
Exercise 1

Suppose we have a simple mass, spring, and damper problem. Find
1. The modeling equation of this system (F input, x output).
2. The transfer function.

Let M = 1 kg b = 10 N s/m k = 20 N/m F = 1 N 

3. Find Open-Loop Step Response.
4. Design a proportional controller to improve the output (𝜔𝑛=17.89).
5. Design a proportional derivative controller to improve the output (𝜁=0.56 and 𝜔𝑛=17.89).



Solution 1

1. The modeling equation of this system 

𝑓 = 𝑀
𝑑2𝑥

𝑑𝑡2

𝑀 ሷ𝑥 = −𝑏 ሶ𝑥 − 𝑘 𝑥 + 𝐹 ⟹ 𝑀 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘 𝑥 = 𝐹

2. The transfer function.

Taking the Laplace transform of the modeling equation, we get

𝑀𝑠2𝑋 𝑠 + 𝑏 𝑠𝑋(𝑠) + 𝑘 𝑋(𝑠) = 𝐹(𝑠) ⟹ 𝐺 𝑠 =
𝑋 𝑠

𝐹 𝑠
=

1

𝑀𝑠2+𝑏 𝑠+𝑘

Create a new m-file (Matlab) and run the following code:

Let M = 1 kg b = 10 N s/m k = 20 N/m F = 1 N 

3. Find Open-Loop Step Response.
Plug these values into the above transfer function 𝐺 𝑠 =

𝑋 𝑠

𝐹 𝑠
=

1

𝑠2 + 10 𝑠 + 20

• the DC gain of the plant transfer function is 1/20, so 0.05 is the final value of the output to an unit step input.

• this corresponds to the steady-state error of 0.95, quite large indeed.

• the rise time is about one second,

• the settling time is about 1.5 seconds



4. Proportional Control

The proportional controller (Kp) reduces the rise time, increases the overshoot, and reduces the steady-state error.

Let the proportional gain equal 300 and change the m-file to the following

𝐺 𝑠 =
𝑋 𝑠

𝐹 𝑠
=

𝐾𝑃
𝑠2 + 10 𝑠 + (20 + 𝐾𝑃)

1

𝑠2 + 10 𝑠 + 20
𝐾𝑃+-

𝐹 𝑠 𝑋 𝑠

𝜔𝑛
2 = 20 + 𝐾𝑃 ⟹𝐾𝑃 = 𝜔𝑛

2 − 20 = 300

The above plot shows that the proportional controller reduced both the 
rise time and the steady-state error, increased the overshoot, and 
decreased the settling time by small amount.



Proportional-Derivative Control

Now, let's take a look at a PD control. From the table shown above, we see that the 
derivative controller (Kd) reduces both the overshoot and the settling time. The 
closed-loop transfer function of the given system with a PD controller is:

This plot shows that the derivative controller reduced both the 
overshoot and the settling time, and had a small effect on the 
rise time and the steady-state error.

20 + 𝐾𝑃 = 𝜔𝑛
2 ⟹𝐾𝑃 = 𝜔𝑛

2 − 20 = 300
10 + 𝐾𝐷 = 2𝜁𝜔𝑛 ⟹𝐾𝐷 = 2𝜁𝜔𝑛 − 20 = 2 0.56 17.89 − 10 ⟹ 𝐾𝐷 = 10



Exercise 2

The plant consists of rotating mass with inertia J and a viscous friction b, a 
torque T is applied to control the position of the mass.
1. Find the system model.
2. Find the transfer function.
3. Control the position 𝜃 using T to have 𝜁 = 0.7 (Proportional controller)



𝑇𝑜𝑟𝑞𝑢𝑒𝑠 = 𝐽
𝑑2𝜃

𝑑𝑡2

Solution 2

𝐽 ሷ𝜃 = 𝑇 − 𝑏 ሶ𝜃 ⟹ 𝐽 ሷ𝜃 + 𝑏 ሶ𝜃 = 𝑇 ⟹ ሷ𝜃 + 0.05 ሶ𝜃 = 0.1 𝑇

𝑠2𝜃 𝑠 + 0.05 𝑆 𝜃 𝑠 = 0.1 𝑇 𝑠 ⟹
𝜃 𝑠

𝑇 𝑠
=

0.1

𝑠2 + 0.05 𝑠

1. The modeling equation of this system 

2. The transfer function

3. System control

The open Loop Analysis Integrator (p=0)

-0.05
𝑡𝑠 =

4

𝜎
=

4

0.05
= 80 𝑠𝑒𝑐 (very slow moving system)

The close-Loop with Proportional controller Analysis

0.1

𝑠2 + 0.05 𝑠
𝐾𝑃+-

𝜃𝑑 𝑠 𝜃 𝑠𝑇 𝑠 0.1𝐾𝑃
𝑠2 + 0.05 𝑠

1 +
0.1𝐾𝑃

𝑠2 + 0.05 𝑠

=
0.1𝐾𝑃

𝑠2 + 0.05 𝑠 + 0.1𝐾𝑃



Given the characteristic equation we calculate the value of 𝐾𝑃 to have the desired transient response   

𝐶𝐿𝐶𝐸 ∶ 𝑠2 + 0.05 𝑠 + 0.1𝐾𝑃

𝐶𝐿𝐶𝐸 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 ∶ 𝑠2 + 2𝜁𝜔𝑛 𝑠 + 𝜔𝑛
2

The desired specifications: 𝜁 = 0.7

Matching 2𝜁𝜔𝑛 = 0.05

0.1𝐾𝑃 = 𝜔𝑛
2

𝜔𝑛 =
0.05

2 (0.7)
= 0.0357 𝑟𝑎𝑑/𝑠𝑒𝑐

𝐾𝑃 = 10 (0.0357)2= 0.0127

The desired poles: 𝑃1,2 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 = −0.025 ± 𝑗0.025

Integrator (p=0)

-0.05

Desired poles

System poles



Exercise 2

The plant G(s) is given 𝐺 𝑠 =
10

𝑠2−3 𝑠+2
, design a PD controller (using pole placement) to 

have the desired system response:   𝝃 = 𝟎. 𝟓, and 𝑻𝒔 = 𝟏𝒔

1. Find the desired poles and give the PD controller transfer function 𝐺𝑐(𝑠) (general form).
2. Find the closed loop transfer function CLTF (with PD controller).
3. Find the closed loop characteristic equation CLCE.
4. Find the gains 𝐾𝐷 and 𝐾𝑃 of the PD controller.



Solution

1. desired poles at : 𝑻𝒔 =
4

𝝃𝝎𝒏
→ 𝝎𝒏 =

4

𝝃𝑻𝒔
= 8 𝑟𝑎𝑑/𝑠𝑒𝑐

𝑠1,2 = −𝝃𝝎𝒏 ±𝝎𝒏 1 − 𝝃2 = −4 ± 𝑗 6.93

PD controller transfer function:    𝐺𝑐 𝑠 = 𝐾𝑃 + 𝐾𝐷 𝑠

2. CLTF : 𝑇 𝑠 =
𝐺𝑐 𝑠 𝐺(𝑠)

1+ 𝐺𝑐 𝑠 𝐺(𝑠)
=

10 (𝐾𝑃+𝐾𝐷 𝑠)

𝑠2+ 10 𝐾𝐷−3 𝑠+10 𝐾𝑃+2

3. CLCE: 𝑠2+ 10 𝐾𝐷 − 3 𝑠 + 10 𝐾𝑃 + 2 = 0

4. Desired CLCE:   𝑠2 + 2 𝝃 𝝎𝒏 𝑠 + 𝜔𝑛
2 = 0

PD controller Gains: 𝐾𝑃 =
𝜔𝑛
2−2

10
𝑎𝑛𝑑 𝐾𝐷 =

2 𝝃 𝝎𝒏+𝟑

10

𝐾𝑃 = 6.2 and 𝐾𝐷 = 1.1



Exercise 3

Use a PI controller to control the system G s =
2

𝑠+4
to meet the specifications 𝜁 = 0.7 𝑎𝑛𝑑 𝑡𝑠 < 0.5 𝑠𝑒𝑐.



The system is type zero, it has no integrator. In order to have no steady-state error we need to add an integrator to make the 
system type one.

Solution

The open Loop Analysis: the system pole at p= - 3.

𝑡𝑠 =
4

𝜎
< 1

𝜎 = 𝜁𝜔𝑛 > 4

- 3

System poles

Im

Re

- 4

𝜎 > 4

The controller design: PI controller 1

𝑠 + 3
𝐾𝑃 +

𝐾𝐼
𝑠

+-

𝑦𝑑 𝑠 𝑦 𝑠

The PI controller can be written as: 𝐾𝑃 +
𝐾𝐼
𝑠
= 𝐾𝑃

(𝑠 +
𝐾𝐼
𝐾𝑃
)

𝑠
Gain

Zero =𝐾𝐼𝑃

Integrator

𝐶𝐿𝐶𝐸 ∶ 𝑠 𝑠 + 3 + 𝐾𝑃 𝑠 +
𝐾𝐼
𝐾𝑃

= 0

𝜁 = 0.7.

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝐿𝐶𝐸 ∶ 𝑠2 + 2𝜁𝜔𝑛 𝑠 + 𝜔𝑛
2 = 𝑠2 + 2 0.7 6 𝑠 + 6 2 = 𝑠2 + 8.4 𝑠 + 36 = 0

𝑠2 + (2 + 𝐾𝑃) 𝑠 + 𝐾𝐼 = 0

2 + 𝐾𝑃 = 8.4
𝐾𝐼 = 36

𝐾𝑃 = 7.4

𝐾𝐼 = 36

satisfy the settling time  

𝜔𝑛 >
4

𝜁
=

4

0.7
𝜔𝑛 > 5.71 𝜔𝑛 = 6


