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Given a system having α particles, with associated position~rα and mo-
menta ~pα. We define the virial function as:

ς = ∑
α

~pα ·~rα (1)

It would be interesting to look for the time derivative of this function:

dς

dt
= ∑

α

~̇pα ·~rα + ~pα ·~̇rα (2)

Since we are dealing with many-particle system. We can take the time
average for the previous expression

〈dς

dt
〉 =

∫ τ
0

dς

dt
dt∫ τ

0 tdt
(3)

=
ς(τ)− ς(0)

τ

Now, if the system has a periodic motion of a period τ. The time average
for the derivative of the virial function will vanish. even if the system doe
not admit a periodic motion, the virial function ought to be bounded, hence
one can integrate over a sufficiently large interval such that the time average

〈dς

dt
〉 will approach zero. Hence, we have ( at least as an approximation): recall that ~F = ~̇p

〈∑
α

~pα ·~̇rα〉 = −〈∑
α

~̇pα ·~rα〉 (4)

We can now identify the LHS being twice the kinetic energy , the RHS is the
force dotted with the position :

〈T〉 = −1
2
〈∑

α

~Fα ·~rα〉 (5)

This is the Virial theorem , the expected value for the kinetic energy for a
system is equal to its virial function.
It is interesting to look at forces that arise from central potential taking the
form :

V = krn+1 (6)

Hence, by the virial theorem eq (5):

〈T〉 =1
2
〈r · d

dr
(krn+1)〉 (7)

=
1
2
〈(n + 1)krn+1〉

=
n + 1

2
〈V〉

For Columb and gravitational potentials, n = −2. Therefore we have :

〈T〉 = −1
2
〈V〉 (8)
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