النموذج الأول

		Take	$g = 9.8 \text{ ms}^{-2} \text{ where}$	ever needed				
1	the larger blo	the coefficient of kin ck is 0.2, and the co d the smaller block i connecting string is: b) 6.0 N	etic friction betwee	n the surface and	2M F M			
2	A 2 kg block applied to the block's accele acting on the b	30° 2.0 kg						
	a) 6.2 N	b) 1.4 N	c) 2.8 N	d) 3.7 N	e) 4.5 N			
	connecting M (Assuming tha	t all surfaces are fric	tionless)		2M M			
	a) 23.1 N	b) 19.8 N	c) 16.5 N	d) 27.1 N	e) 10.2 N			
	a) 40 N	b) 50 N	c) 60 N	d) 20 N	1 2 2 M			
					e) 30 N			
	As shown in the figure, a block slides down a frictionless plane having an inclination of $\theta = 25^{\circ}$. If the block starts from rest at the top and the length of the incline is 2 m, the acceleration of the block when it reaches the bottom of the incline is:							
	a) 3.35 m/s ²	b) 4.14 m/s ²	c) 5.43 m/s ²	d) 1.23 m/s ²	e) 2.54 m/s ²			
	A 1500 kg car i is 13.1 m/s, the	A 1500 kg car is moving on a flat, horizontal road negotiates a curve of radius 50 m, If the car speed is 13.1 m/s, the coefficient of static friction between the tires and the pavement is:						
	a) 0.53	b) 0.44	c) 0.35	d) 0.62	e) 0.23			
	a) 0.33	At one instant a 2 kg particle has a speed of 20 m/s. At a later instant, it has a speed of 25 m/s. The work done on the particle by all the forces acting on it is:						
	At one instant	a 2 kg particle has a he particle by all the	speed of 20 m/s. At forces acting on it i	a later instant, it has	s a speed of 25 m/s. The			

8	A force of 12 N is	s applied on a box a	t an angle of 20° w	ith the horizontal. Th	e work done by this		
	force as the box n	noves a horizontal d	istance of 7 m is:		o work done by this		
	a) 22.3 J	b) 33.8 J	c) 56.4 J	d) 78.9 J	e) 12.3 J		
9	In the figure, The block of mass $m=10$ kg (on a horizontal rough surface) is released from rest when the spring ($k=1.4$ kN/m) is stretched a distance 8 cm. If the magnitude of the frictional force between the block and the surface is 40 N, the kinetic energy of the block as it passes through its equilibrium position is:						
	a) 2.5 J	b) 3.7 J	c) 1.3 J	d) 5.6 J	e) 4.9 J		
10	The figure shows the mountain slope and the valley along which a rock is falling. The rock has a mass m , and starts from rest to fall from a height $y = H = 40 m$, moves a distance d_1 along a slope of angle $\theta = 45^\circ$, and then moves a distance d_2 along a flat valley before coming to rest. If						
	the coefficient o whole track, then	f kinetic friction is d ₂ is:	equal to 0.6 on	the $y = 0 - \frac{\theta}{1 $	Valley d ₂		
	a) 33.3 m	b) 26.6 m	c) 10.2 m	d) 52.3 m	e) 40.0 m		
11	What is the spring compression of 7.5	g constant k of a some cond?	pring that delivers	s a power of 75 W	when released from a		
	a) $8.9 \times 10^3 \text{ N/m}$	b) 1.9 × 10 ⁴ N/m	c) $2.7 \times 10^4 \text{ N/m}$	d) $8.6 \times 10^4 \text{N/m}$	e) 1.2 × 10 ³ N/m		
12	The apparent weigh	ht of a fish in an ele	vator is greatest wl	nen the elevator.			
	a) moves downward at constant velocity.	 b) moves downward at constant velocity 		d) is not moving	e) accelerates upward		
13	radius for the outsi	de. One car, car A.	ine r: التي عدد من اله travels on the insi	de while another cor	طریق سریع منحني مقسم) of the curve is half the of equal mass, car B, tant forces on the cars		
	half the force on B.	b) The force on A is four times the force or B.	is four times the force on A.	d) The force on B is half the force on A			
14	A dart is loaded into a spring-loaded toy dart gun (حمل سهم علي نابض بندقية لعبة قائفة للاسهم) by pushing the spring a distance d. For the second loading, the spring is compressed a distance 2d. How much work is required to load the second dart compared to that required to load the first?						
	a) two times as much	b) the same	c) four times as much	d) half as much	e) one-fourth as much		

University No---

If we know the potential energy function U(x) for a system in which a one-dimensional force F(x) acts on a particle, we can find the force as:

a)
$$F(x) = -\frac{du(x)}{dx} + u(x)$$
 b) $F(x) = -du(x)$

b)
$$F(x) = -du(x)$$

$$\mathbf{c)} \ F(x) = \frac{du(x)}{dx}$$

d) None of those

$$\mathbf{e)} \ F(x) = -\frac{du(x)}{dx}$$

The end

Rough work

النموذج الثاني

Butter	niversity No)** <u>***</u>	name_				
		Take	$g = 9.8 \text{ ms}^{-2} \text{ where}$	ever needed			
1	In the figure, the coefficient of kinetic friction between the surface and the larger block is 0.2, and the coefficient of kinetic friction between the surface and the smaller block is 0.3. If $F = 12$ N and $M = 1$ kg, the tension in the connecting string is: a) 5.1 N b) 6.0 N c) 7.4 N d) 8.7 N e) 3.2 N						
2	A 2 kg block slides on a rough horizontal surface. A force $(P = 7 \text{ N})$ is applied to the block as shown in the figure. If the magnitude of the block's acceleration is 1.2 m/s ² , the magnitude of the force of friction acting on the block is:						
3	a) 6.2 N	b) 1.4 N	c) 2.8 N	d) 3.7 N	e) 4.5 N		
	In the figure, if F = 30 N and M = 1.5 kg, the tension in the string connecting M and 2M is: (Assuming that all surfaces are frictionless)						
	a) 23.1 N	b) 19.8 N	a)	•			
4	If $\alpha = 40^{\circ}$, $\beta =$	60°, and $M = 6 \text{ kg}$,	c) 16.5 N the tension in strin	d) 27.1 N g 1 is:	e) 10.2 N		
4		60° , and $M = 6 \text{ kg}$,	the tension in strin	g 1 is:	d B 2		
	a) 40 N	60°, and $M = 6 \text{ kg}$, and $M = 6 \text{ kg}$, b) 50 N	the tension in strin	g 1 is: d) 20 N	gt B		
	a) 40 N As shown in the an inclination of length of the i	60° , and $M = 6 \text{ kg}$,	c) 60 N es down a frictionle	d) 20 N ess plane having	R R		
	a) 40 N As shown in the an inclination of length of the i	60°, and $M = 6 \text{ kg}$, $M =$	c) 60 N es down a frictionle	d) 20 N ess plane having	R R		
5	a) 40 N As shown in the an inclination of length of the irreaches the bott a) 3.35 m/s ² A 1500 kg car is	b) 50 N e figure, a block slid of $\theta = 20^{\circ}$. If the bloc ncline is 2 m, the om of the incline is: b) 4.14 m/s^2 s moving on a flat, h	c) 60 N les down a frictionle lek starts from rest at acceleration of the	d) 20 N ess plane having the top and the block when it d) 1.23 m/s ²	e) 30 N		
5	a) 40 N As shown in the an inclination of length of the irreaches the bott a) 3.35 m/s ² A 1500 kg car is	b) 50 N e figure, a block slid of $\theta = 20^{\circ}$. If the bloc ncline is 2 m, the om of the incline is: b) 4.14 m/s^2 s moving on a flat, h	c) 60 N les down a frictionle lek starts from rest at acceleration of the	d) 20 N ess plane having the top and the block when it d) 1.23 m/s ² tiates a curve of radio	e) 30 N		
5	a) 40 N As shown in the an inclination of length of the i reaches the bott a) 3.35 m/s ² A 1500 kg car is is 13.1 m/s, the a) 0.53 At one instant a	b) 50 N e figure, a block slid of $\theta = 20^{\circ}$. If the bloch ncline is 2 m, the om of the incline is: b) 4.14 m/s^2 s moving on a flat, h coefficient of static b) 0.44	c) 60 N les down a frictionle les starts from rest at acceleration of the c) 5.43 m/s ² orizontal road nego friction between the c) 0.35	d) 20 N ess plane having the top and the block when it d) 1.23 m/s ² tiates a curve of radia tires and the pavement d) 0.62	e) 30 N e) 2.54 m/s ² as 40 m, If the car speed ent is:		

102							
8	A force of 12 N is applied on a box at an angle of 20° with the horizontal. The work done by this force as the box moves a horizontal distance of 5 m is:						
	a) 22.3 J	b) 33.8 J	c) 56.4 J	d) 78.9 J	e) 12.3 J		
9	In the figure, The block of mass $m=10$ kg (on a horizontal rough surface) is released from rest when the spring $(k=1.4 \text{ kN/m})$ is stretched a distance 8 cm. If the magnitude of the frictional force between the block and the surface is 10 N, the kinetic energy of the block as it passes through its equilibrium position is:						
	a) 2.5 J	b) 3.7 J	c) 1.3 J	d) 5.6 J	e) 4.9 J		
10	The figure shows the mountain slope and the valley along which a rock is falling. The rock has a mass m , and starts from rest to fall from a height $y = H = 50 m$, moves a distance d_1 along a slope of angle $\theta = 45^{\circ}$, and then moves a distance d_2 along a flat valley before coming to rest. If the coefficient of kinetic friction is equal to 0.6 on the whole track, then d_2 is:						
	a) 33.3 m	b) 26.6 m	c) 10.2 m	d) 52.3 m	e) 40.0 m		
11	What is the spring constant k of a spring that delivers a power of 50 W when released from a compression of 7.5 cm in 1 second?						
12	a) 8.9 × 10 ³ N/m	b) 1.9 × 10 ⁴ N/m	c) 2.7 × 10 ⁴ N/m	d) 8.6 × 10 ⁴ N/m	e) 1.2 × 10 ³ N/m		
12	a) moves downwar at constant velocity		ator is greatest w c) accelerates upward	hen the elevator. d) accelerates downward	e) is not moving		
13	radius for the out	side. One car, car A, 1	The 1 التي عدد من ا travels on the ins	adius for the inside	don (طریق سریع منحني مقسم of the curve is half the ar of equal mass, car B, sultant forces on the cars		
	a) The force on A is half the force on B.	b) The force on A is four times the force on B.	c) The force on B is half the force on A.				
14	A dart is loaded into a spring-loaded toy dart gun (حمل سهم علي نابض بندقية لعبة قائفة للاسهم) by pushing the spring a distance d. For the second loading, the spring is compressed a distance 2d. How much work is required to load the second dart compared to that required to load the first?						
	a) two times as much	b) four times as	c) the same	d) half as much	e) one-fourth as		

University No-

name

If we know the potential energy function U(x) for a system in which a one-dimensional force F(x) acts on a particle, we can find the force as:

a)
$$F(x) = -\frac{du(x)}{dx} + u(x)$$
 b) $F(x) = -du(x)$

c)
$$F(x) = -\frac{du(x)}{dx}$$
 d) $F(x) = \frac{du(x)}{dx}$

e) None of those

The end

Rough work

النموذج الثالث

is four times the

A dart is loaded into a spring-loaded toy dart gun (حمل سهم على نابض بندقية لعبة قائفة للاسهم) by pushing the spring a distance d. For the second loading, the spring is compressed a distance 2d. How much

force on B.

work is required to load the second dart compared to that required to load the first?

b) two times as much c) the same

four times the force

e) one-fourth as

much

on A.

half the force on B.

a) four times as

much

half the force on A.

University No.

name

If we know the potential energy function U(x) for a system in which a one-dimensional force F(x) acts on a particle, we can find the force as:

a)
$$F(x) = -\frac{du(x)}{dx} + u(x)$$
 b) $F(x) = -du(x)$

$$\mathbf{c)} \ F(x) = \frac{du(x)}{dx}$$

 $\mathbf{d)} \ F(x) = -\frac{du(x)}{dx}$

e) None of those

The end

Rough work