King Saud University College of Engineering Civil Engineering Department

CE 431: Highway Engineering
Tutorial Note 8: Chapter 6
Eng. Ibrahim Almohanna

6-1 Three cars travel over a 200 ft section of highway at constant speeds of 35,40 , and $45 \mathrm{ft} / \mathrm{sec}$. Compute the time-mean and space-mean speeds for this condition.

- Time-mean speed by equation 6-1

$$
\begin{gathered}
\overline{\mu_{t}}=\frac{\sum \mu_{i}}{n} \\
\bar{\mu}_{t}=\frac{35+40+45}{3}=40 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

- Space-mean speed by equation 6-2

$$
\begin{gathered}
\overline{\mu_{s}}=\frac{n d}{\sum t_{i}} \\
t_{1}=\frac{200}{35}=5.71 \mathrm{sec} \\
t_{2}=\frac{200}{40}=5.0 \mathrm{sec} \\
t_{3}=\frac{200}{45}=4.44 \mathrm{sec} \\
\overline{\mu_{s}}=\frac{3 \times 200}{5.71+5+4.44}=39.6 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

Alternatively,

$$
\begin{gathered}
\overline{\mu_{s}}=\frac{n}{\sum \frac{1}{\mu_{i}}} \\
\overline{\mu_{s}}=\frac{3}{\left(\frac{1}{35}+\frac{1}{40}+\frac{1}{45}\right)}=39.6 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

6-2 Three cars travel over a 60 m section of highway at constant speeds of 19,20 , and $25 \mathrm{~m} / \mathrm{sec}$. Compute the time-mean and space-mean speeds for this condition.

- Time-mean speed by equation 6-1

$$
\begin{gathered}
\overline{\mu_{t}}=\frac{\sum \mu_{i}}{n} \\
\overline{\mu_{t}}=\frac{19+20+25}{3}=21.33 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

- Space-mean speed by equation 6-2

$$
\begin{gathered}
\overline{\mu_{s}}=\frac{n d}{\sum t_{i}} \\
t_{1}=\frac{60}{19}=3.16 \mathrm{sec} \\
t_{2}=\frac{60}{20}=3.0 \mathrm{sec} \\
t_{3}=\frac{60}{25}=2.4 \mathrm{sec} \\
\overline{\mu_{s}}=\frac{3 \times 60}{3.16+3+2.4}=21.03 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

Alternatively,

$$
\begin{gathered}
\overline{\mu_{s}}=\frac{n}{\sum \frac{1}{\mu_{i}}} \\
\overline{\mu_{s}}=\frac{3}{\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{25}\right)}=21.03 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

6-3 For the conditions described in problem 6-1, estimate the variance about space-mean speed.
By equation 6-3

$$
\begin{gathered}
\overline{\mu_{t}}=\overline{\mu_{s}}+\frac{\sigma_{s}^{2}}{\overline{\mu_{s}}} \\
40=39.6+\frac{\sigma_{s}^{2}}{39.6} \\
\sigma_{s}^{2}=15.84
\end{gathered}
$$

6-4 For the conditions described in problem 6-2, estimate the variance about space-mean speed.
By equation 6-3

$$
\begin{gathered}
\overline{\mu_{t}}=\overline{\mu_{s}}+\frac{\sigma_{s}^{2}}{\overline{\mu_{s}}} \\
21.33=21.03+\frac{\sigma_{s}^{2}}{\overline{21.03}} \\
\sigma_{s}^{2}=6.31
\end{gathered}
$$

6-5 The estimated future average daily traffic for a rural highway is 8,000. Assume that the relationship between peak hourly flows and ADT is as shown in figure 6-1. Estimate the design hourly volume. What would be the effect of using the $10^{\text {th }}$ highest hour for design purposes? The $50^{\text {th }}$ highest hour?

By Figure 6-1

Road with average fluctuation in traffic flow is assumed.
For the $30^{\text {th }}$ highest hour: $\mathrm{DHV}=0.153 \times 8000=1224 \mathrm{vph}$
For the $10^{\text {th }}$ highest hour: $\mathrm{DHV}=0.180 \times 8000=1440 \mathrm{vph}$
For the $50^{\text {th }}$ highest hour: $\mathrm{DHV}=0.142 \times 8000=1224 \mathrm{vph}$

6-6 Arrivals at a parking lot are assumed to follow the Poisson distribution. The average arrival rate is $\mathbf{2 . 8}$ per minute. What is the probability that during a given minute no car will arrive? What percentage of the time will no car arrive?

The probability that during a given minute no car will arrive is given by equation 6-6

$$
\begin{gathered}
P(x)=\frac{m^{x} e^{-m}}{x!} \\
P(0)=\frac{2.8^{0} e^{-2.8}}{0!}=0.061
\end{gathered}
$$

Percentage of the time will no car arrive $=0.061 \times 100=6.1 \%$

6-7 A street has an hourly volume of 360 vehicles. A pedestrian requires a gap of at least $\mathbf{1 0}$ seconds to cross. Assuming headway can be described by a negative exponential distribution, what is the probability that the pedestrian will have to wait to cross?

The probability that the headway is more than 10 seconds is given by equation 6-7

$$
\begin{gathered}
P(g>T)=e^{-V T} \\
P(g>T)=e^{-360 \times \frac{10}{3600}}=0.37
\end{gathered}
$$

Probability that the pedestrian will have to wait to cross $=1-0.37=0.63$

6-10 Estimate the service flow rate for the level of service B for a six-lane freeway (three lanes per direction) with $12 \mathrm{ft}(3.6 \mathrm{~m})$ lanes and obstructions $6 \mathrm{ft}(1.8 \mathrm{~m})$ from the edge of pavement on one side only. The section is to accommodate 12 percent heavy trucks and busses and 2 percent recreational vehicles. Assume the adjustment factor for the driver population, f_{p}, is 0.95 . The design speed is 75 mph ($120 \mathrm{~km} / \mathrm{h}$), and the section has a +3 percent grade that is 0.7 mile (1.1 km) long.

Using table 6-4,
Level of service B and $F F S=75 \mathrm{mph} \rightarrow$ service flowrate $v_{p}=1350$ passenger car per hour per lane.

- For one direction, the service flowrate $v_{p}=1350 \times 3=4050$ passenger car per hour.
- For one direction, the service flowrate $v_{p}=1350 \times 6=8100$ passenger car per hour.

6-11 Estimate the capacity of the freeway segment described in Problem 6-10.

Capacity \rightarrow LOS E \rightarrow service flowrate $v_{\mathrm{p}}=2400$ passenger car per hour per lane

By equation 6-9

$$
\begin{gathered}
v_{p}=\frac{V}{P H F \times N \times f_{H V} \times f_{p}} \\
V=v_{p} \times P H F \times N \times f_{H V} \times f_{p}
\end{gathered}
$$

PHF = 1, because of capacity conditions
$N=3$, given (one direction)
$f_{p}=0.95$, given
$f_{H V}=$ by equation 6-10

$$
f_{H V}=\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)}
$$

$E_{T}=1.5$, and $E_{R}=3$, using tables 6-9 and 6-10 respectively.

$$
f_{H V}=\frac{1}{1+0.12(1.5-1)+0.02(3-1)}=0.91
$$

Substituting,

$$
V=2400 \times 1 \times 3 \times 0.91 \times 0.95=6225 v p h
$$

For both directions $=6225 \times 2=12450 \mathrm{vph}$

6-12 Estimate the capacity of the approach lane of a signalized intersection located in the central business district given the following conditions:

- Two approach lanes 10 ft wide.
- 8\% heavy vehicles.
- $+4 \%$ grade along the approach.
- 30 busses stopping per hour.
- 20 parking maneuvers per hour.
- Through traffic only.
- Cycle length = 65 sec.
- Green ratio $=0.5$

Signalized intersection capacity, c_{i}, is given by equation 6-12

$$
c_{i}=s_{i} \times\left(\frac{g_{i}}{C}\right)
$$

Saturation flowrate, s, is given by equation 6-13

$$
s=s_{0} \times N \times f_{W} \times f_{H V} \times f_{g} \times f_{p} \times f_{b b} \times f_{a} \times f_{L U} \times f_{L T} \times f_{R T} \times f_{L p b} \times f_{R p b}
$$

$s_{0}=1900 \mathrm{vph}$, if not given, use 1900 vph
$N=2$
$f_{\llcorner\cup}=1$, no lane utilization
$f_{\text {LT }}=1$, not left turn
$f_{\text {RT }}=1$, no right turn
$f_{\text {Lpb }}=1$, no pedestrian or bikes
$f_{\mathrm{Rpb}}=1$, no pedestrian or bikes
$f_{\mathrm{a}}=0.9$, located in the central business district
f_{w} is given by equation 6-14

$$
f_{W}=1+\left(\frac{W-12}{30}\right)=1+\left(\frac{10-12}{30}\right)=0.933
$$

f_{HV} is given by equation 6-15

$$
f_{H V}=\frac{100}{100+\% H V\left(E_{T}-1\right)}=\frac{100}{100+8(2-1)}=0.926
$$

f_{g} is given by equation 6-16

$$
f_{g}=1-\frac{\% G}{100}=1-\frac{4}{100}=0.96
$$

f_{p} is given by equation 6-17

$$
f_{p}=\frac{N-0.1-\left(\frac{18 N_{m}}{3600}\right)}{N}=\frac{2-0.1-\left(\frac{18 \times 20}{3600}\right)}{2}=0.9
$$

f_{bb} is given by equation 6-18

$$
f_{p}=\frac{N-\left(\frac{14.4 N_{b}}{3600}\right)}{N}=\frac{2-\left(\frac{14.4 \times 30}{3600}\right)}{2}=0.94
$$

Substituting in equation 6-13 to find s,

$$
s=1900 \times 2 \times 0.933 \times 0.926 \times 0.96 \times 0.9 \times 0.94 \times 0.9 \times 1 \times 1 \times 1 \times 1 \times 1=2400 \text { vph }(\text { green })
$$

Substituting in equation 6-12 to find c_{i},

$$
c_{i}=2400 \times 0.5=1200 v p h
$$

6-13 If the average stopped delay per vehicle for the intersection described in problem 6-12 is $\mathbf{2 0} \mathbf{~ s e c ,}$ what is the level of service?

Using table 6-12 \rightarrow LOS is B

