finite-sample approximations to the density and distribution functions
of Zn , note that integration by parts gives∫ ∞

−∞
euz(−1)r drφ(z)

dzr
dz = ur eu2/2, r = 0, 1, . . . .

Letting (−1)r drφ(z)/dzr = φ(z)Hr (z) determine the r th-order Hermite polynomial
Hr (z) gives

H1(z) = z, H2(z) = z2 − 1, H3(z) = z3 − 3z, H4(z) = z4 − 6z2 + 3,

H5(z) = z5 − 10z3 + 15z, H6(z) = z6 − 15z4 + 45z2 − 15.

Term by term inversion of (12.28) shows that the corresponding density is

fZn (z) = φ(z)

[
1 + ρ3

6n1/2
H3(z) + 1

n

{
ρ4

24
H4(z) + ρ2

3

72
H6(z)

}
+ O(n−3/2)

]
,

(12.29)
inversion of which gives the first three terms of the cumulant-generating function of
Zn . Integration of (12.29) gives the corresponding distribution function,

FZn (z) = �(z) − φ(z)

[
ρ3

6n1/2
H2(z) + 1

n

{
ρ4

24
H3(z) + ρ2

3

72
H5(z)

}
+ O(n−3/2)

]
.

(12.30)
The leading terms of the Edgeworth expansions (12.29) and (12.30) give the standard
normal approximation for Zn , with subsequent terms giving improvements, based
respectively on the skewness of Zn and on a combination of its skewness and kurtosis.
Higher-order terms depend on further cumulants of the X j .

The expansions (12.29) and (12.30) are more useful for theoretical development
than for applications, because there is no reason for (12.29) to remain positive or for
(12.30) to be increasing in z, or indeed even for it to lie between zero and one, whereas
the saddlepoint formula (12.22) is guaranteed to give a positive density approximation.
On the other hand saddlepoint approximation requires the entire cumulant-generating
function, while (12.29) and (12.30) use only first few cumulants and so are more
readily calculated.

When the density for Zn is evaluated at z = 0, the series in (12.29) contains only
powers of n−1, because the odd powers of n−1/2 depend on odd Hermite polynomials,
all of which vanish at z = 0.

Derivation of saddlepoint approximation

To derive (12.22) we first embed the density fX of X in the exponential family

fX (x ; u) = exp{xu − K (u)} fX (x),

where K is the cumulant-generating function of X . Here u plays the role of a param-
eter, and the new density fX (x ; u) is an exponential tilt of fX . Under this new model
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the density of Sn may be written

fSn (s; u) = exp{su − nK (u)} fSn (s), (12.31)

and its cumulant-generating function as KSn (t) = n{K (t + u) − K (u)}. Thus with
parameter u the mean and variance of Sn under the new density are nK ′(u) and
nK ′′(u). Expression (12.31) gives

fSn (s) = exp{nK (u) − su} fSn (s; u)

for all u. We now replace fSn (s; u) in this expression by its Edgeworth expansion,
but with the value of u chosen so that the tilted density fSn (s; u) has mean s. Then
nK ′(ũ) = s, and the first term of the Edgeworth series is {2πnK ′′(ũ)}−1/2. The re-
sulting approximation to the density of Sn is

fSn (s) = {2πnK ′′(ũ)}−1/2 exp{nK (ũ) − sũ} {
1 + O(n−1)

}
,

where the order of the error follows from the fact that at its mean the Edgeworth
series contains only powers of n−1. A change of variables s 
→ x = s/n gives the
leading term of (12.22), with subsequent terms found by retaining more terms of the
Edgeworth series.

The argument leading to (12.23) starts by integrating (12.22), giving

Pr(X ≤ x0)
.=

∫ x0

−∞

{
n

2π K ′′(ũ)

}1/2

exp [n {K (ũ) − ũx}] dx,

where ũ is a function of the variable of integration through K ′(ũ) = x . A change of
variable from x to ũ, using dx/dũ = K ′′(ũ), gives

Pr(X ≤ x0)
.=

∫ u0

−∞

{
nK ′′(ũ)

2π

}1/2

exp
[
n

{
K (ũ) − ũK ′(ũ)

}]
dũ,

which is of form (11.30); here u0 satisfies K ′(u0) = x0. In this case the approximation
(11.31) takes the form (12.23). Detailed accounting shows that under broad condi-
tions the error in (12.23) is relative, of size O(n−1) in large deviation regions, where
x0 − E(X ) is O(1), and is only O(n−3/2) for moderate deviation regions, in which
x0 − E(X ) is O(n−1/2). The large-deviation property leads to the extraordinary ac-
curacy of the approximations, which have low relative error far into the tails of the
distribution of X .

Discrete distributions are also important in practice. Suppose that the X j take val-
ues in the lattice a + bk, where a and b are constants and k = 0, 1, . . .. Then X takes
values in the lattice a + bk/n. The saddlepoint approximation for the density of X at
these values is unchanged, and its error remains relative and of O(n−1), but in the
cumulative distribution function approximation v(x) = ũ

{
nK ′′(ũ)

}1/2
is replaced by

b−1{1 − exp(−bũ)} {
nK ′′(ũ)

}1/2
; note that this produces the continuous version when

b → 0. The error in this approximation is O(n−1). A continuity-corrected approxi-
mation to the quantity Pr{X ≤ x0 + 1/(2n)} replaces 1 − exp(−bũ) by 2 sinh(ũ/2).
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12.3.3 Approximate conditional inference

To see how saddlepoint approximation may be applied for inference, we consider
initially the case where a random sample Y1, . . . , Yn from the continuous exponential
family exp{θy − κ(θ )} f0(y) depends on a scalar θ . The maximum likelihood estima-
tor θ̂ solves the likelihood equation Y = κ ′ (̂θ ), so the log likelihood and observed
information may be expressed as

	(θ ; θ̂ ) ≡ n
{
θκ ′ (̂θ ) − κ(θ )

}
, J (θ ; θ̂ ) = −∂2	(θ ; θ̂ )/∂θ2 = nκ ′′(θ ).

Now Y is a minimal sufficient statistic for θ , so no information is lost by considering
its density or equivalently that of θ̂ , which is a 1–1 function of Y . The cumulant-
generating function of Y j is K (u) = κ(θ + u) − κ(θ ), so the saddlepoint equation
is κ ′(θ + ũ) = y. This implies that ũ = θ̂ − θ ; furthermore the second derivative
K ′′(ũ) = κ ′′(θ + ũ) = n−1 J (̂θ ; θ̂ ). Thus the density approximation (12.22) for Y is

fY (y; θ )
.=

{
n

2π K ′′(ũ)

}1/2

exp [n {K (ũ) − ũ y}]

=
{

n

2πκ ′′ (̂θ )

}1/2

exp
[
n

{
κ (̂θ ) − κ(θ ) − (̂θ − θ )y

}]
.

Now ∂ y/∂θ̂ = n−1 J (̂θ ; θ̂ ), and hence the density of θ̂ may be written as

f (̂θ ; θ ) = c|J (̂θ ; θ̂ )|1/2 exp
{
	(θ ; θ̂ ) − 	(̂θ ; θ̂ )

} {
1 + O(n−1)

}
, (12.32)

where c = (2π )−1/2. Thus (12.7) again arises as an approximation to the density of a
maximum likelihood estimator, here with no ancillary statistic.

Saddlepoint approximation to the cumulative distribution function of θ̂ or equiva-
lently of Y gives

Pr(Y ≤ y; θ )
.= �

{
r∗(θ )

}
, (12.33)

where r∗(θ ) = r (θ ) + r (θ )−1 log{v(θ )/r (θ )}, and

r (θ ) = sign(̂θ − θ )[2{	(̂θ ) − 	(θ )}]1/2, v(θ ) = (̂θ − θ )J (̂θ )1/2; (12.34)

recall that κ ′ (̂θ ) = y. An approximate confidence interval for θ may be obtained by
finding the values of θ for which � {r∗(θ )} = α, 1 − α or equivalently for which
r∗(θ ) = zα, z1−α . This improves on the likelihood ratio limits, which are found by
solving r (θ ) = zα, z1−α .

Example 12.17 (Gamma distribution) Let Y1, . . . , Yn be a gamma random
sample with mean θ and known shape parameter ν. The log likelihood is then
	(θ ; θ̂ ) ≡ −nν(log θ + θ̂/θ ), with θ̂ = Y and observed information J (θ ; θ̂ ) = nνθ−2.
Thus the approximate density for θ̂ is

c|J (̂θ ; θ̂ )|1/2 exp
{
	(θ ; θ̂ ) − 	(̂θ ; θ̂ )

} =
( nν

2π

)1/2 1

θ̂

(
θ̂

θ

)nν

exp(nν − nνθ̂/θ ).
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Table 12.1 Approximate
tail probabilities (×102)
corresponding to quantiles
of the maximum
likelihood estimator of the
mean of an exponential
variable.

x p 0.001001 0.01005 0.02532 0.05129 2.996 3.689 4.605 6.908

Exact, 100p 0.1 1 2.5 5 95 97.5 99 99.9
100�{r∗(θ )} 0.104188 1.02937 2.55549 5.08002 94.923 97.454 98.978 99.897
100�{r (θ )} 0.029354 0.36040 1.00503 2.21778 90.997 95.189 97.926 99.760
100�{v(θ )} 15.88975 16.1099 16.4859 17.1385 97.702 99.642 99.984 100.000

The exact density of θ̂ is gamma with mean θ and shape parameter nν, so the
approximation is here exact after renormalization; it merely substitutes Stirling’s
formula for the gamma function that appears in the exact density.

In this example,

r (θ ) = sign(̂θ − θ )[2nν {̂θ/θ − 1 − log(̂θ/θ )}]1/2, v(θ ) = (nν)1/2(̂θ − θ )/̂θ,

and Table 12.1 shows that (12.33) is essentially exact for this model when nν = 1.
The tail probability approximation based on the signed likelihood ratio statistic r (θ )
is also fairly accurate, while that based on the standardized maximum likelihood
estimate v(θ ) is very poor. The accuracy of the tail approximation for r∗(θ ) should
carry over to the corresponding confidence intervals. �

Conditional inference

Consider now conditional inference for the scalar parameter ψ in the exponential
family

f (t1, t2; ψ, λ) = exp
{
t1ψ + tT

2λ − κ(ψ, λ)
}

m(t1, t2), (12.35)

where t1 is scalar and t2 has dimension (p − 1) × 1, and λ is treated as a (p − 1) × 1
nuisance parameter. We obtain an approximate conditional density for T1 given T2 by
double saddlepoint approximation of

f (t1 | t2; ψ) = f (t1, t2; ψ, λ)

f (t2; ψ, λ)
. (12.36)

The cumulant-generating function of (T1, T2) is

K (u) = κ(ψ + u1, λ + u2) − κ(ψ, λ),

where uT = (u1, uT
2), u1 is scalar, and u2 is a (p − 1) × 1 vector. The saddlepoint

equation corresponding to the numerator of (12.36) isFor brevity we let κλ

denote ∂κ/∂λ, κψλ denote
∂2κ/∂ψ∂λT, and so forth.

t2 = ∂K (ψ, λ + ũ2)

∂u2
= ∂κ(ψ, λ̂ψ )

∂λ
= κλ (̂θψ ),

say, where θ̂ T
ψ = (ψ, λ̂T

ψ ) and λ̂ψ is the maximum likelihood estimate of λ with ψ

fixed, based on t2; note that ũ2 = λ̂ψ − λ. The matrix of second derivatives

∂2 K (ψ, λ + ũ2)

∂u2∂uT
2

= ∂2κ(ψ, λ̂ψ )

∂λ∂λT
= κλλ (̂θψ ) = Jλλ (̂θψ )



676 12 · Conditional and Marginal Inference

is the observed information for λ when ψ is fixed. The saddlepoint equation
corresponding to the denominator of (12.36) is(

t1
t2

)
=

( ∂K (ψ+ũ1,λ+ũ2)
∂u1

∂K (ψ+ũ1,λ+ũ2)
∂u2

)
=

(
κψ (̂θ )
κλ (̂θ )

)
,

while the matrix of second derivatives is( ∂2 K (ψ+ũ1,λ+ũ2)
∂u2

1

∂2 K (ψ+ũ1,λ+ũ2)
∂u1∂uT

2
∂2 K (ψ+ũ1,λ+ũ2)

∂u1∂u2

∂2 K (ψ+ũ1,λ+ũ2)
∂u2∂uT

2

)
=

(
κψψ (̂θ ) κψλ (̂θ )
κλψ (̂θ ) κλλ (̂θ )

)
= J (̂θ ),

where θ̂ T = (ψ̂, λ̂T) is the overall maximum likelihood estimate. Substitution of these
formulae into the double saddlepoint approximation (12.26) and then reorganization
along the lines that leads to (12.32) gives

f (t1 | t2; ψ)
.=

{ |Jλλ (̂θψ )|
2π |J (̂θ )|

}1/2

exp
{
	(̂θψ ) − 	(̂θ )

}
, (12.37)

where 	(θ ) = 	(ψ, λ) = log f (t1, t2; ψ, λ) is the overall log likelihood.
Approximate tail probabilities associated with particular values of ψ can be formed

in the way outlined after (12.33), and are used to construct confidence intervals. The
basis of the tail probability approximation is (12.27), which here depends on ψ ,
and is

Pr(T1 ≤ t1 | T2 = t2; ψ)
.= �{r∗(ψ)}, (12.38)

where r∗(ψ) = r (ψ) + r (ψ)−1 log{r (ψ)/v(ψ)}, with

r (ψ) = sign(ψ̂ − ψ)[2{	(̂θ ) − 	(̂θψ )}]1/2, v(ψ) = (ψ̂ − ψ)

{ |J (̂θ )|
|Jλλ (̂θψ )|

}1/2

.

Thus the improved approximation again involves modifying the signed likelihood
ratio statistic, here using a standardized maximum likelihood estimate rather than the
score statistic that appeared with the regression-scale model. We can write

v(ψ) = (ψ̂ − ψ)

{ |J (̂θψ )|
|Jλλ (̂θψ )|

}1/2

×
{ |J (̂θ )|

|J (̂θψ )|

}1/2

= γ × C, (12.39)

say, yielding a three-part decomposition of r∗(ψ) like (12.18). It is an exercise to
show that r∗(ψ) is invariant to interest-preserving reparametrization.

Example 12.18 (Nodal involvement data) A central issue for the data in Table 10.8
is how nodal involvement depends on the five binary covariates. For purpose of il-
lustration we consider setting confidence intervals for the parameter ψ associated
with acid, and regard the parameters for other covariates as incidental. The left
panel of Figure 12.8 shows r (ψ) and r∗(ψ) as functions of ψ , when acid only is
included, and when all five covariates are included. The small-sample modification is
appreciably larger when several nuisance parameters are eliminated, and the standard
error, corresponding roughly to the slope, is larger. The right panel shows infor-
mation and nuisance parameter corrections rINF and rNP for models with 1+acid,
1+stage+xray+acid, and with all five covariates. All three information corrections
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Table 12.2 Estimate,
standard errors, and 0.95
confidence intervals for
the coefficient of acid, ψ ,
for the nodal involvement
data with all the other
covariates fitted. The
continuity corrected
version of r∗(ψ) is
obtained by multiplying
v(ψ) by
(eψ̂−ψ − 1)/(ψ̂ − ψ).

Method Estimate (SE) Interval

Normal approximation to ψ̂ 1.68 (0.79) (0.136, 3.232)
Normal approximation to ψ̂a 1.49 (0.74) (0.048, 2.930)
Directed deviance r (ψ) — (0.209, 3.378)
Modified directed deviance r∗(ψ) — (0.086, 2.998)
Modified directed deviance r∗(ψ) — (−0.131, 3.330)

with continuity correction
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Figure 12.8 Conditional
inference for coefficient of
acid, ψ , for nodal
involvement data. Left:
signed likelihood ratio
statistic r (ψ) (dashes) and
modified version r∗(ψ)
(solid) for models with
five nuisance parameters
(left pair of curves) and
with one nuisance
parameter (right pair of
curves, shifted right by
one unit). The dotted
horizontal lines are at
0, ±1.96. Right:
information corrections
rINF (dashes) and nuisance
parameter corrections rNP

(solid) for models with
one, three, and five
nuisance parameters. The
rNP increase in size with
the number of nuisance
parameters eliminated.
The dotted horizontal
lines at ±0.2 show a rule
of thumb for substantial
corrections.

are small, but the nuisance parameter correction increases sharply as more parameters
are eliminated.

An approximate conditional maximum likelihood estimate ψ̂a is obtained as the
solution to r∗(ψ) = 0, with standard error given by the slope of r∗(ψ) at that point.
Together these yield a confidence interval for ψ based on normal approximation.
Table 12.2 shows that ψ̂a has smaller magnitude and standard error than has the ordi-
nary maximum likelihood estimate ψ̂ . Small-sample adjustment shortens confidence
intervals and moves them closer to zero. In such cases a continuity correction can be
applied to give results closer to those from exact conditioning. This gives appreciably
wider confidence intervals, as the discussion in Example 7.38 would suggest. �

Curved exponential family

Our previous discussion has applied to linear exponential families, but curved expo-
nential family models are also important in applications. The key difficulty in devel-
oping small-sample inferences is then to find an analogue of the quantities (12.17)
and (12.39) that modify the signed likelihood ratio statistic. An exact expression is
unavailable but one of several possible approximations is

v(ψ)
.= |I (̂θ )|−1|C (̂θ, θ̂ψ )| {|J (̂θ )|/|Jλλ (̂θψ )|}1/2

, (12.40)

with I (θ ) the expected information and C(θ, θ0) denoting the p × p matrix(
cov0 {	(θ0) − 	(θ ), 	θ (θ0)}

cov0 {	λ(θ ), 	θ (θ0)}
)

.
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Here 	θ (θ ) = ∂	(θ )/∂θ , and so forth, and cov0 denotes covariance taken with respect
to the model with parameter value θ0. Expression (12.40) admits a decomposition
into two parts like that at (12.39). It requires neither that an ancillary statistic be
specified nor does it involve sample space derivatives, but it does entail a loss of
precision relative to (12.39), use of which in continuous models gives relative error of
sizes O(n−3/2) in moderate deviation regions and O(n−1/2) in large deviation regions.
By contrast use of (12.40) reduces the relative error in moderate deviation regions
to O(n−1). The key point, however, is that the relative error properties, which give
highly accurate approximations far into the tails of the distribution of the modified
signed likelihood ratio statistic R∗(ψ), are preserved.

Example 12.19 (Nonlinear model) Consider a model in which the n × 1 vector of
responses Y ∼ Nn(η, σ 2 In) and the n × 1 mean vector η = η(β) depends on a p × 1
parameter vector β. Let the parameter of interest ψ be an element of β, β1, say, let
λ denote the p × 1 vector comprising the remaining elements of β and σ 2, and let
θ T = (ψ, λT). The log likelihood,

	(θ ) ≡ − 1
2

{
n log σ 2 + (y − η)T(y − η)/σ 2

}
,

has score vector given by

	θ (θ )T = (
σ−2(y − η)Tηβ,

{
(y − η)T(y − η) − nσ 2

}
/(2σ 4)

)
where ηβ is the n × p matrix ∂η/∂βT. On using the decomposition

	(θ ) = − 1
2

{
n log σ 2 + (y − η0 + η0 − η)T(y − η0 + η0 − η)/σ 2

}
= − 1

2

{
(y − η0)T(y − η0) + 2(y − η0)T(η0 − η)

}
/σ 2 + d,

where d depends only on the parameters and subscript 0 indicates that a quantity is
evaluated at θ0 = (β0, σ

2
0 ), we find

cov0 {	(θ ), 	θ (θ0)} = −σ−2
(
(η0 − η)Tηβ0, n/2

)
,

from which we see that the first row of C(θ, θ0) equals(
(η0 − η)Tηβ0/σ

2, n(σ−2 − σ−2
0 )/2

)
,

and a similar calculation shows that the remaining p × (p + 1) submatrix is

cov0 {	λ(θ ), 	θ (θ0)} =
(

σ−2ηT
β2

ηβ0 0
σ−4(η0 − η)Tηβ0 n/(2σ 4)

)
.

Thus the approximation to v(ψ) involves this matrix, evaluated with θ0 = θ̂ and
θ = θ̂ψ , and the other information matrices. In this case I (̂θ ) = J (̂θ ). �

Example 12.20 (Calcium data) For numerical illustration we consider the data of
Example 10.1, to which we fit a normal model with constant variance σ 2 and mean
β0{1 − exp(−x/β1)}, where x represents time in minutes. First-order inference was
discussed in Example 10.9.
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Figure 12.9 Conditional
inference for parameters
of nonlinear regression
model for calcium data.
Each panel shows how the
signed likelihood ratio
statistic (solid), the
modified signed
likelihood ratio statistic
(heavy), and the
standardized maximum
likelihood estimate
(dashes) depend on the
corresponding parameter.
The dotted horizontal
lines are at 0, ±1.96.
Upper panels: full data;
lower panels: just one
observation at each time.

The result of applying the computations in Example 12.19 are given in Figure 12.9,
which shows, for each parameter of interest ψ , the quantities r (ψ), r∗(ψ) and the
pivot (ψ̂ − ψ)/sψ from normal approximation to the maximum likelihood estimator;
sψ is the standard error for ψ̂ based on the observed information matrix. Results are
given for the full dataset, and for a reduced dataset comprising just the nine responses
in the final column of Table 10.1. The shallower slopes in the lower panels show the
effect of reducing the sample size.

Normal approximation is clearly inadequate, particularly at the upper limits of con-
fidence intervals, but the ordinary unmodified signed likelihood ratio statistic yields
intervals for β0 and β1 that are reasonably close to those from the modified version,
at least for the full dataset. The unmodified estimates of log σ are strongly biased
downwards, and the higher-order procedures give worthwhile improvements. Much
of this bias may be removed by dividing the residual sum of squares by denominator
n − p rather than n.

It seems wise to use the modified statistics for all three parameters with the smaller
dataset. The 0.95 confidence intervals based on r (β1) and r∗(β1) are (2.63, 9.75) and
(2.31, 12.02), for instance, while the corresponding intervals for σ are (0.08, 0.55)
and (0.10, 0.94), whose right tails differ substantially. �
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Variants have been proposed that replace the expectations by averages in order to
give a purely empirical version of (12.40); see the bibliographic notes.

Exercises 12.3

1 Let Y and X be independent exponential variables with means 1/(λ + ψ) and 1/λ. Find
the distribution of Y given X + Y and show that when ψ = 0 it has mean s/2 and variance
s2/12. Construct an exact conditional test of the hypothesis E(Y ) = E(X ).

2 A discrete exponential family for independent pairs (S1, T1), . . . , (Sn, Tn) has form

exp
{
s jλ j + t jψ j + κ(λ j , ψ j )

}
c j (s j , t j ), j = 1, . . . , n.

It is intended to test the hypothesis ψ1 = · · · = ψn regardless of the values of the λ j .
Generalize Example 12.14 to explain how to perform Monte Carlo exact significance
tests. Give the acceptance probability for the Metropolis–Hastings algorithm, and write
out the algorithm when

c j (s j , t j ) = {(s j − t j )!t j !}−1, s j = t j , t j + 1, . . . , t j = 0, 1, . . . .

How does the argument change if the variables are continuous?

3 Show that the saddlepoint approximations for the density and distribution of the average
of a normal random sample are exact.

4 Show that saddlepoint approximation for the inverse Gaussian density

f (y; µ, λ) =
(

λ

2πy3

)1/2

exp
{−λ(y − µ)2/(2µ2 y)

}
, y > 0, λ, µ > 0,

is exact after renormalization. Investigate the accuracy of the distribution function ap-
proximation (12.23) when n = 1.

5 Consider independent exponential observations Y j with means (xT
j β)−1, for j = 1, . . . , n,

where the x j are p × 1 vectors of explanatory variables and the p × 1 parameter vector
β is unknown. Find the ingredients of (12.37) and (12.38) when inference is required for
ψ = β1, with λ = (β2, . . . , βp) treated as incidental.
Give the exact conditional likelihood for ψ when Y1, . . . , Yn−1 have mean λ−1 and Yn has
mean (λ + ψ)−1, and investigate the accuracy of (12.38) when n = 2.

6 Show that (12.40) retrieves (12.39) for a linear exponential family (12.35).

7 Check the details of Examples 12.19 and 12.20. Find (12.40) when σ 2 is of interest.

12.4 Modified Profile Likelihood

12.4.1 Likelihood adjustment

The profile log likelihood is a standard tool for inference in large-sample situations,
and it is natural to consider if and how it may be modified for use in small-sample
problems. We saw at (12.13), for instance, that a log marginal likelihood for parameters
ψ controlling the variance of a normal distribution could be obtained by adding a term
to the profile log likelihood, while (12.37) suggests that an approximate conditional
likelihood for a linear exponential family model has form

	(ψ, λ̂ψ ) + 1
2 log |Jλλ(ψ, λ̂ψ )|,



12.4 · Modified Profile Likelihood 681

where λ̂ψ is the maximum likelihood estimate of λ for fixed ψ and Jλλ(ψ, λ) is
the corner of the observed information matrix corresponding to λ. This amounts to
a penalization of the log likelihood by an amount that depends on the information
available for λ; when this is large, the profile log likelihood is more strongly penalized
than when it is small.

The form of these expressions suggests that in general settings we multiply the
profile likelihood

Lp(ψ) = exp
{
	p(ψ)

} = exp
{
	(ψ, λ̂ψ )

}
by a cunningly chosen function of ψ , giving a modified profile likelihood

Lmp(ψ) = exp
{
	mp(ψ)

} = M(ψ)Lp(ψ). (12.41)

It is natural to try and choose M(ψ) so that Lmp(ψ) gives inferences equivalent to
using a marginal or conditional likelihood for ψ , if such is available. It is a remarkable
fact that taking

M(ψ) = ∣∣Jλλ(ψ, λ̂ψ )
∣∣−1/2

∣∣∣∣∣
∂λ̂

∂λ̂T
ψ

∣∣∣∣∣ (12.42)

achieves this to a high degree of accuracy in some generality. The first term of (12.42)
involves the part of the observed information matrix mentioned above, while the
second term is a Jacobian needed if the modified profile likelihood is to be invariant
to interest-preserving transformations: typically this term depends on the parameter
ψ . A derivation of (12.42) is given after Example 12.18. Here is a toy example.

Example 12.21 (Normal linear model) Let the parameter of interest in the normal
linear model be the variance σ 2, with the p × 1 vector β treated as incidental. The
log likelihood is

	(β, σ 2) ≡ −n

2
log σ 2 − 1

2σ 2
(y − Xβ)T(y − Xβ),

and the maximum likelihood estimator of β for σ 2 fixed is β̂σ 2 = (X T X )−1 X T y. As
this is independent of σ 2, we have β̂ = β̂σ 2 . Thus

Jββ(β, σ 2) = σ−2 X T X,
∂β̂T

σ 2

∂β̂
= Ip, M(σ 2) = (σ 2)p/2|X T X |−1/2,

and the modified profile log likelihood is

	mp(σ 2) ≡ −n − p

2
log σ 2 − 1

2σ 2
(y − X β̂)T(y − X β̂)

= −n − p

2

(
log σ 2 − S2/σ 2

)
,

where S2 is the unbiased estimator of σ 2. Hence (12.41) produces inferences iden-
tical to those based on the marginal distribution of the residual sum of squares, or
equivalently the marginal likelihood for σ 2; see Example 12.9.

In fact |∂β̂T

σ 2/∂β̂| = 1 in all regression-scale models (Exercise 12.4.2). �
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Computation of (12.41) demands knowledge of the two terms of (12.42). In appli-
cations the first is easily found by numerical or analytical differentation of 	(ψ, λ), but
the second is a sample space derivative and approximations to it are usually needed.
When the log likelihood can be written in terms of the maximum likelihood estimates
ψ̂ and λ̂ and an ancillary statistic a, however, the equation determining λ̂ψ may be
expressed as

∂	(ψ, λ̂ψ ; ψ̂, λ̂, a)

∂λ
= 0,

and partial differentiation with respect to λ̂, holding ψ , ψ̂ , and a fixed, yields

∂2	(ψ, λ̂ψ ; ψ̂, λ̂, a)

∂λ∂λT

∂λ̂T
ψ

∂λ̂
+ ∂2	(ψ, λ̂ψ ; ψ̂, λ̂, a)

∂λ∂λ̂T
= 0.

This gives the alternative and often more convenient expression∣∣∣∣∣
∂λ̂T

ψ

∂λ̂

∣∣∣∣∣ = ∣∣Jλλ(ψ, λ̂ψ ; ψ̂, λ̂, a)
∣∣−1

∣∣∣∣∂
2	(ψ, λ̂ψ ; ψ̂, λ̂, a)

∂λ∂λ̂T

∣∣∣∣ . (12.43)

Although the ancillary must be held fixed when differentiating with respect to λ̂, it is
not needed explicitly, and in some cases (12.43) can be obtained without the burden
of specifying a.

Example 12.22 (Linear exponential family) In a linear exponential family with
log likelihood expressed as

	(ψ, λ) ≡ tT
1ψ + tT

2λ − κ(ψ, λ)

there is no ancillary statistic and the maximum likelihood estimates ψ̂ and λ̂ are
solutions of the equations

t1 = κψ (ψ̂, λ̂), t2 = κλ(ψ̂, λ̂).

Thus the log likelihood may be written

	(ψ, λ; ψ̂, λ̂) = κψ (ψ̂, λ̂)Tψ + κλ(ψ̂, λ̂)Tλ − κ(ψ, λ),

and (12.43) implies that∣∣∣∣∂λ̂ψ

∂λ̂

∣∣∣∣ = ∣∣κλλ(ψ, λ̂ψ )
∣∣−1 ∣∣κλλ(ψ̂, λ̂)

∣∣ = ∣∣Jλλ(ψ, λ̂ψ ; ψ̂, λ̂)
∣∣−1 ∣∣Jλλ(ψ̂, λ̂; ψ̂, λ̂)

∣∣ .
Thus the modified profile log likelihood for ψ is

	mp(ψ) ≡ 	p(ψ) + 1
2 log

∣∣Jλλ(ψ, λ̂ψ ; ψ̂, λ̂)
∣∣ ,

where terms independent of ψ have been neglected. Hence (12.41) and (12.42) do
indeed retrieve the approximate conditional likelihood (12.37), apart from constants
of proportionality. �

Inference on ψ is performed by treating (12.41) as a likelihood. Its maximizing
value ψ̂mp yields a confidence interval for ψ , for example by normal approximation
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with variance based on the second derivative of 	mp(ψ) at ψ̂mp, or by chi-squared ap-
proximation to the distribution of 2{	mp(ψ̂mp) − 	mp(ψ)}. The maximum likelihood
estimator based on Lmp typically has better properties than ψ̂ , as is the case in Exam-
ple 12.21, but likelihood modification is not a universal panacea. One difficulty is that
the underlying inferential basis is first-order distributional results such as normal ap-
proximation to the distribution of the maximum modified likelihood estimator rather
than more accurate forms such as (12.38). Another difficulty is that modification may
not be enough to remove inconsistency of maximum likelihood estimators.

Example 12.23 (Binary matched pairs) Consider matched pairs of binary obser-
vations R0 j , R1 j , with success probabilities

π0 j = eλ j

1 + eλ j
, π1 j = eλ j +ψ

1 + eλ j +ψ
, j = 1, . . . , n.

This logistic regression model is a linear exponential family with minimal sufficient
statistic S1, . . . , Sn, T , where Sj = R0 j + R1 j is associated with λ j and T = ∑

R1 j

with ψ . We suppose that ψ is finite, and compare its maximum likelihood estimators
based on the conditional, modified profile, and usual likelihoods as n → ∞.

Pairs for which Sj = 0 or 2 are uninformative (Problem 12.11), and we suppose
that they have already been dropped from the analysis, so all n pairs are discordant,
that is, S1 = · · · = Sn = 1.

The exact conditional likelihood for ψ is obtained from the conditional density of
T = ∑

R1 j given that S1 = · · · = Sn = 1. Conditional on Sj = 1, R1 j is a Bernoulli
variable with success probability π = eψ/(1 + eψ ), so T has a binomial distribution
with denominator n and probability π . Thus the conditional log likelihood is 	c(ψ) ≡
T ψ − n log(1 + eψ ), which is maximized at ψ̂c = log{T/(n − T )} P−→ ψ as n →
∞: hence ψ̂c is consistent.

The overall log likelihood is

	(ψ, λ) ≡ T ψ +
n∑

j=1

{
λ j − log(1 + eλ j ) − log(1 + eψ+λ j )

}
,

and the values of λ j that maximise 	(ψ, λ) for fixed ψ all equal λ̂ψ = − 1
2ψ . Thus

the profile log likelihood is

	p(ψ) = T ψ − 2n log(1 + eψ/2).

It is straightforward to see that the maximum likelihood estimator ψ̂
P−→ 2ψ as

n → ∞ (Problem 12.11). Thus ψ̂ is inconsistent.
Differentiation of 	(ψ, λ) establishes that Jλλ(ψ, λ̂ψ ) is a n × n matrix with ele-

ments 2γ /(1 + γ )2 on the diagonal and zeros elsewhere, where γ = exp(ψ/2). Hence
the modified profile log likelihood is

	mp(ψ) ≡ 1
4 (n + 4T )ψ − 3n log(1 + eψ/2),
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Table 12.3 Probability
limits of ordinary,
conditional, and
maximum modified
likelihood estimators of
log odds ratio ψ in binary
matched pairs.

ψ 0 0.5 1 1.5 2 2.5 3 4 5

Limit of ψ̂c 0 0.5 1 1.5 2 2.5 3 4 5
Limit of ψ̂mp 0 0.66 1.27 1.81 2.23 2.56 2.79 3.05 3.16
Limit of ψ̂ 0 1 2 3 4 5 6 8 10
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Figure 12.10
Likelihood inference for
nodal involvement data.
Left panel: conditional
(heavy), modified profile
(solid) and profile log
likelihoods (dots) for
model with terms
1+acid. Centre and right
panels: corresponding log
likelihoods with terms
1+stage+xray+acid

and with all five
covariates.

which is maximized at ψ̂mp = 2 log{(1 + 4T/n)/(5 − 4T/n)}. Now T/n
P−→ π as

n → ∞, so ψ̂mp
P−→ 2 log{(1 + 5eψ )/(5 + eψ )}.

Table 12.3 compares these limiting values. Although ψ̂mp is inconsistent, it is not
horribly biased in the range |ψ | < 3 usually met in applications: the modification is
partly but not wholly successful in eliminating bias. �

Example 12.24 (Nodal involvement data) For numerical illustration of likelihood
modification we fit logistic regression models to the rows of Table 10.8 with m = 2 or
m = 1: this gives 17 binary responses in all. We let ψ be the parameter corresponding
to acid, and fit models with terms 1+acid, 1+stage+xray+acid, and with all five
covariates; thus the nuisance parameter λ has dimensions q = 1, 3, and 5.

Figure 12.10 shows the conditional, modified profile, and profile log likelihoods
for these three models. The conditional likelihoods were obtained by symbolic com-
putation of the necessary generating functions; see Example 12.13. The profile log
likelihoods are quite different from the conditional and modified profile log likeli-
hoods. The effect of modification depends on the number of nuisance parameters;
it works almost perfectly when q = 1 but less well otherwise. In the right panel
five nuisance parameters are eliminated from a likelihood based on just 17 binary
observations, and it is perhaps surprising that modification works so well.

Table 12.4 compares the corresponding estimates and confidence intervals. The
difference between results based on the profile likelihood and conditional and modified
profile likelihoods increases sharply with the number of nuisance parameters, but the
difference between these two last sets of results remains modest. �
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Table 12.4 Estimates,
standard errors, and 0.95
confidence intervals based
on profile, modified
profile and conditional
likelihoods for reduced
nodal data having 17
binary responses, with
q = 1, 3 and 5 nuisance
parameters.

Estimate (SE) Confidence interval

q Profile Modified Profile Modified Conditional

1 1.79 (1.08) 1.68 (1.04) (−0.21, 4.15) (−0.28, 3.86) (−0.26, 3.92)
3 1.72 (1.13) 1.43 (1.02) (−0.41, 4.21) (−0.54, 3.51) (−0.53, 3.48)
5 2.83 (1.61) 1.91 (1.15) (0.13, 6.90) (−0.39, 4.57) (−0.44, 4.71)

Derivation of (12.42)

Consider a model with interest and nuisance parameters ψ and λ, and for which the
data y 
→ (ψ̂, λ̂, a), where a is ancillary. If a factorization

f (ψ̂, λ̂ | a; ψ, λ) = f (ψ̂ | a; ψ) f (̂λ | ψ̂, a; ψ, λ) (12.44)

holds, then a marginal likelihood for ψ may be based on the first term on the right.
We now apply the p∗ formula to the left-hand density, giving

(2π )−p/2c1(ψ, λ, a)
∣∣J (ψ̂, λ̂)

∣∣1/2
exp

{
	(ψ, λ) − 	(ψ̂, λ̂)

}
, (12.45)

where (ψ, λ) has dimension p and c1(ψ, λ, a) = 1 + Op(n−1). To approximate to
f (̂λ | ψ̂, a; ψ, λ), we note that with ψ , ψ̂ , and a held fixed we have

f (̂λ | ψ̂, a; ψ, λ) = f (̂λψ | ψ̂, a; ψ, λ)

∣∣∣∣∂λ̂ψ

∂λ̂

∣∣∣∣ ,
and apply the p∗ formula to the density on the right, giving

(2π )−q/2c2(ψ, λ, a)
∣∣Jλλ(ψ, λ̂ψ )

∣∣1/2
exp

{
	(ψ, λ) − 	(ψ, λ̂ψ )

} ∣∣∣∣∂λ̂ψ

∂λ̂

∣∣∣∣ , (12.46)

where q is the dimension of λ and c2(ψ, λ, a) = 1 + Op(n−1). On substituting (12.45)
and (12.46) into (12.44) and rearranging we find that f (ψ̂ | a; ψ) equals

(2π )−(p−q)/2c(ψ, λ, a)

∣∣J (ψ̂, λ̂)
∣∣1/2

∣∣Jλλ(ψ, λ̂ψ )
∣∣1/2 exp

{
	(ψ, λ̂ψ ) − 	(ψ̂, λ̂)

} ∣∣∣∣ ∂λ̂

∂λ̂ψ

∣∣∣∣ ,
where c(ψ, λ, a) = c1(ψ, λ, a)/c2(ψ, λ, a) = 1 + O(n−1). Thus

f (ψ̂ | a; ψ) ∝ exp
{
	p(ψ)

}
M(ψ)

{
1 + O(n−1)

}
, (12.47)

as a function of ψ , with M(ψ) given by (12.42). It can be shown that the error term
is O(n−3/2) in a moderate deviation region, that is, when ψ̂ differs from the true ψ

by only O(n−1/2).
Exercise 12.4.4 derives (12.47) as an approximate conditional likelihood.

12.4.2 Parameter orthogonality
This section demands a
nodding acquaintance
with partial differential
equations.

In applications it is rarely possible to find an explicit expression for the second term
of (12.42). Approximations to it are available in certain cases, but when they are not,
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it is natural to seek to reduce the importance of that term. If λ̂ψ is independent of
ψ , then λ̂ψ = λ̂ for all ψ , and |∂λ̂/∂λ̂ψ | plays no part in the likelihood modification.
Although this occurs only in particular models, it suggests that we seek to reduce the
dependence of λ̂ψ on ψ more generally. One approach to this is through orthogonal
parameters.

To motivate subsequent discussion, let 	 = n−1	 denote the log likelihood, stan-
dardized to be of order one, and note that λ̂ψ is determined by the equation
	λ(ψ, λ̂ψ ) = 0. If we suppose that ψ̂ − ψ = O(n−1/2), then Taylor series expansion
around the overall maximum likelihood estimator gives

0 = 	λ(ψ̂, λ̂) + 	λψ (ψ̂, λ̂)(ψ − ψ̂) + 	λλ(ψ̂, λ̂)(̂λψ − λ̂) + Op(n−1),

where second and higher derivatives such as 	λψ (ψ̂, λ̂) are Op(1). Hence

λ̂ψ − λ̂ = 	λλ(ψ̂, λ̂)−1	λψ (ψ̂, λ̂)(ψ̂ − ψ) + Op(n−1)

= Jλλ(ψ̂, λ̂)−1 Jλψ (ψ̂, λ̂)(ψ̂ − ψ) + Op(n−1)

= Iλλ(ψ, λ)−1 Iλψ (ψ, λ)(ψ̂ − ψ) + Op(n−1),

where Iλλ and Iλψ are components of the expected information matrix. In regular
models these and the corresponding observed information quantities are of order n,
so λ̂ψ − λ̂ will be of precise order n−1/2 unless the model is set up so that Jλψ (ψ̂, λ̂)
or Iλψ (ψ, λ) vanishes. If this can be arranged, then λ̂ψ differs from λ̂ by less than
Op(n−1/2) and the asymptotic dependence of λ̂ψ on ψ is reduced.

To be more explicit, suppose Iλψ (ψ, λ) = 0 at the true parameter value. Then
λ̂ = λ̂ψ + Op(n−1), and it follows that the term |∂λ̂/∂λ̂T

ψ | that appears in (12.42)
equals 1 + Op(n−1), in contrast to the value 1 + Op(n−1/2) typically obtained. It then
seems reasonable to hope that little damage will be done by dropping the Jacobian
term from (12.42) and approximating 	mp(ψ) by

	(ψ, λ̂ψ ) − 1
2 log

∣∣Jλλ(ψ, λ̂ψ )
∣∣ . (12.48)

This argument has a serious drawback, because knowledge that a term is Op(n−1)
gives no notion of its actual size: cψ/n is O(n−1) both when c = 100 and c = 0.01, but
the numerical values are very different. Asymptotic arguments are valuable heuristics
but cannot ensure accuracy in applications. With this in mind, we nevertheless press
forward with vigour.

If Iλψ (ψ, λ) = 0 for all (ψ, λ), then the parameters λ and ψ are said to be or-
thogonal. Among the consequences of this is that the inverse information matrix is
block diagonal, so the maximum likelihood estimators ψ̂ and λ̂ are asymptotically
independent, and the asymptotic standard error for ψ̂ when λ is unknown is the same
as when it is known. Another advantage of is that likelihood maximization may be
numerically more stable in the orthogonal parametrization. Below we briefly consider
the implications of parameter orthogonality for likelihood modification, first outlining
how to obtain parameters orthogonal to a given interest parameter.

Consider a model with log likelihood 	∗(ψ, γ ) in terms of the scalar interest param-
eter ψ and an arbitrary nuisance parameter γ = (γ1, . . . , γq )T. We seek λ = λ(ψ, γ )
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such that λ is orthogonal to ψ . Writing γ = γ (ψ, λ), we have

	(ψ, λ) = 	∗ {ψ, γ (ψ, λ)} ,

and differentiation with respect to ψ and λ yields

∂2	

∂λ∂ψ
= ∂γ T

∂λ

∂2	∗

∂γ ∂ψ
+ ∂γ T

∂λ

∂2	∗

∂γ ∂γ T

∂γ

∂ψ
+ ∂2γ T

∂λ∂ψ

∂	∗

∂γ
.

If λ and ψ are to be orthogonal, this expression must have expectation zero. Hence

0 = ∂γ T

∂λ
I ∗
γψ + ∂γ T

∂λ
I ∗
γ γ

∂γ

∂ψ
,

where I ∗
γψ and I ∗

γ γ are components of the expected information matrix in the non-
orthogonal parametrization. Thus provided that the q × q matrix ∂γ T/∂λ is invertible
and taking for granted the necessary regularity conditions, we see that λ(ψ, γ ) is a
solution of the system of q partial differential equations

∂γ

∂ψ
= −I ∗−1

γ γ (ψ, γ )I ∗
γψ (ψ, γ ). (12.49)

There is latitude in the choice of λ, because if λ and ψ are orthogonal, then any
smooth functions of ψ and of λ are orthogonal. Thus λ can in some cases be chosen
to have a desirable property such as directness of interpretation.

When the data are a random sample of size n, the expected information equals
I ∗(ψ, γ ) = ni∗(ψ, γ ), and the partial differential equation (12.49) may be expressed
using the information matrix i∗(ψ, γ ) for a single observation.

It is not necessary to find λ in terms of ψ and γ in order to obtain (12.48). To see
this, write γ = γ (ψ, λ) and note that

∂	(ψ, λ)

∂λ
= ∂γ T

∂λ

∂	∗(ψ, γ )

∂γ
,

∂2	(ψ, λ)

∂λ∂λT
= ∂2γ T

∂λ∂λT

∂	∗(ψ, γ )

∂γ
+ ∂γ T

∂λ

∂2	∗(ψ, γ )

∂γ ∂γ T

∂γ

∂λT
.

If the maximum likelihood estimates of λ and γ for fixed ψ are λ̂ψ and γ̂ψ , then

Jλλ(ψ, λ̂ψ ) = ∂γ (ψ, λ̂ψ )T

∂λ
J ∗
γ γ (ψ, γ̂ψ )

∂γ (ψ, λ̂ψ )

∂λT
.

Provided |∂γ /∂λT| = 0, we have
∣∣∣∣∂γ (ψ, λ̂ψ )

∂λT

∣∣∣∣ =
∣∣∣∣∂λ(ψ, γ̂ψ )

∂γ T

∣∣∣∣
−1

,

and so (12.48) equals

	∗(ψ, γ̂ψ ) − 1
2 log

∣∣J ∗
γ γ (ψ, γ̂ψ )

∣∣ + log

∣∣∣∣∂λ(ψ, γ̂ψ )

∂γ T

∣∣∣∣ , (12.50)

which can be computed without writing λ explicitly in terms of ψ and γ .
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Likelihood analysis of
Danish fire data. Left:
variation of σ̂ξ (solid) and
λ̂ξ (dashes) as a function
of the shape parameter ξ .
The blobs show the
maximum likelihood
estimates. The dotted line
is the profile log
likelihood 	p(ξ ) and the
vertical lines mark the
limits of a 0.99 confidence
interval for ξ . The
orthogonal parameter λ̂ξ

varies much less than does
the non-orthogonal
parameter σ̂ξ over the
range of ψ considered.
Right: profile log
likelihood (solid) and
modified profile log
likelihood (dashes) for
0.99 quantile ψ of
generalized Pareto
distribution. The
horizontal line determines
the limits of a 0.95
confidence interval for ψ .

Example 12.25 (Generalized Pareto distribution) The expected information ma-
trix for an observation with distribution function (6.38) is

i∗(ξ, σ ) = 1

σ 2(1 + ξ )(1 + 2ξ )

(
2σ 2 σ

σ 1 + ξ

)
.

Hence a parameter λ = λ(ξ, σ ) orthogonal to the shape parameter ξ satisfies the
partial differential equation

∂σ

∂ξ
= −i∗−1

σσ (ξ, σ )i∗
σξ (ξ, σ ) = − σ

1 + ξ
.

It is straightforward to check that this implies that g(λ) = σ (1 + ξ ) for a suitably
smooth function g. With the choice λ = σ (1 + ξ ) we find that

i(ξ, λ) = 1

λ2(1 + ξ )2(1 + 2ξ )

(
λ2(1 + 2ξ ) 0

0 (1 + ξ )2

)
.

We illustrate numerically the effect of parameter orthogonality using the Danish
fire insurance claim data described in Examples 6.31 and 6.34. We apply a threshold
u = 15 to the claim sizes and fit the generalized Pareto distribution to the result-
ing 60 exceedances. The left panel of Figure 12.11 shows that σ̂ξ varies more over
the range of appreciable likelihood for ξ than does λ̂ξ = σ̂ξ (1 + ξ ), as our general
discussion anticipates.

Now suppose that interest focuses on the (1 − p) quantile of the distribution,

ψ =
{

σ (p−ξ − 1)/ξ, ξ = 1,
−σ log p, ξ = 0,

a return level, to which we seek an orthogonal parameter λ = λ(ψ, ξ ). As

i∗(ξ, ψ) = ∂(ξ, σ )T

∂(ξ, ψ)
i∗(ξ, σ )

∂(ξ, σ )

∂(ξ, ψ)T

∣∣∣∣
σ=σ (ξ,ψ)

,

a tedious calculation shows that i∗(ξ, ψ) may be written as(
ψ2a(ξ ) −ψa(ξ )/b(ξ )

−ψa(ξ )/b(ξ ) c(ξ )

)
,
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and so λ = λ(ψ, ξ ) solves the equation ψb(ξ )∂ξ/∂ψ = 1. Thus we may take

λ = g

{
log ψ +

∫ ξ

b(u) du

}

for any suitably smooth function g. With the choice g(u) = u, we have ∂λ/∂ξ = b(ξ ),
and this may be used in (12.50).

The right panel of Figure 12.11 shows the effect of likelihood modification when
setting a confidence interval for the 0.99 quantile of the generalized Pareto model using
the 60 exceedances. Application of standard chi-squared asymptotics to the profile log
likelihood yields the highly asymmetric 0.95 confidence interval (86.1, 723.8), while
the corresponding confidence interval based on the modified profile log likelihood is
(87.6, 757.4).

Although modification changes the right-hand limit of the confidence interval ap-
preciably, of overwhelmingly greater concern in applications would be the represen-
tativeness of the largest few observations in the sample, on which inferences will
hinge. Moreover in practice the quantile also depends on the Poisson rate of ex-
ceedance times, and hence must be orthogonalized with respect to two parameters;
see Section 6.5.2. �

Although (12.49) gives a basis for orthogonalizing γ with respect to a scalar ψ ,
parameters orthogonal to a vector ψ cannot be found in general. For if ψ contains ψ1

and ψ2, say, then λ must simultaneously satisfy both systems of equations

∂γ

∂ψ1
= −I ∗−1

γ γ (ψ, γ )I ∗
γψ1

(ψ, γ ),
∂γ

∂ψ2
= −I ∗−1

γ γ (ψ, γ )I ∗
γψ2

(ψ, γ ),

for all γ , ψ1 and ψ2. However there is no guarantee that the compatibility condition
∂2γ /∂ψ1∂ψ2 = ∂2γ /∂ψ2∂ψ1 will hold; if not, a simultaneous joint solution does not
exist. When a solution exists, it can produce familiar results.

Example 12.26 (Linear exponential family) In a linear exponential family with
log likelihood

	∗(ψ, γ ) ≡ tT
1ψ + tT

2γ − κ(ψ, γ ),

the parameters λ = λ(ψ, γ ) orthogonal to ψ are determined by

∂γ

∂ψT
= −κ−1

γ γ (ψ, γ )κγψ (ψ, γ ). (12.51)

If we reparametrize in terms of ψ and λ = κγ (ψ, γ ) = ∂κ(ψ, γ )/∂γ , then in this new
parametrization, γ is a function of ψ and λ, and

0 = ∂λT

∂ψ
= ∂γ T

∂ψ
κγγ (ψ, γ ) + κψγ (ψ, γ ),

so λ = κγ (ψ, γ ) is a solution to (12.51). That is, the parameter orthogonal to ψ is
the so-called complementary mean parameter λ(ψ, γ ) = E(T2; ψ, γ ). By symmetry,
E(T1; ψ, γ ) is orthogonal to γ .



690 12 · Conditional and Marginal Inference

The normal distribution with mean µ and variance σ 2 has canonical parameter
(µ/σ 2, −1/(2σ 2)). The canonical statistic (Y, Y 2) has expectation (µ, µ2 + σ 2), so
µ is orthogonal to −1/(2σ 2), and hence to σ 2, while µ/σ 2 is orthogonal to µ2 + σ 2.

Independent Poisson variables Y1 and Y2 with means exp(γ ) and exp(γ + ψ) have
log likelihood

	∗(ψ, γ ) ≡ (y1 + y2)γ + y2ψ − eγ − eγ+ψ.

The discussion above suggests that

λ = E(Y1 + Y2) = exp(γ ) + exp(γ + ψ) = eγ (1 + eψ )

is orthogonal to ψ , so γ = log λ − log(1 + eψ ) and

	(ψ, λ) ≡ y2ψ − (y1 + y2) log(1 + eψ ) + (y1 + y2) log λ − λ.

The separation of ψ and λ implies that the profile and modified profile likelihoods
for ψ are proportional. They correspond to the conditional likelihood obtained from
the density of Y2 given Y1 + Y2. �

Example 12.27 (Restricted likelihood) If Y ∼ Nn(Xβ, σ 2ϒ−1), where the
parameter of interest ψ appears in the n × n matrix ϒ but not in β, the log like-
lihood is

	(β, σ 2, ψ) ≡ −n

2
log σ 2 + 1

2 log |ϒ | − 1

2σ 2
(y − Xβ)Tϒ(y − Xβ),

differentiation of which yields ∂	/∂β = σ−2ϒ(y − Xβ). It follows that β is orthog-
onal to both σ 2 and ψ . Now Jββ(β, σ 2, ψ) = σ−2 X Tϒ X , so apart from the term
|∂β̂ψ,σ 2/∂β̂|−1, the modified profile log likelihood for ψ and σ 2 equals the marginal
log likelihood (12.13). Note that β̂ψ,σ 2 = (X Tϒ X )−1 X Tϒy depends on ψ but not
on σ 2.

This argument also applies when the mean of Y is a nonlinear function of β,
provided that no parameter appears in both mean and variance. �

The notion of parameter orthogonality is useful, but the resulting modified likeli-
hoods can be viewed as unsatisfactory, partly because the arbitrariness of the choice
of orthogonal parameter results in a lack of uniqueness. A second difficulty is that
the partial differential equation and hence its solution will change if there is a minor
change to the model, such as the introduction of censoring, so any statistical inter-
pretation of the orthogonal parameter is then compromised. A third is that inferences
are typically based on first-order distributional approximations, as mentioned above.

Exercises 12.4

1 Let Y1, . . . , Yn
iid∼ N (µ, σ 2) and let µ be the interest parameter. Show that

	(µ, σ 2; µ̂, σ̂ 2) ≡ −n

2

{
log σ 2 + σ̂ 2 + (µ̂ − µ)2

σ 2

}
,
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where µ̂ and σ̂ 2 are the maximum likelihood parameter estimators, and hence find the
modified profile likelihood for µ. Compare this with the marginal likelihood based on the
tn−1 density of (Y − µ)/(S2/n)1/2, where Y and S2 are the unbiased estimators of µ and
σ 2. Discuss.

2 Compute (12.43) for (12.15). Hence show that M(τ ) = |Jββ (τ, β̂τ )|−1/2 for any regression-
scale model.

3 In Example 12.23, find the asymptotic relative efficiencies of ψ̂ and ψ̂mp when ψ = 0.

4 Suppose that y 
→ (ψ̂, λ̂, a), that a is ancillary, and that

f (ψ̂, λ̂ | a; ψ, λ) = f (ψ̂ | λ̂, a; ψ) f (̂λ | a; ψ, λ).

By modifying the argument on page 685 show that the first term on the right is proportional
to M(ψ) exp{	p(ψ)}, with M(ψ) given by (12.42), apart from a relative error of size n−1.

5 Independent Poisson variables Y1 and Y2 have means exp(γ ) and exp(γ + ψ). Find the
profile and modified profile log likelihoods for ψ in this parametrization. Comment.

6 A Poisson variable Y has mean µ, which is itself a gamma random variable with mean θ
and shape parameter ν. Find the marginal density of Y , and show that var(Y ) = θ + θ 2/ν
and that ν and θ are orthogonal. Hence show that ν is orthogonal to β for any model in
which θ = θ (xTβ), x being a covariate vector. Is the same true for the model in which
ν = θ/κ , so that var(Y ) = (1 + κ)µ? Discuss the implications for inference on β when
the variance function is unknown.

7 Let X and Y be independent exponential variables with means γ −1 and (γψ)−1. Show that
the parameter λ(γ, ψ) orthogonal to ψ is the solution to the equation ∂γ /∂ψ = −γ /(2ψ),
and verify that taking λ = γ /ψ−1/2 yields an orthogonal parametrization.
Investigate how this solution changes when X and Y are subject to Type I censoring at c.

8 Consider n pairs of independent binomial variables with denominators m0 j and m1 j and
success probabilities

exp(λ j )

1 + exp(λ j )
,

exp(λ j + ψ)

1 + exp(λ j + ψ)
, j = 1, . . . , n.

Find a parameter orthogonal to ψ and hence obtain a modified profile likelihood for ψ .
How does it compare to that in Example 12.23?

12.5 Bibliographic Notes

R. A. Fisher (1934) suggested that conditioning plays a central role in inference,
building on earlier work, and subsequently developed this notion largely through
examples; see Fisher (1922, 1925, 1935b, 1956, 1990). Although many of these ex-
amples are convincing, a fully satisfactory systematic development remains elusive,
owing among other things to the non-existence of exact ancillary statistics in some im-
portant models and their non-uniqueness in others. However very substantial progress
has been made over the past two decades, initially stemming from Efron and Hinkley
(1978) and Barndorff-Nielsen and Cox (1979). The p∗ formula was crystallized as
being central by Barndorff-Nielsen (1983), building on earlier work going back to
Fisher (1934), though a fully general proof is hard to establish; perhaps the most sat-
isfactory is given by Skovgaard (1990). Reid (1995, 2003) gives excellent reviews of
the roles in inference of conditioning and asymptotics, while Barndorff-Nielsen and
Cox (1994) and Severini (2000) give more extended accounts of modern likelihood
asymptotics and many further references.
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Conditional and marginal likelihoods were introduced by Bartlett (1937) and are
now widely used in applications. Restricted maximum likelihood estimation was first
described by Patterson and Thompson (1971), though restricted likelihood itself had
been obtained by Hartley and Rao (1967) and has earlier roots. Diggle et al. (1994)
discuss its use in the context of longitudinal data. Example 12.11 is based on Cruddas
et al. (1989). Kalbfleisch and Prentice (1973) show the link between marginal and
partial likelihoods for the proportional hazards model.

The use of Monte Carlo simulation for conditional testing is described by Besag
and Clifford (1989, 1991), and applied extensively in contingency tables by Forster
et al. (1996) and Smith et al. (1996). See also Section 4.2 of Davison and Hinkley
(1997).

Saddlepoint approximation was introduced into statistics in the pioneering paper of
Daniels (1954), which was largely ignored until interest in small-sample asymptotics
revived in the 1970s, focussed particularly by Barndorff-Nielsen and Cox (1979).
Reid (1988) surveys statistical aspects of saddlepoint approximation, while Barndorff-
Nielsen and Cox (1989) is a standard reference to these and related procedures. Jensen
(1995) is a thorough mathematical treatment. Distribution function approximations
are described by Daniels (1987), Skovgaard (1987), and Barndorff-Nielsen (1986).
The approximation (12.40) was proposed by Skovgaard (1996) and has itself been
approximated by Severini (1999). Numerous other approaches have been suggested;
see for example the account of likelihoods for component parameters in Fraser (2002)
or Chapter 7 of Severini (2000).

Cox and Reid (1987) and its discussion give a systematic treatment of parameter
orthogonality and its consequences for conditional inference.

The complexity of many likelihood expressions has led authors such as
McCullagh (1987) and Andrews and Stafford (2000) to develop powerful tools for
analytic work with or symbolic computation applied to asymptotic expansions.

Brazzale (1999, 2000), and Bellio (1999) describe systematic attempts to imple-
ment small-sample likelihood asymptotics for practical use.

12.6 Problems

1 Find the Fisher information matrix for Example 12.2, and show that it gives the wrong
asymptotic variances for all the parameters.

2 Does the argument of Example 12.5 apply to the location-scale model with any error
distribution?

3 Show that a missingness indicator (Section 5.5.1) is not generally an ancillary statistic,
and discuss the implications for inference on θ .

4 A normal random variable Y has mean θ and variance determined by Table 12.5, where
k1 and k2 are chosen so that the values of π lie in the unit interval. Show that A1 is exactly
ancillary but is not informative about the precision of Y , while A2 is not exactly ancillary
but is indicative of the precision of Y .
Discuss briefly the merits of exact and approximate conditional inference here. (Lloyd,
1992)
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Table 12.5 Conditional
distributions of normal
variables.

var(Y ) 100 100 1 1
π 1

2 (1 − k1θ ) 1
2 (1 + k2θ ) 1

2 (1 + k1θ ) 1
2 (1 − k2θ )

A1 1 0 1 0
A2 0 0 1 1

5 Show that if Y has the Cauchy density

f (y; µ, σ ) = σ

π
{
σ 2 + (y − µ)2

} , −∞ < y, µ < ∞, σ > 0,

then 1/Y has density f (y; µ′, σ ′), where µ′ = µ/(µ2 + σ 2) and σ ′ = σ/(µ2 + σ 2).
Deduce that a random sample Y1, . . . , Yn of Cauchy variables yields two distinct sets of
maximal ancillary statistics. Discuss inference for µ, σ , and for µ/σ .
(McCullagh, 1992)

6 In Example 12.8, show that A1 and A2 are not jointly ancillary for θ .
Conditioning on an ancillary statistic is intended to divide the sample space into relevant
subsets according to their information content, so one basis for choice among competing
ancillaries is to take that whose the conditional Fisher information has largest variance.
Show that E{i1(θ )} = E{i2(θ )}, but that var{i1(θ )} > var{i2(θ )} for 0 < θ < 1, and deduce
that A1 is preferable.
Discuss critically this idea.
(Cox, 1971)

7 Consider two independent exponential random samples, Y1, . . . , Yn having rate ψ > 0
and X1, . . . , Xn having rate λ/ψ , where λ > 0.
(a) Suppose it is required to find an approximate ancillary for ψ when λ = 1. Find the
likelihood ratio statistic for testing λ = 1 against the alternative putting no restriction on
λ, and show that it is a function only of X Y . Hence give an exact ancillary statistic for ψ .
(b) Give explicit expressions for the p∗ formula (12.7) and for r∗(ψ) when λ = 1. Inves-
tigate the numerical accuracy of (12.8) when n = 1.

8 A Poisson process of rate λeψ t is observed on the interval [0, 1], over which events occur
at times 0 < t1 < · · · < tn < 1. Show that the likelihood is

exp

{
−λ

∫ 1

0
eψu du

} n∏
j=1

λeψ t j ,

and deduce that inference for ψ may be based on the conditional density

n!
n∏

j=1

eψ t j∫ 1
0 eψu du

of the times of events T1 < · · · < TN given that N = n. Show that this is the joint density
of the order statistics of a random sample of n variables with density eψ t/

∫ 1
0 eψu du on

(0, 1), and derive a conditional test of the hypothesis ψ = 0 against ψ > 0, giving the
null mean and variance of your test statistic.
When ψ = 0, how might you test the hypothesis that the Tj are clustered relative to a
Poisson process?
(Cox and Lewis, 1966, pp. 45–51)

9 Under the model of Example 1.4, the number of deaths due to lung cancer in the (i, j)
cell of Table 1.4, Yi j , is a Poisson variable with mean expressible as

xi j g(ti , φ)(1 + ψ1dψ2
j ),

where the notation reflects our interest in the effect of smoking.
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Show that the marginal density of Mi = Yi1 + · · · + Yic is Poisson with mean

λi = g(ti ; φ)
c∑

j=1

xi j (1 + ψ1dψ2
j ), i = 1, . . . , r,

while the conditional distribution of Yi1, . . . , Yic given Mi = mi is multinomial with
denominator mi = yi1 + · · · + yic and probabilities

πi j = xi j (1 + ψ1dψ2
j )∑c

k=1 xik(1 + ψ1dψ2
k )

, j = 1, . . . , c.

Outline how this computation may be used as a basis for inference on ψ , and in particular
how evidence for ψ2 = 1 may be assessed. Do the usual likelihood asymptotics apply
when testing the hypothesis that ψ1 = 0, regardless of ψ2?

10 In an exponential family density

f (t1, t2; ψ, λ) = exp
{
tT
1 ψ + tT

2 λ − κ(ψ, λ) + c(t1, t2)
}
,

show that the conditional distribution of T1 given T2 is unchanged if λ is randomly taken
from a density g(λ).
Independent pairs of observations (x1, y1), . . . , (xn, yn) are supposed to have independent
Poisson distributions with means (µ j , βµ j ), for j = 1, . . . , n. Does your inference for β

depend on the knowledge that µ1, . . . , µn
iid∼ g?

If the density g(µ) = g(µ; γ ) is known up to the value of a parameter γ , say, suggest how
to retrieve any information on ψ in the marginal density of the y j .

11 Independent pairs of binary observations (R01, R11), . . . , (R0n, R1n) have success proba-
bilities (eλ j /(1 + eλ j ), eψ+λ j /(1 + eψ+λ j )), for j = 1, . . . , n.
(a) Show that the maximum likelihood estimator of ψ based on the conditional likelihood
is ψ̂c = log(R01/R10), where R01 and R10 are respectively the numbers of (0,1) and (1,0)
pairs. Does ψ̂c tend to ψ as n → ∞?
(b) Write down the unconditional likelihood for ψ and λ, and show that the likelihood
equations are equivalent to

r0 j + r1 j = eλ̂ j

1 + eλ̂ j
+ eλ̂ j +ψ̂

1 + eλ̂ j +ψ̂
, j = 1, . . . , n, (12.52)

n∑
j=1

r1 j =
n∑

j=1

eλ̂ j +ψ̂

1 + eλ̂ j +ψ̂
.

(i) Show that the maximum likelihood estimator of λ j is ∞ if r0 j = r1 j = 1 and −∞ if
r0 j = r1 j = 0; such pairs are not informative. (ii) Use (12.52) to show that λ̂ j = −ψ̂/2 for
those pairs for which r0 j + r1 j = 1. (iii) Hence deduce that the unconditional maximum
likelihood estimator of ψ is ψ̂u = 2 log(R01/R10). What is the implication for uncondi-
tional estimation of ψ?

12 Consider two independent Poisson random samples X1, . . . , Xn and Y1, . . . , Yn , the first
having mean λ and the second having mean λψ , where λ, ψ > 0.
(a) Show that (T1, T2) = (X1 + · · · + Xn, Y1 + · · · + Yn) is minimal sufficient, and for any
fixed value of ψ establish that λ may be eliminated by conditioning on Tψ = T1 + ψT2.
(b) Let (t1,obs, t2,obs) denote the observed value of (T1, T2). Sketch the sample space for
(T1, T2), and consider how the relevant subset What happens if ψ is

rational? What if ψ is
irrational?

{
(t1, t2) : t1 + ψ t2 = t1,obs + ψ t2,obs

}
varies with ψ . Hence explain how an exact significance level for a test of ψ = ψ0 against
the alternative ψ > ψ0 will depend on ψ0. Do you find this satisfactory?

13 Adapt the argument giving inference for the regression-scale model to the location-scale
model Y = µ + eτ ε, and outline how to make small-sample inferences for µ and for τ .
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Compare the resulting confidence intervals for µ with the the posterior credible intervals
found by Bayesian inference using prior density π (µ, σ ) ∝ σ−1 and distribution function
approximation (11.31). Discuss.

14 (a) Consider a location-scale model in which y = η + σε, where ε has a known density
g. Find parameters orthogonal to η and to σ , and give conditions under which η and σ are
themselves orthogonal.
(b) Consider a regression model y = xTβ + σε, where ε again has density g. Find a
parameter orthogonal to the first component of β, and compare your result with the
discussion following (8.8).

15 Independent exponential variables Y1, . . . , Yn have means E(Y j ) = λex j ψ , where
∑

x j =
0. Show that λ and ψ are orthogonal parameters.
(a) Show that λ̂ψ = n−1

∑
ex j ψ , and deduce that the likelihood ratio statistic for testing

ψ = 0 can be written as W p(0) = 2n log(̂λ0/̂λψ̂ ).
(b) Let γ = log λ. By writing the model in linear regression form, show that ∂γ̂ /∂γ̂ψ = 1,
and deduce that ∂λ̂/∂λ̂ψ = λ̂/̂λψ . Hence find the modified profile likelihood both with
and without this term, and compare the resulting likelihood ratio statistics with W p(0).
(Cox and Reid, 1987)

16 The Michaelis–Menton model of nonlinear regression is usually specified as

Y j = β0x j

β1 + x j
+ ε j , ε1, . . . , εn

iid∼ N (0, σ 2);

we assume that σ 2 is known. Show that the log likelihood is

	∗(β0, β1) = − 1

2σ 2

n∑
j=1

{
y j − β0x j/(β1 + x j )

}2
,

and find the expected information matrix.
(a) Show that the parameter λ = λ(β1, β0) orthogonal to β1 is determined by

g(λ) = β2
0

n∑
j=1

x2
j

(β1 + x j )2

for an appropriate smooth function g. Choose g suitably, and write the log likelihood
explicitly in terms of λ and β1.
(b) Show that the parameter λ = λ(β1, β0) orthogonal to β0 is determined by

β0

n∑
j=1

x2
j

(β1 + x j )4

∂β1

∂β0
=

n∑
j=1

x2
j

(β1 + x j )3

and check that its solution is

g1(λ) = β3
0

n∑
j=1

x2
j

(β1 + x j )3
.

Can the log likelihood be expressed explicitly in terms of λ and β0?
(c) The orthogonal parametrizations above depend on the design points x j . Do you find
this satisfactory?
(Hills, 1987)
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Practicals

The list below gives key words for practicals written in the statistical language S and
intended to accompany the chapters of the book. The practicals themselves may be
downloaded from

http://statwww.epfl.ch/people/~davison/SM

together with a library of functions and data.

2. Variation

1. Speed of light data. Exploratory data analysis.
2. Maths marks data. Brush and spin plots.
3. Probability plots for simulated data.
4. Illustration of central limit theorem using simulated data.
5. Data on air-conditioning failures. Exponential probability plots.

3. Uncertainty

1. Properties of half-normal distribution. Half-normal plot.
2. Simulation of Student t statistic, following original derivation.
3. Simulation of Wiener process and Brownian bridge.
4. Normal random number generation by summing uniform variables.
5. Implementation and assessment of a linear congruential generator.
6. Coverage of Student t confidence interval under various scenarios.

4. Likelihood

1. Loss of information due to rounding of normal data.
2. Birth data. Maximum likelihood estimation for Poisson and gamma models. Assessment

of fit.
3. Data on sizes of groups of people. Maximum likelihood fit of truncated Poisson distri-

bution. Pearson’s statistic.
4. α-particle data. Maximum likelihood fit of Poisson process model.
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5. Blood group data. Maximum likelihood fit of multinomial model.
6. Generalized Pareto distribution. Nonregular estimation of endpoint.

5. Models

1. Boiling point of water data. Straight-line regression.
2. Survival data on leukaemia. Exponential and Weibull models.
3. HUS data. EM algorithm for mixture of Poisson distributions.
4. EM algorithm for mixture of normal distributions.

6. Stochastic Models

1. Markov chain fitting to Alofi rainfall data. Assessment of fit.
2. Multivariate normal fit to data on head sizes.
3. Time series analysis of Manaus river height data. ARMA modelling.
4. Inhomogeneous Poisson process fitted to freezes of Lake Constance.
5. Extreme-value analysis of FTSE return data.

7. Theory

1. Neurological data. Kernel density estimation. Test of unimodality.
2. Mean integrated squared error of kernel density estimator applied to mixtures of normal

densities.
3. Test for spatial Poisson process. Beetle data.
4. Coverage of confidence intervals for Poisson mean.

8. Linear Models

1. Cherry tree data. Linear model.
2. Salinity data. Linear model.
3. Data on IQs of identical twins. Linear model.
4. Cement data. Simulation of collinear data.
5. Simulation to assess properties of stepwise model selection procedures.
6. Data on pollution and mortality. Linear model. Ridge regression.

9. Designed Experiments

1. Chick bone data. Inter- and intra-block recovery of information.
2. Millet plant data. Latin square. Outliers. Orthogonal polynomials.
3. Data on marking of examination scripts. Analysis of variance.
4. Teak plant data. 2 × 3 factorial experiment.

10. Nonlinear Models

1. Space shuttle data. Logistic regression model.
2. Beetle data. Regression models for binary data.
3. Stomach ulcer data. Logistic regression for 2 × 2 tables. Overdispersion.
4. Speed limit data. Log-linear model. Logistic regression model.
5. Lizards data. Log-linear model. Logistic regression model.
6. Titanic survivor data. Log-linear model.
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7. Seed germination data. Overdispersion. Quasi-likelihood. Beta-binomial model.
8. Coal-mining disaster data. Inhomogeneous Poisson process. Generalized additive

model.
9. Urine crystal data. Logistic regression.

10. Survival data on leukaemia. Proportional hazards model.
11. Motorette data. Survival data analysis.
12. PBC data. Survival data analysis. Proportional hazards model.

11. Bayesian Models

1. Coin spun on edge. Updating individual and group priors.
2. Cloth data. Hierarchical Poisson model. Laplace approximation.
3. Gibbs sampler for bivariate truncated exponential distribution.
4. Random walk Metropolis–Hastings algorithm with Cauchy proposals.
5. Pump failure data. Gibbs sampler for hierarchical Poisson model.
6. HUS data. Gibbs sampler. Changepoint in Poisson variables.
7. Beaver body temperature data. Gibbs sampler. Changepoint in normal variables.
8. Data augmentation algorithm with multinomial data.

12. Marginal and Conditional Likelihood

1. Ancillary statistic. Simulation with Cauchy data.
2. Saddlepoint approximation. Laplace distribution.
3. Urine data. Logistic regression. Approximate conditional inference.
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Brownian motion, 92
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capture-recapture model, 106, 149
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Cauchy–Schwarz inequality, 36

causal inference, 423, 464

cement data, 354, 379, 381, 385, 399,
408, 593, 697
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discrete data, 193
information, 112
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random, 190
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central limit theorem, 30, 696

Challenger data, 6, 97, 100, 122, 130,
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characteristic function, 44, 48
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chi-squared distribution, 63–64, 67, 76,
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simulation, 78

chi-squared statistic, 133
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chimpanzee learning data, 485

Cholesky decomposition, 89, 623

classical inference, see repeated
sampling

clique, 245, 254, 255

cloth data, 698

cloth fault data, 514

coal-mining disaster data, 698

coefficient of variation, 51

collinearity, 398, 697

competing risks, 198–201, 218, 221

completeness, 311, 315
bounded, 311, 340

components of variance, 449–464

computer bug data, 299, 643

condition number, 398

conditional inference, 143, 177

conditional predictive ordinate, 589

conditionality principle, 569, 639

confidence interval, 54
equi-tailed, 56, 343
interpretation, 58
maximum likelihood estimate, 120
normal linear model, 371
one-sided, 56
Student t , 67, 90, 92
two-sample, 74

confidence limit, 343
conservative, 345

configuration, 186, 187, 650, 655

confounding, 420, 442, 448, 466

conjugate density, 573

consistency, 29
strong, 123

constructed variable, 391, 413, 487

contingency table, 135, 500–507

continuation ratio model, 510

continuity correction, 671

contrast, 443, 445, 465

control variate, 85

convergence, 28–37
diagnostics, 607, 638
in distribution, 30, 31
in probability, 28, 36

Cook statistic, 362, 394, 396
approximate, 477

correlation, 32, 36, 69, 90, 347
partial, 261, 264

correlogram, 267, 297
partial, 267

count data, 498–511

counterfactual, 424

counting process, 552

covariance, 32, 36, 68
matrix, 68
partial, 261

covariate, see explanatory variable

coverage error, 345

Cramér–Rao lower bound, 302, 319, 325,
377

multivariate, 304

Cramér–von Mises statistic, 328

credible set, 579, 594, 640, 641
highest posterior density (HPD), 579

critical region, 333
invariant, 342
similar, 339, 665
unbiased, 337
uniformly most powerful, 336

cross-validation, 308, 314, 395, 399,
408, 524, 533, 537

generalized, 399, 524, 525, 533, 537

cumulant-generating function, 44–48,
167, 487, 671

cut, 182, 501

cycling data, 356, 362, 372, 388, 395,
444, 466

daily rainfall data, 293

Danish fire data, 277, 285, 328, 688

data augmentation, 638, 698

de Finetti’s theorem, 619

decision rule, 631
minimax, 633, 637

decision theory, 631–636, 638

defective distribution, 189

delta method, 33–35, 59, 122
several variables, 34

dependent data, 323–324

design matrix, 354

detailed balance, 231, 238, 613

deviance, 471, 483, 556, 559
analysis of, 484, 486
normal, 472
overdispersed, 515
penalized likelihood, 537
scaled, 471, 483

diagnostic test, 567

differencing, 271, 274

Dirac comb, 310, 315

Dirac delta function, 12
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directed deviance statistic, see signed
likelihood ratio statistic

directional data, 172

Dirichlet distribution, 181

discrimination, 631, 637

dispersion parameter, 480, 487

distribution constant, 184, 647, 649

DNA data, 225, 230, 234, 236, 292

double exponential distribution, see
Laplace distribution

dummy variable, 356

Edgeworth series, 671, 672

efficiency, 111
asymptotic relative, 303

eigendecomposition, 230, 237, 238

EM algorithm, 210–218, 223, 296, 297,
463, 563, 638, 697

empirical Bayes, 627–638

empirical distribution function (EDF),
19, 30, 277, 278

empirical logistic transform, 36, 490,
509, 559

endpoint, 146

envelope simulation, see rejection
algorithm

equivalence relation, 107

equivariant estimator, 185

ergodic average, 230, 608

ergodic model, 323

error
Type I, 333
Type II, 333

estimate, 23

estimating equation, 316, 512
generalized, 507

estimating function, 315–325, 555
optimal, 318

estimation, 300–315
efficient, 303
non-regular, 304
unbiased, 300

estimator, 23

evolutionary distance data, 295

exchangeability, 619, 626

expectation space, 169

expected information, 109–115, 124,
138, 144, 166, 179, 575

comparison with observed, 120
transformation, 156

expert system, 293

explanatory variable, 4, 161

exponential distribution, 79, 119, 350,
680

Bayesian analysis, 639, 641
censored, 112, 220
conditional inference, 693
confidence interval, 314
estimation, 697
exponential family, 168
failure time, 6
grouped, 159
hazard, 188, 192
lack-of-memory property, 39
likelihood, 95, 125, 127
mixture, 149
nested in Weibull, 96, 130
order statistics, 39
orthogonal parameter, 691, 695
probability plot, 26
shifted, 145, 149, 350
simulation, 78, 89, 91
sufficient statistic, 105, 108
test, 326, 344
truncated, 698

exponential family, 166–183, 215, 218,
336, 340, 350, 493, 636, 680

(p, q), 174
complementary mean parameter, 689
completeness, 312
conditional density, 180
conditional inference, 674
conjugate prior, 573, 577, 578, 639
curved, 174, 182, 677
inference, 176
likelihood, 179
linear, 490
marginal density, 180
minimal representation, 172
natural, 167, 172
order p, 171, 176, 573
order 1, 167, 168
regular, 167
steep, 170, 220

exponential scores, 26, 40

exponential tilting, 167, 168

eye data, 505

factor, 356
crossed, 452

factorial experiment, 356, 391, 436, 439,
441, 442, 444, 448, 697

replicated, 436

factorization criterion, 104, 410, 566

field concrete mixer data, 434, 445, 448

financial data, 33

fir seedling data, 640

first-passage time, 229, 243

Fisher information, see expected
information

Fisher scoring, 118

fitted value, 361, 362

force of mortality, see hazard function

forensic evidence, 584

forward recurrence time, 298

frailty, 201–202, 218, 221, 555, 563
shared, 562

frequentist inference, see repeated
sampling

FTSE data, 266, 271, 273, 697

full conditional density, 245, 605

funnel plot, 209

galaxy data, 213

gamma distribution, 23, 64, 487
cumulants, 48
estimation, 57, 696
exponential family, 181, 182, 219
generalized, 132
hazard, 190
information, 115
inverse, 182
probability plot, 26
simulation, 89
small-sample inference, 674
test, 339

gamma function, 23, 617
properties, 27

GARCH process, 273

Gauss–Markov theorem, 374

Gaussian distribution, see normal
distribution

generalized additive model, 538, 541,
555, 623, 698

generalized extreme-value distribution,
50, 279, 291

generalized linear model, 480–487, 518,
541, 554–556, 558

generalized Pareto distribution, 284, 286,
291, 292, 299, 317, 688, 697

genetic linkage data, 223

genetic pedigree, 249

geometric distribution, 229
Bayesian analysis, 639, 640
exponential family, 219
information, 115
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likelihood, 101
relation to negative binomial, 50
simulation, 89

Gibbs sampler, 605–612, 618, 621, 638,
642, 643, 698

goodness of fit, 131–138, 177, 327
posterior predictive, 592

Graeco-Latin square, 466

graph
ancestral subset, 255
directed acyclic, 249–253, 255
moral, 250, 251, 255, 262, 265,

296

graphical design, 21, 28

graphical model, 260–266, 292

Greenwood’s formula, 197

group, 183

group action, 183

group transformation model, 183–188,
218, 329

composite, 187

grouped data, 368, 414

Gumbel distribution, 203, 279, 297, 413,
475

half-normal distribution, 79, 696

half-normal plot, 444

Hammersley–Clifford theorem, 246,
253, 255, 292, 296, 605

hat matrix, 362, 369, 385, 413

hazard function, 188, 203, 275, 286
bathtub, 190
cause-specific, 198, 221
cumulative, 189
estimation, 220

head size data, 697

Heaviside function, 12

Hermite polynomial, 672

hierarchical model, 464, 638
Bayesian, 619–627
Poisson, 600, 698

histogram, 19, 305, 349

Hotelling’s T 2 statistic, 260

Huber estimator, 321, 325, 350, 375, 376

human lifetime data, 194

HUS data, 142, 177, 583, 697, 698

hypergeometric distribution, 495, 557

hyperparameter, 573

hypothesis
alternative, 326
composite, 326, 339–343

null, 325
simple, 326

hypothesis test, 325–348, 582
comparison, 333
invariant, 342
nonparametric, 331
one-sided, 329, 337, 350
randomized, 336, 347
relation to confidence interval,

343–346
similar, 339
two-sided, 329, 337

Hölder’s inequality, 182

ignorable non-response, 204

image analysis, 245, 292

imaginary observations, 596

importance sampling, 87, 618, 641
Bayesian application, 602–605
ratio estimator, 603
raw estimator, 87
weight, 87

incidence matrix, 533

inference function, see estimating
function

infinitesimal generator, 238

influence, 394, 477, 539

influence function, 321

information
expected, 222

information distance, see
Kullback–Leibler discrepancy

information sandwich, 147, 151,
377

intensity function
complete, 286
conditional, 288

interaction, 424, 436, 439, 466
first-order, 440

interest-preserving reparametrization,
645

interquartile range (IQR), 17, 20, 37, 43,
61

interval estimation, 313–314

invariant, 184
maximal, 184, 186, 329, 343

inverse gamma distribution, 580, 588,
640

inverse Gaussian distribution, 182, 487,
680

inverse probability, 637

inversion algorithm, 78–79, 89

IQR, see interquartile range

Ising model, 248

iterated expectation, 65

jacamar data, 470, 483, 502

Japanese earthquake data, 288, 518,
525

Jeffreys prior, 639

Jeffreys–Lindley paradox, 586

Jensen’s inequality, 123

Kaplan–Meier estimator, see
product-limit estimator

kernel, 306, 520
effective, 521
tricube, 520

kernel density estimation, 697

kernel density estimator, 305–309, 314,
608

Kolmogorov–Smirnov statistic, 328

Kronecker delta, 12

Kullback–Leibler discrepancy, 123, 147,
150

kurtosis, 46

Lake Constance data, 697

Laplace approximation, 596–602, 617,
636, 638, 641

posterior density, 599
posterior distribution, 599

Laplace distribution, 22, 24, 28, 85, 125,
157, 698

regression model, 377

Laplace transform, 312

large deviation region, 652

Latin square, 434, 438, 446, 466, 697

law of small numbers, see Poisson
approximation to binomial
distribution

least squares estimation, 163, 359–369,
697

generalized, 369
geometrical interpretation, 362, 369,

378
iterative generalized (IGLS), 463
iterative weighted, 472–476, 479,

554–556
penalized, 560
restricted iterative generalized

(RIGLS), 659
robustness, 376
weighted, 368, 369, 409, 514



722 Index

least trimmed squares estimation, 376

leukaemia data, 541, 545, 697, 698

leverage, 362, 393, 394, 476, 539

Lexis diagram, 191, 218, 561

likelihood, 94
basic properties, 99–100
complete-data, 210, 215
conditional, 557, 646, 665, 677, 683,

694
dependent data, 98
exponential family, 179
interpretation, 100–101
local, 527, 540
log, 99
marginal, 646, 656, 665
modified, 458
modified profile, 680–691, 694
non-regular properties, 140–148, 697
observed-data, 210
partial, 544, 545, 554, 561, 656, 665
penalized, 156, 531, 535, 555
profile, 117, 140, 544, 680, 694
pure, 101
quadratic summary, 109, 125
relative, 99, 102, 109, 119
reparametrization, 99, 116
restricted, 458, 657, 690
summary, 101

likelihood equation, 116

likelihood principle, 568–571, 589, 638,
639

likelihood ratio statistic, 126–139, 330,
340, 366

generalized, 128
large-sample distribution, 126, 138
signed, see signed likelihood ratio

statistic

linear congruential generator, 77, 696

linear exponential family
conditional inference, 683
modified profile likelihood, 682
orthogonal parameter, 689

linear mixed model, 456, 463, 657

linear model, 353–417, 479, 554, 661
Bayesian analysis, 641
normal, 359, 370–374
terms, 380

linear predictor, 480

linear process, 269

link function, 480
binary data, 488, 497
canonical, 482, 487
complementary log-log, 488, 497
identity, 482

inverse, 482, 486
log, 482, 486
log-log, 488, 497
logit, 8, 484, 488, 490, 497
probit, 488, 558

lizards data, 697

local characteristic, see full conditional
density

local polynomial estimation, 519–530,
539, 555

bias and variance, 522, 529
degrees of freedom, 521
smoothing parameter, 523

location, 15, 27, 61

location model, 183, 649, 655

location-scale model, 61, 157, 185,
187

Bayesian analysis, 639
conditional inference, 694
goodness of fit, 588
Jeffreys prior, 576
orthogonal parameter, 695

log odds, 169

log rank test, 545

log-concave density, 81

log-linear model, 498–500, 554, 556,
559, 697

log-logistic distribution, 190

log-normal distribution, 37, 91, 190, 303,
304

probability plot, 26

logistic distribution, 156, 202, 316

logistic regression, 97, 100, 122, 130,
490–492, 498, 505, 509, 515, 636,
665, 676, 683, 684, 697, 698

sufficient statistic, 108

longitudinal data, 456, 457, 555, 660

look-up method, 78

loss function, 631

lowess, 521

lung cancer data, 8, 503, 693

M-estimator, 375, 376

MAD, see median absolute deviation

magical mystery formula, 651

magnesium data, 208

main effect, 440

maize data, 1, 67, 68, 74, 129, 130, 140,
309, 329, 332, 365, 372, 381, 386,
410, 580

Manaus river height data, 697

Mantel–Haenszel test, 558

marginal model, 505, 554, 559

Markov chain, 225–245, 292, 606,
697

classification of states, 229
continuous-time, 237
first-order, 234, 247, 293, 660
geometrically ergodic, 231
inhomogeneous, 242
reversible, 231, 238
second-order, 236, 254, 293
simulation, 244
stationary, 228
two-state, 231, 240
variable-order, 235
zeroth-order, 234

Markov chain Monte Carlo, 605–617,
638, 642, 666

output analysis, 607

Markov process, 98, 267, 268, 273
continuous-time, 294, 295

Markov property, 98, 228, 244
global, 251, 262, 296
local, 251, 253, 254, 296
pairwise, 296

Markov random field, 244–255, 292,
293, 622, 626

martingale, 323, 552

masking, 388

matched pairs, 372

maths marks data, 256, 259, 261, 263

max stability, 291

maximum likelihood estimator, 102,
115–126, 210, 324, 346

computation, 115
conditional, 677
consistent, 122
large-sample distribution, 118, 124
usual regularity conditions, 118

mean, 22

mean excess life function, 203

mean parameter, 169

mean residual life plot, 285

mean squared error, 300–305
integrated, 308

measuring machines, 569

median, 331

median absolute deviation (MAD), 17,
28, 43

meta-analysis, 206, 223

method of moments, see moment
estimator
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Metropolis–Hastings algorithm,
612–617, 626, 638, 642, 667,
698

random walk, 613, 618, 643

Michaelis–Menton model, 695

midrange, 50

millet plant data, 697

minimal representation, 172, 182

minimax decision rule, 633

minimum variance unbiased estimation,
309–313

missing at random (MAR), 204, 205,
222

missing completely at random (MCAR),
204, 205

missing data, 203–218

missing information principle, 211

mixture distribution, 213, 219, 639

mode, 27

model
averaging, 407, 592
nested, 127, 131, 133, 139, 586
non-linear, 503
parametric, 22
saturated, 471
selection, 150–155
uncertainty, 83, 406
wrong, 147, 377

model building
linear model, 397–408

model checking, 476–479
Bayesian, 587–592
linear model, 386–397

moderate deviation region, 652

moment estimator, 316, 636

moment-generating function, 37, 44,
481, 487

moments, 44–48

Monte Carlo integration, 87

motorette data, 615, 698

mouse data, 200, 546

moving average process, 269, 274, 297

multilevel model, 461, 464

multimodal distribution, 642

multinomial distribution, 37, 139, 475,
654

cumulants, 47, 51
estimation, 697
exponential family, 175, 220
fit, 133

multiplicative model, 359

multivariate t distribution, 297

multivariate normal distribution, 138,
247, 255–267

Nadaraya–Watson estimator, 522, 530,
540

natural cubic spline, 530, 533, 535,
560

natural observation, 168

natural parameter, 168

negative binomial distribution, 630
exponential family, 219
genesis, 50
likelihood, 517
orthogonal parameter, 691

neighbourhood system, 244–246,
248

nested variation, 450

network information criterion, 152

neurological data, 697

Newton–Raphson algorithm, 116, 211,
213, 215, 217, 473

Neyman–Pearson lemma, 335, 632

nodal involvement data, 490, 676,
684

non-additivity test, 390, 391, 486

non-ignorable non-response (NIN), 204,
205

nonlinear model, 678, 695

nonlinearity, 389

normal distribution, 62–63, 159, 347,
481, 646

Bayesian analysis, 580, 640
bivariate, 70, 71, 90, 207, 608
confidence interval, 121
conjugate prior, 574
cumulants, 45, 70
empirical Bayes analysis, 627
exponential family, 178
extremes, 280
goodness of fit, 588
information, 111
Jeffreys prior, 577
likelihood, 116, 129, 180
linear combination, 45, 72–73, 90, 92,

164, 165
mixture, 85, 145, 149, 644, 697
modified profile likelihood, 690
multivariate, 68–77, 89, 90, 220,

259–266, 697
orthogonal parameter, 689
risk, 633
rounding, 114, 616

sample median, 41
sampling, 613, 642
simulation, 78, 80, 91, 696
standard, 63
sufficient statistic, 109, 125
test, 139, 140, 159, 333, 337
trivariate, 72, 73
unbiased estimation, 301, 312

normal equations, 360

normal hierarchical model, 620

normal linear model, 474, 479, 593,
681

Bayesian analysis, 589, 595

normal nonlinear model, 474, 479

normal scores plot, 26, 387

notation, 12

nuclear plant data, 401, 404, 664

null distribution, 326

observational study, 10, 648

observed at random (OAR), 217

observed information, 102, 109–115,
138, 144, 166, 179

transformation, 156

Ockham’s razor, 150, 378

offset, 498

one-way layout, 426, 438, 449, 459, 465,
467

opinion polling, 56, 58

orbit, 183

order statistic, 37–44, 106, 186, 190,
220, 296, 350

extreme, 41
summary, 16

order statistics, 276, 279

ordinal response, 507–510, 555

orthogonal polynomials, 383, 445,
697

outlier, 17, 149, 320, 388, 697

overdispersion, 177, 511–518, 527,
698

paired comparison, 3, 140, 419, 421,
425

panel data, 225

parameter, 3, 22
identifiable, 144
interest, 127, 645
nuisance, 127, 645
orthogonal, 487, 685–690
redundant, 144, 149
space, 94, 140
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parametrization, 23
corner-point, 440

Pareto distribution, 41, 348, 594

partial likelihood, 561

partial spline model, 537

PBC data, 549, 698

pea data, 160

Pearson’s statistic, 135, 140, 160, 177,
234, 237, 483, 485, 497, 517, 696

people data, 696

permutation group, 184

permutation test, 341, 352

pig diet data, 431, 438

pigeon data, 172

pivot, 53, 61, 67, 313, 343
approximate, 56, 74
basis of test, 60
exact, 139
properties, 56
Student t , 66
two-sample, 74

plotting position, 26

pneumoconiosis data, 508

point process, 274–293
clustering, 277
length-biased sampling, 298
marked, 288
orderly, 275, 286
self-exciting, 289
spatial, 293
thinning, 291

poisons data, 391, 436, 440, 464

Poisson approximation to binomial
distribution, 49, 282

Poisson birth process, 98, 108, 146

Poisson dispersion test, 177

Poisson distribution, 9, 23, 49, 142, 511
Bayesian analysis, 626, 637, 640, 644
complete, 311
conditional inference, 694
confidence interval, 61, 160, 697
conjugate prior, 573, 577
cumulants, 46
estimation, 696
exponential family, 170, 177, 340, 481
goodness of fit, 135
likelihood, 94
marginal inference, 665, 693
mixture, 697
orthogonal parameter, 690
saddlepoint approximation, 670
sufficient statistic, 109

truncated, 37, 696
unbiased estimation, 310, 313, 315
variance stabilization, 59

Poisson process, 40, 274–287, 293, 486,
498, 562, 693, 697

Bayesian analysis, 596, 643
empirical Bayes analysis, 629
estimation, 696
homogeneous, 277, 285
information, 112
inhomogeneous, 283, 299, 557, 643,

697, 698
intensity, 275
simulation, 298

pollution data, 697

polynomial regression, 354

positive stable distribution, 563

positivity condition, 246, 253, 254

positron emission tomography, 216

posterior density, 566
marginal, 578
normal approximation, 578

posterior predictive density, 568, 577,
602, 617

normal linear model, 591
Poisson distribution, 577

potential, 246

power, 333
local, 338

prediction, 60–61, 150, 568, 592

prediction decomposition, 98

prediction interval, 60, 165
normal linear model, 371, 372

Premier League data, 498

principal components, 397

principle of insufficient reason, 577, 637

principle of parsimony, see Ockham’s
razor

prior density, 566, 572–577, 638
conjugate, 567, 573, 640
elicitation, 638
ignorance, 574
improper, 574, 580, 640
Jeffreys, 575
non-informative, 574

probability integral transform, 39

probability plot, 26, 28, 131, 203
exponential, 159, 277, 278, 286, 696
Gumbel, 297
half-normal, 696
normal, 49, 63, 92, 165, 179, 696
Weibull, 50

probability weighted moment estimators,
317

product moment correlation coefficient,
see correlation

product-limit estimator, 196–198

profile likelihood, 127–131, 479

proportion data, 487–498

proportional hazards model, 543–555,
562, 563, 656, 698

proportional odds model, 508

prospective study, 493

pseudo-random numbers, 77–78

publication bias, 206–210

pump failure data, 160, 600, 644, 698

quantile, 22

quantile-quantile (Q-Q) plot, 26, 28

quartile, 16

quasi-likelihood, 512–517, 555, 698

quasi-random numbers, see
pseudo-random numbers

random effects model, 449, 456, 458, 610

random sample, 21–24
normal, 66–68

randomization, 417–426
distribution, 422

randomized block design, 429

rank statistic, 561

Rao–Blackwell theorem, 309

rare events, see statistics of extremes

rat growth data, 459

ratio, 34

ratio of uniforms algorithm, 81, 91

regression-scale model, 661–665, 681,
691

rejection algorithm, 79–82, 89
adaptive, 81

relevant subset, 647

renewal process, 287

repeated measures, 456

repeated sampling, 52, 58, 119

replication, 464

residual
binary response, 492
Cox–Snell, 541, 548
deletion, 362, 395, 590, 591
deviance, 477, 517, 548, 551
martingale, 548, 551, 552
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Pearson, 517
properties, 386
raw, 165, 179, 362, 370, 387, 554, 588
serial correlation, 387
standardized, 362, 387, 396, 414, 479,

590, 649
standardized deviance, 477, 479, 485,

556
standardized Pearson, 477, 479, 556
time series, 269, 274

residual sum of squares, 163, 361, 371

resistant statistic, 17

response, 161

restricted maximum likelihood
estimation (REML), 458, 461, 464,
467, 659, 665

retrospective study, 493

return level, 280, 688

return period, 280

reversibility, 607

ridge regression, 398, 697

risk function, 632

risk set, 193, 543

robustness, 319–322

roughness penalty, 216, 530–535

rounding, 113, 115, 145

rug, 19

run, 229, 243

Rényi representation, 40

saddlepoint approximation, 560, 638,
668–673, 680, 698

double, 670, 675

saddlepoint equation, 669

salinity data, 697

sample, 15
average, 51
maximum, 16, 50, 279, 291
mean, see average
median, 16, 20, 37, 41, 51, 61, 157,

324
minimum, 16, 41, 42, 50, 279
moment, 15, 24, 75
quantile, 16
range, 50
shape, 18, 28
skewness, 28
space, 94
space derivative, 652, 682
variance, 15, 25, 28, 31, 50, 66–68, 74,

75

sampling variation, 24–25

sampling-importance resampling (SIR),
618

sandwich covariance matrix, 507, 513

scale, 15, 27, 61
choice, 58

scale model, 347, 639

scatterplot, 4, 20
matrix, 256

score statistic, 116, 138, 144, 149, 315,
338, 346

score test, 132, 338

seed, 78

seed germination data, 698

selection bias, 210, 218

self-consistency, 223

semiparametric regression, 518–540, 555

Shakespeare’s vocabulary data, 629

shoe data, 421

short time series, 659

shrinkage, 459, 621, 625, 628, 634

sign test, 331, 332, 334

signed likelihood ratio statistic, 128, 346
modified, 653, 663, 676

significance level, 325, 582
conflict with likelihood principle, 570
interpretation, 326
mid-p, 495, 671

significance trace, 525

simple random sample, see random
sample

Simpson’s paradox, 256–258

simulation, 77–90

size, 333

skew-normal distribution, 91, 160

skewness, 18, 46

slash distribution, 85

Slutsky’s lemma, 31–33

smoking and the Grim Reaper, 258,
494

smoother, 518
linear, 532, 539

smoothing matrix, 521, 537

spacing, 43, 277

spectral decomposition, 73, 397

speed limit data, 697

speed of light data, 696

spline, 555

split-unit experiment, 452

spring barley data, 533, 538, 622, 626

spring failure data, 4, 95, 96, 100, 119,
120, 127, 130, 132, 154

standard error, 52

stationarity, 267, 607, 641
second-order, 267
strict, 267

statistic, 15

statistical formulae
mindless repetition, 88

statistical genetics, 292

statistics of extremes, 278–286, 293

Stein effect, 635

stem-and-leaf display, 28

Stirling’s formula, 617

stochastic matrix, 229

straight-line regression, 115, 159,
161–166, 186, 219, 220, 317, 322,
353, 354, 361, 394, 410, 412, 413,
697

Student t distribution, 64–65, 74, 76, 85,
140, 187, 651

linear model, 374
simulation, 78

Student t statistic, 67, 129, 139, 140,
164, 368, 696

coverage, 696
regression, 379
robustness, 84

Student t test, 330, 332, 341, 342

studentized statistic, 32

sufficiency principle, 569, 639

sufficient partition, 107, 109

sufficient statistic, 103–108, 176
minimal, 107, 166, 410, 566

sum of squares, 163, 360, 380
orthogonal, 382
penalized, 532

surrogate variable, 564

survival data, 188–203, 218, 376,
540–554

survivor function, 203

Swan of Avon, 629

symbolic rank deficiency, 149

teaching methods data, 427

teak plant data, 697

test, 60
Monte Carlo exact, 668, 680
unimodality, 697

test statistic, 325

threshold stability, 291
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time series, 266–274, 293

time-dependent covariate, 547,
562

Titanic data, 697

tolerance distribution, 488, 508

tolerance interval, see prediction interval
60

toxoplasmosis data, 515, 527, 636
empirical Bayes analysis, 628

transformation, 58, 122, 697
exponential, 34
interest-preserving, 129
symmetrizing, 558
variance-stabilizing, 59

transition matrix, 229

transition probability, 228

trinomial distribution, 508

two-sample model, 3, 73–75, 140, 341,
365, 372, 419, 425

Bayesian analysis, 595

two-way layout, 429, 464, 485,
538

ulcer data, 495, 668, 697

unemployment rate, 61

uniform distribution, 669
Bayesian analysis, 594
exponential family, 180
exponential tilting, 167, 170
likelihood, 103, 109, 149
not complete, 312
order statistic, 43
order statistics, 38, 50, 51
simulation, 77
unbiased estimation, 304, 315

unit-treatment additivity, 421, 424

urine data, 698

variability band, 525

variable selection, 400
C p , 403, 412
backward elimination, 400, 408, 412
forward selection, 400, 408, 412
likelihood criteria, 402
stepwise, 400, 408, 412, 697

variance function, 59, 170, 182, 481, 512
linear, 171, 511
quadratic, 511, 517

variance reduction, 85–89

variance-stabilizing transformation, 170

variance-time curve, 288, 298

Venice sea level data, 161, 164, 165, 186,
205, 465, 475, 477

volatility, 272

von Mises distribution, 172, 174

weak law of large numbers, 28,
152

Weibull distribution, 50, 553
Bayesian analysis, 615
estimation, 697
hazard, 189
information, 157
likelihood, 96, 100, 117, 125, 127,

130, 154
moment estimation, 319

weight of evidence, 583

white noise process, 267

Wiener process, 696

Wilcoxon signed-rank test, 331, 332,
351

Wilcoxon two-sample test, 351

Wishart distribution, 260

Yahoo share price data, 92

Yarmouth sea level data, 281
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