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Introduction

In this lecture I try to give an overview over my work. I have done research
in commutative algebra, algebraic geometry, and number theory. My most
important achievement was the proof of the Mordell conjecture. I try to
explain it and why this naturally led to work in other fields. I apologise in
advance for using the words ”I” and ”me” more that usual in a lecture.
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Numbers

Diophantine problems deal with solutions of algebraic equations in rational
numbers. Recall that the natural numbers {1, 2, 3...} are obtained by
simple counting, and they suffice for some purposes. However for
applications one usually has to construct more complicated numbers: First
one needs the zero and negative numbers {0,−1, ...}, then rational
numbers a/b where a and b are integers with b different from 0. The real
numbers R are obtained as limits of rational numbers, as for example the
squareroot

√
2 or the number π. Finally for complex numbers C one has

to add a squareroot i of −1, that is they are linear combinations a + bi .
with a and b real numbers. For many purposes the complex numbers
suffice. For example any algebraic equation has a root in C.
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Finite fields

The complex numbers C ( as well as Q or R) form a field, that is nontero
elements have a multiplicative inverse. Another important class of fields
are finite fields and their extension. For each prime number p consider
integers modulo p, that is Fp = Z/pZ. As a set it can be identified with
the numbers 0, 1, ..., p − 2, p − 1. To add or multiply two of these form
their usual sum or product in the integers and substract suitable multiples
of p to end up in the desired range. In general finite fields are extensions
of Fp and their number of elements is a power of p. Finite fields have
recently found some applications in cryptography.
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p-adic numbers

Sometimes one has to replace the real numbers by different completions of
the rationals. For any prime p consider two rationals a/b and a′/b as
p-adically close if the integer a− a′ is divisible by a big power of p. Then
adding p-adic limits extends the rationals Q to the field Qp of p-adic
numbers. For example the series

1 + 2− 2 + 24−, , ,= 1−
∑
n≥1

(−2)n(1 · 3 · (2n − 1))/(1 · ...n)

has a limit in Q2 which is equal to
√

5. Qp has some similarity to the reals
R but is also quite different in certain aspects. For example it does not
suffice to add one element (like i) to it to make it algebraically closed.
Instead one has to adjoin infinitely many elements and add a further
completion to extend Qp to a complete algebraically closed field Cp.
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diophantine equations

Diophantine geometry deals with solutions of algebraic equations in
integers or rational numbers. Examples are Pythagorean triples (solutions
in integers of a2 + b2 = c2, or in rationals of x2 + y2 = 1), or the Fermat
equation (an + bn = cn, or xn + yn = 1, n ≥ 3). In general an algebraic
variety is the set of common solutions of finitely many polynomial
equations. Examples are x2 − y2 = 1 or x2 + y3 + z5 = 0, but not
3x − 2y = 1 (it involves nonalgebraic functions). The algebraic variety is
defined over Q if the polynomials defining it have coefficient in Q. It then
has points (that is common solutions of the equations) in any overfield of
Q, that there are Q-rational, R-rational and C-rational points.
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Forms

The algebraic variety given by x2 + y2 = −1 is defined over Q but has no
rational points over Q or even over R. On the other hand over C it is
isomorphic to x2 + y2 = 1 (multiply x and y by i) and has many
C-rational points. These two varieties are called twisted forms of each
other. This illustrates that over the complex numbers C the classification
of varieties is simpler. Thus even for a variety defined over a numberfield
one usually first investigates its complex points.

G. Faltings (MPIM) Diophantine equations and beyond 31.3.2014 7 / 23



Smoothness and dimension

An algebraic variety is called smooth if the complex points form a
manifold. For example the variety given by x2 + y2 = 1 is smooth while
y2 − x3 = 0 defines a nonsmooth variety. Smooth varieties (also called
manifolds) are easier to investigate, while the presence of singularities
poses additional problems.
An important invariant of an algebraic variety is its dimension. It roughly
says on how many complex parameters the C-rational points depend.
Varieties of dimension zero are finite sets. In the next case of dimension
one the varieties are called curves. Such a curve has an important
invariant, the genus. Rational points on curves of genus zero can be
parametrised and their study becomes comparatively easy. For example
rational solutions to x2 + y2 = 1 are of the form
x = (1− t2)/(1 + t2), y = 2t/(1 + t2). For curves of genus one Mordell
showed that rational points form a finitely generated abelian group. That
is they are much rarer than for genus zero, but there still may be infinitely
many of them. He conjectured that for genus bigger than one the set of
rational points is finite.
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Elliptic and hyperelliptic curves

Examplesare hyperelliptic curves given by an equation

y2 = (x − a1)...(x − ar ),

with a1, ..., ar distinct. They are of genus g if r = 2g + 1 or r = 2g + 2.
For g = 1 (r = 3, 4) they are called elliptic curves, These are algebraic
groups, that is they support a commutative group law where the addition
is given by algebraic equations. For g > 1 one can define an algebraic
group of dimension g associated to them, called the Jacobian. The group
of rational points on this Jacobian is finitely generated. The Mordell
conjecture says that for g > 1 only finitely many of these points lie on the
curve itself.
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Heights

Important concepts in the study of diophantine equations are height and
the notion of good reduction. The height of a rational number a/b is the
maximum of the sizes of the numerator a and the denominator b (assumed
to be coprime). The height of an n-tuple (x1, ..., xn) of rational numbers is
the maximum of the height of the coordinates xi . The height is important
for proving finiteness theorems because if we have an upper bound for the
height of solutions we can easily find all of them by checking a finite list of
possibilities. Of course obtaining such a bound tends to be difficult for
interesting problems. For most objects of interest in diophantine geometry
there exists a natural height function which measure their complexity. To
achieve a good function one usually has to modify the naive height by a
bounded function. This does not affect its main finiteness property. For
example for elliptic curves one gets the Néron-Tate height which is a
quadratic function on the rational points,
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Bad reduction

Good reduction at a prime p means in the simplest case that for a rational
number a/b p does not divide the denominator. This can fail only for
finitely many primes which are called the primes of bad reduction. Another
example: An equation defines a smooth algebraic variety if some
discriminant is nonzero. If the equation has integers as coefficients this
discriminant is also an integer, and thus only divisible by finitely many
primes. These are the primes of bad reduction for this property. In general
for any diophantine object there exists a finite set of primes of bad
reduction. For example elliptic curves can be defined as solutions to the
equation

y2 = (x − a)(x − b)(x − c).

Such a curve is smooth if a, b, and c are pairwise different. If they are
integers we can reduce them modulo a prime p and obtain a curve over
Fp. It is smooth (that is the elliptic curve has good reduction at p) if the
three numbers are different modulo p, that is if p is not among the finitely
many prime divisors of (a− b)(a− c)(b − c).
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Number fields

In more generality one may enlarge the rationals by adding solutions of
algebraic equations to obtain algebraic numberfields. An example is the
field Q(

√
2) which consists of all linear combinations a + b

√
2 with

rationals a, b. Note that this field has a symmetry by sending a + b
√

2 to
a− b

√
2, quite similar to complex conjugation on C. So if an equation has

coefficients in Q its solutions in Q(
√

2) admit this symmetry. Another
example exists by adjoining all cube roots of 2, that is 21/3, ζ21/3 and
ζ221/3, with ζ = e2πi/3. Here the symmetry consists of all permutations of
the roots. A version of it exists for all numberfields and is called the
Galois-group. One of the most powerful tools in diophantine geometry
consists in passing from rational points to representations of the
Galois-group.
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Frey curves

As an example we illustrate this in the case of the Fermat equation
an + bn = cn: We want to show that it has no nontrivial solutions in
integers if n ≥ 3. It suffices to consider the cases where n = 4 or where n
is an odd prime. Then we consider the auxiliary Frey elliptic curve, that is
solutions of the equation

y2 = x(x − an)(x + bn).

If we add a point at infinity the (say) complex solution (x , y complex
numbers) form a commutative group, that is we can define an addition of
two such points. The group law is determined by the fact that the three
intersection points of the curve with any straight line (in the (x , y)-plane)
add up to zero. The height of such an elliptic curve is given by the size of
the discriminant which is 4anbncn, and the primes of bad reduction are the
primes which divide a, b or c . The n-division points (adding the point
n-times to itself gives zero) form a subgroup of order n2. As the group law
is given by algebraic equation with coefficients in Q these division points
lie in algebraic numberfields and thus admit an action of the Galois-group.
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Galois representations for Fermat

The Galois action associated to the Frey curves has certain peculiar
properties. Namely at the primes of bad reduction one would expect that
the representation notices them (it ”ramifies”). In our case (the
Frey-curve for a Fermat equation) the primes of bad reduction are those
dividing one of the numbers a, b, c . However because they occur as n-th
powers these primes of bad reduction are not seen by the n-torsion points.
In Wiles solution of the Fermat problem the key step is to show that this
implies that the elliptic curve is ”congruent modulo n” to an elliptic curve
with no primes of bad reduction. Actually one has to work with a
generalisation of elliptic curves (modular forms), but nevertheless one
shows that no such object without primes of bad reduction exists, and thus
the Fermat equation has no nontrivial solution.
For more complicated diophantine equations one sometimes can still
associated to solutions a Frey elliptic curve. However this construction
would help only if one could bound the height of this curve. To achieve
this one has to solve the ”abc-conjecture”, one of the most important
open problems in the theory.
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The Mordell conjecture over function-fields

For more general diophantine equations we cannot hope for no solutions,
but only for qualitative statements like finiteness of solutions, for special
types of algebraic varieties. To achieve this for curves (that is to show the
Mordell conjecture) the method of Parshin-Arakelov associated to each
solution a new curve and its Jacobian, which is a generalisation of the
elliptic curves which we encountered for the Fermat problem. They and
Szpiro could show the Mordell conjecture over function fields, which are
similar to numberfields but where additional tools are available. Also
Szpiro emphasized the importance of Arakelov theory which allows to carry
over some techniques from function to numberfields. However one
important tool (Kodaira-Spencer classes) was missing.
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The Mordell conjecture over numberfields

Quite unexpectedly this difficulty was resolved. Namely associated to the
auxiliary curves are their Jacobians and the Galois action on the torsion
points of the Jacobians. This Galois action again has primes of bad
reduction, and this set of primes is not empty but al least predetermined
by the curve and not by the rational point on it. By the general theory
(the Weil conjectures) there are only finitely many such representations. If
we show that only finitely many points can give rise to the same
representation we derive finiteness of rational points.
Now if two points give rise to the same representation the corresponding
Jacobians are not the same but at least they are similar. The technical
term is that they are isogenous. I could show in 1983 that in a given
isogeny class the height of the Jacobian (a measure for its complexity) is
bounded, and derives that there can be only finitely many Jacobians in
this isogeny class. Thus there are only finitely many rational points.
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Arakelov geometry

Arakelov geometry has been developed to transfer techniques from
functionfields to numberfields. For example a vectorbundle on a curve C is
given by a vectorspace over the generic point of C and suitable adic
metrics at all closed points. Similarly one defines an Arakelov vectorbundle
over the integers Z is a projective Z-module with a positive definite
quadratic form on the corresponding real vectorspace. It has a welldefined
degree. So in short Arakelov geometry amounts to endowing all objects
with suitable hermitian metrics. One can extend many results from
classical algebraic geometry to this context, for example the
Riemann-Roch theorem. For example good height functions are usually
given by Arakelov degrees for metricised linebundles.
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Toroidal compactifications

The proof of the Mordell conjecture led me to further work in two fields
where the necessary results could be obtained in an adhoc manner but
where a fully satisfactory treatment required further work. One was the
need to define heights for abelian varieties. These correspond to rational
points on a certain moduli space, but to get a good theory one has to
compactify that space, that is to add certain degenerate abelian varieties.
Over the complex numbers compactifications had been defined by
Baily-Borel, Shimura, and Mumford, but they had no arithmetic
interpretation, nor did the construction allow to bound the primes of bad
reduction. However Mumford also had found a construction of degenerate
abelian varieties, and I could show that Mumford’s construction gives all
such degenerations, and allows to define local coordinates at the boundary
of the compactifications. The resulting arithmetic compactification is
called the toroidal compactification. I wrote a book about that in
collaboration with C.L.Chai.
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p-adic Galois representations

Another development was the local theory of p-adic Galois representations.
What was necessary for Mordell had already been done by Tate in the one
dimensional case. It turned out that his method generalises to higher
dimensions and yields a ”p-adic Hodge decomposition”. Moreover the
method allowed to attack the comparison between etale and crystalline
cohomology which had been conjectured by J.M.Fontaine. The whole
theory now has been put on a conceptual basis by P.Scholze.
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Cohomology Theories

In classical topology one associated to a topological space homology and
cohomology groups, which are algebraic inveriants which are less complex
than topological spaces and thus easier to handle. For algebraic varieties
over Q one can evaluate them on the complex points, but this forgets the
rational structure and especially the Galois-action. Grothendieck has define
etale cohomology which exists for algebraic varieties even in characteristic
p, but to get good properties one has to chose coefficients which are
torsion of order prime to p. For example the etale homology of an elliptic
curve is given by its torsion points.
To get invariants modulo p Grothendieck introduced the crystalline
cohomology. Over p-adic fields both etale and crystalline cohomology
make sense, and Fontaine’s theory describes the relation between those
two.
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Diophantine approximation

Another (in fact historically earlier) approach to diophantine equtions has
been via diophantine approximation. We illustrate that for the example of
Roth’s theorem: If α is an algebraic number (that is it satisfies a
polynomial equation) then α cannot be too well approximated by a
rational numbers. Namely for any exponent r > 2 there are only finitely
many rationals a/b with |α− a/b| ≤ 1/br . Thue was the first to apply
this method to diophantine geometry. For example if F (x , y) is a
homogeneous polynomial of degree ≥ 3 with integral coefficients, integers
solutions to F (x , y) = 1 must have the property that x/y is a good
approximation to one of the roots of F (t, 1), and one derives that the
number of such solutions is finite.
Siegel extended this to more complicated integral points. However only
Vojta succeeded much later to give a proof for the Mordell conjecture
along these lines. Trying to understand his proof I developed a geometric
approach (the ”product theorem”) which allowed to generalise it to higher
dimensional varieties.
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diophantine approximation and algebraic geometry

For r = 2 the theory of continuous fractions gives (for real irrational
numbers) infinitely many solutions. For the proof of Roth’s theorem one
assumes that the assertion is wrong and derives a contradiction. If the
assertion is wrong there are infinitely many fractions a/b satisfying the
inequality. Among them the denominators b can become arbitrarily large,
so one can find e sequence ai/bi with the bi rapidly increasing (which can
be made precise but this requires some technicalities). Then one
constructs an auxiliary polynomial F in variables T1, ...,Ts of multidegree
(d1, ..., ds) (with di approximately proportional to the inverse of log(bi ))
which vanishes to high order at (α, ..., α). Finally one derives a
contradiction if s is big enough (depending on how close r is to 2) and if
the di increase rapidly enough.
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vectorbundles

On the side I have been interested in vectorbundles on curves, first by a
paper of Giesecker on vectorbundles on Mumford curves and then by
lectures of Witten in Princeton. The Gieseker paper inspired a description
of semistable vectorbundles on Mumford curves, and the Witten lectures a
proof of the Verlinde conjecture. I also discovered a characterisation of
semistable bundles by the fact that some twist has trivial cohomology, and
how to generalise the Hitchin fibration to arbitrary semisimple groups.
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