Titration curve cont'ed

Titration curve of lysine

- Lysine is a basic amino acid with an extra amino group in its side chain.
- pKa:
- $1^{\text {st }} \alpha$-COOH will be titrated first $=2.18$
- $2^{\text {nd }} \alpha-\mathrm{NH}_{3}+$ will be titrated next $=8.95$
- $3^{\text {rd }} \mathrm{R}-\mathrm{NH}_{3}{ }^{+}$will be titrated last $=10.53$

- We have three flat
zones, i.e. three ionized groups.

Titration curve of lysine

Titration curve of lysine cont'ed

- At point a:
- Before titration
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COOH}$
- The net charge $=+2$
- At point b:
- $\mathrm{Pk}_{\mathrm{al}}=\mathrm{pH}$
- Here it has buffering capacity
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COOH}=\mathrm{NH}^{+}{ }_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COO}^{-}$
- The net charge $=+2 \mid+1=+1.5$

Titration curve of lysine cont'ed

- At point c:
- $\mathrm{NH}_{3}{ }_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COO}^{-}$
- All the $\alpha-\mathrm{COOH}$ has been titrated.
- The net charge $=+1$
- At point d:
- $\mathrm{Pk}_{\mathrm{a} 2}=\mathrm{pH}$
- Here it has buffering capacity
- $\mathrm{NH}^{+}{ }_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COO}^{-}=\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COO}^{-}$
- The net charge $=+1 \mid 0=+0.5$

Titration curve of lysine cont'ed

- At point g:
- It is the Ip point
- $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COO}^{-}$
- The net charge $=0$
- Ip $=\mathrm{pH}, \mathrm{Ip}=\left(\mathrm{pKa}_{2}+\mathrm{pKa}_{3}\right) / 2$
- At point d:
- $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}^{+}{ }_{3} \mathrm{COO}^{-}=\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2} \mathrm{COO}^{-}$
- The net charge $=0 \mid-1=-0.5$
- $\mathrm{Pk}_{\mathrm{a} 3}=\mathrm{pH}$
- Here it has buffering capacity

Titration curve of lysine cont'ed

- At point f:
- End of titration
- $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2} \mathrm{COO}^{-}$
- The net charge $=-1$
- All has been titrated.

Titration Curves of Amino Acids Information obtained from a titration curve

1- The number of ionizable groups in that amino acid, which can be detected from the number of titration stages in the curve, (or the number of pK_{a} 's or number of flat zones in the curve).
2- Whether the triprotic amino acid is basic or acidic, that can be detected from the pKa_{2}.

- If it's value is closer to the value of pKa_{1} (that of the α carboxyl group), then it is an acidic amino acid.
- If the value of it's pKa_{2} is closer to the value of pKa_{3} (that of the α-amino group), then it is basic amino acid.
3 - The pK_{a} values of the amino acid can be obtained from the curve which is equal to the pH value at the mid-point.

Titration Curves of Amino Acids

4- The isoelectric point, pl for each amino acid can be obtained from the curve by detecting the point where the amino acid is all in the zwitterion form (net charge $=0.0$) the pH at that point is the pl.
> Or it can be obtained mathematically from:
$\mathrm{pl}=\mathrm{pKa}_{1}+\mathrm{pKa}_{2} \quad$ (in the case of a neutral amino acid)
$\mathrm{pl}=\mathrm{pKa}_{1}+\mathrm{pKa}_{2} \quad$ (in the case of acidic amino acids)
$\mathrm{pl}=\frac{\mathrm{pKa}}{2}+\mathrm{pKa}_{3} \quad($ in the case of basic amino acids)

Titration Curves of Amino Acids

5- You can also determine from the curve the pH values at which the amino acid can act as a buffer. (the pH ranges ± 1 from the pH value of each midpoint).

How to Obtain a Titration Curves of Amino Acids?

1-Calculate the no. of moles of weak acid or a.a
2- Calculate the first moles of OH^{-}by
$\mathrm{A}=$ no. of moles of acid or a.a $/ \mathrm{pK}_{\mathrm{a} 1}$
3- Calculate the second moles of OH^{-}added
$B=$ No of moles of weak acid or a.a $+A$
4- Calculate the third moles of OH^{-}added
$C=$ No of moles of weak acid or a.a $+B$

Example 1

- Sketch the pH curve for the titration of 100 ml of 0.1 M glycine with KOH ? $\mathrm{pk}_{\mathrm{a} 1}=1.71, \mathrm{pk}_{\mathrm{a} 2}=9.6$?

No. of moles of $\mathrm{a} . \mathrm{a}=\mathrm{M} \times \mathrm{V}$

$$
\begin{aligned}
& =0.1 \times 0.1 \\
& =0.01 \mathrm{~mole}
\end{aligned}
$$

The first moles of OH^{-}:
$\mathrm{A}=0.01 / 1.71=0.005$
The second moles of OH^{-}added:
$B=0.01+0.005=0.015$
$\mathrm{Pl}=\left(\mathrm{pk}_{\mathrm{a} 1}+\mathrm{pk}_{\mathrm{a} 2}\right) / 2$
$=5.66$

Example 2

- Plot the titration curve of aspartic acid it has a volume of 100 ml and 0.1 M when titrated with 0.1 M KOH ? $\mathrm{pk}_{\mathrm{al}}=2.09$, $\mathrm{pk}_{\mathrm{a} 2}=3.86, \mathrm{pk}_{\mathrm{a} 3}=9.82$?

Figure 1.8 Titration curve of aspartic acid. For clarity, the vertical axis is not drawn to scale.

Example 3

- Plot the titration curve of lysine which has a volume of 200 ml and 0.3 M when titrated with 0.1 M NaOH ? $\mathrm{pk}_{\mathrm{a} 1}=2.18, \mathrm{pk}_{\mathrm{a} 2}=8.95$, $\mathrm{pk}_{\mathrm{a} 3}=10.35$?

Figure I-9 Titration curve of lysine. For clarity, the vertical axis is not drawn to sale.

