King Saud University College of Engineering Civil Engineering Department

CE 431: Highway Engineering
Tutorial Note 4: Chapter 16
Eng. Ibrahim Almohanna
16.1 during the first year of service, a pavement on a rural minor arterial is expected to accommodate the number of vehicles in the classes shown. Estimate the ESAL.

Vehicle type	Number of vehicles	Truck factors	Product
Single unit trucks			
\quad Two-axle, four tire	$\mathbf{7 2 , 0 0 0}$	0.003	216
\quad Two-axle, six tire	$\mathbf{2 0 , 5 0 0}$	0.28	5740
\quad Three-axle	$\mathbf{2 , 8 0 0}$	1.06	2968
Tractor semitrailer			
\quad Four-axle	$\mathbf{1 , 4 0 0}$	0.62	868
\quad Five-axle	$\mathbf{3 , 7 0 0}$	1.05	3885
			ESAL = sum = 13,667

16.2 determine the design ESAL for a 25 -year design period if the traffic grows at an annual rate of 5 percent.

By equation 16-6 where $T_{1}=$ ESAL from previous question:
$T=\left[\frac{(1+r)^{n}-1}{r}\right] T_{1}=\left[\frac{(1+0.05)^{25}-1}{0.05}\right] 13,667=652,746$
16.3 A flexible pavement is to be designed for a rural primary highway by the AASHTO method to carry a design ESAL of 0.5×10^{6}. It is estimated that the pavement base will be exposed to moisture levels approaching $\mathbf{2 0}$ percent of the time. The overall quality of drainage is "fair". The following additional information is available:

Resilient modulus of asphalt concrete at $68^{\circ} \mathrm{F}=400,000$ psi.
Resilient modulus of the base - 35,000 psi.
CBR of subgrade material $=3.0$
Reliability level = 85 percent.
Standard deviation $=0.45$
Initial serviceability index = 4.5
Terminal serviceability index $=\mathbf{2 . 5}$
Design a pavement by AASHTO method. Assume that there is no subbase.
From figure 16-3, for asphalt concrete surface course, $M_{r}=400,000$ and $a_{1}=0.41$
From figure $16-5$, for base course, $\mathrm{M}_{\mathrm{r}}=35,000$ and $\mathrm{a}_{2}=0.155$
From table 16-7 take average, for base, drainage coefficient $m_{2}=0.9$
From Figure $16-11, \mathrm{SN}_{1}=1.6$

$$
\begin{gathered}
D_{1}=>\frac{S N_{1}}{a_{1}}>\frac{1.6}{0.41}=3.9, \quad \text { say } 4 \prime \prime \\
S N^{*}=D_{1} * a_{1}=4(0.41)=1.64 \\
D_{2}>\left(S N_{2}-S N_{1}^{*}\right) / a_{2} m_{2}
\end{gathered}
$$

From Figure 16-11, $\mathrm{SN}_{2}=2.9$

$$
\begin{gathered}
D_{2}>(2.9-1.64) /(0.155)(0.9) \\
D_{2}>(1.26) /(0.155)(0.9)=9.33^{\prime \prime}, \text { say } 10^{\prime \prime}
\end{gathered}
$$

Use 4" surface course, 10" base.
16.4 design a full depth asphalt pavement for the conditions give in problem 16 - $\mathbf{2}$ by the asphalt institute method.

By Figure 16-7, thickness of full depth asphalt concrete $=13$ ".
16.5 An axle-weight study on a certain highway produced the following data:

Calculate the truck factor for this highway. For the < 4000 single axle group, use load equivalency factor of $\mathbf{0 . 0 0 0 2}$.

Axle load group single (Ib)	No. of axles per 1000 vehicles	Load Equivalency factor	Product
< 4000	775	0.0002	0.155
4000-8000	268	0.0104	2.7872
8000-12000	98	0.0877	8.5946
12000-16000	87	0.36	31.32
16000-20000	52	1	52
20000-24000	45	2.18	98.1
24000-28000	10	4.09	40.9
28000-32000	8	6.97	55.76
32000-38000	7	11.18	78.26
Axle load group tandem (1b)	No. of axles per 1000 vehicles	Load Equivalency factor	Product
8000-12000	184	0.007	1.288
12000-18000	196	0.037	7.252
18000-22000	133	0.121	16.093
22000-26000	177	0.26	46.02
26000-34000	78	0.658	51.324
34000-40000	49	1.587	77.763
40000-50000	28	3.47	97.16
50000-60000	23	7.725	177.675
> 60000	0	0	0
		Total	$\begin{gathered} 842.45 \\ \text { per } 1000 \\ \text { vehicles } \end{gathered}$

Average truck factor $=842.45 / 1000=0.84$
16.6 a four lane highway is to replace an existing two lane facility. The AADT (both directions) can be described by 1543 ESAL. Construction is expected to be completed in four years. If the annual traffic growth rate is 4.5 percent, and the CBR of the subgrade on the new alignment is 6 , determine the depth of full-depth asphalt pavement by the asphalt institute method (mean annual air temperature $=75^{\circ} \mathrm{F}$). Assume the design life of the pavement is $\mathbf{2 0}$ years.

With a growth rate of $4.5 \% /$ year, the ESAL at the end of the fourth year would be
$T_{1}=1,294(1.045)^{4}=1,543$
By equation 16-6, the total traffic during the design period is

$$
T=\left[\frac{(1+r)^{n}-1}{r}\right] T_{1}=\left[\frac{(1+0.045)^{20}-1}{0.045}\right] 1,543=48,406
$$

From Table 16-1, $D_{D}=0.45$, and from Table $16-5, D_{L}=0.9$. By equation 16-7,
$w_{18}=0.45 \times 0.9 \times 48,406=19,604$
By equation 16-2, $M_{r}=1500 C B R=1500 \times 6=9,000$
From Figure 16-7, depth of pavement $=5^{\prime \prime}$.

