University *** ______name_____

			Take $g = 9.8 \text{ ms}^{-2} \text{ wh}$					
1	The force responsib	le for holding a car	moving on an unbank	ted curve road is:				
	A) The car weight	B) The frictional force.	C) The horizontal component of the normal force	D) The vertical component of the normal force	E) None of those	B		
2	A pendulum having an object 0.1 kg at the end of its string revolves with a constant speed. If the length of the string is 0.29 m making an angle 30° with the vertical, the centripetal force needed to produce the acceleration is:							
	A) 0.57 N	B) 2.26 N	C) 1.6 N	D) 3.4 N	Ĕ) 1.13 N			
3	A block is placed of down the incline with A) $\tan \theta = \mu_k$.			ngle is increased until D) $\cot\theta = \mu_k$.	the block moves E) $\sec\theta = \mu_k$.	A		
4	A 3.5 kg object has a velocity of 5j m/s at t = 0. It is accelerated at a constant rate for five seconds after which it has a velocity of $(6i + 12j)$ m/s. The magnitude of the resultant force acting on the object during this time interval is:							
	A) 2.77 N	B) 4.61 N	C) 1.92 N	D) 5.35 N	E) 6.45 N			
5	A) 7.8 N	•	are frictionless. If <i>M</i> C) 1.2 N	= 2.2 kg, the D) 5.4 N	м зо° E) 3.5 N	D		
6	A 8 kg box rests on a horizontal surface and a boy pulls it with a force makes 30° below the horizontal. If the coefficient of static friction is 0.4, the minimum magnitude of the force needed to start the box moving is: A) 83 NB) 47 NC) 18 ND) 59 NE) 71 N							
7	If a fly collides with statements is correc A) the fly experiences an impact force with a larger magnitude.		لازجاج الأم C) the fly experiences the greater acceleration	D) the bus D) the bus experiences an impact force with a larger magnitude.	E) The bus experiences	С		
8	A block is pushed across a rough horizontal surface from point A to point B by a force of magnitude P = 5.4 N. The magnitude of the force of friction acting on the block between A and B is 1.2 N where points A and B are 2.5 m apart. If the kinetic energies of the block at A and B are 4 J and 5.6 J, respectively, how much work is done on the block by the force P between A and B? A) 3.4 J B) 2.2 J C) 4.6 J D) 5.2 J E) 6.1 J							

			<u> </u>	· ·		1		
9	(force constant = 80 equilibrium position parallel to the surface	orizontal frictionless 00 N/m). The block is n when a force (of ma ce is applied to the bl om its equilibrium pos B) 1.35 m/s	initially at rest at its agnitude P = 80 N) ac ock. The speed of the	ting -000000	р р Е) 0.64 m/s	В		
10	being a force of fric points A and B are	B) .the work of the conservative force is zero.	n point A to point B.		E) none of the above.	D		
11	A skier of mass 80 kg is pulled up a slope by a motor driven cable. If a motor is used to pull him a distance of 60 m up a 30° slope (assumed frictionless) at a constant speed of 2 m/s, the required power delivered by the motor is: A) 588 WB) 784 WC) 1120 WD) 733 WE) 686 W							
12	park. He starts from the figure and begin	g rides his skateboard n rest at the top of the as a descent down (فل hat is his speed when B) 7.4 m/s	track as seen in (نزول إلي أس	D) 14.6 m/s	B 10 m 20 m E) 12.5 m/s	E		
13	A block of mass 2 kg and velocity 2 m/s slide from point A (8 m high) to B in the horizontal surface. If the horizontal surface has friction coefficient 0.4, find the distance it travels horizontally (أفقيا) before it stops. A) 23.3 m B) 20.5 m C) 14.3 m D) 7.2 m E) 12.4 m							
14	A 30 kg block is released from rest at 100 m above the ground. When it has fallen 50 m, its kinetic energy is:A) 9800 JB) 4900 JC) 4200 JD) 3600 JE) 14700 J							
15	In an isolated system A) kinetic energy plus potential energy	m, which of the follow B) both kinetic energy and potential energy.	wing is a correct state C) potential energy	ement of the quantity D) kinetic energy	that is conserved? E) None of those	A		

The End