5.29 A homeowner plants 6 bulbs selected at random from a box containing 5 tulip bulbs شتلة الخزامى and 4 daffodil bulbs شتلة النرجس البري. What is the probability that he planted 2 daffodil bulbs and 4 tulip bulbs?

$$
f(x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}, x=\max (0, n-(N-k)) \ldots \min (n, k)
$$

X : number of tulip bulbs.
$\mathrm{X} \sim \mathrm{H}(\mathrm{N}=9, \mathrm{n}=6, \mathrm{k}=5)$

$$
f(x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}=\frac{\binom{5}{5}\left(\begin{array}{c}
{ }_{6}^{4} \\
\left(\begin{array}{c}
-x
\end{array}\right) \\
{ }_{6}^{\prime}
\end{array}\right)}{}, \quad x=2,3,4,5 .
$$

$$
f(4)=P(x=4)=\frac{\binom{5}{4}\binom{4}{2}}{\binom{9}{6}}=\frac{30}{84}=0.35
$$

5.31 A random committee of size 3 is selected from 4 doctors and 2 nurses. Write a formula for the probability distribution of the random variable X representing the number of doctors on the committee. Find $\mathrm{P}(2 \leq \mathrm{X} \leq 3)$.
X : number of doctors on the committee. $\mathrm{N}=4+2=6$
$\mathrm{X} \sim \mathrm{H}(\mathrm{N}=6, \mathrm{n}=3, \mathrm{k}=4)$

$$
\begin{gathered}
f(x)=\frac{\binom{4}{x}\binom{6-4}{3}}{\binom{6}{3}}, \quad x=1,2,3 . \\
p(2 \leq X \leq 3)=f(2)+f(3)=\frac{\binom{4}{2}\binom{2}{1}}{\binom{6}{3}}+\frac{\binom{4}{3}\binom{2}{0}}{\binom{6}{3}}=0.6+0.2=0.8
\end{gathered}
$$

5.32 From a lot of 10 missiles, 4 are selected at random and fired. If the lot contains 3 defective missiles that will not fire, what is the probability that X : number of defective missiles.
$\mathrm{X} \sim \mathrm{H}(\mathrm{N}=10, \mathrm{n}=4, \mathrm{k}=3$)

$$
f(x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}=\frac{\binom{4}{x}\binom{7}{-x}}{\binom{10}{4}}, \quad x=0,1,2,3
$$

(a) all 4 will fire?

$$
f(0)=\frac{\binom{3}{0}\binom{7}{4}}{\binom{10}{4}}=0.1667
$$

(b) at most 2 will not fire?

$$
p(X \leq 2)=f(0)+f(1)+f(2)=1-p(x>2)=1-f(3)=0.9667
$$

5.40 It is estimated that 4000 of the 10,000 voting residents of a town are against a new sales tax. If 15 eligible voters are selected at random and asked their opinion, what is the probability that at most 7 favor the new tax?

NOTE: If \mathbf{n} is small compared to \mathbf{N}, then a binomial distribution $\mathbf{B}(\mathbf{n} ; \mathbf{p}=\mathbf{K} / \mathbf{N})$ can be used to approximate the hypergeometric distribution $\mathbf{h}(\mathbf{N} ; \mathbf{K} ; \mathbf{n})$. The approximation is good when $\mathbf{n} / \mathbf{N} \leq$ 0.05 .

Since $\frac{n}{N}=\frac{15}{10000}=0.0015 \leq 0.05$
We can use Binomial as approximation to Hypergeometric.

$$
P=\frac{k}{N}=\frac{6000}{10000}=0.6
$$

X : number of voters who favor the new tax.

$$
\begin{gathered}
f(x)=\binom{15}{x}(0.6)^{x}(0.4)^{15-x} ; x=0,1,2, \ldots, 15 \\
p(X \leq 7)=0.213
\end{gathered}
$$

5.56 On average, 3 traffic accidents per month occur at a certain intersection. What is the probability that in any given month at this intersection

$$
f(x)=\frac{(\lambda t)^{x} e^{-\lambda t}}{x!} ; x=0,1,2, \ldots
$$

$\lambda=3, t$: One Month, X : number of accident per month. X~ Poisson (3)
(a) exactly 5 accidents will occur?

$$
P(X=5)=f(5)=\frac{(3)^{5} e^{-3}}{5!}=0.1008
$$

(b) fewer than 3 accidents will occur?

$$
\begin{aligned}
P(X<3)= & f(0)+f(1)+f(2)=e^{-3}\left[\frac{(3)^{0}}{0!}+\frac{(3)^{1}}{1!}+\frac{(3)^{2}}{2!}\right] \\
& =e^{-3}[8.5]=0.4232
\end{aligned}
$$

(c) at least 2 accidents will occur?

$$
P(X \geq 2)=1-p(X<2)=1-f(0)+f(1)=0.8009
$$

5.67 The number of customers arriving per hour at a certain automobile service facility is assumed to follow a Poisson distribution with mean $\lambda=7$. $\lambda=7, t$: One hour, X : number of customers arriving per hour. X~ Poisson (7)
(a) Compute the probability that more than 10 customers will arrive in a 2 hour period.
X : number of customers arriving in two hours.

$$
\begin{aligned}
& \lambda t=2(7)=14, \quad X \sim \text { poisson }(14) \\
& P(X>10)=1-p(X \leq 10)=1-\frac{(14)^{0} e^{-14}}{0!}-\cdots-\frac{(14)^{10} e^{-14}}{10!} \\
&= 0.8243
\end{aligned}
$$

(b) What is the mean number of arrivals during a 2 -hour period?

$$
E(X)=\mu=\lambda t=14
$$

3.6 The shelf life, in days, for bottles of a certain prescribed medicine is a random variable having the density function

$$
f(x)= \begin{cases}\frac{20,000}{(x+100)^{3}}, & 0<x \\ 0, & O . W\end{cases}
$$

Find the probability that a bottle of this medicine will have a shell life of
(a) at least 200 days;

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}>200)=\int_{200}^{\infty} \frac{20,000}{(x+100)^{3}} d x=\int_{200}^{\infty} 20000(x+100)^{-3} d x \\
& \text { let } \mathrm{u}=\mathrm{x}+100, \quad \mathrm{x}=\mathrm{u}-100, \mathrm{dx}=\mathrm{du}, \quad 200<\mathrm{x}<\infty \quad \gg 300<\mathrm{u}<\infty \\
& \begin{array}{r}
\mathrm{P}(\mathrm{X}>200)=\int_{300}^{\infty} 20000(u)^{-3} d u=20000\left[\frac{u^{-2}}{-2}\right]_{300}^{\infty}=20000\left[\frac{-1}{2 u^{2}}\right]_{300}^{\infty} \\
=20000\left[\frac{-1}{\infty}-\frac{-1}{2\left(300^{2}\right)}\right]=\frac{1}{9}
\end{array}
\end{aligned}
$$

(a) anywhere from 80 to 120 days.

$$
\mathrm{P}(80<\mathrm{X}<120)=\int_{80}^{120} \frac{20,000}{(x+100)^{3}} d x=20000\left[\frac{-1}{2(x+100)^{2}}\right]_{80}^{120}=0.1020
$$

3.7 The total number of hours, measured in units of 100 hours, that a family runs a vacuum cleaner over a period of one year is a continuous random variable \mathbf{X} that has the density function

$$
f(x)=\left\{\begin{array}{lc}
x, & 0<x<1 \\
2-x, & 1 \leq x<2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the probability that over a period of one year, a family runs their vacuum cleaner
(a) less than 120 hours;

$$
\mathrm{P}(\mathrm{X}<1.20)=\int_{0}^{1} x d x+\int_{1}^{1.2}(2-x) d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{(2-x)^{2}}{2}\right]_{1}^{1.2}=0.68
$$

(b) between 50 and 100 hours.

$$
\mathrm{P}(0.5<\mathrm{X}<1)=\int_{0.5}^{1} \quad x d x=\left[\frac{x^{2}}{2}\right]_{0.5}^{1}=\frac{3}{8}=0.375
$$

3.9 The proportion of people who respond to a certain mail-order solicitation is a continuous random variable \mathbf{X} that has the density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{2(x+2)}{5}, & 0<x<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Show that $P(0<X<1)=1$.
$\mathrm{P}(0<\mathrm{X}<1)=\int_{0}^{1} \frac{2}{5}(x+2) d x=\frac{2}{5}\left[\frac{(x+2)^{2}}{2}\right]_{0}^{1}=\frac{1}{5}[9-4]=1$
(b) Find the probability that more than $1 / 4$ but fewer than $1 / 2$ of the people contacted will respond to this type of solicitation.

$$
\begin{gathered}
p\left(\frac{1}{4}<x<\frac{1}{2}\right)=\int_{0.25}^{0.5} \frac{2}{5}(x+2) d x=\frac{2}{5}\left[\frac{(x+2)^{2}}{2}\right] 0.5 \\
=\frac{1}{5}\left[\left(\frac{5}{2}\right)^{2}-\left(\frac{9}{4}\right)^{2}\right]=0.2375
\end{gathered}
$$

3.12 An investment firm offers its customers municipal bonds that mature after varying numbers of years.
Given that the cumulative distribution function of T , the number of years to maturity for a randomly selected bond, is

$$
F(t)= \begin{cases}0, & t<1 \\ \frac{1}{4}, & 1 \leq t<3 \\ \frac{1}{2}, & 3 \leq t<5 \\ \frac{3}{4}, & 5 \leq t<7 \\ 1, & 7 \leq t\end{cases}
$$

Find
(a) $P(T=5)$;

$$
\begin{gathered}
F(t)=p(T \leq t) \\
p(T=5)=f(5)=F(5)-F(4)=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}
\end{gathered}
$$

(b) $P(T>3)$;

$$
p(T>3)=1-p(T \leq 3)=1-F(3)=1-\frac{1}{2}=\frac{1}{2}
$$

(c) $P(1.4<T<6)$;

$$
p(1.4<T<6)=F(5)-F(2)=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}
$$

(d) $P(T \leq 5 \mid T \geq 2)$.

$$
p(T \leq 5 \mid T \geq 2)=\frac{p(2 \leq T \leq 5)}{p(T \geq 2)}=\frac{F(5)-F(1)}{1-P(T \leq 1)}=\frac{\frac{3}{4}-\frac{1}{4}}{1-\frac{1}{4}}=
$$

\#Note:

Discrete random variables

```
\(p(a<X \leq b)=F(b)-F(a)\)
\(p(a \leq X<b)=F(b-1)-F(a-1)\)
\(p(a \leq X \leq b)=F(b)-F(a-1)\)
\(p(a<X<b)=F(b-1)-F(a)\)
Continuous random variables
\(p(a<X \leq b)=p(a \leq X<b)=p(a \leq X \leq b)=p(a<X<b)=F(b)-F(a)\)
```

3.14 The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable with cumulative distribution function:

$$
F(x)=\left\{\begin{array}{lr}
0, & x<0 \\
1-e^{-8 x}, & x \geq 0
\end{array}\right.
$$

Find the probability of waiting less than 12 minutes between successive speeders:
To convert from minute to the hours: $12 / 60=1 / 5=0.2 \mathrm{~h}, \mathrm{P}(\mathrm{x}<0.2)$
(a) using the cumulative distribution function of X;

$$
\mathrm{P}(\mathrm{X}<0.2)=\mathrm{P}(\mathrm{X} \leq 0.2)=\mathrm{F}(0.2)=1-e^{-8(0.2)}=0.7981
$$

(b) using the probability density function of X.
$f(x)=\frac{d F(x)}{d x}=\frac{d}{d x}\left(1-\mathrm{e}^{-8(x)}\right)=8 \mathrm{e}^{-8(x)}, \quad x \geq 0$
$p(X<0.2)=\int_{0}^{0.2} 8 \mathrm{e}^{-8(x)} d x=\left[-\mathrm{e}^{-8(x)}\right]_{0}^{0.2}=1-\mathrm{e}^{-8(0.2)}$
3.17 A continuous random variable X that can assume values between $\mathbf{x}=\mathbf{1}$ and $\mathbf{x}=3$ has a density function given by $f(x)=1 / 2$.
(a) Show that the area under the curve is equal to 1 .

$$
f(x)=\frac{1}{2}, \quad 1<x<3
$$

we know that $\int_{-\infty}^{\infty} f(x) d x=1$.

$$
\int_{1}^{3} \frac{1}{2} d x=\frac{1}{2}[x]_{1}^{3}=1
$$

(c) Find $P(2<X<2.5)$.

$$
p(2<X<2.5)=\int_{2}^{2.5} \frac{1}{2} d x=\frac{1}{2}[x]_{2}^{2.5}=\frac{2.5-2}{2}=\frac{1}{4}
$$

(d) Find $P(X \leq 1.6)$.

$$
p(X \leq 1.6)=\int_{1}^{1.6} \frac{1}{2} d x=\frac{1.6-1}{2}=0.3
$$

4.50 For a laboratory assignment, if the equipment is working, the density function of the observed outcome X is

$$
f(x)=\left\{\begin{array}{cc}
2(1-x), & 0<x<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the variance and standard deviation of X .

$$
\begin{aligned}
& E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} 2 x(1-x) d x=2\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right] \begin{array}{l}
1 \\
0
\end{array}=\frac{1}{3} \\
& \left.E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} 2 x^{2}(1-x) d x=2\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]\right]_{0}^{1}=\frac{2}{3}-\frac{1}{3} \\
& \quad=\frac{1}{6} \\
& v(X)=\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2}=\frac{1}{6}-\left[\frac{1}{3}\right]^{2}=0.056 \\
& \sigma=\sqrt{v(x)}=0.2357
\end{aligned}
$$

