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Abstract
Trehalose is a natural non-reducing sugar that is found in the vast majority of organisms such as bacteria, yeasts, invertebrates 
and even in plants. Regarding its features, it is considered as a unique compound. It plays a key role as a carbon source in 
lower organisms and as an osmoprotectant or a stabilizing molecule in higher animals and plants. Although in plants it is 
present in a minor quantity, its levels rise upon exposure to abiotic stresses. Trehalose is believed to play a protective role 
against different abiotic stressful cues such as temperature extremes, salinity, desiccation. Moreover, it regulates water use 
efficiency and stomatal movement in most plants. Detectable endogenous trehalose levels are vital for sustaining growth 
under stressful cues. Exogenously applied trehalose in low amounts mitigates physiological and biochemical disorders 
induced by various abiotic stresses, delays leaf abscission and stimulates flowering in crops. External application of treha-
lose also up-regulates the stress responsive genes in plants exposed to environmental cues. The genetically modified plants 
with trehalose biosynthesis genes exhibit improved tolerance against stressful conditions. An increased level of trehalose 
has been observed in transgenic plants over-expressing genes of microbial trehalose biosynthesis. However, these transgenic 
plants display enhanced tolerance to heat, cold, salinity, and drought tolerance. Due to multiple bio-functions of this sugar, 
it has gained considerable ground in various fields. However, exogenous use of this bio-safe sugar would only be possible 
under field conditions upon adopting strategies of low-cost production of trehalose. In short, trehalose is a unique chemical 
that preserves vitality of plant life under harsh ecological conditions. Certainly, the new findings of this disaccharide will 
revolutionize a wide array of new avenues.
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Introduction

Sugars perform key roles in a myriad of metabolic processes 
throughout the plant life span, that is, from the juvenile stage 
up to reproductive stage. There is an interplay between sugar 
signaling and phyto-hormone signaling such as that of eth-
ylene, gibberellins, auxins and abscisic acid. This phenom-
enon is important for transitions of plant growth processes. 
Trehalose, a disaccharide, was first discovered by Wiggers 

(1832) in a parasitic fungus (Claviceps spp.) mycelium of 
rye. This sweet disaccharide was isolated in abundant quan-
tities from nests and cocoons of the insects Larinusm acu-
latus and L. nidificans by a French chemist Marcellin Berth-
elot in the mid of nineteenth century. Its old name “trehala 
manna” is known due to cocoons of the beetles (Feofilova 
1992; Luyckx and Baudonin 2011). In the past, it was also 
recognized as “mycos” (Richards et al. 2002). It is exten-
sively found in different organisms ranging from bacteria 
to invertebrates and in lesser amounts in higher plants. The 
spores of mycelial fungi and yeasts contain the compound in 
higher amounts from 16 to 30% (Sols et al. 1971). Trehalose 
occurs in white powder form having no odor, but is 45% 
sweeter than that of sucrose (Jain and Roy 2009). This sugar 
has diversified roles in both animals and plants. During 
growth and development in organisms, it acts as an energy 
source as in the case of spore sprouting (Elbein et al. 2003). 
In resurrection plants such as Myrothamnus flabellifolius, it 
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was reported to accumulate in higher levels during extreme 
water scarcity, and it played a significant role in conserv-
ing M. flabellifolius (Gechev et al. 2012). In some cases, it 
stimulates the stress-related signaling pathways (John et al. 
2017). It also acts as an osmoprotectant during stress adver-
saries (Paul et al. 2008). In angiosperms, naturally a minute 
quantity of trehalose is synthesized, but upon exposure to 
stress levels rise in the plant (Kempa et al. 2008). GC-FID 
and GC-MS have been commonly used to quantify treha-
lose concentration in wild-type Arabidopsis plant extracts 
37 ng  g− 1 dry weight/plant and 100 ng  g− 1 dry weight/
flower (Suzuki et al. 2008; Schluepmann and Paul 2009). 
Trehalose is a low-calorie sweetener, and it remains stable 
against hydrolysis (Walmagh et al. 2015). It withstands a 
diverse pH range and is non-carcinogenic. It is also used in 
processed foods and now has more market shares (Nakakuki 
2005). During digestion, it is catalyzed into glucose by the 
trehalase enzyme in the small intestine and then taken up 
in the villi (Teramoto et al. 2008). Endogenous trehalose 
stabilizes microbial cells, membranes, enzymes, and even 
DNA (Jain and Roy 2010). It is also used in manufacturing 
heat-resistant vaccines (Ohtake et al. 2011). Because it is an 
effective antioxidant, it prolongs the shelf lives of cosmetic 
products and inhibits ingredient degradation. It is used as an 
ingredient in sweet delicacies (Ohtake and Wang 2011). A 
review of the literature indicates that trehalose is effective in 
regulating various physio-biochemical processes in plants, 
which may have a direct or indirect role in stimulating plant 
growth and yield production. Furthermore, the primary 
focus of this review is to uncover trehalose-induced changes 
in plants subjected to different environmental stresses and 
examine the putative mechanisms and metabolite profiles 
involved in stress tolerance.

Trehalose Distribution

Trehalose occurs ubiquitously in almost all organisms, and 
it plays a key role in vitro and in vivo (López-Gómez and 
Lluch 2012). In microorganisms, it serves as an energy 
source as well as a key compatible osmolyte. In the fungal 
cell wall, it initiates chitin formation. Different bacteria such 
as nitrogen fixing Rhizobium sp. (Maruta et al. 1996) and 
pathogenic Escherichia coli (Kaasen et al. 1994) possess 
this sugar as a cell wall component or a carbon source or 
as an osmoprotectant. In the animal kingdom, especially in 
insects, trehalose is consumed as a carbon source during 
flight activity (Becker et al. 1996; Carpinelli et al. 2006). 
Ascospores under severe stress conditions have higher levels 
of mannitol and trehalose (Dijksterhuis et al. 2002). The 
asexual spores such as conidia having abundant trehalose 
and mannitol can germinate on a growth medium supplied 
with a low amount of water but rich in nutrients (Wang et al. 

2012). Conidia deficient in trehalose were reported to be 
stress sensitive (Sakamoto et al. 2008). Trehalose also miti-
gates the harmful effects of hydrocarbons such as ethanol 
and toluene (Wen et al. 2016). In the nematode Aphelen-
chus avenae, trehalose accumulation is stimulated during 
desiccation conditions (Madin and Crowe 1975). So, in a 
nutshell, trehalose is a natural versatile disaccharide with 
has a bio-preservative role in metabolic machinery during 
abiotic stress conditions.

Structural Properties of Trehalose

Trehalose is a non-reducing disaccharide sugar composed 
of two glucose subunits linked by an alpha, alpha-1,1 gly-
cosidic bond (Fig. 1).

Trehalose has unique properties compared to other disac-
charides, because both reducing subunits are involved in 
making the glycosidic bond (Jain and Roy 2009). It resists 
acid hydrolysis and remains durable even in soluble form at 
elevated temperatures despite acidic pH conditions (Tera-
moto et al. 2008). The α–α linkage of trehalose is very stable 
(Richards et al. 2002). Trehalose has high hydrophilicity 
due to its inability for internal hydrogen bonding (Paul and 
Paul 2014). Due to these properties, it is a useful molecu-
lar, membranous and protein preservative (López-Gómez 
and Lluch 2012). It has dehydrating and vitrification ability 
(Sakurai et al. 2008). In the case of dehydration or freezing 
states, trehalose forms hydrogen bonding with surrounding 
macromolecules and membranes by replacing water mol-
ecules (Crowe 2007). Upon extreme dehydration, it crystal-
lizes into a glass-like appearance (Einfalt et al. 2013); thus, 
it is a particular trait of trehalose (Cesaro et al. 2008). This 
glassy formation preserves biomolecules from denatura-
tion even under extreme dehydration, and it recovers their 
functional activity upon rehydration (Fernandez et al. 2010). 
Trehalose has a very low bond energy (1 kcal  mol− 1) and 
a chemically inert sugar (Schwarz and Van Dijck 2017). In 
contrast, sucrose has 27 kcal  mol− 1 bond energy. It does 
not break down into reducing monosaccharide components 
unless it is exposed to the action of trehalase or extreme 
hydrolytic conditions (López-Gómez and Lluch 2012).

Fig. 1  Structure of trehalose
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Trehalose Biosynthesis in Plants

Two molecules, uridine-diphospho-glucose (UDP-Glc) and 
glucose-6-phosphate (Glc-6-P), are consumed for trehalose 
biosynthesis in plants. The enzyme trehalose phosphate syn-
thetase (TPS) catalyzes UDP-Glc and Glc-6-P into treha-
lose-6-phosphate (Blazquez et al. 1998; Zentella et al. 1999). 
The enzyme trehalose-6-phosphate phosphatase (TPP) then 
catalyzes trehalose-6-phosphate into the final product, tre-
halose (Vogel et al. 1998) (Fig. 2).

Trehalose Metabolism in Higher Plants

In plants, endogenous trehalose plays a direct role as a 
signaling molecule associated with carbon allocation and 
subsequently in dehydration stress (Schluepmann et  al. 
2003). Trehalose presence in plants has been detected in 
angiospermic herbaceous plants such as Selaginella lepido-
phylla and Myrothamnus flabellifolius (Gechev et al. 2014). 
Subsequently, this sugar was also revealed in tobacco and 
rice plants but in very low amounts (10 µg  g− 1) (Kretovich 
1980). Recently, research has been focused on elucidation 
of trehalose metabolism particularly in transgenic crops 
with stress tolerance (Schwarz and Van Dijck 2017). A low 
concentration of trehalose is not solely due to the action of 
trehalase, but also due to tight regulation of TPS and TPP 
gene expression and enzyme activity (Delorge et al. 2014). 
The addition of validamycin A to the growth medium pro-
moted trehalose accumulation by inhibiting trehalase, but it 
did not stimulate the biosynthesis of trehalose (Goddijn et al. 
1997). The regulation of trehalose genes although resulted in 
a limited increase in trehalose, transgenic plants conferred 
abiotic stress tolerance (Delorge et al. 2014). The expres-
sion of E. coli and yeast derived trehalose genes in differ-
ent plant species made them more tolerant against salinity, 
water deficit and cold stress (Iordachescu and Imai 2008). 
For example, in rice, the higher expression of various tre-
halose phosphate synthetase genes produced acclimation 
to drought, cold and salt stress (Li et al. 2011). The up-
regulation of AtTPS1 (Arabidopsis trehalose-6-P synthase) 
in Arabidopsis plants caused a little increase in T6P as well 
as trehalose, but TPP activity induced transiently increased 
trehalose levels under low temperature stress (Suzuki et al. 

2008). Exposure to high temperature (40 °C) in A. thaliana 
induced a twofold increase in trehalose levels within 4 h 
and its levels became eightfold more after four days when 
treated with cold stress (4 °C) (Kaplan et al. 2004). The 
expression of trehalose transgenes activates the biosynthetic 
pathway in organs exposed to stressful environments. For 
example, in cotton plants, the induced TPS1 genes were 
expressed only in roots and leaves (Kosmas et al. 2006). 
In maize, the TPP gene was repressed in tassels whereas 
TPS1 was over-expressed in ears under drought conditions 
(Zhuang et al. 2007). Sometimes, degradation of trehalose 
regulates its levels in different plant tissues. For example, 
in Medicago truncatula under salt stress, the expression of 
the trehalase gene MtTRE1 was blocked and trehalose con-
centrations increased in its nodules (López et al. 2008). A 
microarray analysis showed that in A. thaliana the instance 
of abiotic stress induced a marked expression of relevant 
genes involved in trehalose metabolism (Iordachescu and 
Imai 2008). From these findings, it is clear that trehalose or 
T6P is effectively involved in stress tolerance of plants. The 
transgenic plants support the logic that activated trehalose 
metabolism triggers acclimation against stress conditions 
(Bae et al. 2005).

Trehalose and Abiotic Stress Resistance

The role of trehalose has been investigated in both simple 
and complex organisms exposed to stressful cues. Treha-
lose averts the adverse effects of salinity, dehydration, cold 
and high temperature on plants (Iordachescu and Imai 2008; 
Tapia and Koshland 2014). Currently, considerable efforts 
are underway at different institutions for elucidating the role 
of trehalose in different plants grown in a variety of stresses 
including drought, salinity, and temperature.

Drought Stress

Drought stress is a globally widespread and ever-growing 
environmental problem (Nezhadahmadi et al. 2013). Anhy-
drobiotic organisms tolerate extreme water deficiency. Such 
organisms include Saccharomyces cerevisiae and some 
desert plants (Ambastha and Tiwari 2015). Among animals, 
invertebrate rotifers, brine shrimps, tardigrades, and nema-
todes can endure water scarcity (Barnett and Facey 2016). 
These organisms possess elevated trehalose levels during 
adverse desiccated conditions. The main role of trehalose is 
to preserve membrane stability under such conditions (Ior-
dachescu and Imai 2011). Trehalose even in small quanti-
ties prevents membrane vesicle fusions and retains lipids in 
the liquid crystalline state (Ohtake et al. 2006). Trehalose 
has high hydration potential during desiccation or freez-
ing; it stabilizes dry proteins and biological membranes 

+               TPS TPP
UDP-Glc

Trehalose
Glc-6-P

Trehalose-6-P

Fig. 2  Trehalose biosynthesis in plants (partially adopted from Wing-
ler 2002)
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by replacing surface bound water of biological structures 
(Luzardo et al. 2000). Moreover, it makes hydrogen bond-
ing between its OH groups and polar groups of proteins and 
phosphate groups of membranes. Current molecular findings 
revealed that trehalose is a potent source for stress survival 
in backer yeast (Tapia et al. 2015). The microbial trehalose 
derived transgenic plants although have low amounts of tre-
halose, they are stress tolerant (Cortina and Culianez-Macia 
2005).

Salinity Stress

High accumulation of salts referred to as salt or salinity 
stress interferes with vital plant metabolites (Ashraf and 
Akram 2009). In response to salt stress, plants adopt a strat-
egy to adjust osmotic potential of the cell by generating 
osmotica/osmoprotectants/compatible solutes such as sugars 
including trehalose (Shahbaz et al. 2017). It is now well evi-
dent that trehalose-6-phosphate phosphatase (TPP) catalyzes 
the final step of trehalose metabolism. Investigating the sub-
cellular localization of TPP family members of Arabidopsis 
thaliana, it has been found that AtTPPD is a chloroplast-
localized enzyme. Plants deficient in AtTPPD were sensi-
tive, whereas plants over-expressing AtTPPD were more 
tolerant to salinity stress (Krasensky et al. 2014). Elevated 
stress tolerance of AtTPPD over-expressors associated with 
high accumulation of soluble sugars and starch levels sug-
gest a putative role for AtTPPD in regulating sugar metabo-
lism under saline conditions. Recently, Henry et al. (2015) 
observed an increase in the level of trehalose-6-phosphate 
in kernels at silking, leaf and cob of maize plants under 
saline regime, but it decreased gradually even if the sucrose 
level continued to increase. They found that both source and 
sink strength were reduced by salt, and the data indicated 
that T6P may have different roles in source and sink tissues, 
so the kernel abortion under osmotic stress may be due to 
inability to utilize these energy reserves. In another study 
with rice, Mostofa et al. (2015) reported that pre-treatment 
with trehalose at the rate of 10 mM for two days significantly 
suppressed salt-induced adversities by suppressing ROS and 
MDA, whereas chlorophyll contents, AsA, GSH, RWC and 
redox status were improved substantially. Trehalose-pre-
treated salt-stressed rice seedlings maintained CAT, GST, 
GPX, and GR activities under salt stress. They suggested 
that trehalose is involved in protecting against salt-induced 
oxidative damage by accumulating low amounts of ROS, 
increasing in non-enzymatic antioxidants, and activation 
of the glyoxalase and antioxidative systems. Furthermore, 
trehalose application (0.5–5 mM) largely alleviated ionic 
imbalance, ROS burst, and programmed cell death (PCD) 
occurrence induced by high salinity (150–250 mM NaCl) in 
Arabidopsis seedlings (Yang et al. 2014).

Temperature Stress

Temperature stress (high/low) adversely affects plant growth 
and yield production (John et al. 2016). Trehalose accu-
mulation under low temperature stress has been reported 
in microorganisms (Attfield 1987; Kandror et al. 2002; 
Petitjean et al. 2015). It was observed that transduction of 
a mutant with the otsA/otsB genes, responsible for treha-
lose synthesis, restored trehalose content and cell viability 
at 4 °C (Kandror et al. 2002). In another study with Sac-
charomyces cerevisiae, it was observed that activation of 
the protein kinase C1 pathway is triggered by an intracel-
lular increase in osmolarity due to trehalose accumulation 
under heat stress (Mensonides et al. 2005). Recent studies 
indicate that trehalose metabolism is important for normal 
plant growth and development. The intermediate compound, 
trehalose-6-phosphate, has been widely shown to act as a 
sensor for available sucrose, thereby directly influencing 
the type of response to the changing environmental condi-
tions (Delorge et al. 2014; Krasensky et al. 2014). Due to 
its influence on plant growth and development, alteration in 
trehalose biosynthesis pathways, either at the level of T6P 
synthesis, T6P hydrolysis, or trehalose hydrolysis, can be 
utilized to improve crop yield and biomass production. It 
is clear that alteration of the amounts of either T6P and/
or trehalose may result in increased stress tolerance along 
with many unexpected phenotypic alterations (Fig. 3). The 
above-cited reports depict that trehalose plays a promising 
adaptive role in plants exposed stressful cues.

Exogenous Trehalose Application 
and Abiotic Stress Tolerance

Trehalose has been applied through different modes such as 
through the rooting medium, as a foliar spray or as a pre-
sowing seed treatment so as to tailor plants to thrive well 
under stressful cues (Table 1). For example, trehalose was 

Fig. 3  Involvement of number of genes in trehalose accumulation and 
abiotic stress tolerance in plants
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Table 1  Exogenously applied trehalose-induced improvement in growth and different physiological processes in different plants subjected to 
stressful environments

Nature of stress Mode of application Concentrations Plant species Metabolic processes References

Salinity Pre-soaking treatment 10 mM Maize Increased photosynthetic 
pigments, nucleic acids 
content, K/Na ions 
decreased lipid peroxi-
dation and ion leakage

Zeid (2009)

Heat Pretreatment 1.5 mM Wheat Reduction in electrolyte 
leakage,  H2O2, MDA, 
superoxide anion, and 
lipoxygenase activity

Luo et al. (2010)

Cadmium stress Foliar spray 0.5, 1, 2, and 5 mM Duckweed Reduced proline contents, 
MDA levels, and accu-
mulation of Cd while 
SOD, CAT and APX, 
activities improved 
under heavy metal 
stress

Duman et al. (2011)

Drought Foliar spray 30 mM Maize Improved water relation 
attributes, photosyn-
thetic and antioxidant 
defense mechanism

Ali and Ashraf (2011)

Salinity Pretreatment 10 mM Rice Reduced  Na+/K+ ratio, 
proline contents, 
decreased SOD and 
POX activities, whereas 
APX increased

Nounjan et al. (2012)

Salinity Foliar spray 10 mM Catharanthsroseus Increase in soluble sug-
ars, free amino acids, 
control water loss, leaf 
gas exchange and ionic 
flow

Chang et al. (2014)

Heat stress Foliar spray 0, 5, 10, 15, 20, and 
25 mM

Maize Increased internal 
trehalose levels with 
decreased MDA con-
tents and ions leakage 
due to stress conditions

Li et al. (2014)

Drought Pre-sowing seed 
treatment and foliar 
spray

25 and 50 mmol/L Radish Useful in enhancing the 
both enzymatic and 
non-enzymatic antioxi-
dant activities

Shafiq et al. (2015)

Drought Foliar spray 25 and 50 mM Radish External fortification 
with trehalose enhanced 
growth and shoots P 
and reduced relative 
membrane permeability

Akram et al. (2015)

Drought stress Foliar spray 1.5 mM Wheat Enhanced activities of 
POD, phenylalanine 
ammonia lyase and 
ascorbic acid oxidase 
along with limited 
activity of polyphenol 
oxidase

Aldesuquy and Ghanem 
(2015)

Copper stress Pretreatment 10 mM Rice Increased concentrations 
of AsA, proline, antiox-
idants, glutathione and 
decreased Cu absorp-
tion, MDA and limited 
aggregation of ROS

Mostofa et al. (2015a, b)
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applied through the rooting medium of rice plants grown 
under saline stress (Garcia et al. 1997). The authors reported 
trehalose-induced conservation of root cell integrity, cell 
division, and keeping out Na from the chloroplast (Garcia 
et al. 1997). In the same experiment, they also applied treha-
lose as a foliar spray and showed that foliar-applied trehalose 
neutralized the adverse effects of salinity by reducing  Na+ 
accumulation, chlorophyll loss, and growth retardation as 
well as by conserving root integrity. In the same crop, Noun-
jan et al. (2012) showed that exogenous application of treha-
lose through leaves decreased the  Na+/K+ ratio, endogenous 
proline levels and up-regulated antioxidant genes. Chang 
et al. (2015) showed that 10 mM trehalose application as a 
foliar spray on Catharanthus roseus increased alkaloid com-
pounds in plants grown under salinity stress.

The external fortification of trehalose in plants is 
believed to counteract the adverse effects of drought stress 
(Aldesuquy and Ghanem 2015). Upon exposure of plants 

to dehydrated conditions, trehalose plays a role in balanc-
ing metabolic processes in plants (Ilhan et al. 2015). Ali 
and Ashraf (2011) applied trehalose to the leaves of drought 
stressed maize plants and showed the regulation of photo-
synthesis, osmotic potential and ROS scavenging enzymes. 
In a latter study, the exogenous application of trehalose 
(30 mM + Tween 20) in maize during drought stress induced 
the accumulation of antioxidants such as flavonoids, pheno-
lics as well as improvement in plant growth and seed com-
position (Ali et al. 2012). Similarly, Theerakulpisut and 
Gunnula (2012) reported that external application of treha-
lose ameliorated desiccation stress by improving water rela-
tions, growth, chlorophyll content, and antioxidant activity 
in maize. External application of trehalose has been shown 
to improve non-enzymatic and enzymatic antioxidants in 
the edible portion of radish under drought stress (Shafiq 
et al. 2015). In another study, wheat plants treated with tre-
halose showed enhanced membrane stability and increased 

Table 1  (continued)

Nature of stress Mode of application Concentrations Plant species Metabolic processes References

Salt stress Pretreatment 10 mM Rice Improved relative 
water content, AsA, 
chlorophyll pigments 
but decreased MDA, 
lipoxygenase activity

Mostofa et al. (2015)

Drought Foliar spray 250 or 500 µM Fenugreek Increases in growth 
parameters, flavonoids, 
carbohydrate, total phe-
nolics, photosynthetic 
pigments, and protein 
contents

Sadak (2016)

Drought Pre-sowing and foliar 25 mmol/L Radish External use of trehalose 
via both methods was 
useful in stimulating 
leaf anatomical changes 
under water stress and 
non-stress conditions

Akram et al. (2016)

Drought Foliar spray 10 mM Wheat Significant and positive 
effect on most growth 
parameters and bio-
chemical components

Ibrahim and Abdellatif 
(2016)

Drought Pre-treatment 25 mM Raphanus sativus Significant increase in 
chlorophyll a, total 
soluble sugars, free 
proline, water use 
efficiency and activity 
of SOD enzyme

Akram et al. (2016a, b, c)

Drought Foliar spray 25 and 50 mM Radish Foliar trehalose spray 
improved AsA, 
phenolics and catalase 
activity under drought 
conditions

Akram et al. (2016)

Salt stress Foliar spray 0, 50, 100, and 150 mM Rice Increased biomass, GB, 
proteins levels, superox-
ide dismutase and yield 
parameters

Shahbaz et al. (2017)
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enzymatic and non-enzymatic antioxidant activities under 
water stress. Trehalose acts as a compatible osmoprotect-
ant, and it also can effectively scavenge ROS in plants under 
stress conditions in particular drought stress (Dawood 2016). 
Using the pre-sowing treatment mode, Akram et al. (2016a, 
b, c) have shown that trehalose pre-treated radish seeds 
caused a significant improvement in water use efficiency, 
chlorophyll a, free proline contents, and SOD enzyme activ-
ity under water deficit stress.

Under high temperature stress, the protective effect of 
trehalose in Myrothamnus flabellifolius was shown to be due 
to its involvement in effective protein conformation (Doe-
hlemann et al. 2006). In another study with wheat under 
heat stress, Luo et al. (2008) showed that pre-treated winter 
wheat seeds with trehalose protected the membranes from 
lipid peroxidation and photo-systems against heat stress.

From the fore-going reports, it is possible to infer that 
exogenous application through any of the three modes men-
tioned earlier plays a critical role in alleviating the adverse 
effects of various stresses such as drought, salinity, and 
temperature extremes by regulating a myriad of physio-bio-
chemical plant processes. Furthermore, the external appli-
cations of trehalose can act as an elicitor of stress related 
genes in plants.

Trehalose a Compatible Solute 
(Osmoprotectant)

Compatible solutes are those that are produced in plant 
cells to preserve biological structures and retain turgid-
ity upon exposure to an osmotic stress (López-Gómez and 
Lluch 2012). Occurrence of deleterious conditions of abi-
otic stresses in plants stimulates the formation of organic 
osmolytes including trehalose, which protect cellular struc-
tures from stress conditions. During imposition of desic-
cation and heat stress, trehalose shields both biological 
membranes and enzymes (Müller et al. 1995). For example, 
trehalose presence in the root nodules of Phaseolus vulgaris 
made them water stress resistant by elevating tissue osmotic 
potential (Farías-Rodriguez et al. 1998). Supplementation 
of Arabidopsis with trehalose elicits strong responses that 
are not generated by osmoticum controls such as sorbitol or 
mannitol. It has been reported that in Arabidopsis seedlings 
grown on 25 mM trehalose, carbon allocation is reversed 
due to massive accumulation of starch from carbon fixed in 
the cotyledons (Wingler et al. 2000). However, at the rate of 
100 mM trehalose, seedlings not only germinate, but also 
produce extended cotyledons. However, this trehalose level 
failed to develop primary leaves and hindered primary root 
development particularly beyond 2–5 mm (Schluepmann 
et al. 2004). It is imperative to note that the root meristem 
is reduced in cell size and number along with swelling and 

bursting of the extension zone. Trehalose helps the proteins 
to retain their conformation (Schiraldi et al. 2002). Exter-
nal application of trehalose raises its endogenous levels 
which help to counteract the adverse effects of salt stress 
(Chen and Murata 2002). Zeid (2009) reported that foliar 
application of trehalose in maize under salinity stress con-
served chlorophyll contents and Hill reaction activity. Simi-
larly, external use of trehalose in rice seedlings maintained 
root integrity, ionic balance and regulated expression of 
osmotic genes (Fernandez et al. 2010). In rice under salt 
stress, Theerakulpisut and Phongngarm (2013) reported the 
osmoprotectant role of trehalose in plant physiology. In the 
same crop, Abdallah et al. (2016) reported that application 
of trehalose improved sugar levels, carotenoid contents and 
scavenged free radicals in rice plants grown under saline 
regimes. In Arabidopsis, exogenous application of trehalose 
was reported to maintain ionic homeostasis, levels of solu-
ble sugars, and the activity of the antioxidant mechanism, 
thereby nullifying salt-induced adverse effects (Yang et al. 
2014). Trehalose can effectively inhibit the ROS induced 
signaling pathway under stress conditions (Fernandez et al. 
2010). It also adjusts cellular osmotic potential which pre-
vents loss of cellular water and retains integrity of cellu-
lar structures associated with sugar metabolism (Taiz and 
Zeiger 2003; Paul et al. 2008). Trehalose also takes part in 
flowering and embryo formation. It also regulates carbon 
metabolism in plants. The interaction between plant and 
microorganisms also depends upon trehalose presence (Itur-
riaga et al. 2009). Thus, the role of trehalose in metabolic 
processes might be preservation. However, it is not fully 
elucidated to what extent it could protect different biomol-
ecules involved in stress tolerance in different plant species.

Trehalose as an Antioxidant as Well 
as a Stimulant of Other Antioxidants

In response to adverse conditions of ecological stresses, 
reactive oxygen species (ROS) are usually formed in plants 
(Miller et al. 2008). These toxic-free radicals deteriorate 
the macromolecules and biological membranes (Krumova 
and Cosa 2016). As a defense mechanism, plants produce a 
variety of enzymatic and non-enzymatic antioxidants (Yadav 
et al. 2008). Trehalose plays an important role in neutral-
izing ROS and conserving the protein anabolic machinery 
(Chang et al. 2014). Due to certain unique qualities such 
as lack of internal hydrogen bond formation, chemical sta-
bility, and more hydrophilicity, it plays a vital role during 
dehydrated conditions (Abdallah et al. 2016). Shahbaz et al. 
(2017) reported that trehalose is more effective than proline 
under water deficit conditions, because it shields biologi-
cal molecules from xeric conditions (Rezvani and Shariati 
2009). Increased carbohydrate levels correlate well with 
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accumulated amounts of trehalose (Garg and Chandel 2011; 
Shahbaz et al. 2017). During osmotic stress, one trehalose 
molecule stoichiometrically reacts with one cis-olefin dou-
ble bond of an unsaturated fatty acid; consequently, a stable 
complex is formed which significantly reduces the oxida-
tion process (Nery et al. 2008). In a study, it was reported 
that application of 50 mM trehalose in wheat neutralized 
the adverse effects of high temperature stress by reduc-
ing  H2O2 and  O2

− radicals, and shielding SOD (Luo et al. 
2008). External application of trehalose to salt stressed rice, 
although having no influence on catalase activity, signifi-
cantly enhanced peroxidase and superoxide dismutase activi-
ties (Vaidyanathan et al. 2003). Luo et al. (2010) described 
that trehalose neutralizes free oxidative radicals rather than 
modifying superoxide dismutase activity. In another study, 
the presoaking treatment of wheat seedlings with trehalose 
stimulated catalase activity under salinity stress (Dola-
tabadian and Jouneghani 2009). Recently, Abdallah et al. 
(2016) have reported that in rice, trehalose treatment sig-
nificantly increased proline, soluble sugars, and antioxidant 
enzymes as well as ameliorated the toxic effects of salinity. 
In rice plants, the external use of trehalose not only raised 
endogenous trehalose but also increased the activities of 
antioxidative enzymes such as superoxide dismutase, cata-
lase, and peroxidase. Thus, trehalose not only acts as an 
antioxidant but also promotes the activities/levels of other 
key antioxidants.

Trehalose as a Biotechnological Tool/
Signaling Molecule

Based upon superior qualities of trehalose, efforts are 
being made to produce transgenic plants over-accumulat-
ing trehalose in plant tissues to confer stress tolerance. 
The introgression of bacterial or yeast-derived trehalose 
responsive genes in different plants like potato, Arabidop-
sis, and rice made them more stress tolerant (Karim et al. 
2007). Recently, Sah et al. (2016) have described that over-
expression of trehalose genes made transgenic plants more 
resistant to abiotic stresses. In another study, while trans-
ferring two trehalose biosynthesis genes, otsA and otsB, 
from E. coli to rice plants, Garg et al. (2002) found that 
these transformants had 3–10 times more trehalose levels 
than that in the control plants upon onset of stress con-
ditions. The non-transformant plants showed wilting and 
leaf rolling after 8–12 h of withholding irrigation as com-
pared to the transgenic lines. Han et al. (2005) engineered 
tobacco plants with the TP (trehalose pyrophosphate) gene 
from Pleurotussajor-caju. This gene can also be expressed 
in yeasts, fungi, and algae for trehalose synthesis from 
glucose-1-phosphate. The expression of OsTPS1 gene in 
rice plants increased proline and trehalose levels under 

stress conditions (Li et al.2011). The expression of the 
yeast TPS1 gene in tomato made it more tolerant to oxi-
dative stress (Cortina and Culiáñez-Macià 2005). The 
transfer of the AtTPS1 gene in tobacco from Arabidopsis 
made it more acclimated against multiple abiotic stresses 
(Almeida et al. 2007). The engineered Arabidopsis plants 
with yeast-originated TPS gene induced abiotic stress tol-
erance along with some phenotypical changes (Miranda 
et al. 2007). Tolerance against water scarcity in transgenic 
Arabidopsis was displayed by regulation of the homolo-
gous AtTPS1 gene (Avonce et al. 2004). Transgenic melon 
and tobacco with yeast-based TPS1 (trehalose- 6-phos-
phate synthetase) gene showed improved multiple abiotic 
stress tolerance with many pleiotrophic effects on develop-
ment processes (Serrano et al. 1998). The over-expression 
of the TPSP gene (a chimeric gene generated by fusing 
TPS and TPP enzymes) led to sugar signaling (production 
of trehalose) in transgenic rice and allocated the stress 
tolerance metabolic pathways (Redillas et al. 2012). Trans-
genic rice plants with over-expressed OsTPS1 genes acti-
vated the signaling of other stress associated genes (Li 
et al. 2011). Arabidopsis has 10 TPP and 11 TPS putative 
genes, whereas rice contains nine TPPs and nine TPSs 
genes (Delorge et al. 2014). In transgenic rice plants, Ge 
et al. (2008) reported that over-expression of OsTPP1 
activated a series of stress-related genes which resulted 
in stress tolerance mechanisms. The aim of trehalose 
genetic engineering is not only to produce stress tolerant 
transgenes but also produce trehalose commercially at low 
cost (Zheng et al. 2015), so it can be utilized as a stabiliz-
ing agent for pharmaceuticals and other applied purposes. 
The trehalose engineering projects may also help discover 
advancement in plant metabolic machinery.

Plant interactions with Rhizobium bacteria, herbivorous 
insects, and pathogens show that trehalose acts as potent 
signaling molecule. For normal development and growth of 
plants, trehalose metabolism is necessary. Like in prokary-
otes, biosynthesis of trehalose occurs in eukaryotes via a 
phosphorylated intermediate trehalose-6-phosphate (John 
et al. 2017). T6P acts as a signaling factor for maintaining 
the sucrose level (photosynthate) and particularly in sugar 
metabolism and sugar influx within plants. A meta-analysis 
indicated that the sucrose levels are associated with changes 
in T6P concentration. Along with varying environmental 
cues, T6P levels are sensitive to sucrose availability. It can 
happen due to T6P or trehalose or the interaction of bio-
synthetic enzymes with phyto-hormones as well as sugar-
induced signaling routes (John et al. 2017). It has been 
identified that T6P at low concentrations such as µM has 
been involved in inhibition of SnRK1 (SNF1/AMPK group 
of protein kinases) in vivo and in vitro. From this, it can be 
concluded that the function of T6P acts as a sugar signal-
ing molecule integrating development and metabolism in 
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relation to carbon supply (Schluepmann and Paul 2009) 
(Table 2).

Conclusions and Future Prospects

By virtue of being a versatile biomolecule, trehalose pos-
sesses a variety of functional characteristics that are benefi-
cial for plants to thrive well under harsh environmental cues. 
Naturally, most plants synthesize/accumulate reasonably low 
amounts of trehalose, which may not be sufficient to opti-
mally maintain the functioning of key metabolic processes 
involved in plant growth and development under stressful 
environments. Thus, efforts are currently underway to bio-
engineer plants that must synthesize trehalose to desirable 
levels so as to counteract the stress-induced adverse condi-
tions. The trehalose biosynthetic genes from ascospores and 
resurrection plants can be utilized for transforming plants 
against stressful conditions. There is a need to search con-
venient sources of trehalose biosynthetic genes other than 
bacteria and yeasts. Because improvement in trehalose levels 
through modern biotechnological tools is a cost-intensive 
approach, so most researchers recommend exogenous appli-
cation of this vital biomolecule to plants. There is a need to 
assess which of the three modes is cost-effective and effec-
tive. Although pre-sowing seed treatment seems to be easy 
to handle and cost-effective, it is unclear whether its effect 
lasts up to terminal growth. Because pure synthetic trehalose 
is not a cheap commodity, there is a need to explore cheap 
sources of this vital sugar.

Although efforts have been made during the past few dec-
ades by different researchers to elucidate the role of treha-
lose in key plant physiological processes, the important role 
trehalose plays in plant protection is not fully uncovered. 
To assess the entire action of trehalose in plant metabo-
lism starting from the cellular level to whole plant level, 

extensive research is required. The information on compat-
ibility between the trehalose-induced regulation of plant 
metabolites and resulting plant morphology will be helpful 
to optimize the amount of trehalose required. Similarly, the 
anatomical changes that take place in stressed plants due to 
trehalose treatment still need to be determined. The actual 
role of trehalose in mitigating the injurious effects of free 
radicals during stress-induced oxidative stress also needs 
to be investigated. The influence of trehalose application 
on different seed oil fatty acid profiles and their antioxidant 
activities must be explored. Further research on the role of 
trehalose in not only elucidating abiotic stress tolerance, but 
also in trehalose-induced signaling pathways and preserva-
tion from phenotypic aberrations is also required.
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