Chapter 7

Excises 3/

The closing price of Schnur Sporting Goods, Inc,. Common stock is uniformly distributed between \$20 and \$30 per share. What is the probability that the stock price will be:

a/ More than \$27?

$$P(x > 27) = (height)(base) = \frac{1}{30-20} (30 - 27) = 0.3$$

b/ less than or equal to \$24?

$$P(x \le 24) = (height)(base) = \frac{1}{30-20}(24 - 20) = 0.4$$

Exercise 5/

The April rainfall in Flagstaff, Arizona, follows a uniform distribution between 0.5 and 3 inches.

a/ what are the values for a and b?

b/ what is the mean amount of rainfall for the month? What is the standard deviation?

$$\mu = \frac{a+b}{2} = \frac{0.5+3}{2} = 1.75 \text{ inches}$$
$$\sigma = \sqrt{\frac{(3-0.5)^2}{12}} = 0.72 \text{ inches}$$

c/ what is the probability of less than an inch of rain for the month?

 $P(x < 1) = (height)(base) = \frac{1}{3-0.5}(1-0.5) = 0.2$

d/ what is the probability of exactly 1 inch of rain?

$$P(x = 1) = (height)(base) = \frac{1}{3-0.5}(1-1) = 0$$

e/ what is the probability of more than 1.5 inches of rain for the month?

$$P(x > 1.5) = (height)(base) = \frac{1}{3-0.5}(3-1.5) = 0.6$$

Exercise 7/

Explain what is meant by this statement: "there is not one normal probability distribution but a family of them"

The actual shape of a normal distribution depends on its mean and standard deviation. Thus, there is a normal distribution, and accompanying normal curve, for a mean of 7 and a standard deviation of 2. There is another normal curve for a mean of \$25000 and a standard deviation of \$1742 and so on.

Exercise 11/

The Kamp family has twins, Rob and Rachel graduated from college 2 years ago, and each is now earning \$50000 per year. Rachel works in the retail industry, where the mean salary for executives with less than 5 years of experience is \$35000 with a standard deviation of \$8000. Rob is an engineer. The mean salary for engineers with less than 5 years of experience is \$60000 with a standard deviation of \$5000. Compute the Z values for both Rob and Rachel and comment on your findings.

$$Z_{\text{ROB}} = \frac{50000 - 60000}{5000} = \frac{-10000}{5000} = -2$$
$$Z_{\text{Rachel}} = \frac{50000 - 35000}{8000} = \frac{15000}{8000} = 1.875$$

Adjusting for their industries, Rob is well below average and Rachel well above.

Finding area under the normal curve:

Exercise 15/

A recent study of the wages of maintainace crew members for major airlines showed that the mean hourly salary was \$20.50 with a standard deviation of \$3.50. Assume the distribution of hourly wages follows the normal probability distribution. If we select a crew member at random, what is the probability the crew member earns:

a/ Between \$20.50 and \$24.00 per hour?

$$\mathsf{Z} = \frac{24 - 20.5}{3.5} = \frac{3.5}{3.5} = 1$$

 $P(0 \le Z \le 1) = 0.3413$

 $P($20.5 \le wage \le $24.00) = 0.3413$

b/ More than 24.00 per hour?

$$\mathsf{Z} = \frac{24 - 20.5}{3.5} = \frac{3.5}{3.5} = 1$$

P(Z > 1) = 0.5 - 0.3413 = 0.1587

P(wage > \$24.00) = 0.5 - 0.3413 = 0.1587

c/ Less than \$19.00 per hour?

$$\mathsf{Z} = \frac{19 - 20.5}{3.5} = \frac{-1.5}{3.5} = -0.43$$

P(Z < -0.43) = 0.5 - 0.1664 = 0.3336

P(wage < \$19.00) = 0.5 - 0.1664 = 0.3336

Exercise 19/

According to internal Revenues service, the mean tax refund for the year 2007 was \$2708. Assume the standard deviation is \$650 and that the amounts refunded follow a normal probability distribution.

a/ what percent of refunds are more than \$3000?

$$\mathsf{Z} = \frac{3000 - 2708}{650} = \frac{292}{650} = 0.45$$

$$P(Z > 0.45) = 0.5 - 0.1736 = 0.3264$$

P(Tax refund > \$3000) = 0.5 - 0.1736 = 0.3264

b/ what percent of tax refunds are more than \$3000 but less than \$3500?

$$\mathsf{Z} = \frac{3500 - 2708}{650} = \frac{792}{650} = 1.22$$

P(0 < Z < 1.22) = 0.3888

P(2708 < Tax refund < \$3500) = 0.3888

$$\mathsf{Z} = \frac{3000 - 2708}{650} = \frac{292}{650} = 0.45$$

P(0 < Z < 0.45) =0.1736

P(2708 < Tax refund < \$3000) = 0.1736

P (\$3000 < Tax refund < \$3500) = 0.3888 - 0.1736 = 0.2152

c/ what percent of refunds are more than \$2500 but less than \$3500?

$$\mathsf{Z} = \frac{3500 - 2708}{650} = \frac{792}{650} = 1.22$$

P(0 < Z < 1.22) = 0.3888

P(2708 < Tax refund < \$3500) = 0.3888

$$\mathsf{Z} = \frac{2500 - 2708}{650} = \frac{-208}{650} = -0.32$$

P(-0.32 < Z < 0) = 0.1255

P(\$2500 < Tax refund <2708) = 0.1255

P (\$2500 < Tax refund < \$3500) = 0.3888 + 0.1255 = 0.5143

Exercise 25/

Assume that the mean hourly cost to operate a commercial airline follows the normal distribution with a mean of \$2100 per hour and a standard deviation of \$250. What is the operating cost for the lowest 3 percent of the airlines?

The Z-value that corresponds to 0.4700 or 0.4699 is 1.88

\$2100 - (1.88 * \$250) = \$1630

In brief, there are four situations for finding the area under the standard normal probability distribution.

1/ to find the area between o and Z or -Z, look up the probability directly in the table.

2/ to find the area beyond Z or -Z, located the probability of Z in the table and subtract that probability from 0.5

3/ to find the area between two points on different sides of the mean, determine the Z values and add the corresponding probabilities.

4/ to find the area between two points on the same side of the mean, determine the Z values and subtract the smaller probability from the larger.

Exercise 31/

Assume a binomial distribution with n = 50 and π = 0.25. Compute the following:

a/ The mean and standard deviation of the random variable.

 $\mu = 50*0.25 = 12.5$

 $\sigma = \sqrt{50 * 0.25 * 0.75} = 3.06$

b/ the probability that X is 15 or more.

$$Z = \frac{14.5 - 12.5}{3.06} = \frac{2}{3.06} = 0.65$$

$$P(Z > 0.65) = 0.5 - 0.2422 = 0.2578$$

$$P(X \ge 15) = 0.2578$$

c/ the probability that X is 10 or less.

$$Z = \frac{10.5 - 12.5}{3.06} = \frac{-2}{3.06} = -0.65$$
$$P(Z < -0.65) = 0.5 - 0.2422 = 0.2578$$
$$P(X \le 10) = 0.2578$$

Chapter 15

Exercise 1/

PNC Bank, Inc., which has its headquarters in Pittsburgh, Pennsylvania, reported in millions its commercial loans as follow:

Year	commercial loans in	
	millions \$	
1995	17446	
1997	19989	
1999	21468	
2000	21685	
2002	15922	
2004	18375	

Using 1995 as the base, develop a simple index for the change in the amount of commercial loans

Year	commercial loans in millions \$	Index
1995	17446	100.0
1997	19989	114.6
1999	21468	123.1
2000	21685	124.3
2002	15922	91.3
2004	18375	105.3

Exercise 7/

The prices and the number of various items produced by a small machine and stamping plant are reported below. Use 2000 as the base.

	2000		2008	
Item	Price	Quantity	Price	Quantity
Washer	0.07	17000	0.10	20000
Cotter pin	0.04	125000	0.03	130000
Stove bolt	0.15	40000	0.15	42000
Hex nut	0.08	62000	0.10	65000

a/ Determine the simple average of the price index

P_{Washer} = (0.10/0.07) * 100 = 142.9

 $P_{\text{Cotter pin}} = (0.03/0.04) * 100 = 75.0$

 $P_{\text{Stove blot}} = (0.15/0.15) * 100 = 100.0$

 $P_{Hex nut} = (0.10/0.08) * 100 = 125.0$

Simple average of the price index = (142.9 + 75.0 + 100.0 + 125.0)/4 = 110.7

b/ Determine the aggregate price index for the two years

Total prices of 2000 = (0.07 + 0.04 + 0.15 + 0.08) = 0.34

Total prices of 2008 = (0.10 + 0.03 + 0.15 + 0.10) = 0.38

The aggregate price index for the two years = (0.38/0.34) * 100 = 111.7

c/ Determine Laspeyres price index

 $\mathsf{P} = \frac{(0.10*17000) + (0.03*125000) + (0.15*40000) + (0.10*62000)}{(0.07*17000) + (0.04*125000) + (0.15*40000) + (0.08*62000)} * 100 = 102.9$

d/ Determine the Paasche price index

 $\mathsf{P} = \frac{(0.10 \times 20000) + (0.03 \times 130000) + (0.15 \times 42000) + (0.10 \times 65000)}{(0.07 \times 20000) + (0.04 \times 130000) + (0.15 \times 42000) + (0.08 \times 65000)} \times 100 = 103.3$

e/ Determine Fisher ideal index

 $P = \sqrt{(102.9) * (103.3)} = 103.1$

Excises 9/

The prices and production of gains for August 1995 and August 2008 are listed on the following table:

Grain	Price 1995	Quantity 1995	Price 2008	Quantity 2008
Oats	1.52	200	5.95	214
Wheat	2.10	565	9.80	489
Corn	1.48	291	6	203
Barley	3.05	87	3.29	106

Using 1995 as base period, find the value index of grains produced for August 2008.

 $V = \frac{(5.95*214) + (9.8*489) + (6*203) + (3.29*106)}{(1.52*200) + (2.1*565) + (1.48*291) + (3.05*87)} * 100 = 349.1$