Chapter \#4 Part \#3

1 You are given the following data for a scraper job: a. Number of scrapers are seven single engines overhauling; b. tandem pusher will be used; c. the scraper will carry 28 BCY (full load); d. same route will be used for haul and return; e. chain loading method (pusher cycle time is 0.9 min); f. scraper fixed cycle time $=1.3 \mathrm{~min}$; g . efficiency factor is 0.85 and job conditions are average. Sections of the haul route from the cut area to the fill area are as follows:

Section	Distance (ft)	Grade $(\%)$	Rolling resistance factor (lbton)	Eff. Grade	Max. speed	Average speed factor	Average speed	Travel time
1	500	-3	100					
2	3000	-1	140					
3	1000	+1	180					
4	700	0	200					
5								
6								
7								
8								

What is the estimated fleet production in bank cubic yards per hour?

Solution:

Effective grades:
Section \# 1, effective grade $=-3+100 / 20=+2$
Section \# 2, effective grade $=-1+140 / 20=+6$
Section \# 3, effective grade $=+1+180 / 20=+10$
Section \# 4, effective grade $=0+200 / 20=+10$
Section \# 5, effective grade $=0+200 / 20=+10$
Section \# 6, effective grade $=-1+180 / 20=+8$
Section \#7, effective grade $=+1+140 / 20=+8$
Section \# 8, effective grade $=+3+100 / 20=+8$

- Maximum speeds: from figure 4-2;

Section \# 1, loaded: 31 mph
Section \# 2, loaded: 14 mph
Section \# 3, loaded: 8 mph
Section \# 4, loaded: 8 mph
Section \# 5, empty: 16 mph
Section \# 6, empty: 21 mph
Section \# 7, empty: 21 mph
Section \# 8, empty: 21 mph

- Average speed factor: from table $4-3$;

Section \# 1, starting from zero: 0.65
Section \# 2, decreasing max speed from previous section: 1.08
Section \# 3, decreasing max speed from previous section: 1.19
Section \# 4, coming to a stop: 0.70
Section \# 5, starting from zero: 0.70
Section \# 6, increasing max speed from previous section: 0.89
Section \# 7, same max speed as previous section: 0.89
Section \# 8, coming to a stop: 0.65

- Average speed, $\mathrm{mph}=$ maximum speed \times average speed factor
- Travel time, $\min =($ distance, $\mathrm{ft} / 88) /$ average speed, mph

Section	Distance (ft)	Grade $(\%)$	Rolling resistance factor (lb/ton)	Eff. Grade $(\%)$	Max. speed (mph)	Average speed factor	Average speed (mph)	Travel time (min)
1	500	-3	100	2	31	0.65	21.15	0.269
2	3000	-1	140	6	14	1.08	15.12	2.255
3	1000	+1	180	10	8	1.19	9.52	1.194
4	700	0	200	10	8	0.70	5.6	1.420
5	700	0	200	10	16	0.7	11.2	0.710
6	1000	-1	180	8	21	0.89	18.69	0.608
7	3000	+1	140	8	21	0.89	18.69	1.824
8	500	+3	100	8	21	0.65	18.69	0.304

Total travel time $=8.584$ minutes
Fixed cycle time, table $4-7$ but it is given 1.3 min
Total cycle time $=9.884$ minutes
Production for one scraper $=28 \mathrm{BCY} / 9.884 \mathrm{~min} \times 0.85=2.833 \mathrm{BCY} / \mathrm{min}=169.97 \mathrm{BCY} / \mathrm{h}$
Production for seven scrapers $=169.97 \times 7=1189.8 \mathrm{BCY} / \mathrm{h}$

