CE 430

 Transportation Systems

 Transportation Systems}

Tutorial \#2
 (Ch. 2: Equations of motion and human factors)

2.2 Equation of motion
Prepared by
Eng. Mohammed Alhozaimy

Ex.5/P. 96

A car collided with a telephone pole and left a 20 ft skid marks on the dry pavement. Based on the damages sustained, an engineer estimated that the speed at collision was 15 mph . if the roadway had a + 3% grade, calculate the speed of the car at the onset of skidding.

$$
\begin{aligned}
& v_{f}=15 \mathrm{mph}=15 \times \frac{5280}{3600}=22 \mathrm{ft} / \mathrm{s} \\
& D_{b}=\frac{v_{0}^{2}-v_{\mathrm{f}}^{2}}{2 g(f \overline{+} G)}, \text { where } f_{d r y}=0.6 \\
& v_{0}^{2}=2 D_{b} g(f \mp G)+v^{2} \\
& v_{0}^{2}=20 \times 2 \times 32.2 \times(0.6+0.03)+22^{2}=1295.44 \\
& v_{\circ}=35.99 \mathrm{ft} / \mathrm{s}=35.99 \times \frac{3600}{5280}=24.5 \mathrm{mph}
\end{aligned}
$$

Conversion factors

unit conversion: $\frac{1 \mathrm{~km}}{1 \mathrm{hr}}=\frac{1000 \mathrm{~m}}{3600 \mathrm{sec}} \rightarrow 1 \mathrm{~km} / \mathrm{hr}=\frac{1}{3.6} \mathrm{~m} / \mathrm{sec}$
unit conversion: $\frac{1 \mathrm{mi}}{1 \mathrm{hr}}=\frac{5280 \mathrm{ft}}{3600 \mathrm{sec}} \rightarrow 1 \mathrm{mph}=1.467 \mathrm{ft} / \mathrm{sec}$

A vehicle crashed into an abutment wall of a bridge leaving a skid mark on the road ($d=110 \mathrm{~m}, \mathrm{f}=0.6$) followed by skid mark on the side slope ($21 \mathrm{~m}, \mathrm{f}=0.3$) all the way to the wall. The road has an uphill slope of 2% and an equivalent of -5% on the side slope. The crash velocity was estimated to e $30 \mathrm{~km} / \mathrm{hr}$. Was the driver obeying the speed limit of $120 \mathrm{~km} / \mathrm{hr}$ before applying the breaks?

Side Slope.

$$
\begin{aligned}
& v_{f}=30 \mathrm{~km} / \mathrm{hr}=30 \times \frac{1000}{3600}=8.33 \mathrm{~m} / \mathrm{s} \\
& v_{0(\text { side slope })}: \quad D_{b}=\frac{v_{o(\text { side slope })}^{2}-v_{f}^{2}}{[2 g(f \pm G)]} \\
& v_{0^{2}}{ }_{(\text {slid slope })}=D_{b} 2 g(f \mp G)+v_{f}^{2} \\
& v_{0}{ }^{2}=21 \times 2 \times 9.8 \times(0.3-0.05)+8.33^{2} \\
& =172.34 \\
& v_{0}=13.13 \mathrm{~m} / \mathrm{s}=13.13 \times \frac{3600}{1000} \\
& =47.26 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Thus, the driver did not obey the speed limit

Check for safety against sliding and overturning on a curve with radios $\mathbf{R}=\mathbf{2 0 0} \mathbf{~ m}$, super elevation $\mathrm{e}=3 \%$ and $\mathrm{fs}=0.2$. the posted speed limit is $80 \mathrm{~km} / \mathrm{hr}$ and vehicle's center of mass is at: $\mathrm{X}=1.1 \mathrm{~m}, \mathrm{Y}=1.5 \mathrm{~m}$

Sliding

$$
\begin{gathered}
e+f=\frac{v^{2}}{g R} \rightarrow v_{\max }=\sqrt{g R(e+f)} \\
v_{\max }=\sqrt{(0.03+0.2) \times 9.8 \times 200}=21.23 \mathrm{~m} / \mathrm{s} \\
v_{\max }=21.23 \times \frac{3600}{1000}=76.4 \mathrm{~km} / \mathrm{hr}
\end{gathered}
$$

Over turning

$$
\begin{gathered}
\frac{X+Y e}{Y-X e}=\frac{v^{2}}{g R} \rightarrow v_{\max }=\sqrt{g R \frac{X+Y e}{Y-X e}} \\
v_{\max }=\sqrt{9.81 * 200\left(\frac{1.1+(1.5 * 0.03)}{1.5-(1.1 * 0.03)}\right)}=39.13 \mathrm{~m} / \mathrm{s}=140.90 \mathrm{~km} / \mathrm{hr}
\end{gathered}
$$

The curve is not safe because the maximum speed before sliding is less than the posted speed limit.

What should be the speed for a $1,000 \mathrm{ft}$ curve with super elevation of $\mathbf{2 \%}$ ensuring no slidding or overturning on wet conditions ($f=0.15$). The vehicles have a center of mass at $X=4.5 \mathrm{ft}$ and $Y=5.5 \mathrm{ft}$.

Sliding

$$
\begin{aligned}
& e+f=\frac{v^{2}}{g R} \rightarrow v_{\max }=\sqrt{g R(e+f)} \\
& v_{\max }=\sqrt{(0.02+0.15) \times 32.2 \times 1000} \\
& v_{\max }=73.99 \mathrm{ft} / \mathrm{s}=50.44 \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

Over turning

$$
\begin{aligned}
& \frac{X+Y e}{Y-X e}=\frac{v^{2}}{g R} \rightarrow v_{\max }=\sqrt{g R \frac{X+Y e}{Y-X e}} \\
& v_{\max }=\sqrt{32.2 * 1000\left(\frac{4.5+(5.5 * 0.02)}{5.5-(4.5-0.02)}\right)} \\
& v_{\max }=165.65 \mathrm{ft} / \mathrm{s}=112.9 \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

The proposed speed limit must be less than both results.
Thus, an appropriate speed limit is $\mathbf{v}=\mathbf{4 5} \mathbf{~ m p h}$

