University ** _____

_name_____

		Take g :	= 9.8 ms ⁻² where e	ver needed					
1	Newton's law of un	iversal gravitation	is represented by	$F = \frac{GMm}{r^2}$					
	Where F is the gravitational force exerted by one object on another (force has the SI units								
	$kg \cdot m/s^2$), M and m are the masses of the objects, and r is a distance. The SI units of the proportionality constant G is:								
			$(2) = \frac{3}{2} d_{2} = \frac{2}{2}$	D) $s^3/kg. m^2$	Γ) leg $(s^2 m^3)$	С			
	_	-		-	_	_			
2	An object has a one dimensional motion described by the equation $x=1+2t+4t^2$, where x is the position in meters and t is the time is seconds. The change in the velocity from time $t_i=0$ to t_f =3 s is:								
	A) 24 m/s	B) 36 m/s	C) 16 m/s	D) 32 m/s	E) 40 m/s	Α			
3	Two bodies A and B are dropped from heights of 9 m and 25 m, respectively. The ratio of the time taken by them, t_A/t_B , to reach the ground is:								
	A) 3/5	B) 4/5	C) 3/4	D) 3/8	E) 5/8	Α			
4	Two identical balls are at rest side by side at the bottom of a hill. Sometime after kicked up the hill, ball B is given a kick up the hill to a different height. Ball A i downhill when it passes ball B headed up the hill. At the instant when ball A passes ball								
	A) it has the same position and velocity as ball B	B) it has the same velocity and acceleration as ball B	C) it has the same position and acceleration as ball B	displacement	position,	С			
5	A car moving along 300 m. the accelerat	m/s in a distance of							
	A) 9.6 m/s ²	B) 7 m/s ²	C) 12 m/s ²	D) 8 m/s ²	E) 10.7 m/s ²	D			
6	Vector A has x and y components of -8.7 cm and 15 cm, respectively; vector B has x are components of 13.2 cm and -6.6 cm, respectively. If $\mathbf{A} - \mathbf{B} - 3\mathbf{C} = 0$, the components of vector C are:								
	A) 5.5 i, -5.4 j	B) -3.6 i , 5.1 j	C) -7.3 i , 7.2 j	D) 3.2 i , -4.1 j	E) 10.95 i, -10.8 j	С			
7	A vector starts at x, y coordinates $(3, 4)$ and ends at x, y coordinates $(-2, 16)$. What are the magnitude and direction of this vector?								
	A) 19 m, 173°	B) 17 m, 120°	C) 13 m, 220°	D) 19 m, 137°	E) 13 m, 113°	E			
8	A cannon ball is fired from a cannon at an angle θ to reach a maximum range of 3000 m. If this cannon ball is fired straight up, how high can it reach?								
	A) 800 m	B) 1200 m	C) 1000 m	D) 2000 m	E) 1500 m	E			

University ** ______name_____

9					= 16i - 12j m/s. If				
	its constant acceleration is $\mathbf{a} = 3\mathbf{i} - 6\mathbf{j}$ m/s ² , what is its speed after 3 s?								
	A) 39 m/s	B) 45.6 m/s	C) 24 m/s	D) 41 m/s	E) 32.6 m/s	A			
10	A car has the maximum centripetal acceleration 3 m/s^2 , so that the car can turn without skidding out of a curved path. If the car is moving at a constant speed of 108 km/h, what is the radius of the curve?								
	A) 0.09 km	B) 0.15 km	C) 0.05 km	D) 0.3 km	E) 0.4 km	D			
11	1 0		n/s, the angle of elevatements is correct? C) The first projectile has the lower speed at maximum altitude		E) Both projectiles have the same range.	E			
12	when a 15 N forc	e is applied acting cient of kinetic fric	tine at a constant s y up and parallel to ction between the b C) 0.45	the	E) 0.40	A			
12		1.1.0							
13	A 1500 N car, at a ski lift, is temporarily suspended at the halfway point, causing the wire to sag (يتدلى) by an angle of 37° below the horizontal. The tension in the cable is:								
	A) 2160 N	B) 1246 N	C) 1412 N	D) 2490 N	E) 1080 N	В			
14	The horizontal surface on which the block slides is frictionless. If $F = 20 \text{ N}$, $\theta = 41^{\circ}$ and $M = 7 \text{ kg}$, the magnitude of the acceleration of the block is:								
	A) 7 m/s ²	B) 3 m/s ²	C) 4 m/s ²	D) 5 m/s^2	E) 8 m/s ²	D			
1	The apparent weight of a fish in an elevator is largest when the elevator.								
15	The apparent weight	ht of a fish in an ele	evator is largest whe	en the elevator.					
15	The apparent weight A) moves upward at constant velocity.	ht of a fish in an ele B) moves downward at	evator is largest whe C) accelerates upward	en the elevator. D) accelerates downward	E) is not moving				

The end

Rough work