University ** _____

_name___

1									
	A race car travels 40 m/s around a banked (45° with the horizontal) circular (radius = 0.20 km) track. The magnitude of the resultant force on the 60 kg driver is:								
	A) 680 N	B) 640 N	C) 420 N	D) 480 N	E) 560 N	D			
2	A pilot of mass 75 kg flying in a vertical circle is weightless at the top of the circle. If his speed at the								
	top of the circle is 60 m/s, the radius of the circle is:								
	A) 218.1 m	B) 255.1 m	C) 367.3 m	D) 394.2 m	E) 431.1 m	C			
3	A 2 kg projectile	moves from its initia	ll position to a point	that is displaced 20 r	n horizontally and 18 m				
	above its initial position. The work done by the gravitational force on the projectile is:								
	A) -353 J	B) -372 J	C) -263 J	D) -294 J	E) -182 J	A			
4	A block is pushed	d with a force P=5.4]	N across a rough hor	izontal	_P				
	surface a distance	e of 0.5 m as shown i	n the figure. The ma	gnitude of	AB				
	If the initial and f	on acting on the bloc.	of the block are 4 L	e is 1.2 N.					
	respectively. The	work done on the bl	ock by the force P is	S:					
	A) 7.2 J	B) 1.3 J	C) 2.2 J	D) 4.1 J	E) 5.2 J	E			
5	When a crate of	mass <i>m</i> is dragged a	a distance d along a	surface with coeffic	tient of kinetic friction μ_k ,				
	then dragged back along the same path to its original position, the work done by friction is:								
	A) $-\mu_k mgd$	B) $+2\mu_k mgd$	C) + $\mu_k mgd$	D) $-2\mu_k mgd$	E) 0	D			
6	A 6 kg block on (force constant = position when a	a horizontal friction = 0.80 kN/m).The bl	less surface is attact ock is initially at re	hed to a light spring est at its equilibrium					
	position when a		= 80 N) acting para	llel to the surface is	P				
	applied to the blo from its equilibri	ock, as shown. What i um position?	= 80 N) acting para is the speed of the bl	llel to the surface is ock when it is 13 cm					
	applied to the blo from its equilibri A) 1.1 m/s	bock, as shown. What i um position? B) 0.85 m/s	= 80 N) acting para is the speed of the bl C) 1.84 m/s	llel to the surface is ock when it is 13 cm D) 0.72 m/s	E) 2.12 m/s				
	A) 1.1 m/s	bock, as shown. What i um position? B) 0.85 m/s	= 80 N) acting para is the speed of the bl C) 1.84 m/s	llel to the surface is ock when it is 13 cm D) 0.72 m/s	E) 2.12 m/s	A			
7	A applied to the bloc from its equilibri	B) 0.85 m/s	= 80 N) acting para is the speed of the bl C) 1.84 m/s	Ilel to the surface is ock when it is 13 cm D) 0.72 m/s	E) 2.12 m/s	А			
7	A spring $(k = 60)$ by a horizontal spont of the dereleased from res	B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s Conversion of the second	 80 N) acting para is the speed of the bl C) 1.84 m/s a vertical position w d is depressed 20 cm not attached to the point of release will 	D) 0.72 m/s D) 0.72 m/s rith its lower end sug , and a 4 kg block is spring. The system the block rise?	E) 2.12 m/s pported splaced is then f_{k}	A			
7	A spring $(k = 60)$ by a horizontal spring the derivative of the	B) 0.85 m/s B) 0.85 m/s O N/m) is placed in a urface. The upper end pressed spring, but t. How far above the	 80 N) acting para is the speed of the bl C) 1.84 m/s a vertical position w d is depressed 20 cm not attached to the point of release will 	Ilel to the surface is ock when it is 13 cm D) 0.72 m/s with its lower end sup a, and a 4 kg block is spring. The system the block rise?	E) 2.12 m/s pported splaced is then f_{μ}	A			
7	A spring $(k = 60)$ by a horizontal spring (k = 60) by a hori	B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s B) 0.85 m/s	 80 N) acting para is the speed of the bl C) 1.84 m/s a vertical position w d is depressed 20 cm not attached to the point of release will C) 0.31 m 	llel to the surface is ock when it is 13 cm D) 0.72 m/s vith its lower end sup and a 4 kg block is spring. The system the block rise? D) 0.72 m	E) 2.12 m/s ported placed is then E) 1.11 m	A C			
7	 applied to the bloc from its equilibri A) 1.1 m/s A spring (k = 60 by a horizontal si on top of the de released from ress A) 1.45 m A stone with a we and the air resistance stone? 	B) 0.85 m/s B) 0.86 m B) 0.86 m B) 0.86 m	 80 N) acting para is the speed of the bl C) 1.84 m/s a vertical position w d is depressed 20 cm not attached to the point of release will C) 0.31 m C) 0.31 m 	Ilel to the surface is ock when it is 13 cm D) 0.72 m/s with its lower end sup and a 4 kg block is spring. The system the block rise? D) 0.72 m m ground level with a t. What is the maxim	E) 2.12 m/s E) 2.12 m/s E) 2.12 m/s E) 1.11 m E) 1.11 m an initial speed of 15 m/s, hum height reached by the	A C			

University ** _____

_name__

9	The coefficient of fr. 0.4. The system start fallen 2.5 m?	iction between the 3 k is from rest. What is t	kg block and the surf he speed of the 5 kg	face in the figure 3.0 ball when it has	00 kg is	
	A) 3.74 m/s	B) 1.76 m/s	C) 4.82 m/s	D) 2.28 m/s	E) 5.71 m/s	С
10	Which of the follow:	ing is a conservative f	force? (All refer to a	car on a slope.)		
	A) The force you exert on the car pushing it uphill.	B) The gravitational force acting on the car.	C) The frictional force of the road on the car.	D) The force exerted by rain drops falling on the car.	E) The force you exert on the car (pushing it up hill) after it starts to slide downhill.	В
11	What is the power o	utput of an engine of	1200 kg car if the c	car can go from 25 km	n/h to 100 km/h in 11	
	s?					
	A) 28.12 kW	B) 36.17 kW	C) 42.17 kW	D) 39.46 kW	E) 33.39 kW	D
12	In the figure, a bulle hits and passes throu frictionless horizonta constant 900 N/m. If the speed at which th	t of mass 5 g, moving igh a 1 kg block. The al surface, is connected the block moves 5 cm he bullet emerges from	g with a speed of 400 block, initially at re- ed to a spring of forc m to the right after in n the block:	$\begin{array}{c} \text{m/s,} & 400 \text{ m/s} \\ \text{st on a} & & & \\ \text{st on a} & & \\ \text{re} & & \\ \text{mpact,} & & \\ & & \\ & & \\ \end{array}$		
	A) 100 m/s	B) 73 m/s	C) 119 m/s	D) 88 m/s	E) 107 m/s	A
13	A 3 kg ball with an initial velocity of $(4\mathbf{i} + 3\mathbf{j})$ m/s collides with a wall and rebounds with velocity of $(-4\mathbf{i} + 3\mathbf{j})$ m/s. What is the impulse exerted on the ball by the wall?					
	A) +28 j N s	B) +18 j N.s	C) -16 j N.s	D) -24 i N.s	E) -36 j N.s	D
14	A glass vase falls of kg and falls a distand completely stopping applies against the v	f a table, but lands on ce of 0.8 m before hit . Which of the follow ase?	a thicker carpet and ting the carpet. It is ing is closest to the	does not break. The v in contact with the car average stopping force	vase has a mass of 0.5 rpet for 0.2 s before e that the carpet	
	A) 7 N	B) 23 N	C) 14 N	D) 10 N	E) 19 N	D
15	Two cars collide in together. Which of the	a low-speed collision he following statemer	n in an intersection. hts is true about this	After the collision, t collision?	he two are cars stuck	
	A) Kinetic energy is conserved, but momentum is not.	B) Momentum is conserved, but kinetic energy is not.	C) Both momentum and kinetic energy are conserved.	D) Neither momentum nor kinetic energy is conserved.	E) It is impossible to tell.	В
L						

The end

University **

name

Rough work