King Saud University Mechanical Engineering Department ME 364 – System Dynamics and Control First Semester, 1442H

Modeling of physical systems: mechanical, electrical, hydraulic, pneumatic, and thermal systems; Laplace transformation; Transfer functions and block diagrams; basic concepts of automatic control; Dynamic system response and stability.

Text Books:	Nise N. "Control Systems Engineering," Wiley and Sons, 6th edition.
Reference:	Ogata K." System Dynamics" Pearson, Prentice Hall, 4 th Edition. Palm W.J., <i>Modeling, Analysis and control of dynamic systems</i> , Wiley and Sons, 2nd edition.

Pre-requisites: GE 202 (Dynamics)

Objectives: 1.To develop student's skills in proper modeling of mechanics to model mechanical, electrical, hydraulic, pneumatic and thermal systems.

- 2.To develop student's skills in analyzing dynamics systems.
- 3.To provide the student with some knowledge and skills associated with using computer software (MATLAB) in analyzing dynamics systems.
- 4.To understand professional and ethical responsibilities of an engineer.

Topics Covered:

WEEK	DESCRIPTION
1	Introduction to modelling of physical systems.
2, 3 & 4	Mathematical modeling of mechanical and electrical Systems
5&6	Mathematical modeling of Hydraulic, Pneumatic and a Thermal systems
7	The Laplace Transform, Solving Linear, Time-Invariant, Diff. Eqs
8&9	Transfer Functions, Block diagram models
10	Characteristics and performance of feedback systems. Closed-open loop
	comparison, Performance measures
11	System Stability, Routh Hurwitz criterion
12	Root Locus
13 & 14	Compensator design, P, PI and PID control

Evaluation:

Quizzes and Homeworks and Computer Assignments	
Midterm I,	%20
Midterm II,	%20
Project	%10
Final Exam	%40

1st mid-term exam Monday 25/2/1442 (12/10/2020) 6:00 PM 2nd mid-term exam Monday 8/4/1442 (23/11/2020) 6:00 PM

The first, second and final exams will be in class.