Chapter 4

9.2 An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of $\mathbf{4 0}$ hours. If a sample of $\mathbf{3 0}$ bulbs has an average life of $\mathbf{7 8 0}$ hours, find a 96% confidence interval for the population mean of all bulbs produced by this firm.

Population normal and $\sigma=40$ "known", $n=30, \bar{X}=780$
96\% C.I for μ is: $\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

1) $\left.\alpha=1-0.96=0.04,2) 1-\frac{\alpha}{2}=1-\frac{0.04}{2}=0.98,3\right) Z_{1-\frac{\alpha}{2}}=Z_{0.98}=2.05$
2) $780 \pm 2.05 \frac{40}{\sqrt{30}} \quad 780 \pm 14.971$

$$
(780-14.971,780+14.971)=(765.03,794.971)
$$

9.6 How large a sample is needed in Exercise 9.2 if we wish to be 96% confident that our sample mean will be within $\mathbf{1 0}$ hours of the true mean?

$$
n=\left(\frac{Z_{1-\frac{\alpha}{2} .} \sigma}{e}\right)^{2}=\left(\frac{2.05(40)}{10}\right)^{2}=67.24 \approx 68
$$

"we always rounded the number up"
9.4 The heights of a random sample of $\mathbf{5 0}$ college students showed a mean of $\mathbf{1 7 4 . 5}$ centimeters and a standard deviation of $\mathbf{6 . 9}$ centimeters.
(a) Construct a 98% confidence interval for the mean height of all college students.
(b) What can we assert with 98% confidence about the possible size of our error if we estimate the mean height of all college students to be $\mathbf{1 7 4 . 5}$ centimeters?

$$
n=50, \quad \bar{X}=174.5, \quad S=6.9(\sigma \text { unknown })
$$

a) $\mathbf{9 8} \%$ C.I for μ is: $\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$

1) $\left.\alpha=1-0.98=0.02,2) 1-\frac{\alpha}{2}=1-\frac{0.02}{2}=0.99,3\right) Z_{1-\frac{\alpha}{2}}=Z_{0.99}=2.33$
2) $174.5 \pm 2.33 \frac{6.9}{\sqrt{50}} \gg 174.5 \pm 2.2736$

98\% C.I for $\mu \in(172.23,176.77)$
b) The error will not exceed $Z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}=\mathbf{2 . 2 7 3 6}$
H.W 9.5 A random sample of $\mathbf{1 0 0}$ automobile owners in the state of Virginia shows that an automobile is driven on average $\mathbf{2 3 , 5 0 0}$ kilometers per year with a standard deviation of $\mathbf{3 9 0 0}$ kilometers. Assume the distribution of measurements to be approximately normal.
(a) Construct a 99% confidence interval for the average number of kilometers an automobile is driven annually in Virginia.
(b) What can we assert with $\mathbf{9 9 \%}$ confidence about the possible size of our error if we estimate the average number of kilometers driven by car owners in Virginia to be $\mathbf{2 3 , 5 0 0}$ kilometers per year?

$$
n=100, \quad \bar{X}=23500, \quad S=3900(\sigma \text { unknown })
$$

a) $\mathbf{9 9 \%}$ C.I for μ is: $\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$

1) $\left.\alpha=1-0.99=0.01,2) 1-\frac{\alpha}{2}=1-\frac{0.01}{2}=0.995,3\right) Z_{1-\frac{\alpha}{2}}$

$$
=Z_{0.995}=2.575
$$

4) $23500 \pm 2.575 \frac{3900}{\sqrt{100}} \gg 23500 \pm 1004.25$

99\% C.I for $\mu \in(22495.75,24504.25)$
b) The error will not exceed $Z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}=1004.25$
Q. A group of $\mathbf{1 0}$ college students were asked to report the number of hours that they spent doing their homework during the previous weekend and the following results were obtained: $\quad 7.25,8.5,5.0,6.75,8.0,5.25,10.5,8.5,6.75,9.25$

It is assumed that this sample is a random sample from a normal distribution with unknown variance σ^{2}. Let μ be the mean of the number of hours that the college student spend doing his/her homework during the weekend.
(a) Find the sample mean and the sample variance.

$$
\bar{X}=7.575, S^{2}=(1.724)^{2}\left(\sigma^{2} \text { unknown }\right)
$$

(b) Find a point estimate for μ $\bar{X}=7.575$
(c) Construct a 80% confidence interval for μ.

$$
\bar{X}=7.575, \quad S=1.724(\sigma \text { unknown }), \quad d f=n-1=9
$$

80% C.I for is: $\bar{X} \pm t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$

1) $\alpha=1-0.80=0.20$
2) $\frac{\alpha}{2}=\frac{0.20}{2}=0.1$
3) $t_{\frac{\alpha}{2}}=t_{0.1}=1.383$
4) $7.575 \pm 1.383 \frac{1.724}{\sqrt{10}} \quad \gg 7.575 \pm 0.754 \quad$ (error=e=0.754)

$$
(7.575-0.754, \quad 7.575+0.754)=(6.821,8.329)
$$

9.35 A random sample of size $\mathbf{n}_{\mathbf{1}}=\mathbf{2 5}$, taken from a normal population with a standard deviation $\boldsymbol{\sigma}_{\mathbf{1}}=\mathbf{5}$, has a mean $\bar{X}_{1}=\mathbf{8 0}$. A second random sample of size $\mathbf{n}_{\mathbf{2}}=\mathbf{3 6}$, taken from a different normal population with a standard deviation $\boldsymbol{\sigma}_{\mathbf{2}}=\mathbf{3}$, has a mean $\bar{X}_{2}=75$.
Find a 94% confidence interval for $\mu_{1}-\mu_{2}$.
94\% C.I for $\mu_{1}-\mu_{2}$ is: $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$

1) $\alpha=1-0.94=0.04$ 2) $1-\frac{\alpha}{2}=1-\frac{0.04}{2}=0.97$ 3) $Z_{1-\frac{\alpha}{2}}=Z_{0.97}=1.88$
2) $(80-75) \pm 1.88 \sqrt{\frac{5^{2}}{25}+\frac{3^{2}}{36}} \gg 5 \pm 2.1019$ (error=e=2.1019)
$\mu_{1}-\mu_{2} \in(2.8981,7.1019)$
9.38 Two catalysts($م$) in a batch chemical process, are being compared for their effect on the output of the process reaction. A sample of $\mathbf{1 2}$ batches was prepared using catalyst $\mathbf{1}$, and a sample of $\mathbf{1 0}$ batches was prepared using catalyst $\mathbf{2}$. The $\mathbf{1 2}$ batches for which catalyst $\mathbf{1}$ was used in the reaction gave an average yield of $\mathbf{8 5}$ with a sample standard deviation of $\mathbf{4}$, and the $\mathbf{1 0}$ batches for which catalyst $\mathbf{2}$ was used gave an average yield of 81 and a sample standard deviation of 5 .
Find a 90% confidence interval for the difference between the population means, assuming that the populations are approximately normally distributed with equal variances.
$n_{1}=12, \bar{X}_{1}=85, s_{1}=4$
$n_{2}=10, \bar{X}_{2}=81, s_{2}=5$
σ_{1}^{2} and σ_{2}^{2} unknown but equal
90\% C.I for $\mu_{1}-\mu_{2}$ is $:\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\frac{\alpha}{2}, n_{1}+n_{2}-2} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { 1) } \alpha=1-0.90=0.1
\end{array} \quad \text { 2) } \frac{\alpha}{2}=\frac{0.1}{2}=0.05 \quad \text { 3) } t_{\frac{\alpha}{2}}=t_{0.05}=1.725 \\
& \qquad S_{p}=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{11(16)+9(25)}{20}}=4.4777 \\
& \text { 4) }(85-81) \pm(1.725)(4.4777) \sqrt{\frac{1}{12}+\frac{1}{10}} \gg 4 \pm 3.3072 \\
& (\text { error }=e=3.3072) \\
& \mu_{1}-\mu_{2} \in(0.693,7.307)
\end{aligned}
$$

H.W 9.41 The following data represent the length of time, in days, to recovery for patients randomly treated with one of two medications to clear up severe bladder infections:

Medication 1	Medication 2
$n_{1}=14$	$n_{2}=16$
$\bar{x}_{1}=17$	$\bar{x}_{2}=19$
$s_{1}^{2}=1.5$	$s_{2}^{2}=1.8$

Find a 99% confidence interval for the difference $\boldsymbol{\mu}_{\mathbf{2}}-\boldsymbol{\mu}_{\boldsymbol{1}}$
σ_{1}^{2} and σ_{2}^{2} unknown but equal
90\% C.I for $\mu_{2}-\mu_{1}$ is $:\left(\bar{X}_{2}-\bar{X}_{1}\right) \pm t_{\frac{\alpha}{2}, n_{1}+n_{2}-2} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$

1) $\alpha=1-0.99=0.01$
2) $\frac{\alpha}{2}=\frac{0.01}{2}=0.005$
3) $t_{\frac{\alpha}{2}}=t_{0.005}=2.763$ $S_{p}=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{13\left(1.5^{2}\right)+15\left(1.8^{2}\right)}{28}}=1.3336$
4) $(19-17) \pm(2.763)$
(1.3336) $\sqrt{\frac{1}{14}+\frac{1}{16}} \gg 2 \pm 1.348$
(error $=e=1.348$)
$\mu_{2}-\mu_{1} \in(0.65,3.35)$
9.44 A taxi company is trying to decide whether to purchase brand "A" or brand " B " tires for its fleet of taxis (اسطول من سيارات النكسي). The experiment is conducted using 12 of each brand and the tires are run until they wear out.
I) Compute a 99% confidence interval for $\boldsymbol{\mu}_{\boldsymbol{1}}-\boldsymbol{\mu}_{\mathbf{2}}$, assuming the populations to be approximately normally.
II) Find a 99% confidence interval for $\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}$ if tires of the two brands are assigned at random to the left and right rear wheels of $\mathbf{8}$ taxis and the following distances, in kilometers, are recorded:

Taxi	Brand A	Brand B
1	34,400	36,700
2	45,500	46,800
3	36,700	37,700
4	32,000	31,100
5	48,400	47,800
6	32,800	36,400
7	38,100	38,900
8	30,100	31,500

Assume that the differences of the distances are approximately normally distributed.
σ_{1}^{2} and σ_{2}^{2} unknown, $\sigma_{1}^{2} \neq \sigma_{2}^{2}$.
I)

From the table, we calculate:

$$
\bar{X}_{1}=37,250, s_{1}=6546.755
$$

$$
\bar{X}_{2}=38,362.5, s_{2}=6181.063
$$

99\% C.I for $\mu_{1}-\mu_{2}$ is : $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm \boldsymbol{t}_{\frac{\alpha}{2}, n_{1}+n_{2}-2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$

1) $\alpha=1-0.99=0.01$, 2) $\left.\frac{\alpha}{2}=\frac{0.01}{2}=0.005,3\right) t_{\frac{\alpha}{2}}=t_{0.005,14}=2.977$
2) $(37250-38362.5) \pm(2.977) \sqrt{\frac{6546.755^{2}}{8}+\frac{6181.063^{2}}{8}}$ $\gg-1112.5 \pm 9476.587$
(error $=e=205469$)
$\mu_{2}-\mu_{1} \in(-10589.0873,8364.0873)$
II)

99\% C. I for μ_{d} is : $\left[\bar{d} \pm t_{\frac{\alpha}{2}, n-1} \frac{S_{d}}{\sqrt{n}}\right]$

$$
\bar{d}=\frac{\sum d_{i}}{n}=, \quad S_{d}=1454.488
$$

1) $\alpha=1-0.99=0.01$, 2) $\frac{\alpha}{2}=\frac{0.05}{2}=0.005$, 3) $t_{\frac{\alpha}{2}, n-1}=t_{0.005,7}=3.499$
2) $-1112.5 \pm(3.499)\left(\frac{1454.488}{\sqrt{8}}\right) \gg-1112.5 \pm 1799.3$

$$
\mu_{d} \in[-2911.8,686.8]
$$

Values of Z	
$Z_{0.90}$	1.285
$Z_{0.95}$	1.645
$Z_{0.97}$	1.885
$Z_{0.975}$	1.96
$Z_{0.98}$	2.055
$Z_{0.99}$	2.325
$Z_{0.995}$	2.575

H.W

Q2. Suppose that we are interested in making some statistical inferences about the mean, μ, of a normal population with standard deviation $\sigma=2.0$. Suppose that a random sample of size $n=49$ from this population gave a sample mean $=4.5 . \bar{X}$
(1) The distribution of \bar{X} is .
(2) A good point estimate of μ is $=\bar{X}=4.5$
(3) The standard error of \bar{X} is $=\mathbf{0 . 2 8 7 5}$
(4) A 95% confidence interval for μ is $(3.94,5.06)$
(5) If the upper confidence limit of a confidence interval is $\mathbf{5 . 2}$, then the lower confidence limit is
(6) The confidence level of the confidence interval $(3.88,5.12)$ is

$$
\begin{aligned}
\bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=5.12 \quad \gg \quad 4.5+Z_{1-\frac{\alpha}{2}} \frac{2}{\sqrt{49}}=5.12 \\
Z_{1-\frac{\alpha}{2}}=(5.12-4.5) \frac{\sqrt{49}}{2}=2.17 \\
P(Z<2.17)=1-\frac{\alpha}{2}=0.985 \quad \gg \quad \alpha=2(0.015)=0.03
\end{aligned}
$$

Then, the confidence level $=1-\alpha=0.97 \gg 0.97(100)=97 \%$

Note: we will get the same result if use $\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=3.88$
(7) If we use \bar{X} to estimate μ, then we are 95% confident that our estimation error will not exceed. $e=$ 0.56
(8) If we want to be 95% confident that the estimation error will not exceed $\mathrm{e}=0.1$ when we use \bar{X} to estimate μ, then the sample size n must be equal to $n=1537$

Q1. A survey of 500 students from a college of science shows that 275 students own
computers. In another independent survey of 400 students from a college of engineering shows that 240 students own computers.
(a) a 99% confidence interval for the true proportion of college of science's student who own computers is $(0.4927,0.6073)$
(b) a 95% confidence interval for the difference between the proportions of students owning computers in the two colleges is

$$
(-0.1148,0.0148)
$$

