
	
	

King	Saud	University	
College	of	Computer	and	Information	Sciences		

Information	Technology	Department	
	

	
	
	
	
	
	

System	Analysis	and	Design	Guide	
	Graduation	Project	1	

IT	496	
	
	

Prepared	by		
Hend	Alrasheed		

halrasheed@ksu.edu.sa	
	
	
	

Aug.	2019	
	
	
	

	
This	document	is	directed	to	the	IT	496	students	in	the	Department	of	Information	Technology,	
King	Saud	University.	The	goal	is	to	clarify	the	technical	details	required	in	their	project	report.	
Assuming	you	have	a	clear	project	idea	and	a	solid	list	of	requirements,	this	document	focuses	
on	the	System	Analysis	and	Design	chapter	of	the	graduation	report	(Chapter	4	of	the	Project-1	
Guide).	
	This	document	does	not	intend	to	repeat	basic	Software	Engineering	concepts	and	techniques	
(as	introduced	in	the	Software	Engineering	course	IT320).	However,	this	document	sheds	some	
light	on	some	of	the	major	and	common	questions	that	students	may	face	during	their	graduation	
projects.	
	
	
	
	
	

	 2	

Table	of	Contents	

Overview.	...	3	

Project	scope.	...	4	

Software	requirements.	...	4	

Use-case	diagram.	..	4	

Use-cases.	..	7	

Traditional	or	Object-Oriented	requirements	modeling?	...	11	

UML	design	diagrams.	...	12	

Architectural	Design.	...	12	

Component	level	design	..	13	

Data	Flow	Diagrams	(DFD).	..	13	

Conceptual	Model.	..	14	

Class	Diagram.	...	15	

ER	Diagram.	...	15	

What	is	the	difference	between	a	class	diagram	and	an	ERD?	..	15	

Deployment	diagram	...	16	

State	diagram	–	Describes	the	state	changes	of	the	system	...	17	

Activity	diagram	–	Represents	the	activity	flow	of	the	system.	..	18	

Decision	tables	..	18	

What	diagrams	do	I	need?	...	19	

References:	...	20	
	

	
	
	
	
	
	
	
	
	
	

	 3	

Overview.	
Generally,	the	first	part	of	your	graduation	project	(GP1)	will	include	three	major	activities:	

- Understanding	the	software	requirements.	
- System	analysis	and	design.	
- Component	level	design.			

	
Each	of	the	activities	 listed	above	has	 its	own	set	of	deliverables.	The	figure	below	shows	the	
most	 common	 types	 of	 deliverables	 during	 each	 activity.	 Note	 that	 you	 may	 not	 need	 all	
diagrams.	Also,	you	may	need	some	diagrams	that	are	not	listed	in	the	diagram	below.	Details	of	
each	diagram	will	be	provided	in	the	rest	of	this	document.	
				

	

	 4	

Project	scope.		
The	project	scope	is	the	part	of	the	project	in	which	the	team	determines	the	general	goals	and	
deliverables	of	the	project.	Here	you	also	mention	what	will	not	be	included	in	the	project.	
	
When	you	write	your	scope	statement,	make	it	SMART	(Specific,	Measurable,	Agreed	upon,	
Realistic,	and	Time	bound).	
	
Example:	
This	project	will	consist	of	creating	a	software	system	that	……………………	The	main	objective	of	
this	software	is	to	…………………..	The	following	functions	will	be	out	of	the	scope	of	this	project	
……………..	The	project	will	be	completed	on	…………………	

	

	

Software	requirements.		
The	software	requirements	list	is	a	detailed	description	of	the	software	to	be	developed.	Here	
you	 tell	 the	 customers	what	 can	 your	 system	 do	 and	who	 will	 use	 it.	 Note	 that	 the	 system	
requirements	do	not	provide	any	details	on	how	those	requirements	work.	Requirements	can	be	
functional	and	non-functional.	
	
Functional	 requirements:	 a	 detailed	 list	 of	 the	 system	 features	 and	 functions.	 Those	 are	 the	
functions	you	will	later	implement.	For	each	function,	specify	the	input,	the	output,	and	the	type	
of	user.	For	each	functional	requirement,	you	will	write	a	use-case	(explained	below)	to	explain	
it	in	more	details.	It	is	a	good	idea	to	number	your	requirements	so	it	is	easier	to	refer	to	them.	
	
Non-functional	 requirements:	 a	 description	of	 the	 general	 characteristics	 (or	 qualities)	 of	 the	
system	such	as	performance,	scalability,	security,	and	maintainability.		
	
	
	
	

Use-case	diagram.	
The	use-case	diagram	shows	the	interaction	between	the	system	and	the	external	entities	(called	
actors).	The	actors	may	be	users	or	other	systems.	In	a	use-case	diagram,	a	(human)	user	(actor)	
is	usually	 represented	with	a	 stick	 figure	with	 the	name	of	 the	actor	below	 the	 figure.	Other	
systems	(that	are	external	and	interact	directly	with	the	system)	are	represented	with	a	box	with	
the	word	“actor”.	
	
In	some	special	cases,	Time	can	be	an	actor.	For	example,	when	the	system	is	automated	and	
triggered	by	time	(this	includes	events	that	occur	every	month,	every	day,	or	every	minute).	
	

	 5	

The	system	is	represented	as	a	set	of	use-cases.	Each	use-case	represents	a	single	meaningful	
function	that	is	observable	to	someone	or	something	outside	the	system.	In	a	use-case	diagram,	
a	use-case	is	denoted	by	an	ellipse.		
	
A	 generalization/specialization	 relationship	 (also	 called	 inheritance	 relationship)	 may	 exist	
between	actors	when	one	actor	(the	descendant	actor)	inherits	the	properties	of	another	actor	
(the	ancestor	actor).	This	relationship	implies	that	the	descendant	actor	can	use	all	the	use-cases	
defined	for	its	ancestor	actor.			
	
Similarly,	a	generalization/specialization	relationship	may	exist	between	use-cases	when	there	is	
a	basic	flow	of	events	that	is	followed	by	multiple	special	considerations.	We	can	think	of	the	
super	use-case	as	a	generalization	of	the	sub	use-cases.	Look	at	the	example	below.	
	

	
	
The	 sub	 use-case	 (or	 cases)	 in	 the	 specialization/generalization	 relationship	 carries	 the	
underlying	business	process	meaning.		
	
Two	types	of	advanced	relationships	may	exist	between	use-cases:	the	“Include”	relationship	and	
the	“Extend”	relationship.	
	
The	 Include	 relationship:	 this	 relationship	 is	 used	when	 a	 use-case	 contains	 the	 processes	 of	
another	use-case	as	part	of	its	normal	flow	of	actions.		
	

	
	
	
We	assume	that	any	included	use-case	will	be	always	called	as	part	of	the	including	use-case.	A	
use-case	may	be	included	by	one	or	more	use-cases.	See	the	example	below.	
	
	

	

	 6	

The	main	goal	of	using	the	Include	relationship	is	to	avoid	repetition.		
	
The	 Extend	 relationship:	 this	 relationship	 is	 used	when	 a	 use-case	 augments	 the	 behavior	 of	
another	use-case.	That	is,	when	the	functionality	of	the	original	use-case	need	to	be	extended	as	
a	result	of	some	exceptional	circumstance	(the	original	use-case	can	be	executed	without	the	
extended	use-case).			
	

	
	
For	example,	the	use-case	Solve	Problem	below	is	complete	by	itself,	but	can	be	extended	by	the	
use-case	Report	to	Supervisor	in	a	specific	scenario	in	which	the	user	wants	to	report	the	problem	
to	the	supervisor.	
	

	
	
	Multiple	use-cases	can	extend	a	single	use-case	(look	at	the	example	below).	
	

	
	
	
The	main	goal	of	using	the	Extend	relationship	is	to	reduce	the	complexity	of	a	large	use-case	(by	
dividing	it).	
	
The	Generalization	 and	 the	Extend	 relationships	 are	 similar	 and	 you	 can	 think	 of	 the	 Extend	
relationship	as	a	type	of	the	Generalization	relationship.	The	main	difference	between	them	is	
that	in	the	Generalization	relationship,	the	sub	use-cases	are	expected	to	redefine	the	behavior	
of	 the	 super	use-case.	That	 is,	 the	behaviors	of	 the	 super	and	 the	 sub	use-cases	 can	be	very	
different.	However,	in	the	Extend	relationship,	the	extending	use-case	will	be	executed	after	the	
execution	of	the	extended	use-case	reaches	a	certain	point	(a	condition).	Therefore,	the	Extend	
relationship	uses	what	we	call	an	Extension	Point.	
	

	 7	

An	extension	point	 show	when	 the	extending	use-case	will	be	performed.	Take	a	 look	at	 the	
example	below.	In	(a),	it	is	hard	to	tell	when	the	Give	raise	use-case	will	be	executed.	This	problem	
was	resolved	using	the	extension	point	as	in	(b).	
	

	
	

(a)	 (b)	
				
	
	

	

Use-cases.	
A	 use-case	 is	 a	 template	 that	 describes	 one	 of	 the	 processes	 of	 the	 system	 from	 the	 user’s	
perspective.	The	use-case	describes	the	process	from	start	to	finish	as	sequence	of	events	and	
actions	that	are	required	to	complete	the	process.	
You	need	to	create	a	use-case	for	each	process	in	the	use-case	diagram.	
	
Most	use-cases	contain	the	following	sections:	use-case	name,	actor,	purpose,	overview,	cross	
references,	 constraints,	 pre-conditions,	 post-conditions,	 type,	 priority,	 frequency	 of	 use,	 and	
typical	course	of	actions.	Next,	a	brief	description	of	each	section	is	provided.	
	
- Use-case	name:	 the	use-case	name	must	be	meaningful	and	unique.	For	example,	Log	In,	

Rate	Product,	and	Buy	Items.		
	
- Actor:	the	type	of	users	who	can	initiate	this	use-case.	A	use-case	may	have	a	single	actor	or	

multiple	 actors.	 If	 a	 use-case	 has	multiple	 actors,	 it	 is	 a	 good	 idea	 to	 decide	who	 is	 the	
initiator	 of	 the	 use-case.	 For	 example,	 the	 Buy	 Items	 use-case	 has	 two	 actors:	 customer	
(initiator)	and	cashier.	
	

- Purpose:	the	objective	of	the	use-case.	Technical	and	implementation	details	should	not	be	
mentioned	as	a	part	of	the	use-case	purpose.	

	

	 8	

- Overview:	what	type	of	actions	take	place	during	this	use-case?	It	is	a	good	idea	to	start	the	
use-case	overview	with	this	sentence:	“This	use-case	begins	when	…..”	and	ends	it	with	“This	
use-case	ends	when	…..”	or	“On	completion,	…..”.	
	

- Cross	references:	the	number	of	the	functional	requirement	that	can	be	linked	to	this	use-
case.	

	
- Pre-conditions:	the	conditions	that	need	to	be	met	before	the	use-case	can	begin.	

	
- Post-conditions:	the	changes	that	occur	after	the	execution	of	the	use-case	such	as	saving	

information	or	generating	output.	
	

- Type:	there	are	two	ways	to	describe	the	type	of	a	use-case:		
	

(1)				According	to	usage	and		
(2)				According	to	abstraction	level.	

	
According	to	usage,	use-case	type	can	be	primary,	secondary,	or	optional.	

• Primary:	when	the	use-case	describes	a	major	and	common	function.	
• Secondary:	when	the	use-case	describes	an	exceptional	function	(a	function	that	is	

rare	or	unusual).	
• Optional:	when	the	use-case	describes	a	function	that	may	or	may	not	be	used	(may	

or	may	not	be	implemented).	
	
								According	to	abstraction	level,	a	use-case	type	can	be	essential	or	real.	

• Essential:	when	the	description	of	the	use-case	is	written	using	a	high-level	language	
(free	 of	 technology	 and	 implementation	 details).	Most	 use-cases	will	 be	 essential	
because	they	are	created	during	the	analysis	phase.	

• Real:	when	the	description	of	the	use-case	involves	a	detailed	design	description.	
	
	
The	following	is	an	example	of	the	language	used	in	an	essential	and	a	real	use-cases.	
	

Essential	use-case	 Real	use-case	
The	account	holder	identifies	herself	to	
the	ATM.	

The	account	holder	inserts	the	card	into	the	
ATM	card	reader.	
The	account	holder	is	prompted	to	enter	her	
PIN	which	she	input	using	a	numeric	keypad.			

	
	
	
	
	

	 9	

- Typical	course	of	events:	
The	typical	course	of	events	is	the	formal	description	of	the	flow	of	events	that	occur	during	
the	execution	of	the	use-case.	It	tells	us	step	by	step	how	the	system	reacts	to	every	user	
action	(keep	in	mind	that	the	system	may	not	respond	to	every	user	action	or	it	may	require	
multiple	user	actions	to	respond).		
You	can	think	of	it	as	a	textual	representation	of	the	corresponding	sequence	diagram.		
It	is	called	“typical”	course	of	events	because	it	describes	how	most	users	interact	with	the	
system.	It	includes	“Alternatives”	section	that	handles	all	the	other	cases	in	which	an	event	
may	happen	differently.		
The	table	below	shows	how	the	typical	course	of	events	looks	like	for	the	Buy	Items	use-
case.		

	
	

Actor	action	 System	response	
1. 1.	This	use-case	begins	when	a	customer	

arrives	at	the	checkout	point.	
	

2. 2.	The	cashier	scans	each	item.	 3.	Determines	the	item	price	and	adds	its	
information	to	the	current	transaction.	

3. 4.	The	cashier	indicates	that	the	item	
entry	is	complete.	

5.	Calculates	and	displays	the	total.	

4. 6.	The	cashier	tells	the	customer	the	
total.	

	

5. 7.	The	customer	gives	a	cash	payment.	
6. The	cashier	records	the	cash	received.		

8.	Shows	the	balance	due	back	to	the	
customer.	

7. 9.	The	cashier	deposits	the	cash	and	
extracts	the	balance	owing.	

8. 11.	The	cashier	gives	the	balance	owing	
to	the	customer.	

9. 10.	Logs	the	completed	sale.	
Print	the	receipt.	

12.	The	cashier	gives	the	receipt	to	the	
customer.	
13.	The	customer	leaves	with	the	items.	

	

Alternatives:	
Line	9:	insufficient	cash	in	drawer	to	pay	balance.	Ask	for	cash	from	supervisor.	

	
	
In	the	use-case	above,	it	is	expected	that	the	customer	will	always	choose	“pay	by	cash”	as	
her	payment	method	 (only	one	method	of	 payment	 is	 provided).	 If	 the	 system	has	 two	
methods	of	payment	(cash	and	credit	card),	then	list	the	typical	(most	common)	one	in	the	
table	and	the	other	in	the	Alternatives	section.	However,	if	the	two	methods	are	equal	in	
their	 likelihood,	 then	you	need	to	add	a	new	table	 for	each	option	(look	at	 the	example	
below).	

			

	 10	

Section:	Main	
Actor	action	 System	response	

1.	This	use-case	begins	when	a	
customer	arrives	at	the	checkout	point.	

	

2.	The	cashier	scans	each	item.	 3.	Determines	the	item	price	and	
adds	its	information	to	the	current	
transaction.	

4.	The	cashier	indicates	that	the	item	
entry	is	complete.	

5.	Calculates	and	displays	the	total.	

6.	The	cashier	tells	the	customer	the	
total.	

	

1. 7.	Customer	chooses	payment	method:	
a. If	customer	chooses	cash,	see	section	

pay	by	cash.	
If	customer	chooses	credit	card,	see	
section	pay	by	credit	card.	

	

	
	

8.	Logs	the	completed	sale.	
Print	the	receipt.	

9.	The	cashier	gives	the	receipt	to	the	
customer.	
10.	The	customer	leaves	with	the	items.	

	

Alternatives:	
	

	

	
	

Section:	Pay	by	cash	
Actor	action	 System	response	

1. 1.	The	customer	gives	a	cash	payment.	
2. 2.	The	cashier	records	the	cash	

received.		

	

	 3. 3.	Shows	the	balance	due	back	to	the	
customer.	

4. 4.	The	cashier	deposits	the	cash	and	
extracts	the	balance	owing.	

5. 5.	The	cashier	gives	the	balance	owing	
to	the	customer.	

	

Alternatives:	
Line	4:	insufficient	cash	in	drawer	to	pay	balance.	Ask	for	cash	from	supervisor.	

	
	
Similarly,	add	a	Pay	by	credit	card	course	of	events	table.	

	

	 11	

Traditional	or	Object-Oriented	requirements	modeling?	
The	choice	of	the	software	requirements	modeling	determines	your	overall	view	of	the	systems	
and	the	UML	diagrams	you	will	need	to	provide	as	part	of	your	project.	
	
The	choice	of	the	software	requirements	modeling	is	determined	by	the	nature	of	your	software	
project.	However,	some	projects	can	be	developed	using	any	approach.	Generally,	we	use	the	
following	rule	to	decide:	
	
When	the	basic	building	blocks	of	our	project	is	functions,	then	we	use	the	traditional	approach.	
When	the	basic	building	blocks	of	our	project	is	entities	(data),	then	we	use	the	object-oriented	
approach.	
	
What	do	we	mean	by	a	building	block?	Think	of	it	as	the	basic	set	of	elements	(or	abstractions)	
of	your	project.	For	example,	in	a	banking	software,	the	basic	building	blocks	are	the	client,	the	
account,	the	transaction,	etc.	Those	are	all	entities,	and	each	entity	includes	sets	of	attributes	
and	methods.	Generally,	using	an	object-oriented	approach	works	well	for	a	banking	software.	
In	a	document	editing	software,	the	basic	building	blocks	are	functions	such	as	add	document,	
edit	document,	add	text,	change	text	color,	etc.	This	makes	using	the	traditional	approach	makes	
more	sense	in	this	case.	
Note	that	it	is	possible	to	use	any	approach;	however,	there	is	always	one	approach	that	is	more	
efficient	(leads	to	a	stronger	design).				
	
If	you	chose	the	traditional	approach,	then	your	components	are	functions	and	you	need	to	do	a	
data	flow	diagram.	
If	you	chose	the	object-oriented	approach,	then	your	components	are	entities	and	you	need	to	
do	a	class	diagram.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 12	

UML	design	diagrams.		
The	 rest	 of	 this	 document	 presents	 a	 several	 popular	UML	 diagrams	 that	 developers	 usually	
create	 as	 part	 of	 the	 software	 development	 process.	 Generally,	 those	 diagrams	 can	 be	
partitioned	into	two	groups:	behavioral	and	structural	(see	the	figure	below).	
	
Behavioral	diagrams	focus	on	the	data	flow	within	the	system	(or	within	a	specific	part	of	the	
system).	Structural	diagrams	show	the	static	(stable)	representation	of	the	system.		
	
	
	

	
	
	
	
	
	

Architectural	Design.	
The	architectural	design	shows	the	structure	of	the	system.	That	is,	the	main	system	components	
and	their	relationships.	Use	a	“box	and	line”	diagram	representation	to	show	your	design.	Do	not	
provide	any	component	details	at	this	level	(this	is	not	a	class	diagram).	
	
To	 come	 up	 with	 your	 architectural	 design,	 you	 need	 to	 figure	 out	 the	 following:	 the	 main	
components	 of	 your	 system	 and	 the	 best	 organization	 of	 those	 component	 (how	 those	
components	are	connected).		
	

	 13	

Remember	to	use	one	of	the	existing	architectural	patterns	if	one	is	similar	to	your	system.	Some	
of	the	most	common	software	architectural	patterns	are:	
	

1. The	layered	pattern.	
2. The	client-server	pattern.	
3. The	pipe	and	filter	pattern.		
4. The	repository	pattern.	
5. The	call	and	return	pattern.	

	
	
	
	

Component	level	design		
A	component	is	a	class,	a	module,	or	a	set	of	interrelated	classes	or	modules	that	collaborate	to	
achieve	a	common	goal.	
Component	level	design	follows	the	architectural	design	step.	The	goal	is	to	elaborate	on	each	of	
the	elements	in	your	architectural	diagram	by	providing	details	that	lead	to	the	actual	code.		
Component	 level	 design	 can	 be	 achieved	 by	 using	 a	 pseudo-code,	 a	DFD,	 a	 state	 diagram,	 a	
collaboration	diagram,	a	decision	table,	etc.	
Remember	to	follow	good	component	level	design	principles	(such	as	cohesion	and	coupling).	
This	will	help	you	create	a	design	that	is	easier	to	deal	with	(test,	maintain,	etc).			
	
	
	
	

Data	Flow	Diagrams	(DFD).	
If	 you	decided	 to	use	 a	 traditional	 software	 requirements	modeling,	 then	 you	 know	 that	 the	
functions	are	the	basic	building	blocks	of	your	system.	Therefore,	you	have	to	create	a	detailed	
list	of	all	the	functions	(methods)	that	you	are	going	to	implement	during	the	implementation	
phase.	DFDs	help	you	create	this	list.	
A	DFD	is	a	top	down	method	that	is	used	as	a	traditional	visual	representation	of	the	information	
flow	within	 a	 given	 system.	 It	 supports	 the	hierarchical	 decomposition	of	 the	 system	 into	 its	
different	functions	and	activities.	You	will	always	need	multiple	DFDs	each	of	which	describes	the	
system	at	a	different	level	of	abstraction.	The	number	of	DFDs	cannot	be	known	in	advanced.		
Generally,	DFDs	show	the	following	information:	

• Data	that	enters	and	leaves	the	system	(system	input	and	output).	
• External	entities	(people	or	other	systems)	that	interact	with	your	system.	This	will	help	
you	decide	the	boundary	of	your	system,	that	is,	what	is	and	what	is	not	included	in	your	
system.		

• The	processes	that	take	place	within	the	system.	
• The	information	that	is	stored	in	the	system.	

	

	 14	

The	following	provides	a	brief	description	of	the	first	four	DFD	levels:	
• Level	0	DFD	(also	called	the	Context	Level	DFD)	considers	the	whole	system	as	a	single	
process	 that	 interacts	 with	 a	 set	 of	 external	 entities.	 The	 entire	 system	 will	 be	
encapsulated	into	one	bubble.	

• Level	 1	 DFD	 presents	 a	 more	 detailed	 view	 of	 the	 system	 by	 showing	 its	 main	 sub	
processes.	The	system	bubble	shown	in	level	0	DFD	will	be	replaced	by	multiple	bubbles	
each	of	which	describes	(high	level)	a	main	system	function.	

• Level	2	DFD	is	used	to	provide	more	specific	details	about	each	of	the	system	functions.		
• Level	n	DFD	(n	>=	3)	decomposes	each	bubble	(function)	that	exists	in	level	n-1	DFD	into	
basic	functional	units.	The	decomposition	process	finishes	when	each	of	the	bubbles	in	
the	last	DFD	represents	a	functional	primitive.		

	
	
The	final	DFD	to	be	factored.	Factoring	“leads	to	a	program	structure	in	which	top-level	
components	perform	decision	making	and	low-level	components	perform	most	input,	
computation,	and	output	work.	Middle	level	components	perform	some	control	and	do	
moderate	amounts	of	work.”		
	
	
	

Conceptual	Model.	
The	conceptual	model	 is	a	system	representation	that	describes	 the	system	at	a	high	 level	of	
abstraction.	It	mainly	describes		

• The	main	system	entities	and	relationships.	
• System	states	and	transitions.	
• System	interactions	and	user	interfaces.		
	

The	main	objective	of	the	conceptual	model	is	to	enable	effective	communication	between	the	
software	team	and	the	stakeholders.	
There	is	no	one	formal	notation	for	the	conceptual	diagram.	Generally,	class	diagram	notations	
are	used	to	represent	the	conceptual	diagram.	A	conceptual	model	can	be	used	as	a	starting	point	
for	building	the	class	diagram	of	your	system.	Therefore,	when	you	start	drawing	your	conceptual	
diagram,	draw	a	diagram	that	represents	the	concepts	in	the	system	domain	(not	your	specific	
system).	
	
	
	
	
	

	 15	

Class	Diagram.	
A	class	diagram	describes	the	structure	of	the	system.	It	shows	the	system	classes,	attributes,	
methods,	and	relationships	among	the	classes.	Class	diagrams	serve	two	main	objectives:	

1. System	visualization	and	description.	
2. code	construction	(during	implementation).		

When	drawing	your	class	diagram,	keep	this	question	in	mind:	What	type	of	relationships	exist	
between	the	classes	in	real-life?	Those	relationships	must	help	you	draw	a	class	diagram	that	is	
easy	to	understand	by	humans.	It	must	also	help	programmers	write	their	code	clearly.	
	

	
	

ER	Diagram.	
The	ERD	(Entity-Relationship	diagram	or	Entity-Relationship	model)	represents	the	entities	that	
exist	in	the	system	and	their	relationships	the	way	they	will	be	stored	in	the	system	database.	
You	 only	 need	 an	 ERD	 if	 your	 system	 has	 a	 database	 (most	 likely	 your	 system	 will	 need	 a	
database).	
When	drawing	your	ERD,	keep	this	question	in	mind:	What	type	of	relationships	you	need	to	add	
between	your	entities	to	answer	your	database	queries?	
ER	 diagrams	 may	 represent	 system	 relationships	 that	 are	 more	 difficult	 for	 humans	 to	
understand.	
	
		
	

What	is	the	difference	between	a	class	diagram	and	an	ERD?	
In	short,	a	class	diagram	represents	the	system	components	(the	code),	while	an	ERD	represents	
the	database.	
An	ERD	is	not	a	replacement	to	the	class	diagram.	In	some	projects,	you	will	need	both	models	
(for	example,	if	you	use	object-oriented	requirements	modeling	and	you	plan	to	have	a	system	
database).	In	some	other	cases,	you	many	need	only	one.	Generally,	a	class	diagram	and	an	ERD	
are	similar,	but	they	may	not	be	identical.		
Class	diagrams	focus	on	the	system	static	representation	and	the	overall	system	behavior.	On	the	
other	hand,	ER	diagrams	focus	on	system	data.		
	
	
	
	
	
	
	
	

	 16	

Example:	King	Saud	University	has	several	departments.	Each	department	is	managed	by	a	chair.	
Professors	must	 be	 assigned	 to	 one	or	more	 departments.	 A	 professor	 teaches	 one	or	more	
courses.	A	course	may	be	taught	by	multiple	professors.		
	

Class	diagram	 ERD	

	
	

	
	
	

Deployment	diagram	
A	deployment	diagram	specifies	the	physical	hardware	that	will	run	the	system.	Each	block	in	the	
deployment	diagram	represents	a	node.	A	node	here	is	a	physical	entity	(such	as	a	PC)	where	the	
system	components	will	be	uploaded.		
	

	

	 17	

State	diagram	–	Describes	the	state	changes	of	the	system	
A	state	diagram	(also	called	a	state	machine	diagram)	models	the	dynamic	behavior	of	a	class,	a	
module,	or	the	entire	system	as	a	sequence	of	states	as	a	reaction	to	internal	or	external	stimuli.	
You	do	not	need	a	state	diagram	for	each	class	or	function.		
The	diagram	below	is	a	state	diagram	that	shows	the	system	states	while	handling	a	user	order	
upon	checkout.	

	
	
	
In	a	state	diagram,	you	need	to	define	each	of	the	following:	
	

• Initial	state:	the	state	of	the	system	before	the	process	(the	dark	circle	at	the	beginning	
of	the	diagram	above).	

• System	state:	represented	as	a	box	with	the	state	name	and	the	action	that	the	system	
does	while	in	the	state.	For	example,	checking,	dispatching,	and	waiting	in	the	example	
above.	

• Event:	 the	 event	 that	 causes	 the	 system	 to	 transition	 from	one	 state	 to	 another.	 For	
example,	items	received	above.		

• Condition:	the	condition	that	causes	the	system	to	transition	from	one	state	to	another.	
For	example,	all	items	in	stock	above.		

• Action:	the	action	that	takes	place	as	a	result	of	a	system	state.	For	example,	deliver	items	
above.		

	

	 18	

Activity	diagram	–	Represents	the	activity	flow	of	the	system.	
Activity	 diagrams	 show	 the	 flow	 of	 actions	 that	 happen	 in	 parallel	 or	 in	 sequence.	 Activity	
diagrams	are	not	identical	to	state	diagrams	because	they	can	be	used	to	describe	each	system	
function	(use-case).		
Unlike	state	diagrams,	activity	diagrams	do	not	need	a	trigger	event.	Below	is	the	activity	diagram	
for	the	receive	order.	
	

	
	

	

Decision	tables	
A	decision	table	is	a	visual	tabular	representation	that	describes	which	actions	to	perform	under	
certain	conditions.	It	is	especially	beneficial	when	the	logic	of	the	process	is	complex	(has	multiple	
conditions	and	actions).		
The	 table	 has	 two	main	 sections:	 conditions	 and	 actions.	 The	 conditions	 evaluate	 to	 simple	
Boolean	values	(True/False).	Each	action	that	occur	as	a	result	of	satisfying	a	condition	(or	a	set	
of	condition)	will	be	marked.			
Decision	trees	can	be	used	as	alternatives	to	decision	tables.		
	
	
	
	

	 19	

Example:	The	table	below	represents	the	decision	table	for	the	following	decision	logic,	which	
describes	how	a	printer	troubleshooter	works.	
	

• If	the	printer	does	not	print,	its	red	light	is	flashing,	and	the	printer	is	unrecognized,	then	the	
user	needs	to	check	the	printer-computer	cable,	ensures	printer	software	is	installed,	and	check	
or	replace	the	ink.		

• If	the	printer	does	not	print	and	its	red	light	is	flashing,	then	the	user	needs	to	check	or	replace	
the	ink	and	check	for	paper	jam.		

• If	the	printer	does	not	print	and	the	printer	is	not	recognized,	then	the	user	needs	to	check	the	
power	cable,	check	the	printer-computer	cable,	and	ensures	printer	software	is	installed.	

• If	the	printer	does	not	print,	then	the	user	needs	to	check	for	paper	jam.		
• If	the	printer	red	light	is	flashing	and	the	printer	is	unrecognized,	then	the	user	needs	to	ensure	

printer	software	is	installed	and	check	or	replace	the	ink.		
• If	the	printer	red	light	is	flashing,	then	the	user	needs	to	check	or	replace	the	ink.		
• If	the	printer	is	unrecognized,	then	the	user	needs	to	ensure	printer	software	is	installed.	

	
	 	
	 	 Rules	
	 	 1	 2	 3	 4	 5	 6	 7	

Conditions	
Printer	does	not	print	 T	 T	 T	 T	 	 	 	
A	red	light	is	flashing	 T	 T	 	 	 T	 T	 	
Printer	is	unrecognized	 T	 	 T	 	 T	 	 T	

Actions	

Check	the	power	cable	 	 	 ´	 	 	 	 	
Check	the	printer-computer	cable	 ´	 	 ´	 	 	 	 	
Ensure	printer	software	is	installed	 ´	 	 ´	 	 ´	 	 ´	

Check/replace	ink	 ´	 ´	 	 	 ´	 ´	 	
Check	for	paper	jam	 	 ´	 	 ´	 	 	 	

	

What	diagrams	do	I	need?	
There	 are	multiple	 UML	 diagrams	 that	 are	 included	 in	 the	 Analysis	 and	 Design	 steps	 of	 the	
software	 development.	 For	 example,	 as	mentioned	 above,	 a	 component	 level	 design	 can	 be	
accomplished	using	several	ways.	Are	we	required	to	use	all	of	them?	Obviously	not.	
It	depends	mainly	on	the	component	complexity.	Complex	components	need	to	be	specified	very	
clearly	 to	make	 the	 implementation	 step	more	 efficient.	 For	 example,	 if	 a	 component	 has	 a	
complicated	logic,	it	would	be	a	good	idea	to	use	decision	tables	to	clarify	it.	If	the	system	needs	
to	be	distributed	on	several	devices,	it	would	be	clever	to	use	a	deployment	diagram	to	show	the	
specific	deployment	plan.		Finally,	if	the	system	has	a	complicated	interface,	it	is	advisable	to	use	
an	 interface	design	to	communicate	and	discuss	the	 interface	with	the	designers	and	the	end	
users.	
	
	
	

	 20	

References:	
	
https://sparxsystems.com/resources/tutorials/uml2/use-case-diagram.html	
https://www.bridging-the-gap.com/what-is-a-use-case/	
https://slideplayer.com/slide/10764095/	
https://alagadinc.wordpress.com/2005/02/15/uml-use-case-diagrams/	
https://people.ok.ubc.ca/bowenhui/310/8-DFD.pdf		
https://www.cs.toronto.edu/~sme/CSC340F/2005/slides/tutorial-classes_ERDs.pdf	
https://www.omg.org/spec/UML/2.4.1/Superstructure/PDF		
https://www.guru99.com/deployment-diagram-uml-example.html		
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/state-machine-diagram-vs-activity-
diagram/		
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013		
	

