Synthesis, spectroscopic analysis and molecular docking studies of 4-chloro-3-methylphenyl quinoline-2-carboxylate

Fazal Edakot ${ }^{\text {a }}$, Shana Parveen S $^{\text {b }}$, Monirah A. Al-Alshaikh ${ }^{c}$, C. Yohannan Panicker ${ }^{\text {b,**, }}$ Ali A. El-Emam ${ }^{\text {d }}$, Subban Nagarajan ${ }^{\text {e }}$
${ }^{a}$ Department of Studies in Chemistry, University of Mysore, Mysore-570 005, India
${ }^{b}$ Department of Physics, TKM College of Arts and Science, Kollam, Kerala, India. ${ }^{c}$ Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
${ }^{d}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
${ }^{e}$ Spice and Flavor Science Department, CSIR-Central Food Technological Research Institute, Mysore, India
*Author for correspondence: C. Yohannan Panicker, email: cyphyp@ rediffmail.com Received 05 Mar 2016; Accepted 26 Apr 2016; Available Online 26 Apr 2016

Abstract

The prepared 4-chloro-3-methylphenyl quinoline-2-carboxylate has been investigated by both experimental and theoretical methods, by FT-IR, FT-Raman and NMR techniques. The stability of the strucutre and entire calculations has been performed by DFT method. Potential energy distributions of normal modes of vibrations connected with the vibrations are accomplished applying GAR2PED program. Natural bonding orbital assessment has been completed with a reason to clarify charge transfer or conjugative interaction, the intramolecule rehybridization and delocalization of electron density within the molecule. NMR spectral assessment had been made with choosing structure property relationship by chemical shifts along with magnetic shielding effects regarding the title compound. The hyperpolarizability values, Molecular electrostatic potential, HOMO-LUMO analysis were reported. The docked ligand title compound forms a stable complex with CDK inhibitors and gives a binding affinity value of -7.2 and the results suggest that the title compound might exhibit inhibitory activity against CDK inhibitors.

Keywords: DFT; quinoline; FT-IR; FT-Raman; Molecular docking

1. Introduction

Quinoline compounds are widely used as parental compounds to synthesize molecules with medical benefits, especially with anti-malarial and anti-microbial activities [1-3] and the quinoline ring system containing drugs such as quinine, chloroquine, mefloquine, and amodiaquine are used as efficient drugs for the treatment of malaria [4]. 1,2,3,4Tetrahydroquinolines are ubiquitous in numerous biologically active natural products and pharmacologically relevant therapeutic agents [5, 6]. Quinoline derivatives in general are known to have a variety of pharmacological and biological activities, such as immunodepresant activity [7] and antitubercular activity [3]. A few reports have been presented in literature on the use of quinoline and some of its derivatives as corrosion inhibitors in different media [8-12]. Optically active substituted tetrahydroquinolines constitute the principal structural unit of many natural alkaloids which display a wide range of physiological activities [13]. In addition, they are very useful synthetic intermediates for the preparation of biologically active compounds for pharmaceutical, agrochemical and fine chemical industries [14]. Some
derivatives of 2-oxoquinoline have shown biological activities such as antioxidation, antiproliferation, anti-inflammation and anticancer [15-18]. The vibrational spectroscopic studies of a number of quinoline derivatives are reported in literature [1927]. To the best of our knowledge, a detailed description of the spectroscopic analysis and theoretical quantum chemical calculations along with nonlinear optical properties has not been given to date for the title compound. Molecular docking studies of the title compound are also reported due to the different potential biological activities of the title compound.

2. Experimental Details

The title compound was synthesized as reported in literature [28]. To a mixture of $1.73 \mathrm{~g}(10 \mathrm{mmol})$ of quinaldic acid and 10 mmol of 4-Chloro-3-methylphenolin a roundbottomed flask fitted with a reflux condenser with a drying tube is added $0.75 \mathrm{~g}(5 \mathrm{mmol})$ of phosphorous oxychloride and was subjected to microwave irradiation at $80{ }^{\circ} \mathrm{C}$ for 10 minutes using a radiation of 500 W (Scheme 1). At the end, the reaction mixture is poured in to a solution of 2 g of sodium bicarbonate in 100 mL of water. The precipitated ester is

Scheme 1.

Figure 1. FT-IR spectrum of 4-chloro-3-methylphenyl quinoline-2-carboxylate.

Figure 2. FT-Raman spectrum of 4-chloro-3-methylphenyl quinoline-2-carboxylate.

Figure 3. Optimized geometry of 4-chloro-3-methylphenyl quinoline-2-carboxylate.
collected on a filter and washed with water and recrystallized in ethanol. Infrared spectrum (Figure 1) was recorded on a Shimadzu IR prestige-21 FT spectrophotometer with KBr pellets (4000-400 cm^{-1}). The FT-Raman spectrum (Figure 2) was obtained on a Bruker RFS 100/s, Germany. For excitation of the spectrum, the emission of Nd:YAG laser was used with an excitation wavelength of 1064 nm , maximal power 150
mW ; measurement on solid sample. One thousand scans were accumulated with a total registration time of about 30 min . The spectral resolution after apodization was $2 \mathrm{~cm}^{-1}$. Elemental analyses were recorded on Varioel elemental analyzer (Elementar Americas, Inc. NJ, USA). NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) for the compound were recorded on a 500 MHz NMR Spectrometer (Bruker advance, Reinstetten, Germany) using deuteriated DMSO and methanol as the solvent. The chemical shift values (ppm) and coupling constants (J) are given in δ and Hz respectively. Mass spectral analysis were carried out in the ESI positive mode using MS mass spectrometer (Waters Q-TofUtima, Manchester UK). The crystal structure of the title compound is reported by Fazal et al. [29]. In the compound, the dihedral angle between the mean planes of the quinoline ring system and the benzene ring is $68.7(7)^{\circ}$. The mean plane of the carboxylate group is twisted from the latter planes by $14.0(1)^{\circ}$ and $80.2(4)^{\circ}$, respectively. In the crystal, weak CH...O interactions are observed, forming chains along [001]. In addition, $\pi-\pi$ stacking interactions [centroid-centroid distances $=3.8343$ (13) and 3.7372 (13) Å] occur. MP: 383385K., Calculated: (C, 68.58; H, 4.06; Cl, 11.91; N, 4.70; O, 10.75) Found: (C, 68.58; H, 4.06; Cl, 11.90; N, 4.71; O, 10.76). MS: Mass (ESI): [M+1] for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}_{2}$, Calculated: 297.06; Found: 297.64 and 299.54.

3. Computational Details

In the present work, the density functional theory (B3LYP) at $6-31 \mathrm{G}(\mathrm{d})(6 \mathrm{D}, 7 \mathrm{~F})$ basis set was adopted to calculated the vibrational wave numbers of the title compound and the theoretical calculations were performed using the Gaussian09 program [30]. Vibrational wavenumbers were computed at DFT level which has reliable one to one correspondence to experimental values and in the present study we have used the scaling factor 0.9613 for the DFT method [31]. At the optimized structure (Figure 3) of the title compound, no imaginary wavenumber modes were obtained. The calculated geometrical parameters are given in Table 1. The vibrational assignments are done with the help of PED analysis and Guassview software [32]. The potential energy distribution is calculated with the help of GAR2PED software package [33].

4. Results and Discussion

In the following discussion, the trisubstituted phenyl ring, quinoline ring and 1,2-disubstituted phenyl ring are designated as PhI, PhII and PhIII, respectively.

4.1. Geometrical parameters

The C-C bond lengths (DFT/XRD) in the phenyl rings, PhI and $\mathrm{Ph} I I I$ lie in the ranges, 1.3930-1.4030/1.3783$1.4013 \AA$ and $1.3756-1.4336 / 1.3624-1.4243 \AA$ and for the title compound, the phenyl rings are a regular hexagon with bond lengths somewhere in between the normal values for a single (1.54£) and a double (1.33̊) bond [23]. The C-O bond lengths (DFT/XRD) of the title compound, 1.2036/1.1903, $1.3935 / 1.4102,1.3750 / 1.3523 \AA$ are in agreement with the reported values of a similar derivative (1.2085/1.1930, 1.3961/1.4108, 1.3498/1.3486̊) [23]. For the title compound, the C-N bond lengths (DFT/XRD) are, 1.3587/1.3653, $1.3207 / 1.3173 \AA$ where as the reported values for a similar

Table 1. Optimized geometrical parameters of 4-chloro-3-methylphenyl quinoline-2-carboxylate with XRD data.
Bond lengths (DFT/XRD) (A)

C11-C25	$1.7633 / 1.7452$	O2-C5	$1.2036 / 1.1903$
O3-C5	$1.3750 / 1.3523$	O3-C21	$1.3935 / 1.4102$
N4-C6	$1.3207 / 1.3173$	N4-C20	$1.3587 / 1.3653$
C5-C6	$1.5069 / 1.5093$	C6-C7	$1.4223 / 1.4143$
C7-H8	$1.0825 / 0.9300$	C7-C9	$1.3743 / 1.3663$
C9-H10	$1.0875 / 0.9300$	C9-C11	$1.4167 / 1.4113$
C11-C12	$1.4191 / 1.4223$	C11-C20	$1.4336 / 1.4243$
C12-H13	$1.0874 / 0.9300$	C12-C14	$1.3767 / 1.3624$
C14-H15	$1.0865 / 0.9300$	C14-C16	$1.4188 / 1.4184$
C16-H17	$1.0864 / 0.9300$	C16-C18	$1.3756 / 1.3653$
C18-H19	$1.0852 / 0.9300$	C18-C20	$1.4219 / 1.4203$
C21-C22	$1.3930 / 1.3783$	C21-C28	$1.3936 / 1.3803$
C22-H23	$1.0858 / 0.9300$	C22-C24	$1.3991 / 1.4013$
C24-C25	$1.4030 / 1.3903$	C24-C30	$1.5072 / 1.5013$
C25-C26	$1.3933 / 1.3833$	C26-H27	$1.0846 / 0.9300$
C26-C28	$1.3937 / 1.3913$	C28-H29	$1.0816 / 0.9300$
C30-H31	$1.0937 / 0.9600$	C30-H32	$1.0962 / 0.9600$
C30-H33	$1.0960 / 0.9600$		

Bond angles (DFT/XRD) (${ }^{\circ}$)

C5-O3-C21	$121.3 / 116.3$	C6-N4-C20	$118.3 / 117.3$
O2-C5-O3	$124.4 / 123.8$	O2-C5-C6	$125.5 / 125.7$
O3-C5-C6	$110.0 / 110.5$	N4-C6-C5	$114.7 / 114.5$
N4-C6-C7	$123.7 / 124.7$	C5-C6-C7	$121.6 / 120.7$
C6-C7-H8	$120.0 / 120.9$	C6-C7-C9	$118.5 / 118.1$
H8-C7-C9	$121.5 / 120.9$	C7-C9-H10	$120.7 / 120.1$
C7-C9-C11	$119.7 / 119.8$	H10-C9-C11	$119.5 / 120.1$
C9-C11-C12	$123.6 / 123.2$	C9-C11-C20	$117.2 / 117.5$
C12-C11-C20	$119.2 / 119.3$	C11-C12-H13	$119.0 / 120.0$
C11-C12-C14	$120.3 / 119.9$	H13-C12-C14	$120.7 / 120.0$
C12-C14-H15	$120.0 / 119.6$	C12-C14-C16	$120.6 / 120.9$
H15-C14-C16	$119.5 / 119.6$	C14-C16-H17	$119.4 / 119.8$
C14-C16-C18	$120.6 / 120.5$	H17-C16-C18	$120.1 / 119.8$
C16-C18-H19	$122.1 / 119.8$	C16-C18-C20	$120.3 / 120.3$
H19-C18-C20	$117.6 / 119.8$	N4-C20-C11	$122.5 / 122.5$
N4-C20-C18	$118.3 / 118.5$	C11-C20-C18	$119.1 / 119.0$
O3-C21-C22	$115.5 / 118.0$	O3-C21-C28	$120.0 / 119.6$
C22-C21-C28	$121.0 / 122.3$	C21-C22-H23	$118.7 / 119.8$
C21-C22-C24	$121.4 / 120.4$	H23-C22-C24	$119.9 / 119.8$
C22-C24-C25	$116.9 / 116.6$	C22-C24-C30	$120.7 / 121.1$
C25-C24-C30	$122.4 / 122.3$	C11-C25-C24	$119.7 / 118.7$
C11-C25-C26	$118.3 / 118.1$	C24-C25-C26	$122.0 / 123.2$
C25-C26-H27	$119.6 / 120.4$	C25-C26-C28	$120.3 / 119.2$
H27-C26-C28	$120.1 / 120.4$	C21-C28-C26	$118.4 / 118.3$
C21-C28-H29	$121.0 / 120.9$	C26-C28-H29	$120.6 / 120.9$
C24-C30-H31	$110.8 / 109.5$	C24-C30-H32	$111.3 / 109.5$
C24-C30-H33	$111.3 / 109.5$	H31-C30-H32	$108.3 / 109.5$
H31-C30-H33	$108.3 / 109.5$	H32-C30-H33	$106.8 / 109.5$

Dihedral angles (DFT/XRD) (${ }^{\circ}$)

C11-C25-C26-C28	$-179.9 /-179.6$	O2-C5-C6-N4	$1.8 /-13.1$
O2-C5-C6-C7	$178.1 / 168.7$	O3-C5-C6-N4	$178.2 / 166.5$
O3-C5-C6-C7	$2.0 / 11.7$	O3-C21-C22-C24	$-176.3 /-177.1$
O3-C21-C28-C26	$176.2 / 176.7$	N4-C6-C7-C9	$-0.0 /-2.7$
C5-O3-C21-C22	$-139.5 /-102.0$	C5-O3-C21-C28	$44.5 / 81.7$
C5-C6-C7-C9	$179.8 / 175.3$	C6-N4-C20-C11	$0.2 /-0.1$
C6-N4-C20-C18	$179.9 / 178.7$	C6-C7-C9-C11	$0.1 /-0.4$
C7-C9-C11-C12	$-179.9 /-176.5$	C7-C9-C11-C20	$-0.1 / 2.9$
C9-C11-C12-C14	$179.9 / 179.0$	C9-C11-C20-N4	$-0.1 /-2.8$
C9-C11-C20-C18	$179.9 / 178.5$	C11-C12-C14-C16	$-0.0 / 1.9$
C12-C11-C20-N4	$179.9 / 176.7$	C12-C11-C20-C18	$-0.0 /-2.0$
C12-C14-C16-C18	$-0.0 /-0.8$	C14-C16-C18-C20	$0.0 /-1.7$
C16-C18-C20-N4	$-180.0 / 175.7$	C16-C18-C20-C11	$0.0 / 3.1$

Table 1. Optimized geometrical parameters of 4-chloro-3-methylphenyl quinoline-2-carboxylate with XRD data. (Continued)

C20-N4-C6-C5	$-180.0 /-175.2$	C20-N4-C6-C7	$-0.1 / 2.9$
C20-C11-C12-C14	$0.0 /-0.4$	C21-O3-C5-O2	$-0.3 / 0.7$
C21-O3-C5-C6	$179.6 / 178.9$	C21-C22-C24-C25	$-0.1 / 0.3$
C21-C22-C24-C30	$-180.0 /-179.1$	C22-C21-C28-C26	$0.3 / 0.6$
C22-C24-C25-C11	$-179.9 /-179.2$	C22-C24-C25-C26	$0.1 / 0.6$
C24-C25-C26-C28	$0.0 /-0.9$	C25-C26-C28-C21	$-0.2 / 0.3$
C28-C21-C22-C24	$-0.2 /-0.9$	C30-C24-C25-C11	$0.0 /-1.4$
C30-C24-C25-C26	$179.9 / 180.0$		

derivative are, $1.3587 / 1.3626,1.3156 / 1.3139 \AA$ [23] and these values of $\mathrm{C}-\mathrm{N}$ bond lengths of the title compound indicate that the bonds show partial double bond character and also the bond distances were found to be much shorter than the average value for a single bond ($1.47 \AA$), but significantly longer than a double bond ($1.22 \AA$), suggesting some multiple bond character [34]. For the title compound, the $\mathrm{C}-\mathrm{Cl}$ bond length (DFT/XRD) is $1.7633 / 1.7452 \AA$ where as the reported value for a similar derivative is $1.8304 / 1.7459 \AA$ [24].

At C_{11} position, bond angles ($\mathrm{DFT} / \mathrm{XRD}$) are, $\mathrm{C}_{12^{-}}$ $\mathrm{C}_{11}-\mathrm{C}_{9}=123.6 / 123.2, \mathrm{C}_{9}-\mathrm{C}_{11}-\mathrm{C}_{20}=117.2 / 117.5, \mathrm{C}_{20}-\mathrm{C}_{11}-\mathrm{C}_{12}=$ $119.2 / 119.3^{\circ}$ and at C_{20} position, the angles are, $\mathrm{C}_{11}-\mathrm{C}_{20}-\mathrm{C}_{18}=$ $119.1 / 119.0, \quad \mathrm{C}_{18}-\mathrm{C}_{20}-\mathrm{N}_{4}=118.3 / 118.5, \quad \mathrm{~N}_{4}-\mathrm{C}_{20}-\mathrm{C}_{11}=$ $122.5 / 122.5^{\circ}$ and this asymmetry gives the interaction between the rings, PhIII and PhII. At the position O_{2}, the bond angles (DFT/XRD) are, $\mathrm{N}_{4}-\mathrm{C}_{6}-\mathrm{C}_{7}=123.7 / 124.7, \mathrm{C}_{7}-\mathrm{C}_{6}-\mathrm{C}_{5}=$ 121.6/120.7, $\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}_{4}=114.7 / 114.5^{\circ}$ and this asymmetry in angles reveals the interaction between O_{2} and the ring PhII. Also at the postion C_{5}, the bond angles are $\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{O}_{3}=$ $110.0 / 110.5, \mathrm{O}_{3}-\mathrm{C}_{5}-\mathrm{O}_{2}=124.4 / 123.8, \mathrm{O}_{2}-\mathrm{C}_{5}-\mathrm{C}_{6}=125.5 / 125.7^{\circ}$ which shows the steric repulsion between oxygens atoms O_{2} and O_{3}. The hydrogen bonding between O_{3} and H_{23} is revealed by the values of bond angles, $\mathrm{C}_{22}-\mathrm{C}_{21}-\mathrm{C}_{28}=121.0 / 122.3, \mathrm{C}_{28}-$ $\mathrm{C}_{21}-\mathrm{O}_{3}=120.0 / 119.6, \mathrm{O}_{3}-\mathrm{C}_{21}-\mathrm{C}_{22}=115.8 / 118.0^{\circ}$. The rings PhII and PhIII are nearly planar as is evident from the torsion angles, $\mathrm{C}_{12}-\mathrm{C}_{11}-\mathrm{C}_{9}-\mathrm{C}_{7}=-179.9, \mathrm{C}_{12}-\mathrm{C}_{11}-\mathrm{C}_{20}-\mathrm{N}_{4}=179.9, \mathrm{C}_{18}-$ $\mathrm{C}_{20}-\mathrm{C}_{11}-\mathrm{C}_{9}=179.9, \mathrm{C}_{18}-\mathrm{C}_{20}-\mathrm{N}_{4}-\mathrm{C}_{6}=179.9^{\circ}$ whereas the carbonyl group is tilted from the ring PhI as is evident from the torsion angles, $\mathrm{C}_{22}-\mathrm{C}_{21}-\mathrm{O}_{3}-\mathrm{C}_{5}=-139.5, \mathrm{C}_{24}-\mathrm{C}_{22}-\mathrm{C}_{21}-\mathrm{O}_{3}=-$ 176.3, $\mathrm{C}_{26}-\mathrm{C}_{28}-\mathrm{C}_{21}-\mathrm{O}_{3}=176.2, \mathrm{C}_{28}-\mathrm{C}_{21}-\mathrm{O}_{3}-\mathrm{C}_{5}=44.5^{\circ}$.

4.2. IR and Raman spectra

The observed IR, Raman bands, calculated scaled wave numbers and assignments are given in Table 2. Phenyl ring CH stretching modes are normally expected above 3000 cm^{-1} [35] and in the present case the bands observed at 3105, $3085 \mathrm{~cm}^{-1}$ in the IR spectrum and at $3075 \mathrm{~cm}^{-1}$ in the Raman spectrum are assigned as these modes. The DFT calculations give these modes in the ranges 3137-3085 and 3126-3073 cm^{-1} for PhI and PhIII rings, respectively. The phenyl ring stretching modes are assigned at, 1595, 1562, 1452, 1401, 1291 (IR), 1594, 1563 (Raman) and 1614, 1546, 1500, 1458, 1364 (IR), 1613, 1501, 1458, $1363 \mathrm{~cm}^{-1}$ (Raman) for PhI and PhIII rings, which are expected in the region $1610-1250 \mathrm{~cm}^{-1}$ [35].

In ortho disubstitution, the ring breathing mode has three wavenumber intervals depending on whether both substituents are heavy; or one of them is heavy, while the other is light; or both of them are light [36]. In the first case, the interval is $1100-1130 \mathrm{~cm}^{-1}$; in the second case $1020-1070 \mathrm{~cm}^{-1}$; while in the third case it is between 630 and $780 \mathrm{~cm}^{-1}$ [36]. For the title compound, ring breathing mode of PhIII is observed at 1075 in the IR spectrum, 1079 in the Raman spectrum and at
$1081 \mathrm{~cm}^{-1}$ theoretically. The ring breathing mode of ortho substituted benzene ring is reported at $1091 \mathrm{~cm}^{-1}$ [37].

In asymmetric trisubstituted benzene, when all the three substituents are light, the ring breathing mode falls in the range $500-600 \mathrm{~cm}^{-1}$, when all the three substituents are heavy it appears above $1100 \mathrm{~cm}^{-1}$ and in the case of mixed substituents, it falls in the range $600-750 \mathrm{~cm}^{-1}$ [36]. For the title compound, PED analysis gives the ring breathing mode of the tri-substituted benzene at $1122 \mathrm{~cm}^{-1}$. According to literature, the ring breathing mode of tri substituted benzenes are reported at $1110,1083 \mathrm{~cm}^{-1}$ [38] and $1063 \mathrm{~cm}^{-1}$ [39].

The in-plane CH deformation modes of the phenyl rings are observed at $1260,1242,1152$ in the IR spectrum and at $1244,1152,1112 \mathrm{~cm}^{-1}$ in the Raman spectrum as expected [35] and the DFT calculations give these modes in the ranges $1255-1122$ for PhI and $1244-1004 \mathrm{~cm}^{-1}$ for PhIII rings. The out-of-plane bending modes of the phenyl rings are assigned at 866, 784, (IR), 804 (Raman) for PhI and 970, $760 \mathrm{~cm}^{-1}$ (IR) for PhIII rings, where as the corresponding theoretical values are in the ranges 912-782 for PhI and $966-758 \mathrm{~cm}^{-1}$ for PhIII , which are expected below $1000 \mathrm{~cm}^{-1}$ according to literature [35].

The CH modes associated with the quinoline ring are assinged at: 3058 (IR), 3058 (Raman), 3067, 3060 (DFT) (stretching), 1132 (IR), 1135 (Raman), 1417, 1134 (DFT) (inplane bending) and 958, 830 (IR), 958, 822 (Raman), 960, 828 cm^{-1} (DFT) (out-of-plane bending). The methyl stretching modes are expected in the range $2900-3000 \mathrm{~cm}^{-1}$ [35] and the bands at 3013, 2988, 2940 (IR), 3013, 2980, 2942 (Raman) and 3016, 2990, $2936 \mathrm{~cm}^{-1}$ (DFT) are assigned as methyl stretching modes. The deformation modes of the methyl group are assinged at $1475,1388,1037$ in the IR spectrum, 1034, 1020 in the Raman spectrum and in the range $1474-1022 \mathrm{~cm}^{-1}$ theoretically.

For the title compound, the carbonyl stretching mode is observed at $1760 \mathrm{~cm}^{-1}$ in the IR spectrum with a theoretical value $1772 \mathrm{~cm}^{-1}$. The quinoline ring $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching modes are observed at 1580 and $1546 \mathrm{~cm}^{-1}$ in the IR spectrum with computed values 1583 and $1548 \mathrm{~cm}^{-1}$ as expected [35, 40 , 41]. Inorder to investigate the performance of vibrational wavenumbers of the title compound, the root mean square value between the calculated and observed wavenumbers were calculated and the RMS errors are 3.56 for IR and 3.79 for Raman modes.

4.3. NMR spectra

The chemical informationof the molecular components of the compound can be extracted from the experimental chemical shift and it can be found that whether the results are true or not from the calculated data. In this case the experimental data was collected by recording the spectra and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data was calculated at B3LYP method with $6-31 \mathrm{G}(\mathrm{d})$ ($6 \mathrm{D}, 7 \mathrm{~F}$) level on the basis of GIAO method and the chemical shifts were reported in ppm

Table 2. Calculated (scaled) wavenumbers, observed IR, Raman bands and assignments of 4-chloro-3-methylphenyl quinoline-2carboxylate.

B3LYP/6-31G(d) (6D, 7F)			$\begin{aligned} & \mathrm{IR} \\ & \mathrm{v}\left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Raman $v\left(\mathrm{~cm}^{-1}\right)$	Assignments ${ }^{\text {a }}$
$v\left(\mathrm{~cm}^{-1}\right)$	IR_{I}	R_{A}			
3137	0.58	72.32			vCHI(97)
3126	1.88	111.77			vCHIII(98)
3101	10.08	168.66			vCHIII(97)
3099	2.57	98.19	3105		vCHI(96)
3086	26.58	266.47	3085		vCHIII(99)
3085	5.70	56.41	3085		vCHI(99)
3073	15.23	132.42		3075	vCHIII(93)
3067	9.71	98.74			vCHII(92)
3060	1.26	30.53	3058	3058	vCHII(91)
3016	14.99	56.96	3013	3013	$\mathrm{vCH}_{3}(99)$
2990	11.08	91.15	2988	1980	$\mathrm{vCH}_{3}(99)$
2936	18.63	181.11	2940	2942	$v \mathrm{CH}_{3}(100)$
1772	166.83	332.74	1760		vC=O(80)
1611	4.73	93.30	1614	1613	vPhIII(59), δ CHIII(19)
1596	14.16	67.55	1595	1594	$v \mathrm{PhI}(65), \delta \mathrm{CHI}(15)$
1583	3.10	285.31	1580		$v \mathrm{C}=\mathrm{C}(45), v \mathrm{C}=\mathrm{N}(19),$ vPhIII(12)
1565	16.75	105.99	1562	1563	vPhI(63), $\delta \mathrm{CHI}(15)$
1548	11.78	24.63	1546		$v \mathrm{C}=\mathrm{N}(38), \mathrm{vPhIII}(40)$
1494	19.52	11.76	1500	1501	$\begin{aligned} & \text { vPhIII(56), vCCII(17), } \\ & \delta \mathrm{CHIII}(13) \end{aligned}$
1474	113.17	3.24	1475		$\delta \mathrm{CH}_{3}(51), \delta \mathrm{CHI}(24)$
1454	3.12	105.55	1458	1458	$\begin{aligned} & \delta^{\delta \mathrm{CH}_{3}(11), ~ \delta \mathrm{CHIII}(10),} \\ & \text { vPhII(54) } \end{aligned}$
1452	49.51	73.13	1452		$\delta \mathrm{CH}_{3}(21), \delta \mathrm{CHI}(17), \mathrm{vPhI}(57)$
1452	8.16	19.62	1452		$\delta \mathrm{CH}_{3}(97)$
1417	10.82	102.65			¢CHIII(44), δ CHII(40)
1396	24.47	24.30	1401		$v \mathrm{PhI}(57), \delta \mathrm{CHI}(18), \delta \mathrm{CH}_{3}(14)$
1390	2.94	18.47	1388		$\delta \mathrm{CH}_{3}(89)$
1361	4.61	274.64	1364	1363	vPhIII(71)
1338	12.98	18.20	1340	1335	$\begin{aligned} & \mathrm{vC}=\mathrm{N}(25), \delta \mathrm{CHIII}(13), \\ & \mathrm{vPhIII}(16) \end{aligned}$
1299	18.41	13.89	1302		$\begin{aligned} & \text { vCN(37), } \text { ठCHII(10), } \\ & \delta \mathrm{CHIII}(21) \\ & \hline \end{aligned}$
1290	20.17	7.19	1291		vPhI(90)
1255	28.17	10.82	1260		$\delta \mathrm{CHI}(61)$
1244	113.23	116.48	1242	1244	$\begin{aligned} & \delta \mathrm{CHIII}(50), \text { vCC(11), } \\ & \text { vPhIII(10) } \end{aligned}$
1218	26.77	33.22	1222		$\begin{aligned} & \begin{array}{l} \text { vPhIII(24), vCC(22), } \\ \text { vCCII(25) } \end{array} \end{aligned}$
1215	229.73	297.47	1212	1214	$\begin{aligned} & \mathrm{vCO}(18), \mathrm{vPhI}(12), v \mathrm{CC}(10), \\ & \delta \mathrm{CHI}(15) \end{aligned}$
1196	320.46	297.49		1190	vCC(15), vPhIII(11), $\delta \mathrm{CHII}(18), \mathrm{vCCII}(10)$
1149	245.17	56.69	1152	1152	vCO(42), $\delta \mathrm{CHI}(40)$
1140	12.81	5.70			δ CHIII(65)
1134	3.50	11.56	1132	1135	$\begin{aligned} & \text { סCHII(48), } \delta \mathrm{CHII}(14), \\ & \text { vPhIII(21) } \end{aligned}$
1122	96.59	11.39			$\delta \mathrm{CHI}(45), \mathrm{vPhI}(41)$
1115	105.30	30.48		1112	סCHIII(43), vPhIII(14)
1081	299.13	29.70	1075	1079	vCO(40), vPhIII(44)
1032	3.30	0.72	1037	1034	$\delta \mathrm{CH}_{3}(72)$
1022	163.24	14.59		1020	$\delta \mathrm{PhI}(40), \delta \mathrm{CH}_{3}(32)$
1004	0.39	22.61			vPhIII(11), δ CHIII(69)
996	4.55	1.45			$\delta \mathrm{CH}_{3}(52), \mathrm{vPhI}(12), \delta \mathrm{PhI}(11)$
966	0.03	0.07	970		$\gamma \mathrm{CHIII}(87), \tau \operatorname{PhIII}(11)$
960	0.92	0.24	958	958	γ CHII(85)
944	11.95	1.33	942		$\delta \mathrm{PhII}(46), \mathrm{vPhI}(16), \mathrm{vCC}(14)$
933	1.36	0.04			$\gamma \mathrm{CHIII}(83)$
918	16.01	7.61		918	$\delta \mathrm{PhII}(30), \delta \mathrm{PhIII}(26)$

Table 2. Calculated (scaled) wavenumbers, observed IR, Raman bands and assignments of 4-chloro-3-methylphenyl quinoline-2carboxylate. (Continued)

912	0.31	1.13			$\gamma \mathrm{CHI}(84)$
866	21.88	5.76	866		$\gamma \mathrm{CHI}(49)$, ¢ $\mathrm{PhI}(21)$
862	1.79	3.82			γ CHIII(59), τ PhIII(12), γ CHII(19)
848	7.97	1.12	849		$\gamma \mathrm{CHI}(31), \mathrm{fPhIII}(21)$
828	27.59	0.17	830	822	$\begin{aligned} & \gamma \mathrm{CHII}(56), \gamma \mathrm{CC}(10), \\ & \gamma \mathrm{CHIII}(15) \end{aligned}$
808	20.23	6.00		804	$\gamma \mathrm{CHI}(50), \delta \mathrm{CO}(11)$
782	21.15	12.87	784		$\gamma \mathrm{CHI}(61)$
776	0.52	2.38		774	$\tau \mathrm{PhII}(44), \tau \mathrm{PhIII}(25), \gamma \mathrm{CC}(10)$
758	44.85	5.43	760		$\gamma \mathrm{CHIII}(61), \gamma \mathrm{C}=\mathrm{O}(21)$
754	4.43	58.40		752	$\delta \mathrm{PhIII}(49), \delta \mathrm{CC}(11), \delta \mathrm{PhII}(13)$
717	2.06	5.99			$\begin{aligned} & \begin{array}{l} \delta \mathrm{PhI}(34), \gamma \mathrm{C}=\mathrm{O}(28), \\ \tau \mathrm{PhIII}(22) \end{array} \\ & \hline \end{aligned}$
714	0.18	5.83			$\gamma \mathrm{C}=\mathrm{O}(18), \tau \mathrm{PhIII}(13),$ γ CHIII(22), γ CHII(21)
677	0.60	1.89	672		$\tau \operatorname{PhI}(63), \gamma \mathrm{CCl}(11), \gamma \mathrm{CO}(19)$
647	7.79	2.67	642		$\delta \operatorname{PhI}(26) . v \mathrm{vCl}(38), \tau \operatorname{PhI}(10)$
618	5.26	0.32	620		$\begin{aligned} & \tau \mathrm{PhII}(23), \tau \mathrm{PhIII}(32), \\ & \gamma \mathrm{C}=\mathrm{O}(16) \end{aligned}$
614	5.98	0.47			δ PhII(39), δ PhIII(31)
568	3.05	2.12		572	$\delta \mathrm{PhIII}(24), \tau \mathrm{PhI}(10), \gamma \mathrm{CO}(10)$
554	5.25	2.25	556		$\begin{aligned} & \tau \mathrm{PhI}(25), \gamma \mathrm{CO}(24), \gamma \mathrm{CC}(12), \\ & \gamma \mathrm{CCl}(11) \end{aligned}$
539	7.54	17.06		530	$\delta \mathrm{PhI}(40), 8 \mathrm{CCl}(17)$
513	1.12	15.46	510		$\delta \mathrm{PhII}(37), \delta \mathrm{PhIII}(44)$
496	3.43	0.30			$\tau \mathrm{PhII}(27), \tau \mathrm{PhIII}(46)$
482	6.54	1.19	480	484	$\delta \mathrm{CC}(22), \mathrm{\delta PhIII}(19), \delta \mathrm{C}=\mathrm{O}(22)$
473	2.06	1.40			$\tau \mathrm{PhII}(45), \tau \mathrm{PhIII}(28)$
467	2.09	1.13		460	$\delta \mathrm{CC}(26), 8 \mathrm{CO}(15), \tau \mathrm{PhIII}(20)$
438	2.72	1.96	440		$\tau \mathrm{PhI}(65), \gamma \mathrm{CC}(14)$
392	2.06	3.56			$\tau \mathrm{PhII}(38), \tau \mathrm{PhIII}(39)$
383	7.68	5.15			$\delta \mathrm{PhI}(18), \delta \mathrm{CO}(10), \gamma \mathrm{CCl}(22)$
348	0.47	1.86		350	$\delta \mathrm{PhII}(36), \delta \mathrm{C}=\mathrm{O}(32)$
335	0.69	1.90			$\gamma \mathrm{CCl}(35), 2 \mathrm{PhI}(21)$
294	8.07	1.21			8CC(27), $\delta \mathrm{CO}(37)$
248	0.54	0.51		248	$\mathrm{Ph} \mathrm{PIII}(36), \gamma \mathrm{CC}(18)$
239	0.65	0.66			$\delta \mathrm{CCl}(56), \delta \mathrm{CC}(20)$
212	0.89	1.81			$\tau \operatorname{PhI}(16), \gamma \mathrm{CC}(15), \gamma \mathrm{CCl}(17)$
190	1.28	5.75		192	$\delta \mathrm{CC}(24), \mathrm{\delta CO}(22)$
173	3.20	0.21		171	$\tau \mathrm{PhII}(50), \tau \mathrm{PhIII}(36)$
163	0.58	0.59			$\begin{aligned} & \delta \mathrm{CO}(13), \delta \mathrm{C}=\mathrm{O}(22), \delta \mathrm{Ph}(17), \\ & \delta \mathrm{PhII}(12) \end{aligned}$
145	0.39	0.32		146	$\tau \mathrm{CH}_{3}(86)$
115	0.78	1.13		116	$\tau \mathrm{PhI}(37), \delta \mathrm{CC}(12), \tau \mathrm{CO}(17)$
88	0.07	6.57		87	$\tau \mathrm{PhII}(42), \tau \mathrm{PhIII}(10), \tau \mathrm{PhI}(21)$
60	0.53	2.71			$\tau \mathrm{CO}(56), \tau \mathrm{CC}(12)$
34	0.20	2.94			$\tau \mathrm{CO}(36), 8 \mathrm{CO}(29), \tau \mathrm{CC}(16)$
20	0.54	3.28			$\tau \mathrm{CO}(47), 8 \mathrm{CO}(30)$
14	0.24	9.08			$\tau \mathrm{CO}(54), 8 \mathrm{CO}(41)$

${ }^{\mathrm{a}} 0$-stretching; δ-in-plane bending; γ-out-of-plane bending; τ-torsion; trisubstituted phenyl ring-PhI; Quinoline ring-PhII; 1,2-disubstituted phenyl ring-PhIII; potential energy distribution (\%) is given in brackets in the assignment column.
relative to TMS. The NMR spectral data were presented in Table 4 and the corresponding spectra were shown Figures 4 and 5.

The experimental NMR data are: ${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, DMSO, δ): $8.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.51 \mathrm{~Hz}), 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz})$, $8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.43 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{dt}$, $\left.\mathrm{J}_{1}=8.07 \mathrm{~Hz}, \mathrm{~J}_{2}=6.73, \mathrm{~J}_{3}=1.06 \mathrm{~Hz}\right), 7.8(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.55 \mathrm{~Hz})$, $7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.26\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=\right.$ $\left.8.6 \mathrm{~Hz}, \mathrm{~J}_{2}=2.57 \mathrm{~Hz}\right), 3.3-3.4(1 \mathrm{H}, \mathrm{m}), 2.38(3 \mathrm{H}, \mathrm{s})$.
${ }^{13}$ CNMR (125 MHz, DMSO, δ): 19.787, 121.328, 121.446, 124.668, 128.272, 129.962, 130.051, 130.733, 131.080, 137.273, 138.128, 146.956, 147.100, 149.499 and 163.636.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of the title compound, the signals due to six aromatic protons of quinoline moiety were appeared in the region 8.66 to 7.8 . Three protons on benzene ring appeared as two doublets at 7.54 and 7.41 and a doublet of doublet at 7.26 and the pattern indicate para and meta substitution. Three protons of methyl group are indicated by a singlet at 2.38 . The presence of carbonyl carbon assured by the

Table 3. The predicted ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR isotropic chemical shifts (with respect to TMS, all values in ppm).

Atom	$\sigma_{\text {TMS }}$	$\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d})(6 \mathrm{D}, 7 \mathrm{~F}) \sigma_{\text {calc }}$	$\delta_{\text {calc }}\left(\sigma_{\text {TMS }}-\sigma_{\text {calc }}\right)$
H8	32.7711	24.0150	8.7561
H10		24.2483	8.5228
H13	24.5098	8.2613	
H15		24.5752	8.1959
H17	24.4152	8.3559	
H19	23.9427	8.8284	
H23		25.4181	7.353
H27	25.0333	7.7378	
H29		24.6956	8.0755
H31	30.3699	2.4012	
H32		29.7745	2.9966
H33	29.7582	3.0129	
C5		38.2716	151.4184
C6	48.0232	141.6668	
C7		73.2972	116.3928
C9		60.1783	129.5117
C11		67.6718	122.0182
C12		68.4548	121.2352
C14		67.1682	122.5218
C16		66.6146	123.0754
C18		62.9196	126.7704
C20		47.6646	142.0254
C21		46.8757	142.8143
C22		73.3838	116.3062
C24		58.4822	131.2078
C25		56.7224	132.9676
C26	66.2074	123.4826	
C28		74.4950	115.195
C30		167.9308	21.1752

Figure 4. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-chloro-3-methylphenyl quinoline-2-carboxylate.
presence of a signal at 163.636 in ${ }^{13} \mathrm{C}$ NMR spectrum and a signal at 19.787 confirms the presence of meta methyl group on benzene ring. The molecular ion peak at $\mathrm{m} / \mathrm{z} 298$ present in the electrospray ionization mass spectrum of the title compound in positive mode along with isotopic peak ($\mathrm{M}+2$)
due to chlorine is consistent with the molecular formula $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}_{2}$.

4.4. Nonlinear optical properties

Polarizability and hyperpolarizability characterize the response of a system to an applied electric field [42-44] and

Figure 5. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-chloro-3-methylphenyl quinoline-2-carboxylate.

Figure 6. MEP plot of 4-chloro-3-methylphenyl quinoline-2carboxylate.
these terms are essential to analyze the nonlinear optical properties of materials. For the title compound the theoretically calculated values of dipole moment and polarizability are 1.958 Debye and 3.131×10^{-23} esu, respectively. The calculated first hyperpolarizability of the title compound is 3.254×10^{-30} e.s.u which is 25.03 times that of the standard NLO material urea $\left(0.13 \times 10^{-30}\right.$ e.s.u) [45]. The average second hyperpolarizability has been calculated by using the following expression.
$\gamma_{\mathrm{av}}=1 / 5\left[\gamma_{\mathrm{xxxx}}+\gamma_{\mathrm{yyyy}}+\gamma_{\mathrm{zzzz}}+2 \gamma_{\mathrm{xxyy}}+2 \gamma_{\mathrm{xxzz}}+2 \gamma_{\mathrm{yyzz}}\right]$
The amount of charge transfer for the molecule depends on the nature of the end group of the molecule and the increase of π-conjugated chain length in organic molecules, in general, enhances the magnitude of hyperpolarizability. The calculated value of γ_{av} for the title compound is -24.131×10^{-37} esu. The larger component of second hyperpolarizability is associated with the larger ground state polarization which leads to strong electronic coupling between the ground and the low lying excited state and this can be attributed to the enhanced charge transfer interaction taking place. Thus, the present investigation provides a new route to design high performance NLO materials.

4.5. Molecular Electrostatic Potenital

Molecular electrostatic potential is related to the electron density and is very useful in predicting the sites for electrophilic attack, nucleophilic reactions and hydrogen bonding interactions [46, 47]. The different values of the electrostatic potential at the surface are represented by different colours. Red region indicates the most

Figure 7. HOMO, LUMO plots of 4-chloro-3-methylphenyl quinoline-2-carboxylate.
electronegative electrostatic potential (electrophilic), blue region indicates the most positive electrostatic potential (nucleophilic) and green region represents the zero potential. The electrostatic potential increases in the order red < orange < yellow < green < blue [48]. The mapped electrosatic potential surface has been plotted for the titlecompound and shown in Figure 6. The negative regions are over the carbonyl group oxygen atom and hene electrophilic attack can take place in these sites. The positive regions are over the hydrogen atoms hence nucleophilic attack can take place in these regions.

4.6. Frontier Molecular Orbitals

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are the main orbitals taking part in the chemical stability. The HOMO and LUMO represents the ability of donating and accepting an electron respetively. The frontier molecular orbtials and the energy gap are very useful in studying the reactivity and kinetic stability, which are important parameters in analyzing its electronic properties [49-51]. The energy needed to remove an electron from the filled orbital is known as ionization energy, which is obtained as $\mathrm{I}=-\mathrm{E}_{\text {номо }}$, the energy released when an electron is added to an unfilled orbital is termed as electron affinity, which is calculated as $\mathrm{A}=-\mathrm{E}_{\mathrm{Lumo}}$. Figure 7 shows the frontier molecular orbitals. Using the HOMO and LUMO orbital energies, the ionization energy and electron

Table 4. Second-order perturbation theory analysis of Fock matrix in NBO basis corresponding to the intramolecular bonds of the title compound.

Donor(i)	Type	ED/e	Acceptor(j)	Type	ED/e	$\mathrm{E}(2)^{\mathrm{a}}$	$\mathrm{E}(\mathrm{j})-\mathrm{E}(\mathrm{i})^{\text {b }}$	$F(i, j){ }^{\text {c }}$
O2-C5	σ	1.99675	C5-C6	σ^{*}	0.08031	1.43	1.50	0.042
	π	1.98211	N4-C6	π^{*}	0.34393	4.17	0.39	0.039
O3-C5	σ	1.98862	N4-C6	σ^{*}	0.01635	1.48	1.46	0.042
			C21-C22	σ^{*}	0.02138	1.46	1.47	0.041
C5-C6	σ	1.97361	O3-C21	σ^{*}	0.03678	3.49	0.99	0.053
			N4-C20	σ^{*}	0.01972	4.01	1.18	0.061
			C6-C7	σ^{*}	0.03473	1.19	1.19	0.034
			C7-C9	σ^{*}	0.01324	1.77	1.27	0.042
C6-C7	σ	1.98101	O2-C5	σ^{*}	0.01648	1.84	1.32	0.044
			N4-C6	σ^{*}	0.01635	2.19	1.27	0.047
			C5-C6	σ^{*}	0.08031	1.11	1.10	0.032
			C7-C9	σ^{*}	0.01324	2.30	1.30	0.049
C11-C20	σ	1.97219	N4-C20	σ^{*}	0.01972	1.25	1.19	0.035
			C9-C11	σ^{*}	0.02188	2.57	1.22	0.050
			C11-C12	σ^{*}	0.02211	2.92	1.23	0.053
			C18-C20	σ^{*}	0.02504	2.69	1.22	0.051
C18-C20	σ	1.97643	N4-C6	σ^{*}	0.01635	2.74	1.25	0.052
			N4-C20	σ^{*}	0.01972	1.70	1.19	0.040
			C9-C11	σ^{*}	0.02188	2.40	1.22	0.048
			C11-C20	σ^{*}	0.04342	2.65	1.21	0.051
			C16-C18	σ^{*}	0.01322	2.27	1.29	0.048
C21-C22	σ	1.97659	O3-C5	σ^{*}	0.12029	1.99	1.05	0.042
			C21-C28	σ^{*}	0.02682	3.76	1.28	0.062
			C22-C24	σ^{*}	0.02039	2.80	1.29	0.054
			C24-C30	σ^{*}	0.01487	1.02	0.60	0.023
			C24-C25	π^{*}	0.40990	21.65	0.28	0.071
			C26-C28	π^{*}	0.33272	19.09	0.29	0.067
C21-C28	σ	1.97932	C21-C22	σ^{*}	0.02138	3.93	1.28	0.063
			C26-C28	σ^{*}	0.01571	2.34	1.29	0.049
C24-C25	σ	1.97706	C22-C24	σ^{*}	0.02039	2.99	1.29	0.056
			C24-C30	σ^{*}	0.01487	2.19	1.13	0.045
			C25-C26	σ^{*}	0.02444	3.90	1.28	0.063
	π	1.66320	C21-C22	π^{*}	0.38003	17.89	0.29	0.065
			C26-C28	π^{*}	0.33272	21.44	0.29	0.071
C25-C26	σ	1.98087	C24-C25	σ^{*}	0.03518	4.38	1.28	0.067
			C24-C30	σ^{*}	0.01487	3.13	1.14	0.053
			C26-C28	σ^{*}	0.01571	2.48	1.30	0.051
LPC11	σ	1.99367	C24-C25	σ^{*}	0.03518	1.20	1.47	0.038
			C25-C26	σ^{*}	0.02444	1.14	1.48	0.037
	π	1.97151	C24-C25	σ^{*}	0.03518	4.20	0.87	0.054
			C25-C26	σ^{*}	0.02444	3.47	0.88	0.049
	n	1.93332	C24-C25	π^{*}	0.40990	11.31	0.33	0.060
LPO2	σ	1.97728	O3-C5	σ^{*}	0.12029	1.46	1.02	0.035
			C5-C6	σ^{*}	0.08031	2.82	1.08	0.050
	π	1.82886	O3-C5	σ^{*}	0.12029	38.06	0.60	0.136
			C5-C6	σ^{*}	0.08031	20.16	0.66	0.105
LPO3	σ	1.95025	O2-C5	σ^{*}	0.01648	2.19	0.57	0.035
			C21-C28	σ^{*}	0.02682	4.97	1.11	0.067
	π	1.78653	O2-C5	π^{*}	0.22595	41.37	0.35	0.107
			C21-C22	σ^{*}	0.02138	2.04	0.91	0.040
			C21-C22	π^{*}	0.38003	13.82	0.36	0.066
			C21-C28	σ^{*}	0.02682	2.14	0.90	0.041
LPN4	σ	1.91786	C5-C6	σ^{*}	0.08031	3.42	0.74	0.045
			C6-C7	σ^{*}	0.03473	10.97	0.86	0.088
			C11-C20	σ^{*}	0.04342	10.80	0.86	0.087
			C18-C20	σ^{*}	0.02504	1.87	0.88	0.037

${ }^{\text {a }} \mathrm{E}(2)$ means energy of hyper-conjugative interactions (stabilization energy in $\mathrm{kJ} / \mathrm{mol}$)
${ }^{\mathrm{b}}$ Energy difference (a.u) between donor and acceptor i and j NBO orbitals
${ }^{c} F(i, j)$ is the Fock matrix elements (a.u) between i and j NBO orbitals

Table 5. NBO results showing the formation of Lewis and non-Lewis orbitals.

Bond(A-B)	ED/e ${ }^{\text {a }}$	EDA\%	EDB\%	NBO	s\%	$\mathrm{p} \%$
σ-02-C5	$\begin{aligned} & \hline 1.99675 \\ & -1.10014 \\ & \hline \end{aligned}$	65.73	34.27	$\begin{aligned} & 0.8107\left(\mathrm{sp}^{1.36}\right) \mathrm{O}+ \\ & 0.5854\left(\mathrm{sp}^{1.89}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 42.35 \\ & 34.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.65 \\ & 65.45 \end{aligned}$
бO3-C5	$\begin{aligned} & 1.98862 \\ & -0.90183 \\ & \hline \end{aligned}$	69.99	30.01	$\begin{aligned} & 0.8366\left(\mathrm{sp}^{2.16}\right) \mathrm{O}+ \\ & 0.5478\left(\mathrm{sp}^{2.70}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 31.63 \\ & 26.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 68.37 \\ & 73.02 \\ & \hline \end{aligned}$
бC5-C6	$\begin{gathered} 1.97361 \\ -0.66963 \\ \hline \end{gathered}$	48.37	51.63	$\begin{aligned} & 0.6955\left(\mathrm{sp}^{1.60}\right) \mathrm{C}+ \\ & 0.7186\left(\mathrm{sp}^{2.32}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 38.47 \\ & 30.12 \end{aligned}$	$\begin{aligned} & 61.53 \\ & 69.88 \end{aligned}$
бC6-C7	$\begin{gathered} 1.98101 \\ -0.70452 \\ \hline \end{gathered}$	50.29	49.71	$\begin{aligned} & 0.7091\left(\mathrm{sp}^{1.63}\right) \mathrm{C}+ \\ & 0.7051\left(\mathrm{sp}^{2.03}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 38.05 \\ & 32.99 \end{aligned}$	$\begin{aligned} & 61.95 \\ & 67.01 \end{aligned}$
-C11-C20	$\begin{aligned} & 1.97528 \\ & -0.69255 \\ & \hline \end{aligned}$	50.92	49.08	$\begin{aligned} & 0.7136\left(\mathrm{sp}^{2.14}\right) \mathrm{C}+ \\ & 0.7006\left(\mathrm{sp}^{1.85}\right) \mathrm{C} \end{aligned}$	$\begin{aligned} & 31.85 \\ & 35.04 \end{aligned}$	$\begin{aligned} & 68.15 \\ & 64.96 \end{aligned}$
бC18-C20	$\begin{aligned} & 1.97643 \\ & -0.68407 \\ & \hline \end{aligned}$	48.94	51.06	$\begin{aligned} & 0.6996\left(\mathrm{sp}^{1.98}\right) \mathrm{C}+ \\ & 0.7146\left(\mathrm{sp}^{1.88}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 33.56 \\ & 34.76 \\ & \hline \end{aligned}$	$\begin{array}{r} 66.44 \\ 65.24 \\ \hline \end{array}$
$\sigma \mathrm{C} 21-\mathrm{C} 22$	$\begin{gathered} 1.97659 \\ -0.71214 \\ \hline \end{gathered}$	50.19	49.81	$\begin{aligned} & 0.7084\left(\mathrm{sp}^{1.66}\right) \mathrm{C}+ \\ & 0.7058\left(\mathrm{sp}^{1.88}\right) \mathrm{C} \end{aligned}$	$\begin{aligned} & 37.52 \\ & 34.72 \\ & \hline \end{aligned}$	$\begin{aligned} & 62.48 \\ & 65.28 \\ & \hline \end{aligned}$
$\sigma \mathrm{C} 21-\mathrm{C} 28$	$\begin{aligned} & 1.97932 \\ & -0.71358 \\ & \hline \end{aligned}$	50.42	49.58	$\begin{aligned} & 0.7101\left(\mathrm{sp}^{1.58}\right) \mathrm{C}+ \\ & 0.7041\left(\mathrm{sp}^{1.95}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 38.74 \\ & 33.88 \end{aligned}$	$\begin{aligned} & 61.26 \\ & 66.12 \end{aligned}$
$\sigma \mathrm{C} 24-\mathrm{C} 25$	$\begin{aligned} & 1.97706 \\ & -0.71859 \\ & \hline \end{aligned}$	50.01	49.99	$\begin{aligned} & 0.7071\left(\mathrm{sp}^{1.97}\right) \mathrm{C}+ \\ & 0.7071\left(\mathrm{sp}^{1.56}\right) \mathrm{C} \end{aligned}$	$\begin{aligned} & 33.61 \\ & 39.00 \end{aligned}$	$\begin{aligned} & 66.39 \\ & 61.00 \\ & \hline \end{aligned}$
$\pi \mathrm{C} 24-\mathrm{C} 25$	$\begin{gathered} \hline 1.66320 \\ -0.26444 \\ \hline \end{gathered}$	45.83	54.17	$\begin{aligned} & 0.6770\left(\mathrm{sp}^{1.00}\right) \mathrm{C}+ \\ & 0.7360\left(\mathrm{sp}^{1.00}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.00 \\ & 0.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100.0 \\ & 100.0 \\ & \hline \end{aligned}$
$\sigma \mathrm{C} 25-\mathrm{C} 26$	$\begin{gathered} 1.98087 \\ -0.72213 \\ \hline \end{gathered}$	50.90	49.10	$\begin{aligned} & 0.7134\left(\mathrm{sp}^{1.56}\right) \mathrm{C}+ \\ & 0.7007\left(\mathrm{sp}^{1.88}\right) \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} 39.02 \\ 34.68 \\ \hline \end{array}$	$\begin{array}{r} 60.98 \\ 65.32 \\ \hline \end{array}$
n1Cl1	$\begin{gathered} 1.99367 \\ -0.91366 \\ \hline \end{gathered}$			$\mathrm{sp}^{0.22}$	82.24	17.76
n2Cl1	$\begin{aligned} & 1.97151 \\ & -0.31594 \end{aligned}$			$\mathrm{sp}^{1.00}$	0.00	100.00
n3Cl1	$\begin{gathered} 1.93332 \\ -0.31530 \\ \hline \end{gathered}$			$\mathrm{sp}^{1.00}$	0.00	100.00
n1O2	$\begin{gathered} \hline 1.97728 \\ -0.68539 \\ \hline \end{gathered}$			$\mathrm{sp}^{0.73}$	57.69	42.31
n2O2	$\begin{aligned} & 1.82886 \\ & -0.25769 \\ & \hline \end{aligned}$			sp ${ }^{99.99}$	0.02	99.98
n1O3	$\begin{aligned} & 1.95025 \\ & -0.54928 \end{aligned}$			$\mathrm{sp}^{1.90}$	34.44	65.56
n2O3	$\begin{aligned} & 1.78653 \\ & -0.33853 \end{aligned}$			sp ${ }^{99.99}$	0.51	99.49
n1N4	$\begin{gathered} 1.91786 \\ -0.34039 \\ \hline \end{gathered}$			$\mathrm{sp}^{2.53}$	28.28	71.72

${ }^{\text {a }}$ ED/e is expressed in a.u.
affinity can be expressed as: $\mathrm{I}=-\mathrm{E}_{\text {номо }}, \mathrm{A}=-\mathrm{E}_{\text {LUMо }}$. The hardness η and chemical potential μ are given the following relations $\eta=(\mathrm{I}-\mathrm{A}) / 2$ and $\mu=-(\mathrm{I}+\mathrm{A}) / 2$, where I and A are the first ionization potential and electron affinity of the chemical species [52]. For the title compound, the $\mathrm{E}_{\text {номо }}=-7.901 \mathrm{eV}$, $\mathrm{E}_{\text {LUMO }}=-5.671 \mathrm{eV}$, Energy gap $=$ HOMO-LUMO $=2.23 \mathrm{eV}$, Ionization potential $\mathrm{I}=7.901 \mathrm{eV}$, Electron affinity $\mathrm{A}=5.671$ eV , global hardness $\eta=1.115 \mathrm{eV}$, chemical potential $\mu=$ 6.786 eV , global electrophiliciy $=\mu^{2} / 2 \eta=20.75 \mathrm{eV}$. It is seen that the chemical potential of the title compound is negative and it means that the compound is stable.

4.7. Natural Bond Orbital Analysis

The natural bond orbitals (NBO) calculations were performed using NBO 3.1 program [53] the DFT/B3LYP level in order to understand various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem and the important results are given in Tables 4 and 5.

The important intra-molecular hyper conjugative interactions are: $\mathrm{C}_{24}-\mathrm{C}_{25}$ from Cl_{1} of $\mathrm{n}_{1}\left(\mathrm{Cl}_{1}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{24}-\mathrm{C}_{25}\right), \mathrm{C}_{24}$ C_{25} from Cl_{2} of $\mathrm{n}_{2}\left(\mathrm{Cl}_{2}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{24}-\mathrm{C}_{25}\right), \mathrm{C}_{24}-\mathrm{C}_{25}$ from Cl_{3} of $\mathrm{n}_{3}\left(\mathrm{Cl}_{3}\right) \rightarrow \pi^{*}\left(\mathrm{C}_{24}-\mathrm{C}_{25}\right), \mathrm{C}_{5}-\mathrm{C}_{6}$ from O_{2} of $\mathrm{n}_{1}\left(\mathrm{O}_{2}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)$,
$\mathrm{O}_{3}-\mathrm{C}_{5}$ from Cl_{2} of $\mathrm{n}_{2}\left(\mathrm{O}_{2}\right) \rightarrow \sigma^{*}\left(\mathrm{O}_{3}-\mathrm{C}_{5}\right), \mathrm{C}_{21}-\mathrm{C}_{28}$ from O_{3} of $\mathrm{n}_{1}\left(\mathrm{O}_{3}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{21}-\mathrm{C}_{28}\right), \mathrm{O}_{2}-\mathrm{C}_{5}$ from O_{3} of $\mathrm{n}_{2}\left(\mathrm{O}_{3}\right) \rightarrow \pi^{*}\left(\mathrm{O}_{2}-\mathrm{C}_{5}\right), \mathrm{C}_{6}-$ C_{7} from N_{4} of $\mathrm{n}_{1}\left(\mathrm{~N}_{4}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{6}-\mathrm{C}_{7}\right)$ with electron densities, $0.03518,0.03518,0.40990,0.08031,0.12029,0.02682$, $0.22595,0.03473 \mathrm{e}$ and stabilization energies, $1.20,4.20$, $11.31,2.82,38.06,4.97,41.37,10.97 \mathrm{KJ} / \mathrm{mol}$.

The natural hybrid orbitals with higher energies are: $\mathrm{n}_{3}\left(\mathrm{Cl}_{1}\right), \mathrm{n}_{2}\left(\mathrm{O}_{2}\right), \mathrm{n}_{2}\left(\mathrm{O}_{3}\right)$ with energies, $-0.31530,-0.25769$, 0.33853 a.u and p-characters, $100,99.98,99.49 \%$ and low occupation numbers, $1.93332,1.82886,1.78653$ while the lower energy orbitals are: $\mathrm{n}_{1}\left(\mathrm{Cl}_{1}\right), \mathrm{n}_{1}\left(\mathrm{O}_{2}\right), \mathrm{n}_{1}\left(\mathrm{O}_{3}\right)$ with energies $-0.91366,-0.68539,-0.54928 \mathrm{a} . \mathrm{u}$ and p-characters, 17.76, 42.31, 65.56% and high occupation numbers, 1.99367, 1.97728, 1.95025.

Thus, a very close to pure p-type lone pair orbital participates in the electron donation to the $\mathrm{n}_{1}\left(\mathrm{Cl}_{1}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{24}-\right.$ $\left.\mathrm{C}_{25}\right), \quad \mathrm{n}_{2}\left(\mathrm{Cl}_{2}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{24}-\mathrm{C}_{25}\right), \quad \mathrm{n}_{3}\left(\mathrm{Cl}_{3}\right) \rightarrow \pi^{*}\left(\mathrm{C}_{24}-\mathrm{C}_{25}\right)$, $\mathrm{n}_{1}\left(\mathrm{O}_{2}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right), \mathrm{n}_{2}\left(\mathrm{O}_{2}\right) \rightarrow \sigma^{*}\left(\mathrm{O}_{3}-\mathrm{C}_{5}\right), \mathrm{n}_{1}\left(\mathrm{O}_{3}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{21}-\mathrm{C}_{28}\right)$, $\mathrm{n}_{2}\left(\mathrm{O}_{3}\right) \rightarrow \pi^{*}\left(\mathrm{O}_{2}-\mathrm{C}_{5}\right)$ and $\mathrm{n}_{1}\left(\mathrm{~N}_{4}\right) \rightarrow \sigma^{*}\left(\mathrm{C}_{6}-\mathrm{C}_{7}\right)$ interactions in the compound.

Table 6. The binding affinity values of different poses of the title compound predicted by Autodock Vina.

Mode	Affinity (kcal/mol)	Distance from best mode (A)	
		RMSD l.b.	RMSD u.b.
1	-7.2	0.000	0.000
2	-7.1	4.683	6.999
3	-7.0	4.506	6.760
4	-6.8	5.111	7.396
5	-6.7	24.457	27.005
6	-6.7	15.112	17.133
7	-6.5	25.883	27.689
8	-6.5	4.666	7.153
9	-6.5	4.599	7.122

Figure 8. Schematic for the docked conformation of active site of title compound at CDK inhibitors.

4.8. Molecular docking

Quinoline derivatives possess a broad range of bioactivities as such as antibacterial [54], antitumor, anti-HIV1 integrase, anti-HCV-NS3 helicase and -NS5B-polymerase activities [55-57]. A series of tetracyclic indenoquinolines is used as potential anticancer agents. The compounds, which are obtained through the photoisomerization of Diels-Alder adducts formed between purpurogallin derivatives and nitrosobenzene, have in vitro anti-proliferative activities against breast (MCF-7), lung epithelial (A-549) and cervical (HeLa) adenocarcinoma cells [58]. Several novel functionalized quinolones, which exhibited potential antineoplastic activity against eukaryotic type II topoisomerases [59]. In addition to the antibacterial quinolones, specific members of this drug family display high activity against eukaryotic type II topoisomerases, as well as cultured mammalian cells and invivo tumor models. These antineoplastic quinolones represent an exploitable source of new anticancer agents which might also help addressing undesirable-toxicity and resistance Phenomena [59]. Jayashree et al. reported the molecular docking experiments of 4oxotheino [3,2-c]quinoline-2-carboxylates with DNA and their potential anticancer property [60]. High resolution crystal structure of CDK inhibitors as anti-cancer was downloaded from the protein data bank website (PDB ID: 2XNB). All molecular docking calculations were performed on Auto Dock-Vina software [61]. The 3D crystal structure of CDK inhibitors was obtained from Protein Data Bank. The protein was prepared for docking by removing the co-crystallized ligands, waters and co-factors. The Auto Dock Tools (ADT) graphical user interface was used to calculate Kollman charges and polar hydrogens. The ligand was prepared for docking by minimizing its energy at B3LYP/6-31g(d) level of theory. Partial charges were calculated by Geistenger method. The active site of the enzyme was defined to include residues of the

Figure 9. The docked protocol reproduced the co-crystallized conformation with π-alkyl (pink), π-sigma (violet) and hydrophobic receptor surface shown.
active site within the grid size of $40 \AA \times 40 \AA \times 40 \AA$. The most popular algorithm, Lamarckian Genetic Algorithm (LGA) available in Autodock was employed for docking The docking protocol was tested by extracting co-crystallized inhibitor from the protein and then docking the same. The docking protocol predicted the same conformation as was present in the crystal structure with RMSD value well within the reliable range of $2 \AA$ [62]. Amongst the docked conformations, one which binded well at the active site was analyzed for detailed interactions in Discover Studio Visualizer 4.0 software. The ligand binds at the active site of the substrate (Figures 8 and 9) by weak non-covalent interactions. Amino acid Gln 131 forms π-sigma interaction with phenyl ring. Trpi67 amino acid forms π-sigma interactions with phenyl ring and π-alkyl interaction with phenyl ring, CH_{3} group. The docked ligand title compound forms a stable complex with CDK inhibitors and gives a binding affinity ($\Delta \mathrm{G}$ in $\mathrm{kcal} / \mathrm{mol}$) value of -7.2 (Table 6). These preliminary results suggest that the compound might exhibit inhibitory activity against CDK inhibitors.

5. Conclusions

The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 4-chloro-3-methylphenyl quinoline-2-carboxylate have been investigated theoretically and experimentally. The geometrical parameters are in agreement with the XRD experimental data. The stability of the title compound arising from hyperconjugative interaction and charge delocalization has been interpreted using NBO analysis. The HOMO-LUMO analysis
is used to determine the charge transfer within the molecule. From the MEP plot it is clear that the negative regions are over the carbonyl group oxygen atom and hene electrophilic attack can take place in these sites and the positive regions are over the hydrogen atoms hence nucleophilic attack can take place in these regions. From the docking studies, the docked ligand title compound forms a stable complex with CDK inhibitors and gives a binding affinity value of $-7.2 \mathrm{kcal} / \mathrm{mol}$ and the results suggest that the compound might exhibit inhibitory activity against CDK inhibitors.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Research Group Project No.PRG-1436-23.

References

1. S. Kumar, S. Bawa, H. Gupta, Mini Rev. Med. Chem. 9 (2009) 1648.
2. R. Musiol, M. Serda, S. Hensel-Bielowka, J. Polanski, Curr. Med. Chem. 17 (2010) 1960.
3. K. D. Thomas, A. V. Adhikari, S. Telkar, I. H. Chowdhury, R. Mahmood, N. K. Pal, E. Sumesh, Eur. J. Med. Chem. 46 (2011) 5283.
4. K. Kaur, M. Jain, R. P. Reddy, R. Jain, Eur. J. Med. Chem. 45 (2010) 3245.
5. A. Mitchinson, A. Nadin, J. Chem. Soc. Perkin Trans. I 17 (2000) 2862.
6. V. Sridharan, P. Suryavanshi, J. C. Menendez, Chem. Rev. 111 (2011) 7157.
7. R. Vlahov, S. Parushev, J. Vlahov, P. Nickel, G. Snatzke, Pure Appl. Chem. 62 (1990) 1303.
8. M. S. Abdel-Aal, M. S. Morad, Br. Corros. J. 36 (2001) 253.
9. T. P. Hoar, R. D. Holliday, J. Appl. Chem. 3 (1953) 502.
10. B. S. Shylesha, T. V. Venkatesha, B. M. Praveen, K. V. Srinath, Anal. Bioanal. Electrochem. 3 (2011) 249.
11. M. S. Abdel-All, Z. A. Ahmed, M. S. Hassan, J. Appl. Electrochem. 22 (1992) 1104.
12. M. Singh, A. K. Bhattamishra, J. Metallurgy Mater. Sci. 49 (2007) 39.
13. M. Chrzanowdka, M. D. Rozwadowska, Chem. Rev. 104 (2004) 3341.
14. J. D. Scott, R. M. Williams, Chem. Rev. 102 (2002) 1669.
15. V. R. Solomon, H. Lee, Eur. J. Pharmacol. 25 (2009) 220.
16. P. Hewawasam, W. Fan, J. Knipe, S. L. Moon, C. G. Boissard, V. K. Gribkoff, J. E. Starztt, Bioorg. Med. Chem. Lett. 12 (2002) 1779.
17. D. S. Raja, N. S. P. Bhuvanesh, K. Natarajan, Eur. J. Med. Chem. 46 (2011) 4584.
18. D. S. Raja, N. S. P. Bhuvanesh, K. Natarajan, Inorg. Chem. 50 (2011) 12852.
19. R. T. Ulahannan, C. Y. Panicker, H. T. Varghese, C. Van Alsenoy, R. Musiol, J. Jampilek, P. L. Anto, Spectrochim. Acta 121 (2014) 445.
20. R. T. Ulahannan, C. Y. Panicker, H. T. Varghese, C. Van Alsenoy, R. Musiol, J. Jampilek, P. L. Anto, Spectrochim. Acta 121 (2014) 404.
21. R. T. Ulahannan, C. Y. Panicker, H. T. Varghese, R. Musiol, J. Jampilek, C. Van Alsenoy, J. A. War, A. A. Al-Saadi, Spectrochim. Acta 151 (2015) 335.
22. R. T. Ulahannan, C. Y. Panicker, H. T. Varghese, R. Musiol, J. Jampilek, C. Van Alsenoy, J. A. War, S. K. Srivastava, Spectrochim. Acta 151 (2015) 184.
23. E. Fazal, C. Y. Panicker, H. T. Varghese, S. Nagarajan, B. S. Sudha, J. A. War, S. K. Srivastava, B. Harikumar, P. L. Anto, Spectrochim. Acta 143 (2015) 213.
24. E. Fazal, C. Y. Panicker, H. T. Varghese, S. Nagarajan, B. S. Sudha, J. A. War, S. K. Srivastava, B. Harikumar, P. L. Anto, Spectrochim. Acta 145 (2015) 260.
25. S. Shahab, H. A. Almodarresiyeh, R. Kumar, M. Darroudi, J. Mol. Struct. 1088 (2015) 105.
26. O. V. Dyablo, A. F. Pozharskii, E. A. Shmoilova, V. A. Ozeryanskii, N. S. Fedik, K. Y. Suponitsky, J. Mol. Struct. 1107 (2016) 305.
27. J. E. Nycz, K. Czyz, M. Szala, J. G. Malecki, G. Shaw, B. Gilmore, M. Jon, J. Mol. Struct. 1106 (2016) 416.
28. E. Fazal, P. S. Murthy, K. A. Naidu, A. Maheshwaraiah, S. Nagarajan, B. S. Sudha, Microwave assisted synthesis and biological evaluation of potential quinoline-2-carboxylates of aromatic compounds, Indo Am. J. Pharm. Res. 2 (2015) 625.
29. E. Fazal, M. Kaur, B. S. Sudha, S. Nagarajan, J. P. Jasinski, Acta Cryst. E 69 (2013) o1842.
30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision B. 01), Gaussian, Inc., Wallingford CT (2010).
31. A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision E. 01), Gaussian, Inc, Wallingford CT (2010).
32. J. B. Foresman, Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, Gaussian Inc., Pittsburg, PA (1996).
33. R. Dennington, T. Keith, J. Millam, GaussView (Version 5), Semichem Inc., Shawnee Mission KS (2009).
34. J. M. L. Martin, C. Van Alsenoy, GAR2PED, A Program to Obtain a Potential Energy Distribution from a Gaussian Archive Record, University of Antwerp, Belgium (2007).
35. A. F. Holleman, E. Wiberg, N. Wiberg, Lehrburch der Anorganischen Chemie, Walter de Gruyter, Berlin (2007).
36. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
37. G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York (1974).
38. M. Kaur, Y. S. Mary, H. T. Varghese, C. Y. Panicker, H. S. Yathirajan, M. S. Siddegowda, C. Van Alsenoy, Spectrochim. Acta 98 (2012) 91.
39. V. S. Madhavan, H. T. Varghese, S. Mathew, J. Vinsova, C. Y. Panicker, Spectrochim. Acta 72 (2009) 547.
40. K. C. Mariamma, H. T. Varghese, C. Y. Panicker, K. John, J. Vinsova, C. Van Alsenoy, Spectrochim. Acta 112 (2013) 161.
41. R. M. Silverstein, G. C. Bassler, T. C. Morri, Spectrometric Identification of Organic Compounds (5th ed.), John Wily and Sons Inc., Singapore (1991).
42. G. Socrates, Infrared Characteristic Group Frequencies, Wiley, New York (1980).
43. A. Karton, M. A. Iron, M. E. van der Boom, J. M. L. Martin, J. Phys. Chem. A 109 (2005) 5454.
44. Y. Sun, X. Chen, L. Sun, X. Guo, W. Lu, Chem. Phys. Lett. 381 (2003) 397.
45. O. Christiansen, J. Guass, J. F. Stanton, Chem. Phys. Lett. 305 (1999) 147.
46. C. Adant, M. Dupuis, J. L. Bredas, Int. J. Quantum Chem. 56 (2004) 497.
47. A. Gul, Z. Akhter, R. Qureshi, A. S. Bhatti, RSC Adv. 4 (2014) 22094.
48. A. Gul, Z. Akhter, M. Siddiq, R. Qureshi, A. S. Bhatti, J. Appl. Polym. Sci. 131 (2014) 40698.
49. P. Thul, V. P. Gupta, V. J. Rama, P. Tandon, Spectrochim. Acta 75 (2010) 251.
50. S. Sert, H. Sreenivasa, K. E. Dogan, P. A. Manojkumar, Suchetan, F. Ucun, Spectrochim. Acta 127 (2014) 122.
51. K. Chaitanya, Spectrochim. Acta 86 (2012) 159.
52. A. Jayaprakash, V. Arjunan, S. Mohan, Spectrochim. Acta 81 (2011) 620.
53. R. J. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512.
54. E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO (Version 3. 1), Gaussian Inc., Pittsburg, PA (2003).
55. V. E. Anderson, N. Osheroff, Curr. Pharm. Des. 7 (2001) 337
56. A. Ahmed, M. Daneshtalab, J. Pharm. Pharm. Sci. 15 (2012) 52.
57. C. Mugnaini, S. Pasquini, F. Corelli, Curr. Med. Chem. 16 (2009) 1746.
58. S. Richter, C. Parolin, M. Palumbo, G. Palu, Curr. Drug Targets Infect. Disord. 4 (2004) 111.
59. S. Chakrabarty, M. S. Croft, M. G. Markob, G. Moyna, Bioorg. Med. Chem. 21 (2013) 1143.
60. C. Sissi, M. Palumbo, Curr. Med. Chem. Anticancer Agents 3 (2003) 439.
61. A. Jayashree, Y. Satish, M. A. Reddy, Int. J. Res. Pharm. Biomed. Sci. 4 (2013) 607.
62. O. Trott, A. J. Olson, J. Comput. Chem. 31 (2010) 455.
63. B. Kramer, M. Rarey, T. Lengauer, Proteins: Struct. Funct. Genet. 37 (1999) 228.

Cite this article as:

Fazal Edakot et al.: Synthesis, spectroscopic analysis and molecular docking studies of 4-chloro-3-methylphenyl quinoline-2carboxylate. Sci. Lett. J. 2016, 5: 237

