King Saud University
College of Engineering
Civil Engineering Department

CE 431: Highway Engineering
Tutorial Note 1: Chapter 4
Eng. Ibrahim Almohanna
4.1 Determine the basic section cost for passenger cars using a multilane highway under the following conditions:

| Design speed $=\mathbf{6 0 ~ m p h}$ | Average running speed $=\mathbf{3 7} \mathrm{mph}$ | Grade $=+\mathbf{2 \%}$ |
| :--- | :--- | :--- |
| Volume $/$ capacity ratio $=0.7$ | Level of service $=C$ | Curvature, $\mathrm{R}=\mathbf{1 4 3 2 \mathrm { ft } .}$ |

Enter the graphs in figure 4-1 using average running speed or v/c ratio
(a) Time costs $=27 \mathrm{X} \$ 3.00$
$=\$ 81$
(b) Tangent running costs

$$
=\$ 79
$$

Find the degree of curvature:
$\theta=\frac{\left(\frac{180}{\pi} \times 100\right)}{R}=\frac{\left(\frac{180}{\pi} \times 100\right)}{1432} \approx 4^{\circ}$
(c) Added running costs due to curves

$$
=\$ 8
$$

(d) Added cost due to speed changes
$=\$ 4$
Total
= \$172/1000 vehicle mile
4.2 Estimate the one-way section transition cost for the highway described in problem 4.1 given that the average running speed on adjacent section is 25 mph . What would be the adjustment factor to account for the presence of 10 percent single unit trucks and 5 percent 3-S2 combination trucks?

Using Figure 4-2 with speed on the slower section $=25 \mathrm{mph}$ and speed on the faster section $=37 \mathrm{mph}$ (From Problem 4.1),

One-way transition costs $=\$ 2.40 / 1000$ passenger cars
(b) From Figure 4-2,

Adjustment factor for truck traffic $=1.68$



ADJUSTMENT FACTORS FOR TRUCK TRAFFIC

| SINGLE UNIT trucks (percent) | 3-S2 COMBINATION TRUCKS (percent) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 20 | 50 | 100 |
| 0 | 1.00 | 1.10 | 1.19 | 1.29 | 1.38 | 1.48 | 1.57 | 1.77 | 1.96 | 2.92 | 5.79 | 10.58 |
| 1 | 1.02 | 1.12 | 1.21 | 1.31 | 1.40 | 1.50 | 1.59 | 1.79 | 1.98 | 2.94 | 5.81 | - |
| 2 | 1.04 | 1.14 | 1.23 | 1.33 | 1.42 | 1.52 | 1.61 | 1.81 | 2.00 | 2.96 | 5.83 | - |
| 3 | 1.06 | 1.16 | 1.25 | 1.35 | 1.44 | 1.54 | 1.63 | 1.83 | 2.02 | 2.98 | 5.85 | - |
| 4 | 1.08 | 1.18 | 1.27 | 1.37 | 1.46 | 1.56 | 1.65 | 1.85 | 2.04 | 3.00 | 5.87 | - |
| 5 | 1.10 | 1.20 | 1.29 | 1.39 | 1.48 | 1.58 | 1.67 | 1.87 | 2.06 | 3.02 | 5.89 | - |
| 6 | 1.12 | 1.22 | 1.31 | 1.41 | 1.50 | 1.60 | 1.69 | 1.89 | 2.08 | 3.04 | 5.91 | $\sim$ |
| 8 | 1.16 | 1.26 | 1.35 | 1.45 | 1.54 | 1.64 | 1.73 | 1.93 | 2.12 | 3.08 | 5.93 | - |
| 10 | 1.20 | 1.30 | 1.40 | 1.49 | 1.58 | 1.68 | 1.77 | 1.97 | 2.14 | 3.12 | 5.97 | - |
| 20 | 1.41 | 1.50 | 1.60 | 1.70 | 1.78 | 1.88 | 1.94 | 2.17 | 2.34 | 3.32 | 6.17 | - |
| 50 | 2.02 | 2.12 | 2.21 | 2.31 | 2.39 | 2.49 | 2.58 | 2.78 | 2.95 | 3.93 | 6.78 | - |
| 100 | 3.04 | - | - | - | - | - | - | - |  | - |  | - |

GIVEN:
EXAMPLE
A stream of traffic consists of $5 \%$
single unit trucks and $10 \%$ combination
trucks. The traffic is travelling at 60 mph and enters a slower section on which the
speed is 30 mph .
SOLUTION
(a) Passenger Car Cost - $\$ 6.75$
$\mathrm{T}-\$ 6.75 \times 2.06$
$=\$ 13.91$ per 1000 Vehicles
4.3 The volume of traffic along a certain intersection approach is $\mathbf{6 0 0}$ passenger cars per hour. Determine the cost due to stopping (excluding idling) at the intersection under the following conditions:

| Saturation flow, s = 1750 vph | signal cycle time $=\mathbf{6 0}$ sec | effective green time $=\mathbf{3 0}$ sec |
| :--- | :--- | :--- |
| Approach speed $=\mathbf{3 5} \mathrm{mph}$ | $5 \%$ single unit trucks | $10 \%$ 3-S2 combination trucks |

The green/cycle ratio, $\lambda=30 / 60=0.5$
Capacity of approach $=s \times \lambda=1750 \times 0.5=875 \mathrm{vph}$
Degree of saturation, $\chi=$ volume/capacity $=600 / 875=0.69$
From Figure 4-3,
(a) Average stops per vehicle $=0.76$
(b) Stopping delay per signal $=3.1$ hours $/ 1000$ vehicle per signal
(c) Costs of stopping $=\$ 13.50$

Time costs
Running cost

Total cost due to stopping (excluding delays)
$=3.1 \times \$ 3.00=\$ 9.30$
$=\$ 13.50$
= \$22.80 per 1000 vehicles/signal
4.4 For the conditions described in problem 4.3, determine the cost due to idling.

From Figure 4-4,
(a) Average delay per vehicle $=16.0 \mathrm{sec}$
(b) Correction to average delay $=0$
(c) Idling time $=4.4$ hours/1000 passenger cars
(d) Idling cost = \$1.30/1000 passenger cars

Total delay cost $=4.4$ X \$3.00/hour = \$13.20
Total idling cost
$=1.30$
Total cost due to idling
= \$14.50/1000 vehicles per signal

Volume: 480 vehicles $/ \mathrm{hr}$
Saturation Flow: 1,600 vehicles/h
Signal Cycle Time: 60 sec
Effective Green Time: 30 sec
Intersection Approach Speed: 30 mph $5 \%$ Single Unit Trucks
\% 3-S2 Combination Trucks

## SOLUTION:

$x=30 / 60-0.5$
Capacity of Approach $=0.5 \times 1600-800$
Capacity of Appro
$\lambda=480 / 800=0.6$
(a) Average Stops per Vehicle (per Signal): 0.7
(b) Stopping Delay per Signal: 2.5 hrs
(c) Cost of Stopping: $\$ 10.30$

Time Cost: $2.5 \times \$ 3.00^{*} \times 1.35$
Running Cost: $\$ 10.30 \times 1.42^{+}$
Total Cost Due to Stopping per 1,000 vehicle
per Signal (excludes idling)
*Assumed hourly value of time per passenger ca
${ }^{\dagger}$ Adjustment factors for trucks in traffic stream




ADJUSTMENT FACTORS FOR PERCENT TRUCKS IN TRAFFIC STREAM

| idling time FACTOR |  | 3-S2 COMBINATION TRUCKS (percent) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 5 | 10 | 20 | 100 |
|  | 0 | 1.00 | 1.08 | 1.17 | 1.33 | 2.67 |
| SINGLE UNIT | 5 | 1.07 | 1.15 | 1.23 | 1.40 | - |
| trucks | 10 | 1.13 | 1.22 | 1.30 | 1.47 | - |
| (percent) | 20 | 1.27 | 1.35 | 1.43 | 1.60 | - |
|  | 100 | 2.33 | - | - | - | - |


| IDLING COST FACTOR |  | 3-S2 COMBINATION TRUCKS (percent) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 5 | 10 | 20 | 100 |
|  | 0 | 1.00 | 0.98 | 0.96 | 0.92 | 0.62 |
| SINGLE UNIT | 5 | 0.99 | 0.98 | 0.96 | 0.92 | - |
| TRUCKS | 10 | 0.99 | 0.97 | 0.95 | 0.91 | - |
| (percent) | 20 | 0.98 | 0.96 | 0.94 | 0.90 | - |
|  | 100 | 0.89 | - | - | - | - |

EXAMPLE
SOLUTION: Average Delay per Vehicle: (a) + (b) 16.2 sec (c) Idling Hours: 4.5 hrs
(d) Idling Cost: $\$ 1.40$

Total Delay: $4.5 \mathrm{hrs} \times \$ 3.00^{\circ} \times 1.15 \mathrm{t} \$ 15.53$
Total Idling Cost: $\$ 1.40 \times 0.98^{\dagger} \quad 1.38$
Total Cost Due to laling per 1000
Vehicles (per signal)
$\$ 16.91$
Assumed hourly value of time per passenger car.
Adjustment factors for percent trucks in traffic stream.
4.9 A certain highway project is planned that would have an initial investment cost of $\mathbf{\$ 1 . 5}$ million. The user benefits for the facility (in excess of maintenance cost) are estimated to be $\mathbf{\$ 1 0 5 , 0 0 0}$ per year over its useful life of 20 years. At the end of the 20 -year period, the residual (salvage) value would be $\$ 400,000$. On the basis of present worth concept, should the project be built? Assume an interest rate of 6 percent. What is the benefit-cost ratio?

The present worth of the user benefits

$$
P W_{u s e r}=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=\$ 105,000\left[\frac{(1+0.06)^{20}-1}{0.06(1+0.06)^{20}}\right]=\$ 1,204,210
$$

The present worth of the residual value

$$
P W_{\text {residual }}=\frac{F}{(1+i)^{n}}=\frac{\$ 400,000}{(1+0.06)^{20}}=\$ 124,727
$$

The present worth of the combined benefits = \$1,328,937
The investment exceeds the benefits by an amount of

$$
=\$ 1,500,000-\$ 1,328,937=\$ 171,063
$$

The benefit/cost ratio, $\mathrm{B} / \mathrm{C}=0.88$
4.10 A highway agency is considering two alternative energy attenuation systems, described below, to lessen the severity of crashes into bridge columns and other fixed object hazards. System A has low initial cost but must be repaired extensively after each "hit". System B has high initial cost but needs little maintenance. It is expected that such a device will be hit once every two years. On the basis of present worth concept, which system is preferred? Use an annual interest rate of 7 percent.

|  | System $\mathbf{A}$ | System B |
| :--- | :--- | :--- |
| First cost | $\$ 3,500$ | $\$ 8,500$ |
| Routine annual maintenance | $\$ 500$ | $\$ 300$ |
| Repair after each hit | $\$ 1,200$ | None |
| Life | 20 years | 20 years |
| Salvage value | $\$ 1,000$ | $\$ 2,500$ |

- System A:

$$
\begin{gathered}
P W_{\text {residual }}=\frac{F}{(1+i)^{n}}=\frac{\$ 1,000}{(1+0.07)^{20}}=-\$ 259 \\
P W_{\text {main }}=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=\$ 500\left[\frac{(1+0.07)^{20}-1}{0.07(1+0.07)^{20}}\right]=+\$ 5,297 \\
P W_{\text {repair }}=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=\$ 1,200\left[\frac{(1+0.14)^{10}-1}{0.07(1+0.14)^{10}}\right]=+\$ 6,260
\end{gathered}
$$

Original investment $=+3,500$
Total $=+14,798$

- System B

$$
\begin{gathered}
P W_{\text {residual }}=\frac{F}{(1+i)^{n}}=\frac{\$ 2,500}{(1+0.07)^{20}}=-\$ 646 \\
P W_{\text {main }}=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=\$ 300\left[\frac{(1+0.07)^{20}-1}{0.07(1+0.07)^{20}}\right]=+\$ 3,178
\end{gathered}
$$

Original investment $=+8,500$
Total $=+11,032$
$\rightarrow$ System B is preferred
4.11 The benefits from a certain highway project are estimated to be $\mathbf{\$ 1 5 , 0 0 0}$ in the first year and $\mathbf{\$ 3 0 , 0 0 0}$ in the $31{ }^{\text {st }}$ year. Assuming a uniform growth rate and an interest rate of 8 percent, calculate the present value of benefits over a 20-year analysis period.

The ratio of the future annual volume to the first year volume:

$$
\frac{\$ 30,000}{\$ 15,000}=2.0
$$

The average rate of growth

$$
r=\frac{\ln (\alpha)}{Y}=\frac{\ln (2.0)}{20}=0.0346
$$

The present worth factor

$$
P W_{g}=\frac{e^{(r-i) n}-1}{r-i}=\frac{e^{(0.0346-0.08) 20}-1}{0.0346-0.08}=13.1
$$

Present value $=13.1 \times \$ 15,000=\$ 197,138$

