University *** _____

_name__

1	A race car travels 40 m/s around a banked (45° with the horizontal) circular (radius = 0.20 km) track. The magnitude of the resultant force on the 70 kg driver is:								
	A) 680 N	B) 640 N	C) 480 N	D) 440 N	E) 560 N	E			
2	A pilot of mass 75 kg flying in a vertical circle is weightless at the top of the circle. If his speed at the								
	top of the circle is 65 m/s, the radius of the circle is:								
	A) 218.1 m	B) 255.1 m	C) 367.3 m	D) 394.2 m	E) 431.1 m	E			
3	A 2 kg projectile moves from its initial position to a point that is displaced 20 m horizontally and 19 m								
	above its initial position. The work done by the gravitational force on the projectile is:								
	A) -353 J	B) -372 J	C) -263 J	D) -294 J	E) -182 J	B			
4	A block is pushed with a force P=5.4 N across a rough horizontal surface a distance of 0.5 m as shown in the figure. The magnitude of the								
			<i>U V</i>		AB				
	force of friction acting on the block during this distance is 1.2 N. If the initial and final kinetic energies of the block are 4 J and 10.6 J,								
	respectively. The work done on the block by the force P is:								
	A) 7.2 J	B) 1.3 J	C) 2.2 J	D) 4.1 J	E) 5.2 J	A			
5	When a crate of mass <i>m</i> is dragged a distance <i>d</i> along a surface with coefficient of kinetic friction μ_k , then dragged back along the same path to its original position, the work done by friction is:								
						C			
	A) $-\mu_k mgd$	B) $+\mu_k mgd$	C) $-2\mu_k mgd$	D) $+2\mu_k mgd$	E) 0	C			
6	A 14 kg block on a horizontal frictionless surface is attached to a light spring								
	(force constant = 0.80 kN/m). The block is initially at rest at its equilibrium position when a force (magnitude $P = 80$ N) acting parallel to the surface is								
	applied to the block, as shown. What is the speed of the block when it is 13 cm from its equilibrium position?								
	A) 1.1 m/s	B) 0.85 m/s	C) 1.84 m/s	D) 0.72 m/s	E) 2.12 m/s				
	A) 1.1 m/s	D) 0.05 m/s	C) 1.04 III/3	D) 0.72 m/s	L) 2.12 m/ s	П			
7	A spring $(k = 600 \text{ N/m})$ is placed in a vertical position with its lower end supported by								
	a horizontal surface. The upper end is depressed 20 cm, and a 4 kg block is placed on top of the depressed spring, but not attached to the spring. The system is then released								
	from rest. How far above the point of release will the block rise? \downarrow								
	A) 0.31 m	B) 1.45 m	C) 0.86 m	D) 1.11 m	E) 0.72 m	Α			
8	A stone with a weight of 5.29 N is launched vertically from ground level with an initial speed of 25 m/s,								
	and the air resistance force is 0.265 N throughout the flight. What is the maximum height reached by the stone?								
	A) 10.9 m	B) 30.4 m	C) 37.5 m	D) 19.4 m	E) 25.7 m	B			
		D) 50.1 III	C) 57.5 m	D) 17.1 III	L) 2017 III				

name

9	The coefficient of friction between the 3 kg block and the surface in the figure 3.00 kg is							
	0.4. The system starts from rest. What is the speed of the 5 kg ball when it has fallen 3.5 m?							
					5.00 kg	Е		
	A) 3.74 m/s	B) 1.76 m/s	C) 4.82 m/s	D) 2.28 m/s	E) 5.71 m/s			
10	Which of the following is a conservative force? (All refer to a car on a slope.)							
	A) The force you exert on the car	B) The force exerted by rain	C) The gravitational force acting on	D) The frictional force of the road	E) The force you exert on the car			
	pushing it uphill.	drops falling on	the car.	on the car.	(pushing it up			
		the car.			hill) after it starts to slide			
					downhill.	С		
11	What is the power output of an engine of 1200 kg car if the car can go from 25 km/h to 100 km/h in 13							
	s?							
	A) 28.12 kW	B) 36.17 kW	C) 42.17 kW	D) 39.46 kW	E) 33.39 kW	E		
12	In the figure, a bulle	t of mass 5 g, moving	g with a speed of 400) m/s, 400 m/s	_			
	<u>^</u>	igh a 1 kg block. The	•		-00000000000-			
		al surface, is connector f the block moves 5 c	· •	nnact	1. v			
	constant 900 N/m. If the block moves 5 cm to the right after impact, the speed at which the bullet emerges from the block:							
					PDD0000000004	В		
	A) 107 m/s	B) 100 m/s	C) 119 m/s	D) 88 m/s	E) 73 m/s	D		
13	A 3 kg ball with an initial velocity of $(4\mathbf{i} + 3\mathbf{j})$ m/s collides with a wall and rebounds with velocity of $(-4\mathbf{i} + 3\mathbf{j})$ m/s. What is the impulse exerted on the ball by the wall?							
	A) -16 j N.s	B) +18 j N.s	C) -24 i N.s	D) +28 j N s	E) -36 j N.s	С		
14	Ũ		•		vase has a mass of 0.5			
	kg and falls a distance of 0.8 m before hitting the carpet. It is in contact with the carpet for 0.2 s before							
	completely stopping. Which of the following is closest to the average stopping force that the carpet applies against the vase?							
			C) 10 N	\mathbf{D}) 14 N		Б		
	A) 7 N	B) 23 N	C) 19 N	D) 14 N	E) 10 N	E		
15		-			he two are cars stuck			
	together. Which of the following statements is true about this collision?							
	A) Both momentum and kinetic	B) Kinetic energy is conserved, but	C) Momentum is conserved, but	D) Neither momentum nor	E) It is impossible to tell.			
	energy are	momentum is	kinetic energy is	kinetic energy is		C		
	conserved.	not.	not.	conserved.		L		

The end

Rough work