Titration curve cont'ed ## Titration curve of lysine - Lysine is a basic amino acid with an extra amino group in its side chain. - pKa: - 1st α -COOH will be titrated first = 2.18 - $2^{nd} \alpha NH_3^+$ will be titrated next = 8.95 - 3rd R-NH₃⁺ will be titrated last = 10.53 - We have three flat zones, i.e. three ionized groups. ## Titration curve of lysine #### At point a: - Before titration - NH⁺₃CH(CH₂)₄NH⁺₃COOH - The net charge = + 2 #### At point b: - $Pk_{a1} = pH$ - Here it has buffering capacity - NH⁺₃CH(CH₂)₄NH⁺₃COOH=NH⁺₃CH(CH₂)₄NH⁺₃COO⁻ - The net charge = +2 | +1 = +1.5 #### At point c: - NH⁺₃CH(CH₂)₄NH⁺₃COO⁻ - All the α -COOH has been titrated. - The net charge = +1 #### At point d: - $Pk_{a2} = pH$ - Here it has buffering capacity - \circ NH⁺₃CH(CH₂)₄NH⁺₃COO⁻=NH₂CH(CH₂)₄NH⁺₃COO⁻ - The net charge = $+1 \mid 0 = +0.5$ #### At point g: - It is the Ip point - NH₂CH(CH₂)₄NH⁺₃COO⁻ - The net charge = 0 - Ip = pH, Ip = $(pKa_2 + pKa_3)/2$ #### At point d: - $\circ NH_2(CH_2)_4NH_3COO^- = NH_2(CH_2)_4NH_2COO^-$ - The net charge = $0 \mid -1 = -0.5$ - $Pk_{a3} = pH$ - Here it has buffering capacity #### At point f: - End of titration - NH₂(CH₂)₄NH₂COO⁻ - The net charge = −1 - All has been titrated. # Titration Curves of Amino Acids Information obtained from a titration curve - 1- The number of ionizable groups in that amino acid, which can be detected from the number of titration stages in the curve, (or the number of pK_a 's or number of flat zones in the curve). - 2- Whether the triprotic amino acid is basic or acidic, that can be detected from the pKa₂. - If it's value is closer to the value of pKa_1 (that of the α -carboxyl group), then it is an acidic amino acid. - If the value of it's pKa₂ is closer to the value of pKa₃ (that of the α -amino group), then it is basic amino acid. - 3- The pK_a values of the amino acid can be obtained from the curve which is equal to the pH value at the mid-point. #### **Titration Curves of Amino Acids** - 4- The isoelectric point, pl for each amino acid can be obtained from the curve by detecting the point where the amino acid is all in the zwitterion form (net charge = 0.0) the pH at that point is the pl. - Or it can be obtained mathematically from: $$pl = pKa_1 + pKa_2$$ (in the case of a neutral amino acid) $$pl = pKa_1 + pKa_2$$ (in the case of acidic amino acids) $$pl = pKa_2 + pKa_3$$ (in the case of basic amino acids) $$pl = pKa_2 + pKa_3$$ #### Titration Curves of Amino Acids 5- You can also determine from the curve the pH values at which the amino acid can act as a buffer. (the pH ranges ±1 from the pH value of each midpoint). # How to Obtain a Titration Curves of Amino Acids? - 1 Calculate the no. of moles of weak acid or a.a. - 2- Calculate the first moles of OH^- by A= no. of moles of acid or a.a / pK_{a1} - 3- Calculate the second moles of OH- added B= No of moles of weak acid or a.a + A - 4- Calculate the third moles of OH- added C= No of moles of weak acid or a.a + B ### Example 1 Sketch the pH curve for the titration of 100 ml of 0.1M glycine with KOH? $pk_{a1} = 1.71$, $pk_{a2} = 9.6$? No. of moles of a.a = $$M \times V$$ = 0.1×0.1 = 0.01 mole The first moles of OH-: $$A = 0.01 / 1.71 = 0.005$$ The second moles of OH⁻ added: $$B = 0.01 + 0.005 = 0.015$$ $PI = (pk_{a1} + pk_{a2}) / 2$ $= 5.66$ ## Example 2 Plot the titration curve of aspartic acid it has a volume of 100 ml and 0.1M when titrated with 0.1M KOH? pk_{a1} = 2.09, pk_{a2} = 3.86, pk_{a3} = 9.82? Figure 1-8 Titration curve of aspartic acid. For clarity, the vertical axis is not drawn to scale. ## Example 3 Plot the titration curve of lysine which has a volume of 200 ml and 0.3 M when titrated with 0.1 M NaOH? pk_{a1} = 2.18, pk_{a2} = 8.95, pk_{a3} = 10.35? Figure 1-9 Titration curve of lysine. For clarity, the vertical axis is not drawn to scale.