Tutorial 3

1. How many ml of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to neutralize 100 ml of 0.1 M KOH ?
2. Calculate the pH of a solution with a Hydrogen ion concentration of 0.045 M ?
3. Calculate the $\left[\mathrm{H}^{+}\right]$of a solution with a pH of 6.5 ?
4. Calculate the $\left[\mathrm{OH}^{-}\right]$ion concentration of the following solutions:
a) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
b) $0.05 \mathrm{M} \mathrm{HNO}_{3}$.
5. Calculate the pOH of the following solutions;
a) 0.01 M HCL .
b) A solution with a $\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-3}$.
6. 750 ml of 0.1 M HCL was added to 250 ml of 0.2 M NaOH solution. Calculate the pH of the final solution.
7. Calculate the $\mathrm{pk}_{\mathrm{a}}, \mathrm{pk}_{\mathrm{b}}$ and K_{b} for the following weak acids:
a) Acetic acid, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-3}$
b) Ammonium ion $K_{a}=5.7 \times 10^{-3}$
8. A weak acid HA and KOH were mixed in the following proportions: $\mathrm{HA}=0.125$ mole; $\mathrm{KOH}=0.025$ mole. The resulting solution was diluted to 500 ml . Calculate the pH of the solution (Ka of $\mathrm{HA}=2.5 \times 10^{-5}$).
9. Calculate: $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}, \mathrm{pOH}$ of the final solution obtained after 100 ml of 0.2 M NaOH are added to 150 ml of $0.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
10. How many grams of solid KOH are required to neutralize 2 L of an HCl solution of pH 2 ?
11. The pH of a 0.27 M solution of a weak acid, HA, is 4.3.
a) What is the $\left[\mathrm{H}^{+}\right]$in the solution?
b) What is the degree of ionization of the acid?
c) What is the K_{a} ?
12. Describe the preparation of 40 L of 0.02 M of phosphate buffer, pH 6.9 starting from:
a) $\mathrm{A} 2 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution and a 1 M KOH solution.
b) Solid $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}$.
c) Solid $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and 1 M HCl .
13. An enzyme-catalyzed reaction was carried out in a solution containing 0.2 M Tris buffer. The pH of the reaction mixture at the start was 7.8 . As a result of the reaction, $0.03 \mathrm{~mole} /$ liter of OH^{-}was produced.
a) What was the ratio of Tris ${ }^{\circ} /$ Tris $^{+}$ratio at the end of the reaction.
b) What was the final pH of the reaction mixture?
c) What would the final pH be if no buffer were present?
d) Write the chemical equation showing how the Tris buffer maintained a near constant pH during the reaction. pK_{a} of Tris $=8.1$.
14. What volume of glacial acetic acid (density $1.06 \mathrm{~g} / \mathrm{ml}$) and what weight of solid potassium acetate are required to prepare 5 L of 0.2 M acetate buffer, $\mathrm{pH}=5.0$?
15. Blood plasma at pH 7.4 contains $2.4 \times 10^{-2} \mathrm{M} \mathrm{HCO}^{-}$and $1.2 \times 10^{-3} \mathrm{CO}_{2}$. Calculate the pH after the addition of $3.2 \times 10^{-3} \mathrm{M} \mathrm{H}^{+}$. Assume that the concentration of dissolved CO_{2} is maintained constant at $1.2 \times 10^{-3} \mathrm{M}$ by the release of excess CO_{2} ?
16. Design a shortcut method for preparing a 0.5 M Phosphate buffer, $\mathrm{pH}=7.0$, where only one form of phosphate is provided?
17. 4.9 grams of $\mathrm{CH}_{3} \mathrm{COOK}$ is dissolved in 125 ml of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and the solution was made up to 250 ml . Calculate:
a) The pH of the final solution.
b) The Molarity of the buffer.
18. 200 ml of 0.2 M NaOH was mixed with 800 ml of 0.1 M CH 3 COOH. Calculate the pH of the resulting solution. $\mathrm{pKa}=3.75$
19. Starting from 0.5 M formic acid and solid sodium formate. Describe how to prepare 5 L of Formate buffer, $\mathrm{pH}=4, \mathrm{Ka}=1.78 \times 10^{-4}$
20. Describe how you would prepare one liter 0.1 M phosphate buffer, $\mathrm{pH}=2.5$, given 0.1 M phosphoric acid and solid $\mathrm{NaH}_{2} \mathrm{PO}_{4} .2 \mathrm{H} 2 \mathrm{O} . \mathrm{pKa}=4.75$
21. Describe how you would prepare 250 ml of 0.2 M phosphate buffer, $\mathrm{pH}=12.5$, given solid $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4} . \mathrm{H}_{2} \mathrm{O} . \mathrm{pKa}=4.75$
22. The pH of 100 ml of 0.1 M phosphoric acid is 2.5 , sketch the titration curve obtained by titrating the phosphoric acid solution with 0.2 M sodium hydroxide. Show clearly how you calculate the values used to plot the curve. (Use Ka values given in no. 15)
23. The pH of 250 ml of 0.2 M aspartic acid is 2.2 . Sketch the titration curve obtained by titrating the aspartic acid solution with 0.5 M KOH show clearly how you obtain the values used to plot the curve. $\left(\mathrm{pKa}_{1}=2.0, \mathrm{pKa}_{2}=3.8, \mathrm{pKa}_{3}=9.8\right)$
