Chapter #4 Part #3

1 You are given the following data for a scraper job: a. Number of scrapers are seven single engines overhauling; b. tandem pusher will be used; c. the scraper will carry 28 BCY (full load); d. same route will be used for haul and return; e. chain loading method (pusher cycle time is 0.9 min); f. scraper fixed cycle time = 1.3 min; g. efficiency factor is 0.85 and job conditions are average. Sections of the haul route from the cut area to the fill area are as follows:

Section	Distance (ft)	Grade (%)	Rolling resistance factor (lb/ton)	Eff. Grade	Max. speed	Average speed factor	Average speed	Travel time
1	500	- 3	100					
2	3000	- 1	140					
3	1000	+1	180					
4	700	0	200					
5								
6								
7								
8								

What is the estimated fleet production in bank cubic yards per hour?

Solution:

Effective grades:

Section # 1, effective grade = -3 + 100/20 = +2

Section # 2, effective grade = -1 + 140/20 = +6

Section # 3, effective grade = +1 + 180/20 = +10

Section # 4, effective grade = 0 + 200/20 = +10

Section # 5, effective grade = 0 + 200/20 = +10

Section # 6, effective grade = -1 + 180/20 = +8

Section # 7, effective grade = +1 + 140/20 = +8

Section # 8, effective grade = +3 + 100/20 = +8

- Maximum speeds: from figure 4 2;
- Section # 1, loaded: 31 mph
- Section # 2, loaded: 14 mph
- Section # 3, loaded: 8 mph
- Section # 4, loaded: 8 mph
- Section # 5, empty: 16 mph
- Section # 6, empty: 21 mph
- Section # 7, empty: 21 mph
- Section # 8, empty: 21 mph
- Average speed factor: from table 4-3;
- Section # 1, starting from zero: 0.65
- Section # 2, decreasing max speed from previous section: 1.08
- Section # 3, decreasing max speed from previous section: 1.19
- Section # 4, coming to a stop: 0.70
- Section # 5, starting from zero: 0.70
- Section # 6, increasing max speed from previous section: 0.89
- Section # 7, same max speed as previous section: 0.89
- Section # 8, coming to a stop: 0.65
- Average speed, mph = maximum speed × average speed factor
- Travel time, min = (distance, ft/88) / average speed, mph

Section	Distance	Grade	Rolling resistance	Eff. Grade	Max. speed	Average	Average	Travel
	(ft)	(%)	factor (lb/ton)	(%)	(mph)	speed factor	speed (mph)	time (min)
1	500	- 3	100	2	31	0.65	21.15	0.269
2	3000	- 1	140	6	14	1.08	15.12	2.255
3	1000	+1	180	10	8	1.19	9.52	1.194
4	700	0	200	10	8	0.70	5.6	1.420
5	700	0	200	10	16	0.7	11.2	0.710
6	1000	- 1	180	8	21	0.89	18.69	0.608
7	3000	+1	140	8	21	0.89	18.69	1.824
8	500	+3	100	8	21	0.65	18.69	0.304

Total travel time = 8.584 minutes

Fixed cycle time, table 4 - 7 but it is given 1.3 min

Total cycle time = 9.884 minutes

Production for one scraper = 28 BCY / 9.884 min \times 0.85 = 2.833 BCY/min = 169.97 BCY/h

Production for seven scrapers = $169.97 \times 7 = 1189.8$ BCY/h