University - ______name_____

			Take $g = 9.8 \text{ ms}^{-2} \text{ wh}$	nere ever needed				
1	The force responsible for holding a car moving on an unbanked curve road is:							
	A) The vertical component of the normal force	B) The horizontal component of the normal force	C) The car weight	D) The frictional force.	E) None of those	D		
2	A pendulum having	g an object 0.2 kg a	t the end of its strip	ng revolves with a				
-	constant speed. If t	he length of the strin tripetal force needed	ng is 0.29 m making	g an angle 30° with		E		
	A) 0.57 N	B) 2.26 N	C) 1.6 N	D) 3.4 N	E) 1.13 N			
3	A block is placed on a rough inclined surface. If the incline angle is increased until the block moves down the incline with a constant speed at angle θ , then:							
	A) $\sin\theta = \mu_k$.	th a constant speed at B) $\cos\theta = \mu_k$.	t angle θ , then: C) $\tan \theta = \mu_k$.	D) $\cot\theta = \mu_k$.	E) $\sec\theta = \mu_k$.			
4	A 1.5 kg object has a velocity of 5j m/s at $t = 0$. It is accelerated at a constant rate for five seconds after which it has a velocity of $(6i + 12j)$ m/s. The magnitude of the resultant force acting on the object during this time interval is:							
	A) 2.77 N	B) 4.61 N	C) 1.92 N	D) 5.35 N	E) 6.45 N			
5	A) 5.4 N	ecting string is: B) 2.4 N	C) 7.8 N	– 2.2 kg, the D) 1.2 N	м 36° E) 3.5 N	A		
6	A 12 kg box rests	s on a horizontal su	rface and a boy pul	ls it with a force				
	makes 30° below t	the horizontal. If the gnitude of the force B) 47 N	e coefficient of stat	ic friction is 0.4,	E) 71 N	E		
7	If a fly collides with the windshield (الزجاج الأمامي) of a fast moving bus, which of the following							
	A) the fly experiences an impact force with a larger magnitude.	B) the bus experiences the greater acceleration	C) the same acceleration is experienced by both.	D) the bus experiences an impact force wi a larger magnitude.	E) The fly experiences th the greater acceleration.	E		
8	A block is pushed across a rough horizontal surface from point A to point B							
	by a force of magnitude $P = 5.4$ N. The magnitude of the force of friction acting on the block between A and B is 1.2 N where points A and B are 0.5 m apart. If the kinetic energies of the block at A and B are 4 J and 5.6 J, respectively, how much work is done on the block by the force P between A and B?							

2

University - ______name_____

9	(force constant = 80 equilibrium position parallel to the surface when it is 13 cm from A) 2.85 m/s	horizontal frictionless 00 N/m). The block is n when a force (of ma ce is applied to the bloom its equilibrium pos B) 1.35 m/s	initially at rest at its gnitude P = 80 N) ac ock. The speed of the sition is: C) 4.24 m/s	ting block D) 0.78 m/s	E) 0.64 m/s	D	
10	being a force of fric points A and B are of	B) the work of the			s of the particle at	A	
11	A skier of mass 70 kg is pulled up a slope by a motor driven cable. If a motor is used to pull him a distance of 60 m up a 30° slope (assumed frictionless) at a constant speed of 2 m/s, the required power delivered by the motor is: A) 588 WB) 784 WC) 1120 WD) 733 WE) 686 W						
12	A boy of mass 66 kg rides his skateboard at a local skate park. He starts from rest at the top of the track as seen in the figure and begins a descent down (نزول إلي أسفل) the frictionless track, what is his speed when he reaches at point B. A) 12.5 m/s B) 7.4 m/s C) 9.3 m/s D) 14.6 m/s E) 15.2 m/s						
13	A block of mass 2 kg and velocity 2 m/s slide from point A (8 m high) to B in the horizontal surface. If the horizontal surface has friction coefficient 0.4, find the distance it travels horizontally (أفقيا) before it stops. A) 23.3 m B) 12.4 m C) 14.3 m D) 20.5 m E) 7.2 m						
14	A 10 kg block is rel energy is: A) 9800 J	eased from rest at 10 B) 4900 J	0 m above the ground C) 4200 J	l. When it has faller D) 3600 J	n 50 m, its kinetic E) 14700 J	В	
15	In an isolated system A) kinetic energy	n, which of the follow B) potential energy	ving is a correct state C) kinetic energy plus potential energy	D) both kinetic energy and potential energy.	y that is conserved? E) None of those	С	

The End