At the end of this unit the student will be able to :

- 1- Write the K_{sp} expression for the ionization of any salts.
- 2- Calculate K_{sp} from solubility and vice versa.
- 3- Tell if a precipitate will form when mixing solutions.

4- predict whether it is possible to separate metal ions by the precipitation of its hydroxides or salts .

5- predict whether a complexing agent will dissolve the metal precipitate or not .

6- Understand the concept of common ion effect.

Introduction

The concept of solubility product is very useful in explaining many phenomenons. Various fields in which it can be used are:-

 Calculation of solubility: If we know the solubility product of a meagerly soluble salt like AgCl we can calculate the solubility of the salt and vice versa.
 In predicting the precipitation in reactions: If we know the solubility product of a salt, we can find whether on mixing the solution of its ions, precipitation will occur or not.
 In inorganic qualitative analysis: The concept of solubility product and common ion effect play a vital role in the separation of basic radicals i.e. cations into different groups of qualitative analysis.

4. Purification of sodium chloride: Sodium Chloride obtained from sea water or lakes is always impure. It can be purified on the basis of common ion effect .

The Solubility Product Concept

When adding Cl⁻ solution to a beaker containing Ag+ solution, the product of [Cl⁻]X [Ag⁺] in the beaker solution will increase until reaching what so called solubility product constant (K_{sp}) of the compound AgCl . Before reaching K_{sp} the beaker solution is called unsaturated when reaching K_{sp} the solution is called saturated and in both states no precipitation occurs . But when the product of [Cl⁻] X[Ag⁺] exceeds the value of K_{sp} , the solution is called oversaturated and the precipitation of AgCl may occurs.

The Solubility Product Concept

The state of overrsaturation is temporary (less than one second) because Cl⁻ and Ag⁺ will react to form the precipitate AgCl and the [Cl⁻] and [Ag⁺] will go back to the saturation state. So when you see a solution of AgCl with a solid in it you will know that the product of [Cl⁻]X[Ag⁺] dissolving in solution is equal to the K_{sp} of AgCl. What we said about AgCl applies to all salts.

To write the expression of K_{sp} for any salt you should first write the dissociation equation , for example the dissociation equation for the salt Al_2S_3 is :

The Solubility Product Concept

$$Al_2S_3 \rightarrow 2Al^{3+} + 3S^{2-}$$

The K_{sp} expression for Al_2S_3 is the product of the concentrations of the ions, with each concentration raised to a power equal to the coefficient of that ion in it's balanced dissociation equation thus :

$$X_{sp} = [Al^{3+}]^2 [S^{2-}]^3$$

and do the same with any other salt e.g for CaF_2 , $K_{sp} = [Ca^{2+}][F^-]^2$ and so on.

Saturated solution of CaF₂

The Solubility Product Concept

The higher the value of K_{sp} the more soluble the salt .

Example ; Which one of the following salts is more soluble in water ?

CaCO₃: $K_{sp} = 2.8 \times 10^{-9}$

Ag₂CO₃: $K_{sp} = 8.1 \times 10^{-12}$

Solution : Since the value of K_{sp} for CaCO₃ is higher than that of Ag₂CO₃ then the first is more soluble than the later . :

Factors Affecting Solubility (Temperature)

Effect of temperature on solubility :

Generally in most cases solubility increases with the rise in temperature. However we must follow two behaviors : In endothermic process solubility increases with the increase in temperature and vice versa.

In exothermic process solubility decrease with the increase in temperature. Gases are more soluble in cold solvent than in hot solvent

Factors Affecting Solubility (Solvent)

Effect of solvent on solubility :

Solubility of a solute in a solvent purely depends on the nature of both solute and solvent. A polar solute dissolved in polar solvent. A polar solute has low solubility or insoluble in a non-polar solvent . For this reason if you want to decrease the solubility of an inorganic salt (polar salt) in water you mix the water with an organic solvent (non polar).

Predicting precipitation

Determining whether a precipitate will, or will not form when two solutions are combined : Example : 25.0 mL of 0.002 M K₂CrO₄ are mixed with 75.0 mL of 0.000125 M Pb(NO₃)₂. Will a precipitate of PbCrO₄ form. K_{sp} of PbCrO₄ = 1.8 x 10⁻¹⁴ ?

Solution : The term Q is called the ion product (or the trial K_{sp}) for the solution mixture after the mixing of the solutions and before the reaction of the ions at any state (unsaturation , saturation or supersaturation). So we will calculate Q using the dilution equation :

$$\mathbf{C}_1 \mathbf{V}_1 = \mathbf{C}_2 \mathbf{V}$$

The concentration of CrO_4^{2-} in the mixture and before the reaction = (0.002 M X 25 mL) /100 mL = 0.0005 M Similar calculation for Pb²⁺ yield [Pb²⁺] = (0.000125 M X 75 mL) / 100 mL = 0.0000934M $Q = [CrO_4^{2-}][Pb^{2+}] = 0.0005 X 0.0000934 = 4.69X10^{-8}$

Predicting Precipitation

Q is greater than K_{sp} so a precipitate of lead(II) chromate will form. If $Q \le K_{sp}$ the solution will be either saturated (if equal) or unsaturated

(if less than) and in both states there will be no precipitation .

Q < Ksp	Unsaturated solution
Q = Ksp	Saturate solution
Q > Ksp	Oversaturate solution

Calculating K_{sp} From Solubility

What is the solubility of a salt? It is the maximum amount (moles, mmoles, g...etc) of this salt that can be dissolved in a certain volume of solution (L, 50 mL, 500 mL...ect.). The molar solubility is the solubility in moles of a salt in liter of a solution.

Calculating K_{sp} of a salt from it's Solubility : From the definition of K_{sp} and molar solubility one can calculate the K_{sp} of a salt from it's molar solubility or vice versa .

Calculating K_{sp} From Solubility

Example : Calculate the solubility product constant for $PbCl_2$ (mw= 278.1), if 50.0 mL of a saturated solution of $PbCl_2$ was found to contain 0.2207 g of $PbCl_2$ dissolved in it (i.e.solubility in 0.2207 g / 50 mL)?

Solution : First we write the K_{sp} expression : $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$ Second we convert the solubility in 0.2207 g / 50 mL to molar solubility thus : $\frac{0.2207 (g)}{278.1} = 0.0159 \text{ moles / L}$ Third create ap "ICE" table :

Third, create an "ICE" table :.

Unit 12	SOLUBILITY PRODUCT	Subjects				
Calculating K _{sp} From Solubility						
	$PbCl_{2}(s) \longrightarrow$	Pb ²⁺ (aq)	2Cl ⁻ (aq)			
Initial Concentration (I)	0.0159 moles/L	0	0			
Complete dissolution (C)	0	+ 0.0159 M	+ 0.0318 M			
Fourth, substitute these concentrations into the equilibrium						

expression and solve for K_{sp}. :

Calculating Solubility from K_{sp}

 $K_{sp} = [Pb^{2+}][Cl^{-}]^{2} = [0.0159][0.0318]^{2} = 1.61 \times 10^{-5}$

Calculating the Solubility of a salt from its K_{sp} :

Example :Estimate the molar solubility of Ag_2CrO_4 in pure water if the solubility product constant for silver chromate is 1.1 x 10⁻¹² ?

Solution :

$$Ag_2CrO_4(s) \longrightarrow 2Ag^+(aq) + CrO_4^{2-}(aq)$$

 $K_{sp} = [Ag^+]^2[CrO_4^{2-}]$

Let "x" be the number of moles of silver chromate that dissolves in one liter of solution (its molar solubility).

Calculating Solubility from K_{sp}

Make an "ICE" chart :

 $Ag_{2}CrO_{4} \leftrightarrow 2Ag^{+} + CrO_{4}^{2-}$ (1) before dissolution x 0 0 (C) after complete dissolution 0 2x x

Substitute into the K_{sp} expression and solve for x. $1.1 \ge 10^{-12} = [2x]^2[x]$ Molar solubility of $Ag_2CrO_4 = x = 6.50 \ge 10^{-5} M$

Effect of the Common Ion on Solubility

Effect of the common ion on solubility : The solubility of an ionic compound decreases in the presence of a common ion. A common ion is any ion in the solution that is common to the ionic compound being dissolved. For example, the chloride ion in a sodium chloride solution is common to the chloride in silver chloride. The presence of a common ion must be taken into account when determining the solubility of an ionic compound. To do this, simply use the concentration of the common ion as the initial concentration.

Effect of the Common Ion on Solubility

Example: Estimate the molar solubility of barium sulfate in a 0.02 M sodium sulfate solution. The solubility product constant for barium sulfate is $1.1 \ge 10^{-10}$?

Solution :

 $BaSO_4(s) \rightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$ $K_{sp} = [Ba^{2+}][SO_4^{2-}]$

Let "x" represent the barium sulfate that dissolves in the sodium sulfate solution expressed in moles per liter Make an "ICE" chart..

Unit 12

Effect of the Common Ion on Solubility

	$BaSO_4(s)$	$Ba^{2+}(aq)$	SO ₄ ²⁻ (aq)
Initial (before dissolution) (I)) X	0	0.020 M (from Na ₂ SO ₄)
Complete dissolution (C)	0	Х	0.02 M + x

Substitute into the equilibrium expression and solve for x. We will make the assumption that since x is going to be very small (the solubility is reduced in the presence of a common ion), the term "0.020 + x" is the same as "0.020." (You can leave x in the term and use the quadratic equation but it will not improve the significance of your answer.) :

 $1.1 \ge 10^{-10} = [x][0.020 + x] = [x][0.020]$ x = 5.5 x 10⁻⁹ M

Effect Of Ionic Strength On Solubility

Salt effect (ionic strength): Having an opposing effect on the K_{sp} value compared to the common ion effect, uncommon ions increase the K_{sp} value. Uncommon ions are those that are different from those involved in K_{sp} equilibrium. The figures on your right show the effect of KNO₃ on the solubility of $BaSO_4$. As you see K^+ ions surround SO_4^{2-} and NO_3^{-} ions surround Ba^{2+} ions . Therefore , Ba^{2+} ions will have difficulty reacting with SO_4^{2-} to form the precipitate $BaSO_4$.

Effect of pH on Solubility : Many weakly soluble ionic compounds have solubility which depend on the pH of the solution e.g metal hydroxides and the salts of weak acids .

1- Effect of pH on metal hydroxides :

Example : Zinc hydroxide $Zn(OH)_2$ has $K_{sp} = 4.5 \times 10^{-17}$ In pure water calculate its malor solubility ? Solution : Assume the molar solubility = x

	Zn(OH)2(s)	Zn2+(aq)	+2 OH-(aq)
Ι	Х	0	0
С	0	Х	2x

Effect of pH on Solubility

 $K_{sp} = 4.5 \times 10^{-17} = \mathrm{x}(2\mathrm{x})^2.$

 $x = (4.5 \times 10^{-17})/4]^{1/3} = 2.2 \times 10^{-6} M.$

the resulting pH is : $[OH^-] = 2x = 4.4 \times 10^{-6} M$ therefore

```
pH = 14 - pOH
= 14 - (-log( 4.4×0<sup>-6</sup>))
= 8.64
```

Therefore the pH of a saturated solution of $Zn(OH)_2$ equal to 8.64.

If pH < 8.64 (more acidic) then $[OH^-]$ decreases (reaction shifts right to try to produce more OH^-). Solubility increases.

- if pH > 8.64 (more basic) then [OH⁻] increases (reaction shifts left to try to use more OH⁻). Solubility decreases.
- **Example** : At what pH the $Zn(OH)_2$ will start to precipitate (pH_S) and at what pH the precipitation is complete (pH_C) from a solution containing 0.1 M Zn^{2+} ?

Solution : $Zn^{2+} + 2OH^{-} \leftrightarrow Zn(OH)_2$

(I) 0.1 ? 0

 $K_{sp} = [Zn^{2+}][OH^{-}]^2 = (0.1) (?)^2$

$$(?)^{2} = [OH^{-}]^{2} = \frac{K_{sp}}{(0.1)}, \ [OH^{-}] = \sqrt{\frac{4.5X10^{-17}}{(0.1)}} = 2.1X10^{-8} M$$

 $pOH_s = -\log 2.1X10^{-8} = 7.67$, $pH_s = 14 - 7.67 = 6.33$

Since the precipitation of Zn^{2+} or any other metal ion is not complete 100 % so let us assume that the precipitation is complete when its concentration is reduced 10000 times that means C is reduced to CX10⁻⁴. This applies to all metal ion precipitation .Therefore will repeat the same previous calculation but instead of 0.1 M we will use $0.1X10^{-4}$:

$$[OH] = \sqrt{\frac{4.5X10^{-17}}{0.1X10^{-4}}} = 2.1X10^{-6} M$$
$$pOH_{c} = -\log 2.1X10^{-6} = 5.67 , \ pH_{c} = 14 - 5.67 = 8.33$$

Effect of pH on Solubility

The precipitation of $Zn(OH)_2$ will start at pH = 6.33 and will be complete at pH = 8.33.

Example :A solution containing 0.1 M Ca²⁺ and 0.02 M Mg²⁺. Is it possible to separate one of these ions by precipitating it as hydroxide while keeping the other in solution ? K_{sp} [Ca(OH)₂] = 5.5X10⁻⁶ , K_{sp} [Mg(OH)₂] = 5 X 10⁻¹²

Solution : when you add OH⁻ to the solution , the metal ion with the smallest K_{sp} will precipitate first because it requires less amount of OH⁻ compared with the one with higher K_{sp} value . Therefore , Mg(OH)₂ will precipitate first . The pH at which the metal hydroxide precipitate is direct proportional to its K_{sp} pH α K_{SP} Now we will calculate the pH_s at which the precipitation of Mg(OH)₂ is complete thus :

Effect of pH on Solubility

$$Mg(OH)_{2} \leftrightarrow Mg^{2+} + 2OH^{-}$$

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$

$$[OH^{-}] = \sqrt{\frac{K_{sp}}{[Mg^{2+}]}}$$

$$[OH^{-}] = \sqrt{\frac{5 \times 10^{-12}}{0.02 \times 10^{-4}}} = 1.58 \times 10^{-3} M$$

$$\therefore pOH = -\log 1.58 \times 10^{-3} = 2.8$$

$$\therefore pH_{c} = 14 - 2.8 = 11.2$$

Effect of pH on Solubility

Then we calculate the pH_s at which the precipitation of $Ca(OH)_2$ will start thus :

$$[OH^{-}] = \sqrt{\frac{5.5 \times 10^{-6}}{0.1}} = 7.4 \times 10^{-3} M$$

$$\therefore pOH = -\log 7.4 \times 10^{-3} = 2.12$$

$$\therefore pH_{s} = 14 - 2.12 = 11.88$$

So it is possible to keep the pH of the solution in the range 11.8 > pH > 11.2 to separate Mg^{2+} by precipitating it as $Mg(OH)_2$ while keeping Ca^{2+} in the solution . Note that the pH

should not reach 11.8 otherwise the Ca(OH)₂ will precipitate . On the other hand the pH should exceed 11.2 in order for the precipitation of Mg(OH)₂ to be complete . Note also that if Ca(OH)₂ starts to precipitate at pH \leq 11.2, then the two metal ions can not be separated and both will precipitate at the same time .

1- Effect of pH on salts of weak acids : For the salt of weak acid (e.g sulphides, carbonates, oxalates and phosphates) the smaller the value of K_{sp} the lower the pH at which the salt precipitates (pH α K_{sp}) exactly the same as metal hydroxides.

That means the salt with smaller K_{sp} will precipitate in more acidic medium where as the one with larger K_{sp} will precipitate in less acidic medium. Take for example the precipitation of Ca^{2+} as $CaCO_3$. At low pH , CO_3^{2-} will be turned to HCO_3^{-} or may be to H_2CO_3 (see the diagram below at $pH \le 8$) while at $pH \ge 13$ all the carbonic acid species are present as CO₃²⁻ .Therefore CaCO₃ will precipitate in basic medium and will dissolve in acidic medium.

Example : Which one will precipitate in more acidic medium $CaCO_3$ ($K_{sp} = 4.8X10^{-9}$ or MgCO₃ ($K_{sp} = 1X10^{-5}$) ? Solution : Of course , CaCO₃ because it has the lowest K_{sp} **Example :** You have a solution containing 0.1 M Ti⁺ and 0.05 M Cd²⁺ . Is it possible to separate these two ions by precipitating one of them as sulphide ?

 $K_{sp}~(\mbox{ CdS}~)=2\ X\ 10^{-28}~,~K_{sp}~(\mbox{ Ti}_2\mbox{ S}~)=2\ X\ 10^{-22}$ Solution : When you add $\mbox{ S}^{2-}$ to the solution , CdS will precipitate first because it has smallest $K_{sp}~.$

$$K_{sp} = 2 X 10^{-28} = [Cd^{2+}][S^{2-}] = (0.05 X 10^{-4}) X [S^{2-}]$$
$$[S^{2-}] = 4 X 10^{-23} M$$

Effect of pH on Solubility

This means that the precipitation of CdS will be complete when the concentration of $[S^{2-}]$ reaches $4X10^{-23}$ M . Now we calculate the $[S^{2-}]$ at which Ti₂S starts to precipitate :

$$K_{sp} = 2 X 10^{-22} = [Ti^{+}]^{2} [S^{2-}] = (0.1)^{2} X [S^{2-}]$$
$$[S^{2-}] = 2 X 10^{-20} M$$

According to these results it is possible to precipitate CdS while keeping Ti^+ in solution if you control the concentration of S^{2-} in solution to be in the range :

 $2 X 10^{-20} M > [S^{2-}] > 4 X 10^{-23} M$

 $[S^{2-}]$ should be more than $4x10^{-23}\,M$ to obtain complete precipitation of CdS but not to reach to $2X10^{-20}\,M$ to avoid precipitation of Ti_2S . It is possible to control $[S^{2-}]$ through controlling the pH (see reference 1).

Note that the pH has no effect on the solubility of the strong acids salts e.g. Cl^{-} , Br^{-} , SO_4^{2-} ...etc because the concentration of these conjugated bases is the same wither in acidic or basic medium . However , metal ions can be separated by these anions according to their K_{sp} values as the hydroxides or the salts of weak acids.

FRACTIONAL PRECIPITATION

Know the definition of Fractional Precipitation. $M_{4}^{2^{+}}$ $M_{2}^{2^{+}}$ $M_{2}^{2^{+}}$ 1. A solution contains 0.200 M Ca(NO₃)₂, 0.200 M Cd(NO₃)₂ and 0.200 M Mg(NO₃)₂. If solid sodium oxalate is added to the solution slowly, what is the order in which the ions fall out of solution? When the second ion begins to precipitate, what percentage of the first ion is left in solution? When the third ion begins to precipitate, what precentages of the first and second ion are left in solution?

http://www.youtube.com/watc h?v=3KrPFz2Dzw8#t=1061

Complex Ions and Solubility

Complex Ions and Solubility : Because we can use complexation reactions to 'tie up' metal ions in water, we can use these to increase the solubility of metal ion salts. For example, silver chloride is weakly soluble in water but quite readily dissolves in concentrated ammonia. The effect of complexing agent on the solubility metal salts is governed by two factors the value of K_{sp} of the salt and the value of K_f of the complex between the metal ion and the comlexing agent.

Complex Ions and Solubility

Let us take the effect of ammonia NH_3 and cyanide CN^- as complexing agents on the precipitation of silver halides as an example .Practically NH_3 dissolves only AgCl which has relatively large K_{sp} value because the value of K_f for $Ag(NH_3)_2^+$ is small . Where as CN^- dissolves all silver halides because the value of K_f for $Ag(CN)_2^-$ is large . However CN^- can not dissolve silver sulphide because its K_{sp} value is very small (see the following figure) .

Complex Ions and Solubility

To summarize the larger the K_{sp} value of the salt and the value of K_f of the metal complex the more the effect of the complexing agent on dissolving the salt and vice versa .

General Rules For Solubility In Water

There are rules that determine whether a compound is soluble in water or not. They are as follows:

1. All common salts of the Group 1 elements and the ammonium ion are soluble.

2. All common acetates and nitrates are soluble.

3. All binary compounds of Group 17 (except Fluorine) are soluble except with silver, mercury and lead.

4. Sulfates are soluble except with calcium, strontium, barium, silver, mercury and lead.

5. Carbonates, Hydroxides, Oxides and Phosphates are insoluble except as in rule one.

In this unit we investigated , the concept of solubility product constant , its importance in analytical chemistry , how to calculate K_{sp} from solubility and vice versa , how to predict the precipitation when two solutions are mixed together and the factors affecting the solubility such as , temperature , common ion ,ionic strength , pH and the complex formation . We have drawn the attention to the separation of metal ions by stepwise precipitation as hydroxides or acid salts . We have used graphics, pictures and videos to illustrate the concepts and fundamentals of this unity .

EXERCISE 1 : The K_{sp} for AgCl is 1.8X10⁻¹⁰. What is its molar solubility ?

Your answer :

Our answer next slide

Tutorial

Answer 1 : Let x be the molar solubility, then $AgCl = Ag^+ + Cl^-$ X = X

Molar solubility of AgCl = $x = (1.8 \times 10^{-10})^{1/2} = 1.3 \times 10^{-5} M$

Tutorial

Exercise 2 : The K_{sp} for Cr(OH)₃ is 1.2X10⁻¹⁵. What is the molar solubility of Cr(OH)₃ in water?

Your answer :

Our answer next slide

Answer 2 :

Let x be the molar solubility of $Cr(OH)_3$, then you have $Cr(OH)_3 = Cr^{3+} + 3 OH^{-1}$ $X \qquad 3 X$

Thus,

 $x (3 x)^3 = 1.2 X 10^{-15}$ Molar solubility = $x = 8.2X10^{-5}$ M

Exercise 3 : Very careful experiment indicates that the molar solubility of Bi_2S_3 is 1.8X 10⁻¹⁵ M, what value of K_{sp} does this compound have?

Your answer :

Our answer next slide

Tutorial

Answer 3 : If the molar solubility of Bi_2S_3 is 1.8 X 10⁻¹⁵, then $Bi_2S_3 = 2 Bi(3+) + 3 S^{2-}$ 3.6X10⁻¹⁵ 5.4X10⁻¹⁵ $K_{sp} = (3.6X10^{-15})^2 (5.4X10^{-15})^3$ $= 2.0 X10^{72}$

Tutorial

Exercise 4 : Calculate the solubility of CaF₂ (mw = 78.1) in g/L ($K_{sp} = 4.0 \times 10^{-8}$) ?

Your answer :

Our answer next slide

Tutorial

Answer 4 :

$$\operatorname{CaF}_{2(s)} \xrightarrow{\operatorname{H}_2 \bigcirc} \operatorname{Ca}^{2+}_{(aq)} + 2 \operatorname{F}^{-}_{(aq)}$$

The reasons why we do not involve $[H_2O]$ and solids in the equilibrium expression is that its concentrations remains unchanged .

$$K_{sp} = [Ca^{2+}][F^{-}]^{2} = 4.0 \times 10^{-8}$$

Solubility of $CaF_2 = [Ca^{2+}] = x$ and $[F^-] = 2x$ $K_{sp} = 4.0X10^{-8} = (x) (2x)^2$, $x = 2.2 X 10^{-3}$ moles / L $= 2.2X10^{-3} X 78.1 = 0.017$ g CaF₂/L

Exercise 5 : A solution is prepared by mixing equal volumes of 0.01M MgCl₂, and 0.02M $Na_2C_2O_4$ at 18°C. Would MgC₂O₄ precipitate out? K_{sp} of MgC₂O₄ at 18°C = 8.57 x 10⁻⁵.

Your answer :

Our answer next slide

Tutorial

Answer 5 : When mixed, the total volume gets doubled and hence the effective concentrations of the ions would be half of the initial concentration, i.e., in solution $[Mg^{2+}] = (0.01/2) = 0.005 \text{ mol/L}$ $[C_2O_4^{2-}] = (0.02/2) = 0.01 \text{ mol/L}$ $Q = 0.005 \text{ X} 0.01 = 5 \text{ X} 10^{-5}$, $Q < K_{sp}$, so precipitation do not take place.

Exercise 6: What is the molar solubility of PbCl₂ in 1.00 *M*HCl ? $K_{sp} = [Pb^{2+}][Cl^{-}]^2 = 1.7 \times 10^{-5}$

Your answer :

Our answer next slide

Answer 6: Let us assume the molar solubility equal to x : $PbCl_2(s) \leftrightarrow Pb^{2+}(aq) + 2 Cl^{-}(aq)$ 1.00 M () Χ 1.00 + 2 x0 X $K_{sp} = [Pb^{2+}][Cl^{-}]^2 = 1.7 \times 10^{-5}.$ $x(1.00 + 2x)^2 \approx x(1.00)^2 = 1.7 \times 10^{-5}$, $x = 1.7 \times 10^{-5}$ M In the absence of the common ion : $1.7X10^{-5} = (x)(2x)^2$, x =1.6X10⁻²

So The solubility is significantly reduced due to common ion effect.

Exercise 7 : Calculate the pH_S at which $Fe(OH)_3$ starts to precipitate and the pH_C at which the precipitation is complete from a solution of 0.1 M Fe³⁺ ? K_{sp} for $Fe(OH)_3 = 4X10^{-38}$.

Your answer :

Tutorial

Answer 7:
$$K_{sp} = [Fe^{2+}][OH^{-}]^{3}$$

 $[OH^{-}] = \sqrt[3]{\frac{K_{sp}}{[Fe^{3+}]}} = \sqrt[3]{\frac{4 \times 10^{-38}}{0.1}} = 7.4 \times 10^{-13}$
 $\therefore [H^{+}] = \frac{1 \times 10^{-14}}{7.4 \times 10^{-13}} = 0.0135 \ M \therefore pH_{s} \approx 1.9$
 $[OH^{-}] = \sqrt[3]{\frac{4 \times 10^{-38}}{0.1 \times 10^{-4}}} = 1.6 \times 10^{-11}$
 $\therefore [H^{+}] = \frac{1 \times 10^{-14}}{1.6 \times 10^{-11}} = 6.25 \times 10^{-4} \therefore pH_{c} = 3.2$

Exercise 8 : You have a solution containing 0.1 M Mn²⁺ and 0.2 M Fe³⁺. Is it possible to separate the two ions by precipitation of one of them as hydroxide while keeping the other in solution ? $K_{sp} Mn(OH)_2 = 2X10^{-13}$, $K_{sp} Fe(OH)_3 = 4X10^{-38}$

Our answer next slide

Your answer :

Answer 8 : First we calculate the pH_C at which the precipitation of Fe(OH)₃ is complete :

$$[OH^{-}] = \sqrt[3]{\frac{4 X 10^{-38}}{0.2 X 10^{-4}}} = 1.3 X 10^{-11} \therefore [H^{+}] = 7.7 X 10^{-4} \therefore pH_{C} = 3.1$$

Second we calculate the pH_s at which the precipitation of $Mn(OH)_2$ starts :

$$K_{sp} = [Mn^{2+}][OH^{-}]^{2}$$
$$[OH^{-}] = \sqrt{\frac{K_{sp}}{[Mn^{2+}]}} = \sqrt{\frac{2 \times 10^{-13}}{0.1}} = 1.4 \times 10^{-6} \therefore [H^{+}] = 7.1 \times 10^{-9} \therefore pH_{s} = 8.2$$

Tutorial

على الراغبين الاستماع الى محاضرات الاستاذ الدكتور/ ابراهيم زامل الزامل باللغة العربية عن هذا الموضوع الرجوع الى الروابط التالية :

حسابات حاصل الإذابة

حسابات حاصل الإذابة ٢

حسابات حاصل الإذابة ٣