University * ______name_____

		Take	$g = 9.8 \text{ ms}^{-2}$ where	ever needed				
1	Newton's law of universal gravitation is represented by $F = \frac{GMm}{r^2}$							
	Where F is the gravitational force exerted by one object on another (force has the SI units kg·m/s ²), M and m are the masses of the objects, and r is a distance. The SI units of the proportionality constant G is:							
	A) $m^2/kg.s^3$.	B) $m^3/kg.s^2$	C) $s^2/kg. m^3$	D) $s^3/kg. m^2$	E) kg / s^2 . m ³	B		
2	An object has a one dimensional motion described by the equation $x=1+2t+4t^2$, where x the position in meters and t is the time is seconds. The change in the velocity from time t _i =0 =4s is:							
	A) 24 m/s	B) 36 m/s	C) 16 m/s	D) 32 m/s	E) 40 m/s	D		
3	Two bodies A and B are dropped from heights of 9 m and 16 m, respectively. The ratio of the time taken by them, t_A/t_B , to reach the ground is:							
	A) 3/5	B) 4/5	C) 3/4	D) 3/8	E) 5/8	C		
4	Two identical balls are at rest side by side at the bottom of a hill. Sometime after ball A is kicked up the hill, ball B is given a kick up the hill to a different height. Ball A is headed downhill when it passes ball B headed up the hill. At the instant when ball A passes ball B:							
	A) it has the same position and velocity as ball B	position a		ne D) it has the sa nd displacement as and velocity ball B		В		
5	A car moving along a straight track changes its velocity from 40 m/s to 80 m/s in a distance of 200 m. the acceleration of the car during this time is:							
	A) 9.6 m/s ²	B) 7 m/s ²	C) 12 m/s ²	D) 8 m/s ²	E) 10.7 m/s ²	C		
6		; vector B has x and y e components of vector						
	A) 5.5 i, -5.4 j	B) -3.6 i , 5.1 j	C) -7.3 i , 7.2 j	D) 3.2 i , -4.1 j	E) 10.95 i , -10.8 j	E		
7		ector starts at x, y coordinates $(3, 4)$ and ends at x, y coordinates $(-2, 16)$. What are the nitude and direction of this vector?						
	A) 13 m, 113°	B) 17 m, 120°	C) 13 m, 220°	D) 19 m, 137°	E) 19 m, 173°	A		
8	A cannon ball is fired from a cannon at an angle θ to reach a maximum range of 2000 m. If this cannon ball is fired straight up, how high can it reach?							
	A) 800 m	B) 1200 m	C) 1000 m	D) 2000 m	E) 1500 m	C		

University * _____name__

	A particle is movin	ng in the xy plane	from (0,0) with an i	nitial velocity of v	= 16i - 12j m/s. If			
	its constant acceleration is $\mathbf{a} = 3\mathbf{i} - 6\mathbf{j}$ m/s ² , what is its speed after 2 s?							
	A) 39 m/s	B) 45.6 m/s	C) 24 m/s	D) 41 m/s	E) 32.6 m/s	E		
10	A car has the maximum centripetal acceleration 10 m/s^2 , so that the car can turn with skidding out of a curved path. If the car is moving at a constant speed of 108 km/h, what is radius of the curve?							
	A) 0.09 km	B) 0.15 km	C) 0.05 km	D) 0.3 km	E) 0.4 km	A		
11			n/s, the angle of elev tatements is correct? C) The first projectile has the lower speed at maximum altitude		E) The second projectile has the lower range	В		
12	A 5 kg block slides down a 30° incline at a constant speed when a 21 N force is applied acting up and parallel to the incline. The coefficient of kinetic friction between the block and the surface of the incline is: θ							
	A) 0.22	B) 0.08	C) 0.45	D) 0.34	E) 0.40	B		
13	A 1300 N car, at a halfway point, caus 37° below the horiz	1370						
	A) 1246 N	B) 2160 N	C) 1412 N	D) 2490 N	E) 1080 N	E		
14	The horizontal sur	face on which the	C) 1412 N block slides is fricti magnitude of the act	onless. If	E) 1080 N $F \rightarrow M$	E		
14	The horizontal sur $F = 20 \text{ N}, \theta = 41^{\circ} \text{ a}$	face on which the	block slides is fricti	onless. If	F	E		
14	The horizontal sur $F = 20 \text{ N}, \theta = 41^{\circ} \text{ a}$ of the block is: A) 7 m/s ²	face on which the nd $M = 5 \text{ kg}$, the n B) 3 m/s ²	block slides is fricti magnitude of the ac	The content of the c	M F			

The end

Rough work