OR 441: Simulation and Modeling
Tutorial Handout \#6 : Spreadsheet Simultion
Question 1:

Question 2:

Write a one line spreadsheet formula to generate Bernoulli random variables with success probability, 0.35
$=\operatorname{IF}($ RAND ()$<0.35,1,0)$

Question 3:

Write a one line spreadsheet formula to generate random variables from a Normal distribution with mean 10.0 and variance 4.0
$=$ NORM.INV(RAND(),10,2)

Question 4:

Write a one line spreadsheet formula to generate random variables from an exponential distribution with a rate parameter of 5 per hour.
$=-1^{*}(1 / 5)^{*} \mathrm{LN}(1-R A N D())$

Question 5:

The service times for an automated storage and retrieval system has a shifted exponential distribution. It is known that it takes a minimum of 15 seconds for any retrieval. The parameter of the exponential distribution is $\lambda=45$. Setup a spreadsheet that will generate 20 observations of the service times.
$=15+\left(-1^{*}(1 / 45)^{*} \mathrm{LN}(1-\operatorname{RAND}())\right)$

Question 6:

The time to failure for a computer printer fan has a Weibull distribution with shape parameter $\alpha=2$ and scale parameter $\beta=3$. Setup a spreadsheet that will generate 10 failure times for the computer printer fan.

$$
=3^{*}\left(-1^{*} \mathrm{LN}(1-\operatorname{RAND}())\right)^{\wedge}(1 / 2)
$$

-	A	B	C
1	alpha	2	
2	beta	3	
3		1	2
4	U	=RAND()	=RAND()
5	$\operatorname{Finv}(\mathrm{U})=$		$=\$ B \$ 2^{*}\left(-1^{*} L N(1-C 4)\right)^{\wedge}(1 / \$ B \$ 1)$

Question 7:

The time to failure for a computer printer fan has a Weibull distribution with shape parameter $\alpha=2$ and scale parameter $\beta=3$. Testing has indicated that the distribution is limited to the range from 1.5 to 4.5 .

Set up a spreadsheet to generate 100 observations from this truncated distribution.

Question 8:

The interest rate for a capital project is unknown. An accountant has estimated that the minimum interest rate will between 2% and 5% within the next year. The accountant believes that any interest rate in this range is equally likely. You are tasked with generating interest rates for a cash flow analysis of the project. Setup a spreadsheet that will generate 5 interest rate values for the capital project analysis.

1	A	B	C	D
1	$a=$	0.02		
2	$\mathrm{b}=$	0.05		
3	$\mathrm{U}=$	=RAND()	=RAND()	=RAND()
4	Finv(U) $=$	$=\$ \mathrm{~B}$ 1+(\$B\$2-\$B\$1)*B3	$=\$ \mathrm{~B}$ 1+(\$B\$2-\$B\$1)*C3	=\$B\$1+(\$B\$2-\$B\$1)*D3
5				

Question 9:

Setup a spreadsheet to generate 30 observations from the following probability density function:

$$
f(x)= \begin{cases}\frac{3 x^{2}}{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

