Titration curves
 Titration of a weak acid

Titration of a strong acid

- When a strong acid is titrated with a strong base the pH at any point is determined solely by the concentration of un-titrated acid or excess base.
- The conjugated base that is formed has no effect on pH .

Titration of a weak acid

- When a weak acid is titrated with a strong base, the weak acid dissociates to yield a small amount of H^{+}.
- Weak acids or bases do not dissociate completely, therefore an equilibrium expression with K_{a} must be used.

Titration of a weak acid

- Weak acid dissociates in aqueous solution partially to give a small amount of H^{+}ions.

$\mathrm{HA} \Longleftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$

- When OH^{-}ions are added during titration it is neutralized by H^{+} ions to produce $\mathrm{H}_{2} \mathrm{O}$.
- The removal of the H^{+}ions disturbs the equilibrium thus more HA molecules will ionize to produce H^{+}ions to re-establish the equilibrium.

Titration of a weak acid cont'ed

- This process will continue until all the HA molecules are ionized.
- Thus the no. of moles of HA will be equal to the no. of moles of proton.

Titration curve of a monoprotic weak acid

Example

- Calculate the appropriate values and draw the curve for the titration of 500 ml of 0.1 M weak acid HA ; with 0.1 M KOH ; pK_{a} $=5 ; \mathrm{pK}_{\mathrm{b}}=9$

Point a: the pH before the addition of any base

$$
\begin{aligned}
& \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a}}+\mathrm{p}[\mathrm{HA}]\right) \\
& \mathrm{pH}=1 / 2[(5+(-\log 0.1)] \\
& \mathrm{pH}=3
\end{aligned}
$$

NOTE: at any point during the titration the pH should be calculated using Henderson-Hasselbalch equation.

Point b: the pH after the addition of 100 ml of KOH
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
The no. of moles OH^{-}added $=\mathrm{M} \times \mathrm{V}=0.1 \times 0.1=$ 0.01 mole

Thus 0.01 moles of KOH will react with 0.01 mole of HA to produce 0.01 mole $^{-}$
The no. of moles of HA originally present $=0.1 \times 0.5$
$=0.05$ mole

KThe no. of HA remaining $=0.05-0.01=0.04$ mole Total volume $=500+100=600 \mathrm{ml}$

Here we will use the no. of moles because when we calculate the volume it will give the same ratio at the end $\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log$
$\mathrm{pH}=5+\log (0.01 / 0.04)$
$\mathrm{pH}=4.4$

Point c: the pH after the addition of 250 ml of KOH (half) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

The no. of moles OH^{-}added $=\mathrm{M} \times \mathrm{V}=0.1 \times 0.25=0.025$ mole

Thus 0.025 moles of KOH will react with 0.025 mole of HA to produce $0.25 \mathrm{~mole}^{-}$
The no. of moles of HA remaining $=0.05-0.025=0.025$ mole

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\mathrm{A}-]}{[\mathrm{HA}]} \\
& \mathrm{pH}=5+\log (0.025 / 0.025) \\
& \mathrm{pH}=5
\end{aligned}
$$

OR

At this point half the weak acid HA is titrated, since the reaction between HA and KOH is one to one reaction and they both have the same concentration

$$
\begin{gathered}
\mathrm{HA}+\mathrm{KOH} \underset{\mathrm{HA}}{\Longleftrightarrow \mathrm{HA}]=\left[\mathrm{A}^{-}\right]}
\end{gathered}
$$

Monoprotic acid (one proton) that reacts with a base containing one hydroxyl group (one OH^{-})

$$
\text { Ratio }=\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=1
$$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
pH = $5+\log 1$
$\mathrm{pH}=5+0=5$

Point d: the pH after the addition of 375 ml of KOH $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

The no. of moles OH^{-}added $=\mathrm{M} \times \mathrm{V}=0.1 \times 0.375=$ 0.0375 mole

Thus 0.0375 moles of KOH will react with 0.0375 mole of HA to produce 0.0375 mole A^{-}
The no. of moles of HA remaining $=0.05-0.0375=$ 0.0125 mole
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\mathrm{A}-]}{[\mathrm{HA}]}$
$\mathrm{pH}=5+\log (0.0375 / 0.0125)$
$\mathrm{pH}=5.48$

NOTICE:

- When the acid is less than half titrated the pH is less than pK_{a}
- When the acid is half titrated the $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
- When the acid is more than half titrated the pH is greater than pK_{a}

Point e: When 500 ml of KOH is added $\mathrm{pOH}=1 / 2\left(\mathrm{pK}_{\mathrm{b}}+\mathrm{p}\left[\mathrm{A}^{-}\right]\right)$

The no. of moles OH - added $=\mathrm{M} \times \mathrm{V}=0.1 \times 0.5=0.05$ mole Thus 0.05 moles of KOH will react with 0.05 mole of HA to produce 0.05 mole $^{-}$

Molarity of $A^{-}=$no. of moles / vol. in L
The total volume of whole solution $=1000 \mathrm{ml}=1 \mathrm{~L}$

Molarity of $\mathrm{A}^{-}=$no. of moles $/$vol. in L Molarity of $\mathrm{A}^{-}=0.05 / 1=0.05 \mathrm{M}$
$p\left[A^{-}\right]=-\log \left[A^{-}\right]$
$p\left[A^{-}\right]=-\log 0.05$
$\mathrm{p}\left[\mathrm{A}^{-}\right]=1.3$
$\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}$
$\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=10^{-14} / 10^{-5}=10^{-9}$
$\mathrm{pOH}=1 / 2\left(\mathrm{pK}_{\mathrm{b}}+\mathrm{p}\left[\mathrm{A}^{-}\right]\right)$ $\mathrm{pOH}=1 / 2(9+1.3)$ $\mathrm{pOH}=5.15$
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$ $\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}$ $\mathrm{pH}=14-5.15=8.85$

Titration of a Weak Acid Cont'ed

Titration of a Weak Acid Cont'ed

- From the previous example:
a) All HA is in the form of $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]>\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
c) $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
d) $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]<\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
e) All as $\mathrm{CH}_{3} \mathrm{COO}^{-}$

How to calculated the pH!

- The pH is calculated through different ways:
$>$ At starting point $\mathrm{pH}=(\mathrm{pKa}+\mathrm{p}[\mathrm{HA}]) / 2$
$>$ At any point within the curve (after, in or after middle titration) $\mathrm{pH}=\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
$>$ At end point $\mathrm{pOH}=\left(\mathrm{pKb}+\mathrm{p}\left[\mathrm{A}^{-}\right]\right) / 2$ $\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}$

