Tutorial 3

- 1. How many ml of 0.05 M H₂SO₄ are required to neutralize 100 ml of 0.1M KOH?
- 2. Calculate the pH of a solution with a Hydrogen ion concentration of 0.045 M?
- 3. Calculate the $[H^{+}]$ of a solution with a pH of 6.5?
- 4. Calculate the [OH] ion concentration of the following solutions:
 - a) 0.1 M H₂SO₄.
 - b) 0.05 M HNO₃.
- 5. Calculate the pOH of the following solutions;
 - a) 0.01 M HCL.
 - b) A solution with a $[H^{+}] = 3.2 \times 10^{-3}$.
- 6. 750 ml of 0.1M HCL was added to 250 ml of 0.2 M NaOH solution. Calculate the pH of the final solution.
- 7. Calculate the pk_a , pk_b and K_b for the following weak acids:
 - a) Acetic acid, $K_a = 1.8 \times 10^{-3}$
 - b) Ammonium ion $K_a = 5.7 \times 10^{-3}$
- 8. A weak acid HA and KOH were mixed in the following proportions: HA = 0.125 mole; KOH = 0.025 mole. The resulting solution was diluted to 500 ml. Calculate the pH of the solution (Ka of HA = 2.5×10^{-5}).
- 9. Calculate: [H⁺], [OH⁻], pH, pOH of the final solution obtained after 100 ml of 0.2 M NaOH are added to 150 ml of 0.4 M H₂SO₄.
- 10. How many grams of solid KOH are required to neutralize 2 L of an HCl solution of pH2?
- 11. The pH of a 0.27 M solution of a weak acid, HA, is 4.3.
 - a) What is the [H⁺] in the solution?
 - b) What is the degree of ionization of the acid?
 - c) What is the K_a ?
- 12. Describe the preparation of 40 L of 0.02 M of phosphate buffer, pH 6.9 starting from:
 - a) A 2 M H₃PO₄ solution and a 1 M KOH solution.
 - b) Solid KH₂PO₄ and K₂HPO₄.
 - c) Solid Na₃PO₄ and 1 M HCl.

- 13. An enzyme-catalyzed reaction was carried out in a solution containing 0.2 M Tris buffer. The pH of the reaction mixture at the start was 7.8. As a result of the reaction, 0.03 mole/liter of OH was produced.
 - a) What was the ratio of Tris°/Tris⁺ ratio at the end of the reaction.
 - b) What was the final pH of the reaction mixture?
 - c) What would the final pH be if no buffer were present?
 - d) Write the chemical equation showing how the Tris buffer maintained a near constant pH during the reaction. pK_a of Tris = 8.1.
- 14. What volume of glacial acetic acid (density 1.06 g/ml) and what weight of solid potassium acetate are required to prepare 5 L of 0.2 M acetate buffer, pH = 5.0?
- 15. Blood plasma at pH 7.4 contains 2.4×10^{-2} M HCO3⁻ and 1.2×10^{-3} CO₂. Calculate the pH after the addition of 3.2×10^{-3} M H⁺. Assume that the concentration of dissolved CO₂ is maintained constant at 1.2×10^{-3} M by the release of excess CO₂?
- 16. Design a shortcut method for preparing a 0.5 M Phosphate buffer, pH = 7.0, where only one form of phosphate is provided?
- 17. 4.9 grams of CH₃COOK is dissolved in 125 ml of 1 M CH₃COOH and the solution was made up to 250 ml. Calculate:
 - a) The pH of the final solution.
 - b) The Molarity of the buffer.
- 18. 200 ml of 0.2 M NaOH was mixed with 800 ml of 0.1M CH₃COOH. Calculate the pH of the resulting solution. pKa= 3.75
- 19. Starting from 0.5 M formic acid and solid sodium formate. Describe how to prepare 5 L of Formate buffer, pH = 4, Ka = 1.78×10^{-4}
- 20. Describe how you would prepare one liter 0.1 M phosphate buffer, pH = 2.5, given 0.1 M phosphoric acid and solid NaH₂PO₄.2H2O. pKa= 4.75
- 21. Describe how you would prepare 250 ml of 0.2M phosphate buffer, pH =12.5, given solid Na₂HPO₄.2H₂O and Na₃PO₄.H₂O. pKa= 4.75
- 22. The pH of 100 ml of 0.1 M phosphoric acid is 2.5, sketch the titration curve obtained by titrating the phosphoric acid solution with 0.2 M sodium hydroxide. Show clearly how you calculate the values used to plot the curve. (Use Ka values given in no. 15)
- 23. The pH of 250 ml of 0.2 M aspartic acid is 2.2. Sketch the titration curve obtained by titrating the aspartic acid solution with 0.5 M KOH show clearly how you obtain the values used to plot the curve. (pKa₁ = 2.0, pKa₂ = 3.8, pKa₃ = 9.8)