Suppose we have a simple mass, spring, and damper problem. Find 1. The modeling equation of this system (F input, x output).
2. The transfer function.

Let $\mathrm{M}=1 \mathrm{~kg} \mathrm{~b}=10 \mathrm{~N} \mathrm{~s} / \mathrm{m} \mathrm{k}=20 \mathrm{~N} / \mathrm{m} \mathrm{F}=1 \mathrm{~N}$
3. Find Open-Loop Step Response.
4. Design a proportional controller to improve the output ($\omega_{n}=17.89$).
5. Design a proportional derivative controller to improve the output ($\zeta=0.56$ and $\omega_{n}=17.89$).

Solution 1

1. The modeling equation of this system

$$
\sum f=M \frac{d^{2} x}{d t^{2}}
$$

$$
M \ddot{x}=-b \dot{x}-k x+F \Rightarrow M \ddot{x}+b \dot{x}+k x=F
$$

2. The transfer function.

Taking the Laplace transform of the modeling equation, we get

$$
M s^{2} X(s)+b s X(s)+k X(s)=F(s) \quad \Rightarrow \quad G(s)=\frac{X(s)}{F(s)}=\frac{1}{M s^{2}+b s+k}
$$

Let $\mathrm{M}=1 \mathrm{~kg} \mathrm{~b}=10 \mathrm{~N} \mathrm{~s} / \mathrm{mk}=20 \mathrm{~N} / \mathrm{m} \mathrm{F}=1 \mathrm{~N}$
Plug these values into the above transfer function $G(s)=\frac{X(s)}{F(s)}=\frac{1}{s^{2}+10 s+20}$ 3. Find Open-Loop Step Response.

Create a new m-file (Matlab) and run the following code:

```
s=tf('s');
P = 1/( s^2 + 10*s + 20);
step(P)
```

- the DC gain of the plant transfer function is $1 / 20$, so 0.05 is the final value of the output to an unit step input.
- this corresponds to the steady-state error of 0.95 , quite large indeed.
- the rise time is about one second,
- the settling time is about 1.5 seconds

4. Proportional Control

The proportional controller (Kp) reduces the rise time, increases the overshoot, and reduces the steady-state error.

$$
\begin{aligned}
& G(s)=\frac{X(s)}{F(s)}=\frac{K_{P}}{s^{2}+10 s+\left(20+K_{P}\right)} \\
& \omega_{n}^{2}=20+K_{P} \Rightarrow K_{P}=\omega_{n}^{2}-20=300
\end{aligned}
$$

Let the proportional gain equal 300 and change the m-file to the following

Proportional-Derivative Control

Now, let's take a look at a PD control. From the table shown above, we see that the derivative controller (Kd) reduces both the overshoot and the settling time. The closed-loop transfer function of the given system with a PD controller is:

$$
\frac{X(s)}{F(s)}=\frac{K_{d} s+K_{p}}{s^{2}+\left(10+K_{d}\right) s+\left(20+K_{p}\right)}
$$

$$
\begin{aligned}
& 20+K_{P}=\omega_{n}^{2} \Rightarrow K_{P}=\omega_{n}^{2}-20=300 \\
& 10+K_{D}=2 \zeta \omega_{n} \Rightarrow K_{D}=2 \zeta \omega_{n}-20=2(0.56)(17.89)-10 \Rightarrow K_{D}=10
\end{aligned}
$$

Step Response

$$
\begin{aligned}
& \mathbb{K p}=300 ; \\
& \mathbb{K d}=10 ; \\
& C=\operatorname{pid}(\mathbb{K p}, 0, \mathrm{Kd}) \\
& T=\operatorname{feedback}(\mathrm{C} * \mathrm{P}, 1)
\end{aligned}
$$

$$
t=0: 0.01: 2
$$

$$
\operatorname{step}(T, t)
$$

This plot shows that the derivative controller reduced both the overshoot and the settling time, and had a small effect on the
 rise time and the steady-state error.

The plant consists of rotating mass with inertia J and a viscous friction b, a torque T is applied to control the position of the mass.

1. Find the system model.
2. Find the transfer function.
3. Control the position θ using T to have $\zeta=0.7$ (Proportional controller)

Solution 2

1. The modeling equation of this system

$$
\begin{aligned}
& \sum \text { Torques }=J \frac{d^{2} \theta}{d t^{2}} \\
& J \ddot{\theta}=T-b \dot{\theta} \Rightarrow J \ddot{\theta}+b \dot{\theta}=T \Rightarrow \ddot{\theta}+0.05 \dot{\theta}=0.1 T
\end{aligned}
$$

2. The transfer function

$$
s^{2} \theta(s)+0.05 S \theta(s)=0.1 T(s) \Rightarrow \frac{\theta(s)}{T(s)}=\frac{0.1}{s^{2}+0.05 s}
$$

3. System control

The open Loop Analysis

$$
t_{s}=\frac{4}{\sigma}=\frac{4}{0.05}=80 \sec \text { (very slow moving system) }
$$

The close-Loop with Proportional controller Analysis

$$
\frac{\frac{0.1 K_{P}}{s^{2}+0.05 s}}{1+\frac{0.1 K_{P}}{s^{2}+0.05 s}}=\frac{0.1 K_{P}}{s^{2}+0.05 s+0.1 K_{P}}
$$

Given the characteristic equation we calculate the value of K_{P} to have the desired transient response

$$
\left.\begin{array}{c}
C L C E: s^{2}+0.05 s+0.1 K_{P} \\
C L C E \text { Desired }: s^{2}+2 \zeta \omega_{n} s+\omega_{n}{ }^{2} \\
\text { The desired specifications: } \zeta=0.7
\end{array}\right] \stackrel{\text { Matching }}{ }\left[\begin{array} { l }
{ 2 \zeta \omega _ { n } = 0 . 0 5 } \\
{ 0 . 1 K _ { P } = \omega _ { n } { } ^ { 2 } }
\end{array} \rightarrow \left[\begin{array}{l}
\omega_{n}=\frac{0.05}{2(0.7)}=0.0357 \mathrm{rad} / \mathrm{sec} \\
K_{P}=10(0.0357)^{2}=0.0127
\end{array}\right.\right.
$$

The desired poles: $P_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-0.025 \pm j 0.025$

The plant $\mathrm{G}(\mathrm{s})$ is given $G(s)=\frac{10}{s^{2}-3 s+2}$, design a PD controller (using pole placement) to have the desired system response: $\boldsymbol{\xi}=\mathbf{0 . 5}$, and $\boldsymbol{T}_{\boldsymbol{s}}=\mathbf{1 s}$

1. Find the desired poles and give the PD controller transfer function $G_{c}(s)$ (general form).
2. Find the closed loop transfer function CLTF (with PD controller).
3. Find the closed loop characteristic equation CLCE.
4. Find the gains K_{D} and K_{P} of the PD controller.

Solution

1. desired poles at : $\boldsymbol{T}_{\boldsymbol{s}}=\frac{4}{\xi \omega_{n}} \rightarrow \boldsymbol{\omega}_{\boldsymbol{n}}=\frac{4}{\xi \boldsymbol{T}_{\boldsymbol{s}}}=8 \mathrm{rad} / \mathrm{sec}$

$$
s_{1,2}=-\xi \omega_{\boldsymbol{n}} \pm \omega_{\boldsymbol{n}} \sqrt{1-\xi^{2}}=-4 \pm j 6.93
$$

PD controller transfer function: $\quad G_{c}(s)=K_{P}+K_{D} s$
2. $\mathrm{CLTF}: T(s)=\frac{G_{C}(s) G(s)}{1+G_{C}(s) G(s)}=\frac{10\left(K_{P}+K_{D} s\right)}{s^{2}+\left(10 K_{D}-3\right) s+10 K_{P}+2}$
3. CLCE: $s^{2}+\left(10 K_{D}-3\right) s+10 K_{P}+2=0$
4. Desired CLCE: $s^{2}+2 \boldsymbol{\xi} \boldsymbol{\omega}_{\boldsymbol{n}} s+\omega_{n}^{2}=0$

PD controller Gains: $K_{P}=\frac{\omega_{n}^{2}-2}{10}$ and $K_{D}=\frac{2 \xi \omega_{n}+3}{10}$

$$
K_{P}=6.2 \text { and } K_{D}=1.1
$$

Exercise 3

Use a PI controller to control the system $\mathrm{G}(\mathrm{s})=\frac{2}{s+4}$ to meet the specifications $\zeta=0.7$ and $t_{s}<0.5 \mathrm{sec}$.

Solution

The system is type zero, it has no integrator. In order to have no steady-state error we need to add an integrator to make the system type one.
The open Loop Analysis: the system pole at $\mathrm{p}=-3$.
$\zeta=0.7$.
$t_{s}=\frac{4}{\sigma}<1 \quad \Rightarrow \sigma=\zeta \omega_{n}>4 \quad \Rightarrow \omega_{n}>\frac{4}{\zeta}=\frac{4}{0.7} \quad \Rightarrow \omega_{n}>5.71 \quad \Rightarrow \omega_{n}=6$
The controller design: PI controller

The PI controller can be written as:

$$
K_{P}+\frac{K_{I}}{s}=K_{K_{P}} \frac{\left(s+\frac{K_{I}}{K_{P}}\right)}{s \aleph_{\text {Gain }} \text { integrator }} \text { zero }=K_{I P}
$$

CLCE : $s(s+3)+K_{P}\left(s+\frac{K_{I}}{K_{P}}\right)=0 \Rightarrow s^{2}+\left(2+K_{P}\right) s+K_{I}=0$
Desired CLCE : $s^{2}+2 \zeta \omega_{n} s+\omega_{n}{ }^{2}=s^{2}+2(0.7)(6) s+(6)^{2}=s^{2}+8.4 s+36=0$
$\Rightarrow \begin{aligned} & 2+K_{P}=8.4 \\ & K_{I}=36\end{aligned}$

$$
\begin{aligned}
K_{P} & =7.4 \\
K_{I} & =36
\end{aligned}
$$

