Titration curve cont'ed

Titration curve of lysine

- Lysine is a basic amino acid with an extra amino group in its side chain.
- pKa:
 - 1st α -COOH will be titrated first = 2.18
 - $2^{nd} \alpha NH_3^+$ will be titrated next = 8.95
 - 3rd R-NH₃⁺ will be titrated last = 10.53
- We have three flat zones, i.e. three ionized groups.

Titration curve of lysine

At point a:

- Before titration
- NH⁺₃CH(CH₂)₄NH⁺₃COOH
- The net charge = + 2

At point b:

- $Pk_{a1} = pH$
- Here it has buffering capacity
- NH⁺₃CH(CH₂)₄NH⁺₃COOH=NH⁺₃CH(CH₂)₄NH⁺₃COO⁻
- The net charge = +2 | +1 = +1.5

At point c:

- NH⁺₃CH(CH₂)₄NH⁺₃COO⁻
- All the α -COOH has been titrated.
- The net charge = +1

At point d:

- $Pk_{a2} = pH$
- Here it has buffering capacity
- \circ NH⁺₃CH(CH₂)₄NH⁺₃COO⁻=NH₂CH(CH₂)₄NH⁺₃COO⁻
- The net charge = $+1 \mid 0 = +0.5$

At point g:

- It is the Ip point
- NH₂CH(CH₂)₄NH⁺₃COO⁻
- The net charge = 0
- Ip = pH, Ip = $(pKa_2 + pKa_3)/2$

At point d:

- $\circ NH_2(CH_2)_4NH_3COO^- = NH_2(CH_2)_4NH_2COO^-$
- The net charge = $0 \mid -1 = -0.5$
- $Pk_{a3} = pH$
- Here it has buffering capacity

At point f:

- End of titration
- NH₂(CH₂)₄NH₂COO⁻
- The net charge = −1
- All has been titrated.

Titration Curves of Amino Acids Information obtained from a titration curve

- 1- The number of ionizable groups in that amino acid, which can be detected from the number of titration stages in the curve, (or the number of pK_a 's or number of flat zones in the curve).
- 2- Whether the triprotic amino acid is basic or acidic, that can be detected from the pKa₂.
- If it's value is closer to the value of pKa_1 (that of the α -carboxyl group), then it is an acidic amino acid.
- If the value of it's pKa₂ is closer to the value of pKa₃ (that of the α -amino group), then it is basic amino acid.
- 3- The pK_a values of the amino acid can be obtained from the curve which is equal to the pH value at the mid-point.

Titration Curves of Amino Acids

- 4- The isoelectric point, pl for each amino acid can be obtained from the curve by detecting the point where the amino acid is all in the zwitterion form (net charge = 0.0) the pH at that point is the pl.
- Or it can be obtained mathematically from:

$$pl = pKa_1 + pKa_2$$
 (in the case of a neutral amino acid)
$$pl = pKa_1 + pKa_2$$
 (in the case of acidic amino acids)
$$pl = pKa_2 + pKa_3$$
 (in the case of basic amino acids)
$$pl = pKa_2 + pKa_3$$

Titration Curves of Amino Acids

5- You can also determine from the curve the pH values at which the amino acid can act as a buffer. (the pH ranges ±1 from the pH value of each midpoint).

How to Obtain a Titration Curves of Amino Acids?

- 1 Calculate the no. of moles of weak acid or a.a.
- 2- Calculate the first moles of OH^- by A= no. of moles of acid or a.a / pK_{a1}
- 3- Calculate the second moles of OH- added B= No of moles of weak acid or a.a + A
- 4- Calculate the third moles of OH- added C= No of moles of weak acid or a.a + B

Example 1

Sketch the pH curve for the titration of 100 ml of 0.1M glycine with KOH? $pk_{a1} = 1.71$, $pk_{a2} = 9.6$?

No. of moles of a.a =
$$M \times V$$

= 0.1×0.1
= 0.01 mole

The first moles of OH-:

$$A = 0.01 / 1.71 = 0.005$$

The second moles of OH⁻ added:

$$B = 0.01 + 0.005 = 0.015$$
 $PI = (pk_{a1} + pk_{a2}) / 2$
 $= 5.66$

Example 2

Plot the titration curve of aspartic acid it has a volume of 100 ml and 0.1M when titrated with 0.1M KOH? pk_{a1} = 2.09, pk_{a2} = 3.86, pk_{a3} = 9.82?

Figure 1-8 Titration curve of aspartic acid. For clarity, the vertical axis is not drawn to scale.

Example 3

Plot the titration curve of lysine which has a volume of 200 ml and 0.3 M when titrated with 0.1 M NaOH? pk_{a1} = 2.18, pk_{a2} = 8.95, pk_{a3} = 10.35?

Figure 1-9 Titration curve of lysine. For clarity, the vertical axis is not drawn to scale.