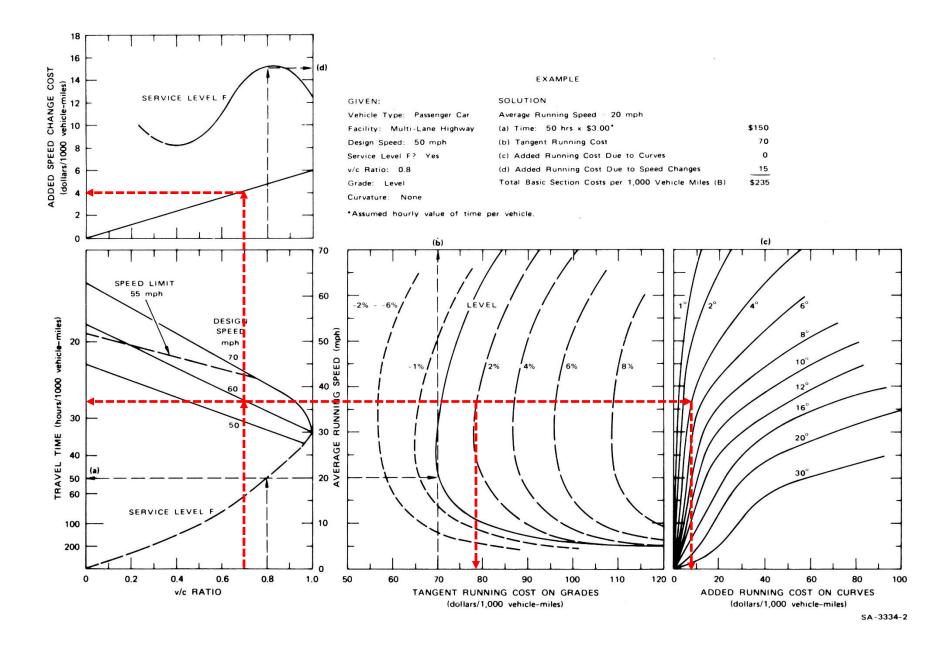
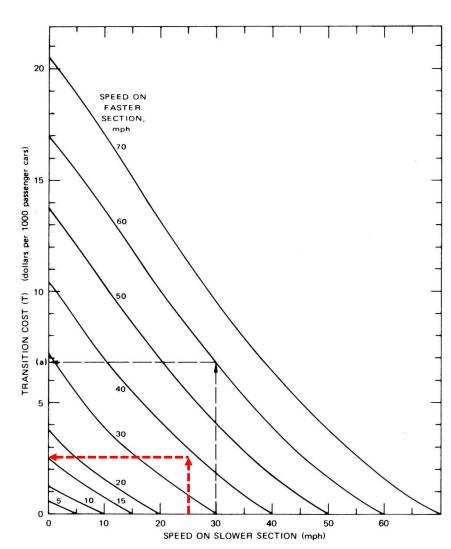
King Saud University College of Engineering Civil Engineering Department CE 431: Highway Engineering Tutorial Note 1: Chapter 4 Eng. Ibrahim Almohanna

4.1 Determine the basic section cost for passenger cars using a multilane highway under the following conditions:

Design speed = 60 mph	Average running speed = 37 mph	Grade = +2%
Volume / capacity ratio = 0.7	Level of service = C	Curvature, R = 1432 ft.
Enter the graphs in figure 4-1 using ave	erage running speed or v/c ratio	
(a) Time costs = 27 X \$3.00	=	\$81
(b) Tangent running costs	=	\$79
Find the degree of curvature:		
$\theta = \frac{\left(\frac{180}{\pi} \times 100\right)}{R} = \frac{\left(\frac{180}{\pi} \times 100\right)}{1432} \approx 4$	4°	
(c) Added running costs due to curves	=	\$8
(d) Added cost due to speed changes	=	\$4
Total	=	\$172/1000 vehicle mile


4.2 Estimate the one-way section transition cost for the highway described in problem 4.1 given that the average running speed on adjacent section is 25 mph. What would be the adjustment factor to account for the presence of 10 percent single unit trucks and 5 percent 3-S2 combination trucks?


Using Figure 4-2 with speed on the slower section = 25 mph and speed on the faster section = 37 mph (From Problem 4.1),

One-way transition costs = \$2.40/1000 passenger cars

(b) From Figure 4-2,

Adjustment factor for truck traffic = 1.68

ADJUSTMENT FACTORS FOR TRUCK TRAFFIC

SINGLE UNIT		3-S2 COMBINATION TRUCKS (percent)										
TRUCKS (percent)	o	1	2	з	4	5	6	8	10	20	50	100
0	1.00	1.10	1,19	1.29	1.38	1.48	1.57	1.77	1.96	2.92	5.79	10.58
1	1.02	1.12	1.21	1.31	1.40	1.50	1.59	1.79	1.98	2.94	5.81	-
2	1.04	1.14	1.23	1.33	1.42	1.52	1.61	1.81	2.00	2.96	5.83	•
3	1.06	1.16	1.25	1.35	1.44	1.54	1,63	1.83	2.02	2.98	5.85	-
4	1.08	1.18	1.27	1.37	1.46	1.56	1.65	1.85	2.04	3.00	5.87	
5	1.10	1.20	1.29	1.39	1.48	1.58	1.67	1.87	2.06	3.02	5.89	-
6	1.12	1.22	1.31	1.41	1.50	1.60	1.69	1.89	2.08	3.04	5.91	~
8	1.16	1.26	1.35	1.45	1.54	1.64	1.73	1.93	2.12	3.08	5.93	-
10	1.20	1.30	1.40	1.49	1.58	1.68	1.77	1.97	2.14	3.12	5.97	-
20	1.41	1.50	1.60	1.70	1.78	1.88	1.94	2.17	2.34	3.32	6.17	-
50	2.02	2.12	2.21	2.31	2.39	2.49	2.58	2.78	2.95	3.93	6.78	-
100	3.04	12	1.11		-	-	-	-		-		-

GIVEN:

SOLUTION:

A stream of traffic consists of 5% single unit trucks and 10% combination trucks. The traffic is travelling at 60 mph and enters a slower section on which the speed is 30 mph.

EXAMPLE

(a) Passenger Car Cost - \$6.75

T = \$6.75 x 2.06

= \$13.91 per 1000 Vehicles

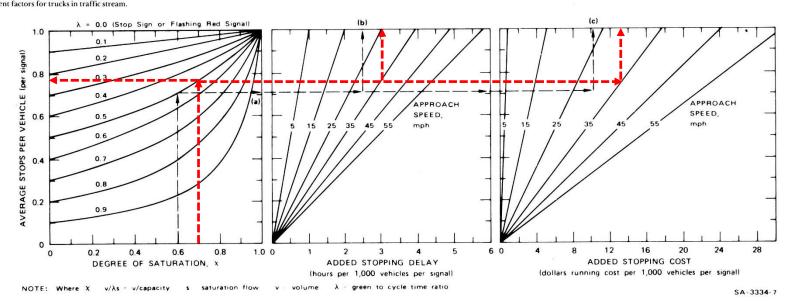
4.3 The volume of traffic along a certain intersection approach is 600 passenger cars per hour. Determine the cost due to stopping (excluding idling) at the intersection under the following conditions:

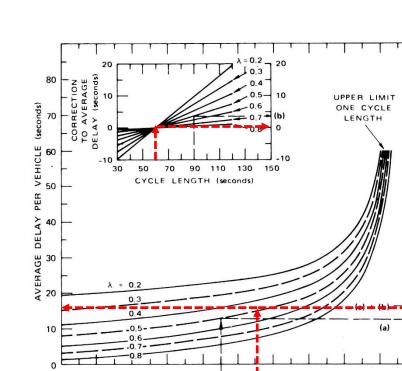
Saturation flow, s = 1750 vph	signal cycle tin	ne = 60 sec	effective green time = 30 sec
Approach speed = 35 mph	5% single unit	trucks	10% 3-S2 combination trucks
The green/cycle ratio, $\lambda = 30/60 = 0.5$			
Capacity of approach = s $\times \lambda$ = 1750 X 0	.5 = 875 vph		
Degree of saturation, χ = volume/capac	city = 600/875 =	0.69	
From Figure 4-3,			
(a) Average stops per vehicle = 0.76			
(b) Stopping delay per signal = 3.1 hour	rs/1000 vehicle p	per signal	
(c) Costs of stopping = \$13.50			
Time costs		= 3.1 X \$3.00 =	\$9.30
Running cost		= \$13.50	
Total cost due to stopping (excluding d	elays)	= \$22.80 per 10	000 vehicles/signal

From Figure 4-4,	
(a) Average delay per vehicle = 16.0 se	c
(b) Correction to average delay = 0	
(c) Idling time = 4.4 hours/1000 passer	nger cars
(d) Idling cost = \$1.30/1000 passenger	cars
Total delay cost	= 4.4 X \$3.00/hour = \$13.20
Total idling cost	= 1.30
Total cost due to idling	= \$14.50/1000 vehicles per signal

4

EXAMPLE


ADJUSTMENT FACTORS FOR PERCENT TRUCKS IN TRAFFIC STREAM


GIVEN:

TIME COST

RUNNING COST

Volume: 480 vehicles/hr Saturation Flow: 1,600 vehicles/hr Signal Cycle Time: 60 sec		APPROACH SPEED (mph)	SINGLE UNIT TRUCKS (percent)				TON D traffic s		APPROACH SPEED (mph)	SINGLE UNIT TRUCKS (percent)			1BINAT		
Effective Green Time: 30 sec				0	5	10	20	100			0	5	10	20	100
Intersection Approach Speed: 30 mph 5% Single Unit Trucks 5% 3-S2 Combination Trucks		5-20	0 5 10	1.00 1.07 1.13	1.15 1.22 1.28	1.30 1.37 1.43	1.61 1.67 1.74	4.03	5-20	0 5 10	1.00 1.08 1.16	1.35 1.43 1.51	1.70 1.78 1.86	2.40 2.49 2.57	8.02
SOLUTION:			20 100	1.26 2.31	1.41	1.57	1.87			20 100	1.32 2.62	1.68	2.03	2.73	
$\lambda = 30/60 - 0.5$ Capacity of Approach = 0.5 × 1600 - 800 $\lambda = 480/800 = 0.6$ (a) Average Stops per Vehicle (per Signal): 0.71 (b) Stopping Delay per Signal: 2.5 hrs		21-40	0 5 10 20 100	1.00 1.10 1.20 1.40 2.99	1.25 1.35 1.45 1.65	1.51 1.60 1.70 1.90	2.01 2.11 2.21 2.41	6.05	21-40	0 5 10 20 100	1.00 1.07 1.14 1.27 2.37	1.35 1.42 1.49 1.63	1.71 1.78 1.84 1.98	2.41 2.48 2.55 2.69	8.07
 (c) Cost of Stopping: \$10.30 (c) Cost of Stopping: \$10.30 Time Cost: \$2.5 × \$3.00* × 1.35[†] Running Cost: \$10.30 × 1.42[†] Total Cost Due to Stopping per 1,000 vehicles per Signal (excludes idling) *Assumed hourly value of time per passenger car. [†]Adjustment factors for trucks in traffic stream. 	\$10.13 14.63 \$24.76	41-60	0 5 10 20 100	1.00 1.11 1.22 1.44 3.20	1.41 1.56 1.61 1.85	1.82 1.93 2.04 2.26	2.63 2.74 2.85 3.07	9.17	41-60	0 5 10 20 100	1.00 1.06 1.12 1.24 2.21	1.35 1.41 1.47 1.59	1.70 1.76 1.82 1.94	2.39 2.45 2.51 2.63	7.96

7.82

6

5

4

3

2

(d)

0

cars)

passenger

1000

(dollars per

IDLING COST

25

24

22

20

18

vehicles)

1000 16

IDLING TIME 10

8

6

(c)

2

0

0.99

-4

14 January 12

IDLING TIME		3-S:	2 COMB	INATIO percent)		CKS
FACTOR		0	5	10	20	100
	0	1.00	1.08	1.17	1.33	2.67
SINGLE UNIT	5	1.07	1.15	1.23	1.40	-
TRUCKS	10	1.13	1.22	1.30	1.47	-
(percent)	20	1.27	1.35	1.43	1.60	-
	100	2.33	-	-	-	-

IDLING COST		3-S2 COMBINATION TRUCKS (percent)							
FACTOR		0	5	10	20	100			
	0	1.00	0.98	0,96	0.92	0.62			
SINGLE UNIT	5	0.99	0.98	0.96	0.92	-			
TRUCKS	10	0.99	0.97	0.95	0.91	-			
(percent)	20	0.98	0.96	0.94	0.90	-			
	100	0.89	-	-	-	-			

EXAMP	PLE	
GIVEN:	SOLUTION: Average Delay per Vehicle: (a)	+ (b) 16.2 sec
$\chi = 0.6$	(c) Idling Hours: 4.5 hrs	
Capacity 800	(d) Idling Cost: \$1.40	
λ 0.5	Total Delay: 4.5 hrs x \$3.00* x 1.15t \$1	5.53
Cycle Length: 90 seconds	Total Idling Cost: \$1.40 x 0.98 [†]	1.38
5% Single Unit Trucks	Total Cost Due to Idling per 1000	
5% 3-S2 Combination Trucks	Vehicles (per signal) \$1	6.91
*Assumed hourly value of time p	er passenger car,	
[†] Adjustment factors for percent t	rucks in traffic stream.	

0.9

0.95

0.85

DEGREE OF SATURATION X

0.8

200

400 600

800

1000

1400

2000

2800

4400 L 0.0

0.1

0.2 0.4 0.55 0.55 0.55 0.65 0.65 0.75

(vehicles per hour)

CAPACITY

4.9 A certain highway project is planned that would have an initial investment cost of \$1.5 million. The user benefits for the facility (in excess of maintenance cost) are estimated to be \$105,000 per year over its useful life of 20 years. At the end of the 20-year period, the residual (salvage) value would be \$400,000. On the basis of present worth concept, should the project be built? Assume an interest rate of 6 percent. What is the benefit-cost ratio?

The present worth of the user benefits

$$PW_{user} = A\left[\frac{(1+i)^n - 1}{i(1+i)^n}\right] = \$105,000 \left[\frac{(1+0.06)^{20} - 1}{0.06(1+0.06)^{20}}\right] = \$1,204,210$$

The present worth of the residual value

$$PW_{residual} = \frac{F}{(1+i)^n} = \frac{\$400,000}{(1+0.06)^{20}} = \$124,727$$

The present worth of the combined benefits = \$1,328,937

The investment exceeds the benefits by an amount of

=\$1,500,000 - \$1,328,937 = \$171,063

The benefit/cost ratio, B/C = 0.88

4.10 A highway agency is considering two alternative energy attenuation systems, described below, to lessen the severity of crashes into bridge columns and other fixed object hazards. System A has low initial cost but must be repaired extensively after each "hit". System B has high initial cost but needs little maintenance. It is expected that such a device will be hit once every two years. On the basis of present worth concept, which system is preferred? Use an annual interest rate of 7 percent.

	System A	System B
First cost	\$3,500	\$8,500
Routine annual maintenance	\$500	\$300
Repair after each hit	\$1,200	None
Life	20 years	20 years
Salvage value	\$1,000	\$2,500

• System A:

$$PW_{residual} = \frac{F}{(1+i)^n} = \frac{\$1,000}{(1+0.07)^{20}} = -\$259$$
$$PW_{main} = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = \$500 \left[\frac{(1+0.07)^{20} - 1}{0.07(1+0.07)^{20}} \right] = +\$5,297$$
$$PW_{repair} = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = \$1,200 \left[\frac{(1+0.14)^{10} - 1}{0.07(1+0.14)^{10}} \right] = +\$6,260$$

Original investment = +3,500

Total = +14,798

• System B

$$PW_{residual} = \frac{F}{(1+i)^n} = \frac{\$2,500}{(1+0.07)^{20}} = -\$646$$
$$PW_{main} = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = \$300 \left[\frac{(1+0.07)^{20} - 1}{0.07(1+0.07)^{20}} \right] = +\$3,178$$

Original investment = +8,500

Total = +11,032

→ System B is preferred

4.11 The benefits from a certain highway project are estimated to be \$15,000 in the first year and \$30,000 in the 31st year. Assuming a uniform growth rate and an interest rate of 8 percent, calculate the present value of benefits over a 20-year analysis period.

The ratio of the future annual volume to the first year volume:

$$\frac{\$30,000}{\$15,000} = 2.0$$

The average rate of growth

$$r = \frac{\ln(\alpha)}{Y} = \frac{\ln(2.0)}{20} = 0.0346$$

The present worth factor

$$PW_g = \frac{e^{(r-i)n} - 1}{r-i} = \frac{e^{(0.0346 - 0.08)20} - 1}{0.0346 - 0.08} = 13.1$$

Present value = 13.1 × \$15,000 = \$197,138