Part 1
Inner Product Space



1 Vector Space

We are going to learn

e Vector space.
e Linearly independent vectors, Linearly dependent vectors.

e Spanning set of a vector space

Basis of a vector space.

Subspace of a vector space.

e Dimension of a vector space.



Definition 1
A vector space over F is a set X on which two operations

+ X xX—-X,
FxX-—-X,

are defined such that:

1. X is commutative group under addition.

2. Scalar multiplication between the elements of F and X satisfies two con-
ditions.

3. The two distributive properties hold.

The elements of X are called vectors and those of F are called scalars.
Remark 2 (Real and complex vector space)

1. F =R = X is a real vector space.

2. F =C = X is a complex vector space.

3. We often write az instead of a - x.
Example 3 (Vector spaces or not! Addition? scalar multiplication?)

1. The set of n—tuples of real numbers, i.e.

R" = {(1’1,1‘2, :wn) X € R}

2. The set of n—tuples of complex numbers, i.e.

Cc" = {(x17x27 ,an) L x; € (C}

3. The set C" over R.
4. The set R™ over C.

5. The set P, (I) of polynomials on an interval I with real coefficients and
degree < m, i.e.

P (I) = {anz™ + ... + a1z + ag, a; € R,n < m},
over R. When I =R, we write Py, (R) = Pp,.
6. The set P (I) of polynomials on an interval I with real coefficients, i.e.
P(I) ={apz" + ...+ a1z + ap, a; € R,n € Np},

where Ng = NU {0}. When I =R, we write P (R) = P.



7. The set C™ (I) of real functions on an interval I with whose first m deriv-
atives are continuous, i.e.

cry={f:f™ec):ne{0,1,..,m}}
where C (I) is C(°) (I). When I = R, we write C™ (R) = C™.

8. The set C* (I) of real functions on an interval I with whose all derivatives

are continuous, i.e. _
¢ (I) = N2, (1)

When I =R, we write C*® (R) = C*.
Definition 4
Let {z1,...,z,} be any finite set of vectors in a vector space X. The sum
a1r1 + ... + apxy, a; € F
or in a short notation

n
E ;T
i=1

is called a linear combination of the vectors in the set and the scalars a; are
called coefficients.

Definition 5

1. A finite set of vectors {x1, ..., x,} is said to be linearly independent if

Zaixi =0=a;,=0 Vi€ {1,,77,}

i=1

2. A infinite set of vectors {x1,z2,...} is said to be linearly independent if
every subset of it is linearly independent.

Definition 6

The set {z1,...,z,} is said to be linearly dependent if it is not linearly inde-
pendent. A finite set of vectors is linearly dependent iff one of the vectors can
be represented as a linear combination of the others.

Definition 7

A set A of vectors in a vector space X is said to span X if every vector in
X can be written as a linear combination of the vectors in A.

Definition 8



If a set A spans a vector space A and is linearly independent, then it is called
a basis of X.

Definition 9

1.

2.

If a vector space X has a finite basis, then every other basis of X is finite
with the same number of vectors. This number is called the dimension of
X, and is denoted by dimX.

If a vector space X has a infinite basis, then we write dimX = oo.

Definition 10

A subset Y of a vector space X is called a subspace of X if every linear
combination of vectors in Y lies in Y. In other words, the set Y is closed under
addition and scalar multiplication.

Example 11 (Basis and dimension)

1.

The real vector space R”.
The complex vector space C™.
The real vector space C™.

The real vector space Py, (I) .

Exercise 12 (Homework)

1.

> W

Prove that C™ is a vector space for each m € Nj.

Prove that C*, P is a vector space (Hint: use the concept of subspace).
Find a basis for P.

What is the dimension of P?

What is the dimension of C*°7 (use the relation between P and C*).



2 Inner Product Space

We are going to learn

Inner product space.

Norm of a vector.
Chauchy-Bunyakowsky-Schwarz Inequality.
Triangle Inequality.

Orthogonality of vectors.

Orthogonal and orthonormal set.

Relation between linear independence and orthogonality.



Definition 13

Let X be a vector space over F. A function from X x X to F is called an

inner product in X if, for any pair of vectors x,y € X, the inner product
(z,y) = (z,y) € F

satisfies the following conditions:

L. (z,y) = (y,z) for all z,y € X.

2. {ax + by, z) =a(zx,z) + by, z) for all a,b € Fiz,y,z € X.
3. (z,x) >0 for all x € X.

4. (z,z) =0 x=0.

A vector space on which an inner product is defined is called an inner product

space.

Example 14 (Inner product space)

1. The n—dimensional Euclidean space is the vector space R™ together with
the inner product of the vectors x = (z1,...,z,) and y = (y1, ..., yn) defined

by
(z,y) =x191 + ..o + TpYn,

2. The n—dimensional Euclidean space is the vector space R™ together with
the inner product of the vectors x = (z1, ..., z,) and y = (y1, ..., yn) defined

by
(z,y) = cr1y1 + ... + CTpYn,

where ¢ > 0.

3. In C™ we define the inner product of z = (21, ..., z,) and w = (wy, ...

by

(z,w) = 21W1 + ... + 2, W,

4. For f,g € C ([a,b]) we define their inner product by
b —_—
(o) = [ 1)@,

Theorem 15
If X is an inner product space, then
@, y)* < (z,) (y,y) forall 2,y € X.

Proof:

, Wn)

(CBS)



e CASE 1: If x = 0 or y = 0, the CBS inequality clearly holds.
e CASE 2: f x A0 and y # 0, If (x,y) € C, then we can write

(@,y) = [(z,)] "

=
e {a,y) = e [z, y)|
=
(e7"z,y) = [(z,y)| € R
and

(e 2, )|” = |(z, )

So, by taking (e "z,y) € R instead of (z,y) € C, the CBS inequality
remain the same. Therefore, we assume without loss of generality that
(z,y) €R.

For any t € R, the real quadratic expression

0< (z+ty,z+ty) = (z,2) + 2 (z,y) t + (y,y) t* (1.1)
have a minimum at ¢ = &Y
(y,9)

Substituting t = % in (1.1) gives

or
2
(z,y)" < (z,7) (y,9)
which is the desired inequality.

Definition 16
Let X be an inner product space over F. We define the norm on X
Il X — [0,00)
by

2]l = v/ (2, 2).

Example 17 (norm of an inner product space)

1. The n—dimensional Euclidean space is the vector space R” together with
the inner product of the vectors = (z1, ..., x,) and y = (y1, ..., Y ) defined
by

(Z,y) = 2191 + ..o + TpYn,

||l = y/22 + ... + 22.

This gives



2. The n—dimensional Euclidean space is the vector space R” together with
the inner product of the vectors x = (z1,...,z,) and y = (y1, ..., yn) defined
by

(z,y) = cxry1 + ... + cTnlyn,

llz|l = y/cx? + ... + ca2.

3. In C™ we define the inner product of z = (21, ..., z,) and w = (w1, ..., wy,)
by

where ¢ > 0. This gives

(z,w) = 21W01 + ... + 2,Wp,

Izl = y/lzal® + oo+ L2l

4. For f,g € C ([a,b]) we define their inner product by

This gives

b
(f.9) = / f (@) @)dz

b 3
1l = [/ If(x)l2dw}

Properties of the norm (Homework: prove properties 1, 2, 3)

>0 VzeX.

This gives

Nzl =0 2z=0.
ozl = lal o]l Va € F, Vo € X.

= W N =

ety <zl + |lyll Yo,y € X. [Triangle inequality].
Remark 18 (Another form of the CBS inequality)
If X is an inner product space, then
)] < llal ] for all 2,y € X.
Proof. (of triangle inequality)

[EX (x+y,z+y)

= (z,2)+(2,9) + (v, 2) + (v, 9)

2[1* + (2, y) + (=, 9) + lylI”

Iz[|* + 2 Re (z, ) + ||yl

Il* + 2[{z, y)| + llyl®

Iz(1* + 2 ] iyl + lyl* = (el + vl

Taking the square root of both sides gives the triangle inequality. m

IN A



Definition 19

Let X be an inner product space. The distance between the vectors x € X
and y € X is given by ||z —y]| .

Remark 20 Geometrical interpretation of the triangle inequality
Consider a triangle with vertices z,y, z, then

le—yll = lle—z+z—y|
< o=zl +llz =yl
Remark 21 (Derivation of CBS and Triangle inequality in R™)

See book p(10).
Concept of orthogonality in R”
In R™, the angle 6 € [0, 7] between the vectors z and y is defined by

(2, 5) = lle] Iyl cos 9
In R? and R3, the vectors x and y are orthogonal if
0 =90° < cosf =0« (z,y) =0
In general, two nonzero vectors in R™ are said to be orthogonal if
cos@=0% (z,y) =0
Definition 22 (Orthogonal vectors in an inner product space)

1. A pair of nonzero vectors x and y in the inner product space X is said to
be orthogonal if (x,y) = 0, symbolically written as = Ly.

2. A set of nonzero vectors V in X is orthogonal if every pair in V is orthog-
onal.

3. An orthogonal set V C X is said to be orthonormal if ||z| = 1 for all
Tz eV

Example 23 (An orthonormal set)

In the Euclidean space R”, the set {e,...,e,} is orthonormal.
Relation between linear independence and orthogonality

1. Let {z1,a,...,x,} be an orthogonal set of vectors in the inner product
space X, then they are necessarily linearly independent.

2. Let {z1,29,...,2,} be a linearly independent set of vectors in the inner
product space X, then we can always form an orthogonal set of vectors
from it. [Give an example of a linearly independent set that is not orthog-
onall].

10



To show that 1 is true, let
a1x1 + asxo + ... + apx, =0,

then by taking the inner product of both sides in the above equation with
xp, k € {1,...,n} we have

(121 + agza + ... + antp, zx) = (0, zk)

or .
Zai (ziyxp) =0
i=1

but (z;,xx) = 0 Vi # k, hence

ar [lex]* =0

which gives
A = 0
This is true for all k € {1,...,n} .

The second part is established using the Gram-Schmidt method. We need
the following definition:

Definition 24

If  and y # 0 are any vectors in the inner product space X, then the
projection of x on y is given by
i)
"Iyl

and the projection vector of x along y is given by

<$ y>y
lyll/ llyll

(z,y)
5y
[yl

or

Gram-Schmidt method
Let {z1,x2,...,2,} be a linearly independent set of vectors. Construct
{y1,92, .., yn} as follows

Y1 = I,
(T2, 1)
Y2 = T2 - 3 Y1,
[l
3,9 T3, Y2
Y3 = T3 — < 2>y1 - < 2>y27
[yl 2]l
Tn, Y1 TnyYn—1
Yn = Tn — < - 2>y1_---_<n7n2>yn—17
[yl lyn—1ll

then the set {y1,¥2, ..., yn} is orthogonal [Homework: Justify!].

11



3 The Space 2

We are going to learn
e Why the £? space?
e What is the £2 space?
e Properties of the £2 space.

e Inner product with respect to a weight function.

12



Recall that we defined an inner product on the vector space C ([a,b]) by

b
umz/fmﬂﬂm

The associated norm is given by

b 3
wr{/uuVM}

1. In the vector space C ([a,b]), a sequence of function might converges (in
a sense to be defined latter) to a limit that is not C ([a,b]). This is prob-
lematic and thus we need to enlarge the space to avoid this problem.

2. The larger space, which we will denote by X ([a, b]), must be chosen such
that the inner product

b
ww:/fwﬂﬂm

is defined for all f,g € X ([a,b]). That is, we need to make sure that for
all f,9 € X ([a,b]),

b —_
[t @)@ <o,
Using the CBS inequality we have
b _—
[ @ a@ds| = 1(5.9)

b 3 b 3
§f|wUWﬂw%4[/guﬂm]

Therefore, (f,g) is defined if |f|* and |g|* are both integrable.

3. Define £2(a,b) to be the set of function f : [a,b] — C such that |f]” is
integrable, i.e.

b
/ \f (@) da < o0
then
(a) L%(a,d) is a vector space. For all f,g € £L?(a,b) we have

leef +Bgll - < llefll + 1189l
lad [LF1 =+ 181 gl

ie., af + Bg € L%(a,b).

13



(b) C ([a,b]) is a proper subset of £2(a,b).For example, take

(c) In £%(a,b),
f=0&0f=0

which is not equivalent to f(z) = 0 Vz € [a,b]. Note that f = 0 in
L2(a,b) if it is zero on all but a finite number of points in 1.

(d) We say that f and g are equal in £2(a,b) if ||f — g|| = 0.

(e) In £%(a,b) the integral is not affected by the end points of the interval
(a,b). Therefore, £L%(a,b), L2 ([a,b)), L% ((a,b]), L2 ([a,b]) are all the
same. Also, the interval can be unbounded and we have £2(—o0, b),
L2 (a,00), L2 (—00,00).

Example 25 1.10

Determine which of the following functions belong to £2 and compute its
norm.

Solution
(1)

2 ' : 1
1917 = [ 7 @do = " 10—,
0 0 2
2 _ 1
Hence f € £2(0,1) and ||f|| = 7

(ii)

1 1
1 1
||f||2:/ —dr = lim —dr = lim lnx|i:f lim In7r = oo,
0 Z r—0t /. r—0+ r—0t

Hence f ¢ £2(0,1).
(iii)

1 1
1 1 1|1 1
||f||2:/ —dr = lim —dr = lim 3z3| = lim 3(171"5) =3
0o Ts

r—0t J,. x3 r—0+ T r—0+

Hence f € £2(0,1) and ||f]| = V3.

14



(iv)

00 T 1 , 1
||f\|2:/1 ﬁda:: lim —dr = lim —z! , = — lim <1) =1

r—oo J; T ro0 roo \ T
Hence f € £2(1,00) and ||f]| = 1.
Example 26 1.11
Consider the infinite set of functions V = {1, cosz, sin z, cos 2z, sin 2z, ...} .
(i) Prove that V is orthogonal in the real inner product space £2 (—m, ).
(ii) Construct an orthonormal set using V.

Solution
First note that V C £? (—m, )

(1) We need to show that each pair of vectors in V is orthogonal, i.e.
(f9)=0 VfgeV,.f#g.
1. For alln € N,

™

(1,cosnx) = / cosnzdy = 2o =0.
o no|_.
2. For all n € N,
T T
(1,sinnz) = / sinnzdr = 2,
o n .

3. Foralln,me N n#m

™
{cosnz,cosmz) = / cos nx cos mxdx
1 ™
= 5/ [cos (n —m) x + cos (n 4+ m) z] dz
—T
171 L "
= 2[n_msm(n—m)x—i-n+msm(n+m)x] 77ngc
= 0’
4. For alln,m e N, n#m
™
(sinnz,sinmzx) = / sin nz sin madx
1_7r7r
= 5 [cos (n —m)x — cos (n + m) x] dz
1 3 1 "
= [ sin(n —m)x — sin(n—l—m)x} dx
n— n+m

—T

15



5. For all n,m € N,

™

(cos nz,sinmz) = / cos nx sinmadz = 0.
—T

(ii) We normalize all the vector in V by dividing each vector by its norm.

111l

/ dx = V2m,

s ™ 1 2
lcosnz| = \// cos? nxdr = \// wm’ =/,
4 T 1—cos2
/ sin? nadr = / Mdm =/
- o 2

Therefore, we have the orthonormal set

|lsin nz||

{ 1 cosz sinx cos2z sin2z }
Ver mom om T T

Example 27 1.12
Show that the set of functions
{emm in € z} = { e TiT | it iz }

is orthogonal in the complex space £2 (—m, 7).

Im‘

; e’=cosp+ising

sin ¢

16



For n # m we have

<6’LTLI , ezmz> —

£INT oIMmT .
(& (&

ei(n—m).rdx

;
/I
[W T

ot
i(n—m)

ei(n—m)z

—T
™

= m[eos(n—m)x—l—isin(n—m)az]

= 0

—T

We can construct an orthonormal set by defining each function by its norm

Hemz H eine oina o

einT p—IinT

The orthonormal set is thus given by,

einac
nmez
{\/ZW }

Definition 28 Inner product with respect to a weight function

Let p € C(a,b) and p(z) > 0 Vz € (a,b), then for f,g € C (a,b) we define
the inner product with respect to the weight function p by

(f.9), = / (@7 (@) p () da

[verify that the above definition satisfies the inner product conditions].
The norm is therefore defined by

b
111, = \// 1 @) p () de




The set of functions

f:(a,b) —=C

that satisfy
1f1l, < oo

is denoted by L2 (a,b) . Note that for p = 1, this set is nothing but £* (a,b).
If (f, g>p = 0,then f is said to be orthogonal to g with respect to the weight
function p.

18



4 Sequences of Functions

We are going to learn
e Pointwise convergence of sequences of functions.
e Uniform convergence of sequences of functions.

e Pointwise convergence of series of functions.

Absolute convergence of series of functions.

Uniform convergence of series of functions.

19



Definition 29
A sequence of functions (real or complex)
fon: Il —F
is said to converge pointwise to a function
f:I—>F

ie.,

,lim fa=f limf,=Ff or fo — f,
if for every x € 1,
limp—oofn () = [ ().
That is, Ve > 0, 3N (¢, z) such that
n>N=|f,(z)— f(z)<e (1.15)
Example 30 1.1/

Find the pointwise limit of the following functions

(i) fn(z) = Ltsinnz, 2 € R.

(ii) fn(z) =2", z €0,1].

(iii) fn (z) = 22, x € [0,00).

Solution

(i) Let f, (z) = Lsinnz, z € R.

1
lim f, () = lim —sinnz = 0.
n—oo n—oo N

Hence, f,, — f where f(z) =0 Vz € R.
(ii) Let f, (z) =2z", =z €[0,1].
lim z" =

n—oo

Thus, f, — f where

20



S

Figure 1.1 The sequence f,(z) = z".

(iii) Let f, (z) = 1775, = € [0,00).

. nx 0, z=0
lim =

n—oo 1 + nx 1, z>0
Example 31 1.15

For each n € N, define the sequence f, : [0,1] — R by

0, z=0
fal@)=4 n, 0<z<i
0, % <zr<l1
Find the pointwise limit of f,,.
Solution
First note that
f’n(O) — 0.

For z > 0, we will show that there is always an N € N such that f,(x) =0
Vn > N. Now, since z > 0 and = — 0 then 3N (z) € N such that

1

1
>N=—-<—
"= n_- N <
Therefore,
lim f, (z) =0.

Definition 32
A sequence of functions (real or complex)
fn:l—F
is said to converge uniformly to a function

f:I—F

21



i.e.,
fo = 1,
if Ve > 0, N (e) such that
n>N=|f,(z)— f(z)]<e VreR.

Remark 33 (Relation between pointwise and uniform convergence)

Uniform convergence=-Pointwise convergence.
Example 34 1.14 (revisited)

Which of the following sequences converges uniformly to its pointwise limit
(i) fo(z) = Lsinnz, z €R.
(ii) fn(z)=2", 2 €][0,1].

(ifi) fo (@) = 12, 2 € [0,00).

Solution

(i) Let € > 0, then for n > N > ! and for all z € R

1 1 1 1
- (z) — = | = si —0| = |=si <1< <
|fn () — f ()] ’nsmnx ‘ ‘nsmnx < Sy <€

ie. fo—>f

(i) Let 0<e< 1
|[fn (@) = f(2)] = 2" — O] = =™
So for any N € N,
N <es < Ve
that is for all z € [ ¥/e, 1),
|xN70|>e

ie. fn, 4 f

(iii) Let 0<e< 1
nx 1
- @I =| 2 1] =
So for any N € N,
—€
1+Nm<€<:>x> Ne
that is for all z € [0,17’:,
Ne ).
14+ Nz ‘

ie. fo 5 f

22



Remark 35 1.16

1. In the definition of pointwise and uniform convergence, we can replace the
"<" relation by "<" and the "€" by "ce", where ¢ > 0.

2. The statement
|fn(z) = fx)| <e Voel

is equivalent to

sup|fy (z) — f(2)| < e

xel

Therefore, f, = f < Ve > 0,3N € N such that

n> N = suplf, (z) - f(z)] < e
xel

Definition 36
A sequence of functions (real or complex)
fn:l —=F

is said to converge uniformly to a function

f:I—F
i.e.,

fn = 1,
if

lim su}I) |fn(z) — f(z)| =0

=00 ge
Example 37 1.14 (revisited)

Use the above criteria to decide which of the following sequences converges
uniformly to its pointwise limit

(i) fo(z) = Lsinnz, z €R.

(ii) fo(z)=2", z€][0,1].

(iii) fn (z) = 77> © €[0,00).

Solution

(1)

1 . 1 .
|fn () = f(z)| = ‘nsmnx—O‘ = ‘nsmnx

23



but

1
0 < ‘sinnx <>, VzeR
n
1 1
= 0<sup|—sinnz| < —
z€R | T n
. 1 .
= lim sup|—sinnz| =0 [Why?]
Thus, fp, — f .
(ii)
] oan, z €[0,1)
|fn (z) — f (%) _{ 0, 0
Hence
sup |fn(z) — f(z)|= sup 2" =1
z€[0,1] z€[0,1)
Therefore,
lim sup |fu(z)— f(z)]=1#0
o0 2€00,1]
ie., fn > f.
(iii)
0, =0
hw-f@={ ¥ 170
and hence

sup )|fn () = f(2)| = sup )\fn (@) = f(@)[ =1

z€[0,00 z€ (0,00
Therefore,
lim sup |fn(z)—f(z)|]=1#0
n—oo xE[0,00)
ie., fu > f.
Theorem 38 1.17

Let (fn) be a sequence of functions defined on the interval I, then

1. If f,, is continuous on I ¥n and f, — f, then f is continuous on I.

2. If f,, is integrable on I Vn, f, — f and I is bounded, then f is integrable
on I and

/If(x)dx:lim/lfn(x)dx

24



3. If f, is differentiable on I Vn, f, — f, f;L e g and T is bounded, then
fn = f, f is differentiable and

g=1f
Remark 39 1.18

In part 3, the pointwise convergence f,, — f can be replaced by a weaker
condition in part 3, namely the convergence f, (zo) — f (z¢) for some point
xg € 1.

Example 40 1.14 (revisited)

Check if the conditions of theorem 1.17 are satisfied for the following se-
quences

(1) fn(z) = %sinmc, zelCR.
(ii) fn(z)=2", 2 €]0,1].

(iii) fn (z) = {355, © € I C [0, 00).[Homework!]
Example 41 1.15 (revisited)

For each n € N, define the sequence f, : [0,1] — R by

0, T =
fn(x) =< n, <x§%
0, L oz<i

We know that f, — 0.

1. lim, . fn is a continuous function.

2.
1 i 1
lim fn () dz = lim ndr=1#0= / lim f, (x)dz
n—o0 0 n—oo 0 0 n—oo
which implies that lim,, .~ f, is not uniform.
3. fn is not differentiable but lim,, .., f,, = 0 is differentiable.

Definition 42

Given a sequence of (real or complex) functions (f,,) defined on a real interval
I, we define its nth partial sum by

Sn(@)=fi@) +..+fal@)=> fe(z), zel
k=1

The sequence of functions (S,,) is called an infinite series of functions and
is denoted > fi.

25



Definition 43

The series > fi is said to converge pointwise (or simply, converge) on I if
the sequence (S,,) converges pointwise on I. The sum of the series is given by
the limit

Z fe(z) = nlin;c Sp ().

k=1

If the series > ,- fi (x) does not converge, then it is said to diverge at the
point .

Definition 44

The series Y fx is said to be absolutely convergent on I if the positive series
>~ |fx| is pointwise convergent on I.

Definition 45

The series > fi is said to converge uniformly on I if the sequence (S,)
converges uniformly on I.

Corollary 46 1.19
Suppose the series > f,, converges pointwise on the interval I.

1. If f,, is continuous on I Vn and Y f,, converges uniformly on I, then its
sum >~ f, is continuous.

2. If f, is integrable on I Vn, I is bounded, and Y f,, converges uniformly
on I, then Y| f, is integrable on I and

/Igfn(:r)dng/lfn(x)dx

3. If f,, is differentiable on I Vn, I is bounded, and > f,ll converges uniformly
on I, then Y 7 | f, converges uniformly on I and its limit is differentiable

on I and satisfies ,
(z fn> Y,
n=1 n=1

The definition of pointwise, uniform and absolute convergence of a series
require that we test the convergence of the sequence of partial sums. The
following test provides an easier way to do that!

Theorem 47 1.20 (Weierstrass M-Test)
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Let (f) be a sequence of functions on I, and suppose that there is a sequence
of nonnegative numbers M,, such that

|fn (x)] < M, for all z € I, n e N,

If Z M,, converges, then Z fn converges uniformly and absolutely on I.
Proof
We want to prove that Ve > 0, IN(e) € N such that

n>N=1|S(z)—5,(z)|<e, Vzel

or equivalently

n>N= <e Vzxel

Y oh@=> (@)
k=1 k=1

But forall x € 1

oo

fe(@) = fr (@)
1 k=1

k=

> fil@)

k=n-+1

o0

Y Ifk(@)

k=n-+1

SiMk

k=n-+1

IN

Now, if >~.7 | M}, is convergent, then so is Y ;- 41 Mg. Therefore, for a chosen
€ >0, 3N (e¢) € N such that

n>N= > M=) My—Y M<e
k=n+1 k=1 k=1
Thus, we have
n>N= ka(x)—ka(a:) <e Vrxel

k=1 k=1

which proves that > ,~, fi (z) is uniformly convergent.

To prove that Y ;- fi (z) is absolutely convergent we need to prove that
> req | fx ()] is pointwise convergent.

Now, for each x € I, both Y 7~ |fi ()] and Y -, M is a series of nonneg-
ative numbers that satisfy

fu (@) < My VkeN

Therefore, since Y -, M}, is convergent, then so is Y ;- |fx ()| according to
the comparison test.

27



Example 48 1.21

In the following, determine if the series is uniformly convergent and check
the properties listed in Corollary 1.19:

(i) 3 & sinnz, z € R
(i) > L sinnz, z € R.
Solution:
(i) Since
< % VreR,neN

1.
— sinnx
n

and the nonnegative series of numbers ) | # is convergent, we can use the
M-Test to conclude that 3 - sinnz is uniformly convergent on R.

1. Since (a) -5 sinna is continuous on R for all n and (b) Y 2y sinnz is
1

uniformly convergent on R, then ) 5 sinna is continuous on R.

2. Since (a) -5 sinna is integrable on [a, ] C R and (b) Y- - sinna is uniformly
convergent on [a,b] C R, then Y -%; sinnx is integrable on [a,b] C R and

/a Z 2 sinnz | dx Z 2 /a sin nxdx

n=1

A
N\
(]
Bw‘ —

which is a convergent p—series.

3. fn = #Sinnx is differentiable on R for all n with f,; = %COS nz, but
Z % cosnz is not convergent at some points of x € R. Therefore, we
cannot deduce that

d <[ 1 =1
%; (WSinna:) :;Ecosnaz

(ii) Since

1
<— VzeRneN
n

1.
— sinnz
n

and the nonnegative series of numbers n% is convergent, we can use the
M-Test to conclude that Y % sinna is uniformly convergent on R.
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1. Since (a) - sinnz is continuous on R for all n and (b) Y % sinna is
uniformly convergent on R, then 3 2 —3 sinnz is continuous on R.

2. Since (a) -5 sinna is integrable on [a, b} C Rand (b) Y -5 sinna is uniformly
convcrgcnt on [a,b] C R, then Y % sinna is mtegrablc on [a,b] C R and

/ <smnaj> dz = Z/ <smn$> dz

3. fu= 3 sinnz is differentiable on [a,b] C R for all n with f 12 COS L.

Here, # cosnz is uniformly convergent on [a,b] C R. Therefore, we

deduce that Z % sin nx is uniformly convergent on R and

d ad 1 >
smn COS nx

holds for all z € [a,b].
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5 Convergence in £?

We are going to learn
e Convergence of sequences of functions in £2.
e Relation between pointwise convergence and convergence in £2.

e Relation between uniform convergence and convergence in £2.

The Cauchy sequence and its relation to convergence.

Completeness of £2.

Density of C in £2.
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Definition 49 1.22

A sequence of functions (f,,) in £2 (a,b) is said to converge in £? if there is
a function f € £2 (a,b) such that

lim || f, - fll =0, ((1.19))

n—o0
that is, if for every € > 0 there is an integer N such that

n>N=|f.—fl <e
Equation (1.19) is equivalent to writing
£2
fTL - f7

and f is called the limit in £2 of the sequence (f,,) .
Example 50 1.23

In the following determine if the sequence converge in £2

(1) fu(z)=2",2€]0,1].

0, if =0
(ii) fa(@)=<{ n, if 0<z<i
0, if 1<a<l

Solution:

(i) We already know that the pointwise limit of ™ on [0, 1] is given by

0, if 0<z<1
f@”‘{1,ﬁ r=1

Note that £2 ([0,1]) = £2([0,1)) and f =0 in £2. Moreover,

_ 1 %
ool = |/ (w“)zdx]
LJ O

1
r 172
x2n+1

2n+1

0

1
1 2
o _2n+1}

ie.,

1
1 2

li " —0|| = L =0
" =0l = fim |57l

Therefore,

LZ
" =0
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(ii) We know that the pointwise limit of

0, if x=0
falz)=X n, if 0<az<i
0, if 1<az<l1

fx)=0, z€]0,1].

Now,

Iful@) -0 = [
|

ie.,
lim || f, (z) — 0| = lim nz = oo
n—oo

n—oo

Therefore, f,, does not converge in £2.

Remark
1. pointwise convergence - convergence in £2.

2. If a sequence converges both pointwise and in £2, then the limit functions
are equal in £2.

Lemma 51 (Ezercise 1.41, page 29 )

If f, % f on [a,b], then |f, — f| < 0 on [a,b] and hence |f,, — f]* = 0 on
[a,b].
Proof:
If f, % f on [a,b], then

lim sup |fn — f| =0,

=% ¢cla,b]

which is equivalent to

lim sup || — f|—0] =0

n—%e(a,b)

That is, |f, — f| = 0 on [a,b].
Next, we prove that |f, —f|2 % 0 on [a,b]. Let € > 0 and take ¢ =
min (¢, 1), then since |f,, — f| = 0, 3N (¢) € N such that

n>N= sup |fn—fl<e <e
z€[a,b]
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That is,
TLZN:>\fn—f\S€1 V.Q?E[a,b]

or
n>N=|fu—f’<&<e <e Vzela,b

Hence,

n>N= sup [f—f]°<e
z€a,b]

or in other words

lim sup ||f, — fI>—=0/=0

7L—>Ooze[al’b]
. 2 u
Le., |fn - f| — 0.
Theorem 52 (Relation between uniform convergence and convergence in L£2)

Let f, be a sequence of functions in £2 (I) where I is bounded. If f, >

2
f.where f € £2(I), then f, = f.
Proof:
We want to prove that

Jim [ f = fl =0
Now,
lim || f — fII* = lim /\fn—f\de
n—oo n—oo I

But f, = f. Hence, using the above lemma we have |f,, — f|2 2 0. Moreover,
using Theorem 1.17 gives

n—oo

lim |fn—f|2dx:/ lim |fn, — f|*dz =0
I I’VLHOO

from which we get
. 2
Jim [ fn = fI7=0

which gives
Tim [[fa— fll=0.

Example 53 1.2

Show that the series Y7, 7% sinkz is convergent in £? (—m, ).

Solution:

We say that Y o, 1%2 sin kx is convergent in £2(—m,7) if the sequence of
partial sums S, = Y ;_, 1712 sin kz is convergent in £? (—m, 7). Using the above
theorem it is sufficient to prove that the sequence (S,) is in £2 (—m,m) and
S, % S in [, ] for some S € L2 (—m, 7).
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We know from example 1.21 that S, - S in [—7, 7], where S = 377 | % sinkz.
Now, since 1712 sin kz is continuous Vk on [—m, x|, then so is S, which proves

that (S,) is in £2 (—m, 7). Next, since S,, — S, then § is also continuous on
[-7,7]. Thus, S € £? (-7, 7).

Remark 54 (Testing the convergence of 3 p- | + cos k)

We cannot use the above argument to prove the convergence of the series
Srei 2 coskx in [—m, 7). In fact, the series Y ;7 + coskaz is divergent at all
x = 2zm,z € 7.

Definition 55 1.25 ()

A sequence in £2 (—m, ) is called a Cauchy sequence if, ¥V ¢ > 0, 3N € N
such that
n,m>N=|fon— fmll <€

Theorem 56 1.26 (Convergence and Cauchy sequence)

1. Every convergent sequence (f,) in £2 is a Cauchy sequence [Homework!].

2. For every Cauchy sequence (f,,) in £? there is a function f € £2 such that
2
fo S f . That is to say £2 is "complete”.

Example 57 1.28

Show that the series Y~ + coskx is convergent in £2 (—, 7).

Solution:

Clearly, the sequence (S,), where S, = >"}'_; %cos kxz,is in L2 (—7, 7). So,
we only need to prove that (S,) is a Cauchy sequence.

Let € > 0,

n 2

Z % coskx

k=m+1

IS0 () = S (2)|” =

,m < n,

Since the set {coskz : k € N} is orthogonal in £2 (—m,7) (Example 1.11),
we have

n

Z % cos kx

k=m-+1

n

2
1 5 "1
= Y gpleoskal®=m Y7 o5
k=m+1

k=m-+1

but >"p7, k% is a convergent series, therefore the sequence of partial sums
(22:1 k%) is a Cauchy sequence in [—m, 7). In other words for the given € > 0,
JN e N such that

62
< —
m

n,m>N =

n 1 m 1
dE Tl
k=1 k

=1
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or

Form which we get

n 2

Z % cos kx

k=m+1

n

=T Z %<e2

k=m+1

n,m>N =

Taking the square root, we get

n

Z %cos kx

k=m+1

n,m> N = <€

Remark 58 convergence in L? -»pointwise convergence.
Remark 59 (A series that is divergent pointwise but is convergent in L2 (—m, 7))

Using the above steps, we can prove that the series > -, %cos kx is conver-
gent in £? (—m, 7). The series > -, ¢ cos kz is divergent at all x = 2zm, 2 € Z.
Thus, convergence in £2 -»pointwise convergence.

Theorem 60 1.27 (Density of C in L?)

For any f € L2 (a,b) and any € > 0, there is a continuous function g on [a, b]
such that || f — g|| <e.

The above theorem shows that the set of continuous function on [a,b] is
dense in £2 (a,b) in the same way the rational numbers Q are dense in R. In
fact, for every f € L2 (a,b), there is a sequence of continuous functions (f,)

1:2
such that f,, = f.
Example 61 (Density of C in L?)

Show that the following sequence of functions in C [—1,1]

0, —1<z< =t
fa@)=¢ nz+1, =<x<0
1 0<z<1

converges to the function

in £2(-1,1).
Solution:
We need to show that

lim [|f— £l =0
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Now

1

r 1 2

lim || f, — f|l lim / |fn—f|2dx}
n—oo n—oo 1

o 1
= lim / (nx—l—l)de}

n—oo -
_ 1
0 2
B
= lim 7(7” +1)
n—oo 3n .
T="
= lim —=0

n—004/3n
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6 Orthogonal Functions

We are going to learn

e Given an orthogonal set S in £2 and a function f € £2, we answer the
following questions:

— If f is a linear combination of a finite number of elements in .S, what
are the coefficients in this linear combination?

— How to find the linear combination in S that best approximates f?

Completeness of an orthogonal set.

Bessel’s inequality.

Parseval’s relation.
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Consider an orthogonal set of functions S = {¢1, ¥a, @3, ...} in the complex
space £2.

Question 1

Let f € £2 be a finite linear combination of the functions in S, that is,

n
f= Zaigai, «a; € C.
i=1

Find the coefficients "a;’s"!
Answer
If we take the inner product of f with ¢, k=1,2,...,n.

n

(fron) = Z (aips, o)

i=1
= <f7<pk> :Zai <<pi:<)0k>
=1
= (fron) = o llogl?

<f7 ng>
k — 2 -
[l

Therefore, we have

Remark 62 I
1. f is the sum of the projection vectors of f along ¢, ,namely h{:"g? O
R
k=1,2,...,n.
2. In terms of the orthonormal set {1, = Hii\l }, we have

N - Pk Pk
- Z<f ) T
>

(fs¥r) Vi

= ) By
k=1

(o)

[EZA which is the projection

In this case, the coefficient "3," is equal to
of f on v,.
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Question 2
Let f be any function in £2.

functions in S that best approximates f!

Answer

Find the finite linear combination of the

The best approximation of f is the function Y.;_; axy,, that minimizes the

quantity

but

n 2
F=> arpy
k=1

n
Hf—Zawk
k=1

<f =Y ke, f - Zak¢k>
k=1 k=1

<f,f - Zam> -
k=1

AP = @ (f, ) —
k=1

<Zak¢k,f - Zakwk>

k=1 k=1

Zak <90k7 f> + <Zak(pk7 Zajwj>
— — ]':1

I£IZ =@ (f,00) Zak f,er) ZZ D
k=1 k=1j=1

|‘f|‘2_27k<fa¢k Zak fren) + ) anti (@, o)
k=1 k=

LA = [aw (o) + @ (Fr )| + mﬁmw
k=1 k=

ik —QZReak ) +Z|ak| leox

Pt || kll

JFE:H%CH2 |:|04k|
k=
Z | vaOk

= llewll®

If1?

n
2
+Z el |:<ak -
k=1

Tk Eﬂﬁﬁ

k=1

<f7 (pk> +
el

Mw»<%_
lewll”

+Z||<Pk“

k=1

— 2Reay

|m%W]
loll*

m%v]
el

fv@k) ’
N

Note that only the last term involves oy and this term is always > 0. By
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choosing

_ ‘p’f2>, k=12, ...
[kl

the term attains its minimum, namely 0.As a result, the best approximation of

f is given by
n
(f, ex)
Z Tk
k=1 H‘Pk”

and the minimum of the quantity [|f — > ,_; ak.gak||2 is given by

Pt || k”

Hf Zakwk

Remark 63 2
1. Since
n 2
Hf S| 20
k=1
we have,

n 2

o el

for all n.Therefore, it is also true as n — oo, which gives the Bessel’s

inequality, namely
o0

k=1 H k”

for any orthogonal set {¢, : k € N} and f € L.

2. Bessel’s inequality becomes equality if and only if

Hf Z fﬂPk

leal®”

[why? Homework]. That is,

= llewl®

Pk

are equal in £2.

Definition 64 1.29
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An orthogonal set {p, : n € N} in £? is said to be complete if, for any
fers,

=1 el
Remark 65 &

The above definition states that an orthogonal set {¢, : n € N} in £? is
complete if for each f € £2, we have

f= Z f,%
1 lle kH

in £2. In other words, {¢,, : n € N} is a basis for £2.

Theorem 66 1.30

An orthogonal set {¢, :n € N} in £? is complete if and only if

paet H k”
Remark 67 1.51

1. The equality in theorem 1.31 is called Parseval’s relation or the Complete-
ness relation.

2. We have shown that for any orthogonal set {¢p,, : n € N} in £2, the best
approximation for f € £L%is Y ,_, %gpk, and this choice is independent
k
of n. Moreover, if the orthogonal set {¢,, : n € N} is complete, then

f Z fa@k

lewl?

in £2.

3. When the orthogonal set {¢, : n € N} is normalized to {¢,, : n € N},
then

(a) The Bessel’s inequality becomes

(v < P

NE

El
Il
—

(b) The Parseval’s equality becomes

() = (1112

NE

bl
Il
—
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. Since || f|| < oo for all f € £, Bessel’s inequality implies that (f,v,,) — 0
whether the set {¢,, : n € N} is complete or not.

. Parseval’s relation can be seen as a generalization of the Pythagoras the-
orem from R™ to £2, where

||f\|2 = the square of the length of the vector

PR

k=1

the sum of the squares of the projections of f

on the orthonormal basis.
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Part 11
The Sturm-Liouville Theory
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7 Linear Second-Order Equations

We are going to learn

e Some Terminology related to second-order ordinary differential equations.

e Properties of the solution of a second-order ordinary differential equation.

Initial and boundary conditions.

e The Wronskian and its relation to the solution of a second-order ordinary
differential equation.
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Consider the second-order ordinary differential equation on the real interval

1

ao (z)y 4+ a1 (z)y +as () y = f(z), (2.1)

where ag, a1a2 and f are given complex functions on I.

1. If f =0 on I, the equation is called homogeneous, otherwise it is nonho-
MOGENEoUs.

2. A function ¢ € C? (I) is a solution of the above equation if the substituting
y = @ gives an identity, i.e.

ao(:n)gp”—ﬂ—al(ac)go/+a2(x)<p=f(x) vz e I.

3. Let )
d d
@—i—al (93)@4‘@2(33)7

then in terms of the differential operator L, we can write

Ly=f(x)

(a) Note that for any functions ¢, € C?(I) and any constants c;,cy €
C, we have

L=ay(x)

L(cip+ ) =1l + oLy
thus, L is a linear differential operator.

(b) If ¢ and 1) are solutions of a linear homogeneous equation, then
Le=0,Ly=0

and thus
L(cip+cap) =ciLo+cplp =0

This property of linear homogeneous equations is the superposition
principle. That is, if ¢ and v are solutions of a linear homogeneous
equation, then so is any linear combination "c;¢ + co¥" of them.

4. T ag (x) # 0 Vx € I, then equation (2.1) is said to be regular on I, and can
be written in the equivalent form (i.e. the two equations have the same
set of solutions)

Y +q@)y +r(z)y=g(x)

where
a4 a2 _f
q=—Tr=—g=
ago ag agp

5. If ap (zg) = 0 at some zy € I, then equation (2.1) is said to be singular
and xg is called a singular point of the equation.
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Consider the second-order ordinary differential equation on the real interval

I
Yy +q@)y +r(x)y=gx) (2.2)

1. If ¢,r and g are continuous functions on I and z( is any point in [,then
for any numbers £ and 7, there is a unique solution ¢ of equation (2.2) on

I such that

¢ (@0) =& ¢ (z0) =1 (2.3)
Equation (2.2) with the initial conditions (2.3) is called an initial-value
problem.

2. If g(z) = 0 Vx € I, then (2.2) becomes the homogeneous equation
y' +q@) g +r(x)y=0 (2.4)
and

(a) Equation (2.2) has two linearly independent solutions y; () and
y2 (x) on I.

(b) Any solution of (2.2) can be written in the form

c1y1 + 2y (2.5)

for some constants ¢; and co. Thus, (2.5) is called the general solution
of (2.4).

(¢) Using ¢; = ¢2 = 0 in (2.5) shows that 0 is always a solution of (2.4).
This solution is called the trivial solution.

(d) According to the existence and uniqueness theorem, the trivial solu-
tion is the only solution of (2.4) if £ =1 = 0 in the initial conditions
(2.3).

(e) If the coefficients ¢ and r are constants, the general solution of (2.4)
is found by solving the second degree equation

m?+qgm+7r=0
i. If the roots are distinct, then the general solution is given by
1™ 4 coe™?*
ii. If m; = mo = m, then the general solution is given by
c1e™” 4+ coxe™*

3. If the coefficients ¢ and r are analytical functions at some point xg in the
interior of I, i.e. each of them can be represented in an open interval
centered at zo by a power series in (x — zg), then
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(a) the general solution of (2.4) is also analytic at zo and is given by

oo
Z en (. — 20)"
n=0

The above series converges in the intersection of I and the two inter-
vals of convergence of ¢ and 7.

(b) The coeflicients ¢,, » = 2,3,4... in the above power series can be
written in terms of ¢y and ¢; by substituting the series into equation
(24).

4. If g (mg) # 0 for some zy € I, then (2.2) is nonhomogeneous and

(a) If y, (x) is a particular solution of equation (2.2), then the general
solution is given by
Yp T C1Y1 + C2Y2

(b) A unique solution is obtained by using the initial conditions (2.3) to
determine the values of ¢; and cs.

5. The special case of equation (2.1)
z2y" + axy + by = 0,

where a and b are constants is called the Cauchy-Fuler equation. The
general solution is found by solving the second degree equation

m?+(@a—1)m+b=0
(a) 1. If the roots are distinct, then the general solution is given by
1™ + ez
ii. If m; = mo = m, then the general solution is given by
c1z™ + cox™* log x

In the existence and uniqueness theorem of equation (2.2), we mentioned
initial conditions at a point xg in I. In most physical application, the differential
equation is subject to boundary conditions. That is, if we let I = [a,b] then the
conditions are imposed at the end points of the interval, namely a and b.

The general form of the boundary conditions is given by

a1y (a) + a2y (a) + azy (b) +aay’ (b)) = &,
By (b) + Bay’ (b) + Bsy (a) + B4y’ (a) "

where a; and 3, are constants and satisfy

4 4
Z |a;| > 0 and Z 15;] > 0.
i=1 i=1

Equation (2.1) with the boundary conditions is called a boundary-value problem.
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1. If £ = =0, then we have homogenous boundary conditions
2. If az = oy = B4 = B, =0, then we have separated boundary conditions.
3. Unseparated boundary conditions are called coupled boundary conditions.

4. It y(a) =y (b) and ¢’ (a) = ' (b) , then we have periodic boundary condi-
tions.

Definition 68 2.1

For any two functions f,g € C' the determinant

Wina @ =| 10 50— 1@ 0 - @

is called the Wronskian of f and g. The symbol W (f, g) (z) is sometimes ab-
breviated to W (z).

Lemma 69 2.2
If y; and yo are solutions of the homogeneous equation
V' +a@)y +r(@)y=0, xel

where ¢ € C (I), then either W (y1,y2) = 0 for all z € I, or W (y1,92) () # 0
for any x € 1.

Proof:

Using the definition of the Wronskian, we have

W (z) = 195 — ¥1v2
Therefore,
W' (x) = yiys+v1ys —YiY2 — 119
= Yy — Yl

But since y; and y» are solution of the differential equation, we have

Yy +aqyi+ry = 0,
Yy +qys +rya = 0

Multiplying the first equation by —y2 and the second by y; gives

—yye — qyiy2 —ry1y2 = 0,
Y5y +aqubyr +ryeyn = 0

Adding the above equations gives
Yoyr = Y12 + q (yoyr — Yiy2) =0
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or

W' +qW =0

This is a linear first order ordinary differential equation. Thus, multiplying
the above equation by the integrating factor

ef q(z)dz
gives
ef Q(x)dl’W’ + qef Q(W)dQCW =0

or

a [efqmdxw} _0

dx
or

ef q(x)dacW —c

or

W (z) = ce~ ] a@)de

where c is a constant. If ¢ = 0, then W (z) = 0 for all z. Otherwise, W (z) # 0
for all x.

Lemma 70 2.4

Any two solutions y; and y2 of equation (2.10) are linearly independent if,
and only if, W (y1,y2) (z) # 0 on I.

Proof:

We will prove that: any two solutions y; and yo of (2.10) are linearly depen-
dent < W (y1,y2) = 0 for some point xg in I.

(=) If y1 and yo are linearly dependent, then 3 &k constant such that y; = kys.
Therefore,

W = yiys— vy
= kyays — kysyo
0.

(<) Let W (y1,y2) = 0 for some point z in I, then by Lemma 2.2 W (y1,y2) =
0 for all z € I. This implies that
‘ m v | _g
Y1 Y2

Which means that the system

k1 (y1,91) + k2 (y2,5) = (0,0)

has a nontrivial solution. Consequently
kiy1 + kay2 =0

has a nontrivial solution, i.e. y; and ys are linearly dependent functions.
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Remark 71 2.5

Note that we used the fact that y; and y» are solutions of (2.10) only to
prove that if the Wronskian vanishes on some point in I, then these solutions
are linearly dependent. This means we can find two linearly independent func-
tions with a Wronskian that vanishes at some points of their domain. Take for
example z, z%on [—1,1].

Example 72 2.6
Find the solution of the equation
y' +y=0 (2.12)

on the interval [0, 7], with the following set of conditions

1.
y(0)=0, y(0)=1
2.
y(0)=0, ¥ (0)=0.
3.
y(0)=0, y(m)=0.
then show that any choice of the initial conditions
) (.’130) = éa yl (xO) =1, o€ [07 W}
with (2.12) gives a unique solution.
Solution

The general solution of (2.12) is
y(x) =crcosx + cosinz
1. The derivative of the solution
y' (z) = —cysinz + ey cosw
Using the first choice of initial condition gives

0 = y(0)=rc1co80+ casin0 = ¢y,

= ¢ (0) = —c1sin0+ ¢z cos 0 = ca.
That is, these initial conditions gives the solution

y(x) =sinx
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2. Using the second choice of initial condition gives

y(0) = ¢1co80+ co8in0 = ¢q,

0 = % (0)=—c1sin0+ cycos0 = co.
That is, these initial conditions gives the trivial solution.
3. Using the third choice of boundary condition gives

0 = y(0)=-cicos0+ cosin0 = cy,

0 = y(r)=cicosm+ casinm = ¢1.

which gives the solution
y(x) = cosinz,

where cp is any constant. That is, this choice of boundary conditions does
not give a unique solution for the problem.

Using the general initial conditions
y(zo) =& o (z0)=1n
we have

& = y(0)=rcycosmp+ cosinxg,

= 4/ (0) = —cy sinxg + ¢a cos zg.
which gives a unique solution for [c1, ¢o]" if and only if

cosxg Sinxg
—sinxzg cosxg

#0
or equivalently
cos? zg +sin® zg # 0

which is always true.

51



8 Self-Adjoint Differential Operator

We are going to learn

e The adjoint of a linear operator in a finite-dimensional inner product space.

e Properties of the eigenvalue problem Lu+Au = 0 for a self-adjoint operator
L in a finite-dimensional inner product space.

e The extension of the above concepts to a infinite-dimensional inner prod-
uct space, namely £2.
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A linear operator in a vector space X is a mapping
A X —-X

which satisfies
A(az + by) = aAz + bAy

for all a,b € F and all z,y € X.
The adjoint of a linear operator A, if it exists, is the mapping

A X=X
that satisfies
(Az,y) = (v, A'y)
for all z,y € X. If A’ = A, then A is said to self-adjoint.

Example 73 (Adjoint of a linear operator in a finite-dimensional inner product
space)

Consider a finite-dimensional inner product space X (e.g. C" over C). If
B ={e; : 1 <i<n}is an orthonormal basis for X, then any linear operator T
can be represented by a matrix

air - Qin
A=
ani cc Qnn
that is,
Alalg = [T (2)lg
for all x € X. Here, [y] 5 is the coordinate vector of y with respect to the basis
B.

The columns of A are given by
t .
[T (ei)lg = [ al; o Qg ] ,i=1,2,...,n.
In this case, the adjoint of A is given by

a1 - Qpl
A = : : = A
a1n e ann

Definition 74 (Eigenvalues and eigenvectors)

Consider a linear operator A on a inner product space X. If there exists an
nonzero vector x in X such that

Ax = ax
for a € C, then z is called an eigenvector of A corresponding to the eigenvalue

a.
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Remark 75 (Properties of a self-adjoint matriz)
If A is a self-adjoint (Hermitian) matrix, then

1. The eigenvalues of A are all real numbers.

2. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
3. The eigenvectors of A form a basis of X.

Adjoints of operators generalize conjugate transposes of square matrices to

infinite-dimensional situations.

8.1 Generalization to The Space [£?
Consider the second-order homogenous differential equation
p@)y" +aq@)y +r(x)y=0,
which can be written in terms in of the linear operator
L : L*(I)nC*(I)— L£*(I),

L= p@ 5 e L @)
= p:rdx2 q:xdx r(z
as follows
Ly =0.
Remark 76 I

1. We have assumed that p,q,r are all in C? (I).
2. If I is a closed bounded interval, then
C*(I)cC(I)c L2 (I)

and thus
LE2(N)NC?*(I)=C?*(I)

[Give an example for a function in f € C?(I), but f ¢ £2(I) ]

By definition, the adjoint of L, denoted by L’, must satisfy

<Lfa g> = <f7 L,g>

for all f,g € L2(I)NC?(I).
Let I = (a,b) where I can be infinite. Now,

54



/ (o +af +0f) gt

/ of g+ / o g+ / vt

/abpf”gd:v+ (/b f (vg) dz — /ab f (pg)'dw> +

/ o g+ ( / f ) de - / bf(qg)/dw> + 1 fgd
[ )t [ f o aes

[ Gy [ raas [ v

= Sl - [ ) e (— [ ronass [ so0" dm)

b , b
+ fqgl’ - / £ (qg) dx + / rfgde

(Lf,g)

- f’pg[—/ﬂb (f(pg)')/dﬂ/abf(pg)” da
+fqg|Z/abf(qg)'dx+/abrfgdx
= - 169 | + saal
+/:f(pg>” dx—/abf(qg)’dwr/abrfgdw
= Fvg- 757 + faal.

v [ [0 @+ rg] e
= p (flﬁ - f§'> + (q - p'> f?[ + <f, (p9)" — (ag) +Fg>
Thus,
(Lf.g)=0p (f/E - fﬁ/) + (q —p/) f?‘l; + <f, (Bg)” — (ag) +?g>
Remark 77 2

1. If (a,b) is infinite or the any of integrands are unbounded at a or b, then
the integrals are improper.
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2. The right hand side is well defined if p € C?(a,b),q € C'(a,b) and
re C(a,b).

We can write

where

’ ’ ! b
(Lrg)=p(£g—13)+ (a—r) fa| +L%9) (2.24)
L'g = (pg) —(a9) +T7g
— @g+p9) ~ (T9+a9) +79
= Pg+209 +Pg —q9—79 +T¢
= B + @ -Dg+ (5 -7 +7)g

The operator

2 d P
b ope 0 e (-1 )
Post@ -9 +(p —7+7

is called the formal adjoint of L.

L is said to be formally self-adjoint if
L=1L"
Theorem 78 2.14
Let

L:L?(a,b)NC?(a,b) — L2 (a,b)

be a linear differential operator of second order defined by

Lu=p@)v" +q@)v +r(@)u, =€ (a,b),

where p € C? (a,b), ¢ € C' (a,b), and r € C (a,b) . Then

1.

L is formally self-adjoint, that is, L* = L, if the coefficients p, ¢ and r are
real and p’ = q.

L is self-adjoint, that is, L’ = L, if L is formally self-adjoint and

b
=0

p(f5-13)

for all f,g € £%(a,b) N C?(a,b).

. If L is self adjoint, then the eigenvalues of the equation

Lu+Xu=0

are all real and any pair of eigenfunctions associated with distinct eigen-
values are orthogonal in £ (a,b).
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Proof

1. The formal adjoint of L is given by

§ d v
+@p -9+ (0 -7 +7)

L*=p—
P dx
L is formally self-adjoint if
L=1L"
That is,
p = b
2w -7 = ¢
P —-q+7 =

which are satisfied if and only if p, ¢ and r are real functions and p’ = q.

2. If L is formally self-adjoint, then

Lg = pg +pg +rg
(pg') +rg

d d
L= (o=
dxr (pdm> T

b

(Lig)=p(f5-17)| + (s Lg)

a

That is,

and (2.24) becomes

Hence, L is self-adjoint if
’ ’ b
p(fg-19)| =0

for all f,g € £? (a,b) N C? (a,b).
3. Suppose A € C is an eigenvalue of —L, then 3f € L2 (a,b) N C?(a,b),

f # 0 such that

—Lf=\f
Thus,
2
— (LS. [y =(=Lf, [) = AL L) =Alf

But L is self-adjoint implies that

—(Lf, f) = —{f. Lf) = (f,=Lf) = (£, \f) = x| fII?

Thus, .
AL = A

o7



Since f # 0, then we can divide the above equation by Hf||2 , which gives

A=A

That is, A € R.

Second, we want to prove that if f and g are eigenfunctions of —L associ-
ated with the eigenvalues A and pu, respectively where A\ # u, then f and
g are orthogonal.

Mf.g) = (M.g)
= (-Lf9)
= —(Lf,9)
—(f,Lg)
—(f, —ng)
= u(f.9)

Thus,

or

(A=p)(f.g9)=0
but A — p # 0, hence (f,g) = 0.

Remark 79 2.15

If p’ = q, then the continuity of p” and ¢’ are no longer required. That is,
the above theorem is valid under the weaker condition that p’ is continuous.

Example 80 2.16
Determine the eigenvalues and eigenfunctions of
u' + =0

on (0, 7) subject to the homogenous boundary conditions

uw(0) = 0,
u(r) = 0.
In the differential operator —L = —%;2, we have p = —1,¢g = 0,7 = 0 all are

real and p’ = 0 = q. Thus, —L is formally self-adjoint.
The auxiliary equation is given by

m2+A=0
=>m==xv-A
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CASEIL: If A > 0, then m = £+v/\i and the general solution is given by
u(z) = ¢1 cos VAT + ¢g sin VAz
Using the boundary conditions

0=u(0)=c

0 = u(m)=cosinVAr
= \/XTF:TMT
= A=n?neN

The eigenvalues are
(n?:neN}={1,4,9,..}CR
and the corresponding eigenvectors are
{sinnm : n € N} = {sinz, sin 2z, sin 3z, ...}

where we have chosen ¢y = 1.[Verify that the eigenfunctions are orthogonal!]
CASE2: If A < 0,then m = ++/—\ and the general solution is given by

u (z) = ¢1 coshvV—Ax + cosinh vV —Az
Using the boundary conditions
0=u(0)=c
0 = wu(m)=cosinhv—Arx
= =0

But the eigenfunction cannot be zero. Hence, there is no negative eigenvalues.
CASE3: If A =0, then m = 0 the general solution is given by

u(z) =c1 + cox

Using the boundary conditions

OZU(O):Cl
0 = u(m) =com
= =0

Again the eigenfunction cannot be zero. So we have no eigenvalues on (—oo, 0].

Example 81 2.17
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Determine the eigenvalue and eigenfunctions of
w4+ Adu=0

on (0,1) subject to the separated boundary conditions

u(0) = 0,
hu(l)+u' (1) = 0
where h > 0.
As done in the previous example
m2+A=0
=>m==xv-A

CASE1: If X\ > 0, then m = £+v/\i and the general solution is given by
u(z) = ¢ cos VAz + cosinVz
Using the boundary conditions

OZU(O):Cl

0 = hu(l)+d ()
hes sin VAL + oV cos VA

heg sin VAL = —coV A cos VA

or

tan VAl = —%

where we have divided by ¢ cos VAl # 0 [Why?)].
If we write a = v/Al, then the solution of the above equation is the intersec-
tions of the graphs of y = tan o with y = —7% as shown in the figure below.
The eigenvalues are A, that satisfies

an = VAl

that is,
an

D = (7)2771 €N}

and the corresponding eigenvectors are
@
{sin (Tnx) :n € N}

There are no eigenvalue on (—o0,0].
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/2

Figure 2.2

8.2 Transforming a second-order differential operator to
a formally self-adjoint operator

Recall that in the differential equation
Lu =0,

where

L:L?(a,b)NC?(a,b) — L2 (a,b)

L=p(@) o+ () ()

the operator L is a formally self-adjoint operator iff p,q and r are all real and
p' = q, but what if last condition is not satisfied!

Theorem 82 (Transforming the operator L to a formally self-adjoint operator)

Let
L: L£?(a,b)NC?(a,b) — L (a,b)

be a linear differential operator of second order defined by
Lu=p(@)u’ +q@)u +r(@)u, =€ (ab),

where p € C? (a,b), ¢ € C' (a,b),r € C(a,b) and p,q and r are all real func-
tions, but p’ # ¢ on (a,b). Then,

1. There exists a strictly positive function p (z) € C? (a,b) such that
L=pL,

is formally self-adjoint.
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2. Lis self-adjoint if Lis formally self-adjoint and

op (flﬁ - f?) . 0

a

for all f,g € L2 (a,b) N C? (a,b).

3.If L = pL is self-adjoint, then the eigenvalues of the operator L are all
real and any pair of eigenfunctions associated with distinct eigenvalues are
orthogonal in £2 (a,b).

Proof

1. Redoing the algebraic manipulation that was done to find the adjoint
operator of L, with L replaced by L, we get

Lf,g)=pp(f3—fg )+ (pa—(pp) ) fg +(fL"g
(L) = (5517 ) + (a = @)) 1a] + (5.2)

where
~ 2

d d " ’
L* = ppo—5 + (2(op) = pa) — + ((pp) —-pq + m‘)

where we have used the fact that p,p,q and r are all real functions.

Note that L is formally self-adjoint, i.e. L = L* if

pp = pp,
2(op) —pq = py,
(op) —pd +por = pr,
which is true if
(p)' = pq
which gives
p'p+pp' = pq
or ,
RS ek PO

This is a first-order homogenous differential equation, with integrating

factor ,
exp / (p — q) dx
p
Hence,

/o !/ /o
exp (/p qda:) o' +exp (/p qd:c) (p q)sz
p p p
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or

/_
d(exp(/p qdm)p) =0
dx P

P —q
exp(/ da:)p:c

p

Assuming without loss of generality that p (z) > 0 on (a,b), we have

D
— cexp (/ Zd:p) exp (—/Z@)
— cexp (/ de) exp (—lnp)
— coxp ( / de) exp (Inp?)

= Eexp (/ qdm)
p p

where ¢ is a constant. Note that p is a strictly positive function and
p(z) € C%(a,b).

or

. [This part is homework!]. Hint: use the relation
(L.a)=pw(f5-f7)+ (pa— (o0)) f§’i +(f,L"g)

. Let u € £% (a,b) be an eigenfunction of the operator L corresponding to
the eigenvalue A, that is
Lu+ A u=0

The above equation is equivalent to
Lu+ Apu =0
where L = pL is a self-adjoint operator. Now,
Ml = Xpu,u)
= (Apu,u)
(~uu)
— (T
= (u, Apu)
(u, pu)

2
l[ull,

|
> >
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Since HuHi # 0, A must be a real number.

Now, if v € Ci (a,b) is an other eigenfunction of the operator L corre-
sponding to a different eigenvalue p, then we have

A=) vy, = Afugo), — pufuv),
= <—EULU> — <u, —i:/v>
<u, va> — <u, va>

= 0.

i.e. u and v are orthogonal in L2 (a,b).
Corollary 83 2.19

If L: L% (a,b)NC?(a,b) — L% (a,b) is a self-adjoint linear operator and p is
a positive and continuous function on [a, b] , then the eigenvalues of the equation

Lu+ Apu =0

are all real and any pair of the eigenfunctions associated with distinct eigenvalues
are orthogonal in L2 (a, b).

Remark 84 2.20
1. The eigenvalue problem equivalent to the problem
Lu+ X pu =10

(where L here is a self-adjoint operator) is
1
—Lu+Au=0
p

Therefore, the eigenvalues and eigenfunctions obtained by solving the for-
mer equation are actually the eigenvalues and eigenfunctions of the oper-
ator — %L.

2. If (a,b) is a finite interval, then continuos positive function p (x) attains
its minimum and maximum on [a, b], that is,

0<a<p(x)<f<ox

b b b
0</ a\u|2da:§/ p(:l:)|u|2d:v§/ B lul? dz < oo

=
0 < Valul < full, < VB |lul < oo
from which we get
lull < o0 < [lufl, < oo

ie. L*(a,b) and L2 (a,b) are the same, but have different inner product
spaces.
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3. The operator L in the above theory can be any self-adjoint linear operator
on an inner product space.

Example 85 2.21

1. Find the eigenfunctions and eigenvalues of the boundary value problem
on [1,b]
ey’ +ay' + My =0,
y(1) =y () =0.

2. Is the above differential operator self-adjoint? If not transform it to a
formally self-adjoint operator.

Solution
1. The above equation is a Cauchy-Euler equation, with a = 1,b = A.Thus,
the auxiliary equation is given by
m?+(1-1)m+A=0
=>m24+A=0
=m=+iVA
where we have assumed that A > 0 [show that there are no eigenvalues in

(=00, 0]].
The general solution is given by
y(x) = dlxiﬁ + de*iﬁ

[AVAN -
_ dleln T + d2eln T

dleiﬁlnaz + dQe—iﬁlnz
= d [cos (\/Xln:v) + 7 sin (\/Xln:v)}

+d; [cos (VAlnz) ~ isin (VAlnz)|
= (dy + da) cos (ﬁlnx)

+(dy — dy)isin (ﬁlnx)
= crcos (VAlnz) + cosin (Valne)

ivX

Using the boundary conditions

0 = y()=c,
0 = y(b)zczsin(ﬁlnb)
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but ¢z # 0 (otherwise, the eigenfunction will be zero!). Thus,
sin (\/Xln b) =0
= VAlnb=nm,neN,
2
) ,neN

nm

== (13

and the eigenfunction corresponding to these eigenvalues are
nm
=sin(—In )
yn (@) = si (ln b

2. In this example,

d? d
L=xs>— —
ac dx? + mdx
that is,
(z) = a?,
(:L‘) = I,
(x) - 07

all are real, but
P (z) =22 #z=q(z)

Thus, L is not a formally self-adjoint operator. If we take

@ = e (50e)

x
1
o
then,
1 1 d? d
L = (2=
x x (x da? +xdac)
d? n d
T
dz? = dx

is formally self-adjoint. [Verify!]
According to theory developed above, the eigenfunctions

Yn () = sin (% In m)
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are orthogonal in 512) (a,b). That is for n # m,

b
1
<yn,ym>p = /1 o sin (% lnm) sin (% lnm) dx =0

[Verify!]
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Part II1
The Sturm-Liouville Theory
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9 The Sturm-Liouville Problem
We are going to learn

e Define The Sturm-Liouville problem.

e Generalize the third part of the eigenvalue theory to an infinite-dimensional
space.
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Definition 86

Let L be a formally self-adjoint operator of the form

L= % <p (z) ch) +r(z), ((2.33))

The eigenvalue equation
Lu+Xp(z)u=0, x€(a,b) ((2.34))
subject to the separated homogenous boundary conditions

aju(a) +agu' (@) = 0, |oy|+ |z >0 ((2.35))
Bru (b) + Byu’ (b) 0, Bil+1B2 >0

where a; and (3, are real constants, is called a Sturm-Liouville eigenvalue prob-
lem, or SL problem for short.

Definition 87

The SL problem is called regular if the interval (a,b) is bounded and p # 0
on (a,b). Otherwise, the SL problem is called singular.

Remark 88 I

1. The solution of the SL problem (2.34) with boundary conditions (2.35)
are the eigenfunctions of the operator —%L.

2. Under the above boundary conditions, L is a self-adjoint operator [ver-
ify!]. Therefore, the eigenvalues in (2.34), if they exist, are real and the
corresponding eigenvectors are orthogonal in E% (a,b).

3. In a regular SL problem, we assume that p (z) > 0.

The following theorem generalize the third part of the eigenvalue theory,
namely "that eigenvectors of a self-adjoint matrix in a finite-dimensional space
X form a basis for that space", to an infinite-dimensional inner product space.

Theorem 89 2.29

Assuming that p’,r,p € C([a,b]), and p,p > 0 on [a,d], the SL eigenvalue
problem defined by Equations (2.34) and (2.35) has an infinite sequence of real
eigenvalues

Ao <A1 < A <Ll

such that A\, — oo. To each eigenvalue \,, corresponds a single eigenfunction
¢, and the sequence of eigenfunctions {¢,, : n € N} forms an orthogonal basis

of L2 (a,b).
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Remark 90 2.30

1. For all A,
A > —max{|r (z)] :a <z < b}.

2. If the SL problem (2.34) is considered under the periodic boundary con-
ditions

u(a) = wu(b),
u'(a) = u'(b),

then,

(a) The operator L defined by (2.33) will be self-adjoint if p (a) = p (b)
[verifyl!].

(b) Theorem (2.29) holds in this case, except that the uniqueness of the
eigenfunctions for each eigenvalues is not guaranteed.

Example 91 2.31
Find the eigenvalues and eigenfunctions of the equation
W+ Au=0, 0<z<]
subject to the boundary condition
u (0) = 0,
o (1) = 0,
1. Find the eigenvalues and eigenfunctions of the above problem.

2. Let f € £2(0,1), write f as a linear combination of the computed eigen-
functions.

3. Write f () =1 as a linear combination of the computed eigenfunctions.

4. Do the above problem using the boundary conditions

w(0) = 0,
u(l) = 0,

and compare the series representation for f(z) = 1 in the current case
with that in the previous case.

Solution
The above eigenvalue problem can be written as

Lu+Xu=0
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with

and under separated homogenous boundary conditions. Thus, we have an SL
problem and Theorem 2.29 holds.

1. From example 2.16, we know that the roots of the auxiliary equation are

m = +v-\
(a) According to remark 2.30, the eigenvalues must satisfy
A>max{|r(z)]:0<z<I}=0

hence, there are no negative eigenvalues.

(b) For A = 0, the general solution is given by
u(z) =z +co

and
' (x) = ¢

using the boundary conditions

0 = U/(O)ch,
0 = 4 ()=ac.

Thus, the eigenfunction corresponding to Ag = 0 is ug (z) = 1.

(c) For A > 0, we have the general solution
u () = ¢ cos VAZ + eosin VA
from which we get
v () = —e1VAsin VAz + eaV A cos VA
using the boundary conditions
0= (0)=csVA
and since v\ # 0, we have ¢y = 0.
0=1u(I) = —c1VAsin VA
and since —c1V/\ # 0, we have

0 = sinVA
= VAl =nmneN
2_2
= M=l neN,

l?

72



Note that we have an infinite sequence of eigenvalues {"jg Sine No}

with 5 o
nem
lim A, = lim = 00,
n— oo n— o0 l2
as stated in the theorem.
The eigenfunction u,, corresponding to A\, = ”jé’ ® s given by
nm
U () = cos (7x> ,

where we have used ¢y = 1.

. According the theorem 2.29, the set of eigenfunctions {cos (%x) :n € No}
is orthogonal in £?(0,1) [verify!]. Moreover, the set {cos (**x) : n € Ny}
form a basis for £2 (0,1).

That is, we can write any function f € £2(0,1) in the form

f(x) = Tian cos <nT7r$)

where

_ {fycos ()

Qn
leos ()|

but

<f, cos (nTﬂx)> /Ol f (z) cos (nlla:) dz,
nm 2 L nm
e = o - |

Therefore, For f € £2(0,1), we have

n=20
n €N

POl~ o~

where
1
ap = f/f(x)dx
L Jo

an = ?/Olf(x)cos(nlﬂ-x)dx
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3. Let f(z) =1, then

agp

1
l/lclatzl
LJo
2 l
j/ocos(n%x)dazzo

Hence, the function f (z) = 1 is represented by a single term, namely, the
first eigenfunction wug ().

Qn

4. For the second pair of boundary conditions, we have

nm

Up () = sin (Tx)

where n € N. Any f € £2(0,1) can be written in the form

f(x)= i by, sin (nl—ﬂx>

where .
by, = % /0 f (z)sin (nllx) dz

In this case, if we consider f (z) = 1, we get

b, = ?/Olsin(nlﬂx)dac
2

= 21—
mr( cosnm)
2
Z - (="
2 (1
4 ifnis odd

nm
0 if niseven

Therefore,
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Remember that the above equality hold in £2 (0, 1), i.e. in the sense that

4 1 @2n+1)m
-2 i —0
7722n+lsm( I I)H

n=0

or

4 1 on+1 2
72 sin<( nt )Wx>glaskﬁoo.
by 02n+1 l
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Part IV
Fourier Series
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10 Fourier Series in £?
We are going to learn

e Using "The Sturm-Liouville Theory" to derive "The Fundamental Theo-
rem of Fourier Series".

7



Theorem 92 3.2 (Fundamental Theorem of Fourier Series)

The orthogonal set of functions
{l,cos nl—ﬂx,sin nl—ﬂx in € N}

is complete in £2 (—1,1), in the sense that any function f € £2?(—I,l) can be
represented by the series

= i (an cos g 4 by, sin n%x) —i<z<l, ((3.1)

where

“ = ||1\| 2l/f

<f,cos’”r

a, = -~/ /f cos—acd:c n €N,
feon 27 1 |

b, = M /f(ac)sm—xd:p n €N,
sin Mg

The right-hand side of Equation (3.7) is called the Fourier series expansion
of f, and the coefficients a,, and b,, in the expansion are the Fourier coefficients

of f.
Proof:
Consider the eigenvalue problem

u 4+ =0, —I<z<l

with the periodic boundary conditions

1. The above problem is an SL problem because L = ;ﬁj is formally self-

adjoint. In fact, L = ;TCf is self-adjoint under the above periodic boundary
conditions [verify!].

2. The results of Theorem 2.29 therefore hold (except for the uniqueness of
the eigenfunctions as previously mentioned in Remark 2.30). In particular,
the eigenfunctions of L are orthogonal and complete in £2 (—1,1).

3. There are no negative eigenvalues of L since
A> —max{|r(z)|: =<z <} =0

(see Remark 2.30).
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4. For A\ = 0, the general solution is given by
u(z) =c1z+ ¢
Using the boundary condition, we have
—cltcea=u(-l)=u(l)=cl+c

or
C1 =0

and
O=u'(=l)=u()=0

Therefore, the eigenfunction corresponding to Ao = 0 is ug (z) = 1.
5. For A > 0, the general solution is given by
u(x) = ¢1 cos VAz + cosin vz
Using the boundary conditions gives
1 cos VA — cosin VAL = u (=) =u(l) = ¢ cos VAL + ¢ sin VAL

=
Co Sin VAL=0

and
¢ sin VAV A +caV i cos VAL = o/ (—1) = o/ (1) = —e1VAsin VAI+e VA cos VAL

=

01\5\ sin VAl =0
Now, since A > 0 and ¢; and ¢y cannot both be zero, we have
sin VAl =0
= \/E l=nr

n?n?

:An:l—z,neN

Note that for each eigenvalue A\, = #, we have two eigenfunctions,

namely,

(a) If we choose ¢; = 0, we get the eigenfunction
Uy, (z) = sin nllx

(b) If we choose ¢y = 0, we get the eigenfunction

U (x) = cos ?m
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That is, the eigenfunction corresponding to a particular eigenvalue is not
unique, which is due to using a non separated boundary conditions (see
Theorem 2.29).

6. The last part of Theorem 2.29 states that the set of eigenfunctions

n n
{1, cos Tﬂm,sin Tﬁm :n €N}

are orthogonal and complete in £2 (—1,1) . Therefore, for each f € £2 (-1, 1),
f is represented by the series

f(m)—ao—i—Z(ancos ;Tm—o—bnsmnlﬂ-a:), —I<zx<]

n=1
where
(f,1)
UL
1 l
= fllldg;/_zf x)dx
1/
= — d
5 [ F @
and
o Ges(Ea)
HCOS(’” )|’
= flc052 ”T dx/ f(z cos )d
= 7/_lf(x)cos (?m) dx
and

. (s (7))

Hsm("fxw
— dx
flsm ”T dm/ flo Sm )

= 7/_lf(a:)sin (?w) dz

Remark 93 3.3
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1. If f € £2(—1,1) is an even function, i.e. f satisfy
f(=z)=f(x) Vzel[=1I]

then, b, = 0 for all n € N and f is represented on [—[,] by a cosine series
f(x)=ao+ ; Qy, COS nllx,

where

aw = ;l/_llfw)dw—}/olf(w)dx,
an = ;/llf(x)cos(nlﬂx)dxz?/Olf(x)cos<77rx)dx, n € N.

2. If f € £L2(—1,1) is an odd function, i.e. f satisfy
f(—z)=—f(z) Vzel-1L]]

then, a, = 0 for all n € Ny and f is represented on [—I,1] by a sine series
> nm
= bn in — y
f(z) ,;1 sin —-2
where

bnzi/_llf(x)sin(nlﬂx) da:z?/olf(x)sin(nlwx)dx, n € N.

3. The equality between f and the Fourier series in Theorem 3.2 is in £2 (—1,1)
and not pointwise. Namely, we have

. 2
ag + nz::l (an cos nllac + b, sin n;rx)]

lro- ~0

or
2

—0 as N —

N
Hf (x) — [ao + 7;1 (an cos ?m + b, sin n;rx)}
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But

2

N
Hf(x) — |ao +; (ancos —x + by, sin nlﬂw)]
! N nmw
/71 a0+g (an cos m+bn sin ] x)}
ol nmw — . nr
/_l|f($)\2dx—2Re (/_lf(;z:) cTo—l—nz_:l (%coslaz—l—bnsinlm)]) dx

N 2
nmw
Z (an cos :r—i—b sin 7 x)

dx
= ||f|| —2Re( / f(z dx+z<an/ f(z) cos—xdm—i—b / f(x)sinnlﬂxclx))
N
CL() Z(
B N
= |IfI* - 2Re <a0 (20 ao + Y _ (@nlan +bnlbn)>
N n=1
Haol U+ 3 (Jan
n=1

N
=[£I —2Re (21|a0|2+2(zan|2+Z|bn|2)>

n=1

2
dzr

nw
cos —x +b,sin —x

l

nmw |2 ol . mmw |2
COSs Tfﬂ + |bn| S T.’L‘

N
+2 o + 3 (z lan]? +1 |bn|2)

n=1

N N
= P2 (21 laol” + > (anf +1 |bn|2)) +2ao + > (Hanl + 116, %)

n=1 n=1

N
= ||f||21<2|a0|2+2(|an|2+bn|2))
n=1

Since f € £2 (-1,1)

N
T (2 jaof? + 3 (lanl* + |bn|2)> L 0as N oo
n=1

implies that | (\an|2 + |bn|2) is convergent and therefore both °°° | |a, |
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and Y7, |bn|2 is convergent. Consequently,

lim a, = 0,
lim b, = 0.

4. If f € £?(—1,1) is continuous on [, ] and the Fourier series of f converges
uniformly to f, then the equality between f and the Fourier series in
Theorem 3.2 is pointwise.

Example 94 3.4

Find the Fourier series expansion of the function

-1, —rt<z<T
fx)= 0, x=0
1, O<z<m
}l
y = fx)
1
| | oy
- T X

Note that,
1. feL?(—m,m) [verify!]
2. fis an odd function [verify!]

Therefore, the Fourier series expansion of f is given by

f(x)= Z by, sin nz,
n=1
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where

2 (7 .
b, = ;/0 f (z)sin (nz) dz

2 ™
= —/ sin (nz) dx
T Jo

2 ™
= ——cos (nx) |§

2
= —(1-(=D"

= (1= (1))
. 0, if n is even
N n47’ if n is odd

Note that lim,,_ o b, = 0.
The Fourier series can therefore be written in the form

f(z) = i by, sinnx
n=1

4~ 1
= fzisin@n—l-l)m
T = (2n+1)

Figure 3.2 below shows the first three terms in the sequence of partial sums
of the Fourier series, i.e.

N
4 1
= — — sin (2 1
Sn (z) 7Tn:o(2TH_1)51n(n—i- )z

for N =0,1,2.

S,(x) S.(x) S,(x)
Figure 3.2 The sequence of partial sums Sy.

Note that the larger the N, the better the approximation. Also note that

Sy (—m) =8y (m) =0 for N=0,1,2.
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In fact, the Fourier series of f at £ equals to 0 while f (7) =1 and f (—n) is
not defined, which shows that the equality

o0

f(z)= %27(271:_ 0 sin(2n+1)x

n=0
does not hold at every point in [—7, 7] .

Corollary 95 3.5

Any function f € £2 (—I,1) can be represented by the Fourier series
f (‘T) = Z cneinﬂ-m/la
where sl l
, mmx 1 .
Cp = <f(37> = ﬂ/ f(z)e ™ /ldy n e Z.
—1

B Hemm/zH?

Proof: [Assignment!]
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11 Convergence of Fourier Series

We are going to learn about
e Periodic functions and their properties.
e Piecewise continuous and Piecewise smooth functions.
e Pointwise convergence of a Fourier series.

e Uniform and absolute convergence of a Fourier series.
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A function f: R — C is periodic in p, where p > 0 if

f(x+p)=f(x) forall z € R,

and p is then called a period of f.
Properties of periodic functions

1. If f is periodic in p, then f is also periodic in np where n € Z [Why?|
2. If a periodic function f in p is integrable on [0, p] , then f is integrable over

any finite interval, and its integral have the same value over all intervals
of length p, that is

z+p P
/1- f(t)dt:/o Fl)dt forall z € R.
[Justify?]
Example 96 (Periodic functions)
Determine the period of the following periodic functions:
1. cosz, sinx.

2. cos(az), sin (azx), where a > 0.

3. A constant function.

Definition 97 3.6

1. A function f defined on a bounded interval I, where (a,b) C I C [a,b], is
said to be piecewise continuous if

(a) fiscontinuous on (a,b) except for a finite number of points {1, z2, ..., zn } .
(b) The right-hand and left-hand limits

lim f(2)=[(z}), lim f(@)=f(a})

2
Z—)Ii IL’—)CL‘i

for all i € {1,2,...n}.
(¢) The limits at the endpoints exist, that is

Jim 1) = ().l @) =1 07)

2. f is said to be piecewise smooth if f and f’ are both piecewise continuous.

3. If the interval I is unbounded, then f is piecewise continuous (smooth) if
it is piecewise continuous (smooth) on every bounded subinterval of I.

Remark 98 (piecewise continuous and piecewise smooth functions)
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1. The discontinuities in the graph of a piecewise continuous functions results
from jumps in its values and occur at a finite number of points.

2. The non-smoothness in the graph of a piecewise smooth function results
from jumps in its values and/or sharp corners at some points, which occur

A

a il @2 E_, b

at a finite number of points Figure 3.3 A piecewise smooth function.

3. A continuous function is always piecewise continuous, but may not be
piecewise smooth. [Example?]

4. A differentiable function may not be piecewise smooth. [Example?] . Note
that the right-hand (left-hand) limit of a derivative f’ is not the same as
the right-hand (left-hand) derivative of f. In other words,

f is differentiable at a point x¢y =
right- and left-hand derivatives exits at that point
(or one of them if its an endpoint)) =

lim f(zo +h) — f (20) lim [ (zo) = f (w0 — h)

exist.
h—0t h ’ h—0+ h

but

right- and left hand limit of f’ exist at a point zy =

lim f(z) = lim [ (ot 1) — 1 (%) =f (=),
Zo

T—x) h—0+

= f'(z5),

lim f'(z) :hlim f(xa) 7}{( —h)

T—T

We already know that any f € £2 (—m,7) can be represented by a Fourier
series

o0
f(g;):a0+2(ancosnz+bnsinnx), —rm<z<m,

n=1

88



where ag, a,, b, are the Fourier coefficients. We also know that the above equal-
ity holds in £2? (—m, ), but not necessarily pointwise. In the following, we study
the pointwise and uniform convergence of Fourier series.

11.1 Pointwise Convergence of Fourier Series

The following theorem discusses the pointwise convergence of the Fourier series
to the periodic function defined by extending a function f from [—m, x| to R
using the equation

fl+2n)=f(z), VxeR.
Theorem 99 5.9

Let f be a piecewise smooth function on [—7, 7] which is periodic in 27. If

1 ™
a = o _Wf(yc)dac7
1 ™
anp, = - f (z) cosnzdzx,
™ —T
1 (7 .
b, = — f(z)sinnzdz, neN
s

—m
then the Fourier series
oo
S(x)=ap+ Z (an cosnx + by, sinnz)
n=1
converges at every z in R to £ [f (z7) + f (z7)].

Remark 100 3.10

1. If f is continuous on [—7, 7], then the Fourier series converges pointwise
to f on R.[Why?]

2. If f is discontinuous at a point x, then the Fourier series converges to the
average of the "jump" at x, namely

1

S = LI + £ ()]

regardless of the value of f (z).

3. We can redefine the function f at the points of discontinuities to achieve
a pointwise convergence of the Fourier series to f on R. [How?]

4. The conditions on f in Theorem 3.9 are sufficient but not necessary. For
1. . . . .
example, f(z) = x3 is not piecewise smooth on [—m, 7], but its Fourier
series expansion converges to f on [—, 7] .[Exercise 3.26].
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5. Theorem 3.9 holds if the interval [—m, 7] is replaced by any other interval
[=1,1]. Namely, if f is a piecewise smooth function on [—[,[] which is
periodic in 2, then the Fourier series

> nm . /nm
ag + ; (an cos (Tx) + b, sin (Tx)) ,
where
1/
w = 5[ f@a
}/ll f (z) cos (?w) dz,
}/llf(x)sin (nlla:) dz, neN

converges at every z € R to 3 [f (z) + f (z7)].

Qn

b’ll

Exercise 101 3.4 (revisited)

Consider the function

-1, —T<x<0
fx)= 0, =0
1, O<zx<m
)j
y = f(x)
|
1 I -
-1 T X

1. Sketch the periodic function that results from extending f from (—m, 7]
to R. Is the extension of f piecewise smooth on [—7,7]?

2. Determine the Fourier series expansion of the extension of f . Does it
converge to f (z) at every z € R?

3. Redefine the function f so that the Fourier series converges to f on R.
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4. Find a series representation for .

Solution:
el 1.0 ¢
y
0.5 T
| = | | | » | | | |
-8 -6 -4 -2 2 4 6 8
-0.5 T
ﬂ -
1.

2. We already know that the Fourier series expansion of f is given by

S (x) —i;@nil)sin(%wrl)x

The graph of the extension of f is clearly piecewise continuous. Also, f has
a zero derivative at all points x € (—m,7) — {0}, and lm,, .+ /' (x) =0,
where x( is a point at which f is discontinuous. Therefore, f is piecewise
smooth on [—m, w]. Therefore, Theorem 3.9 holds. That is,

[f (&%) + £ (=7)]

NN

S(m)z%Z(zTil)sin(Qn—i-l)x:

n=0
(a) At z =0,
§0)= 3 [F(07) +F(07)] = 51 +(-D]=0=F(0)

By periodicity of f, the Fourier series converges to f at all points
z =0+ n(27) = 2nw, where n € Z.

(b) At z =,

S(”)=%[f(7f+)+f(7r*)] =%[—1+1]:07A1=f(7r)

By periodicity of f, the Fourier series does not converge to f at all
points z = 7w+ n (27) = (2n + 1) 7, where n € Z.
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3. If we redefine f at all points x = (2n+ 1) 7, n € Z as

1

F@)= 5 [f @)+ f @) =5l-1+1]=0

then the Fourier series becomes convergent to f on R.

4. If we take the point z = 7, then we know that the Fourier series does
converge to f at this point since f is continuous there. Therefore,

4 & 1 . s s
;;msm@"*”ff(a)’

or

or

11.2 Uniform Convergence of Fourier Series

Lemma 102 3.138

If f is a continuous function on the interval [—m, 7] such that f (—7) = f (7)
and f’ is piecewise continuous on (—7, ), then the series

Z V |an‘2 + |bn|2
n=1

is convergent, where a,, and b,, are the Fourier coefficients of f defined by

1 ™

anp = = f (z) cos nzdz,
m —T
1 [" .

b, = = f (z) sinnxdx.
™

Proof:

If f/ is piecewise continuous on [—m, 7], then f’ € £? (—m, ). [Why?]. The
Fourier coefficients of f’ is therefore given by

’ 1 i ’
= — d
Qg o7 _ﬂ—f (.’11) €,
’ 1 4 ’
a, = — f (z) cosnzdz,
T J)—n
’ 1 4 ’
b, = — f (x)sinnxdz.
s

—T
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Since f (—7) = f (7), we have

, 1 T 1
t=gr | £ @do= ol ()~ (-] =0
Integrating by parts,
U = COSNT dv = f (z)dz u = sinnz dv = f (z)dz
du = —nsinnzdz v=f(z) ’ du=ncosnzdz v=f(x)
we have
, 1 - " :
a, = — {f (x)cosnz|”  +n f (z)sin nxdx} = nby,
™ —T
! 1 . ™ T
b, = = [f (z)sinnz|”  —n f(z) cosna:dac} = —nay.
Q -7
from which we get
1 / 1 ’
an, =—=b,, b,=—a
n n

|

[]=
E)

3
s

_|_
=

S
o

Sn

I
[]=
S~
S
=
_l’_
=
=

Recall that the CBS inequality states that

[z, y)| < [l Iyl

Thus, by taking @ = (1., 1), y = <\/;a; ATy LTS 2)
we have
1 1 ;12 , 12
S Hr et (k) (3 (1l )
n=1 n=1 n=1

But 25:1 n—lrz is a convergent p—series and is therefore bounded above by its
sum. Next we use Bessel’s inequality, namely

- |<g74pn>|2 2
3B < g

2
n=1 llenll
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for any orthogonal set {¢, : n € N} in £? and any g € L2, to show that
)
PO ( b ) is bounded for every N € N.

’

+

a,

n n

N 2 ’<f cosmc>‘2 N ’<f/,sinnx>’2
Z(a b”) - 2::1 [cos | +ZW

n=1

n=1

/ 2 , 2
NS N (s
gl [0 )

|cos na||? = [|sin nz |
21 a2 2 .2
T2
™ ™

because f € L2 (—m,m). We conclude that the sequence of partial sums Sy =

n=1

1
< =
™

ij:l lan|? 4 |by|? is bounded for every N and is therefore convergent.
Theorem 103 3.14

If f is a continuous function on the interval [—7, 7] such that f (—m) = f (7)
and f’ is piecewise continuous on (—, ), then the Fourier series

ap + Z (an cosnx + by, sinnz)

n=1

converges uniformly and absolutely to f on [—7, 7] .
Proof:
Consider the extension of f from [—m, 7] to R by the relation

f(z+2n)=f(z) forallzeR,
then since f is continuous on [—m, 7] and f (—7) = f (7), the extension of f is
a continuous function on R.Therefore, the Fourier series
ap + Z (an cosnx + by, sinnz)
n=1

converges to f (z) for all z € R.
To prove that the convergence is uniform and absolute, we use the M-Test

|an, cosnx + by, sinnz| < |ay| + |bn] < V24/ |an|2 + |bn\2

[why?] , but Y07, |an|® + |bn]? converges by Lemma 3.13. Therefore, the
Fourier series converges uniformly and absolutely.

Remark 104 (Comparing sufficient conditions for pointwise and uniform con-
vergence of a Fourier series)
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The conditions imposed on f in the above theorem are the same as those of
Theorem 3.9 with piecewise continuity replaced by continuity on [—m, ] .

Corollary 105 3.15

If f is piecewise smooth on [—m, 7] and periodic in 27, its Fourier series is
uniformly convergent if, and only if, f is continuous.

Remark 106 3.16

Corollary 3.15 holds if the interval [—7, ] is replaced by any other interval
[-1,1].
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12 Boundary-Value Problems

We are going to learn
e Applications of Fourier series to real physical problems:

— The One-dimensional Heat Equation.

— The One-dimensional Wave Equation.
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12.1 The One-dimensional Heat Equation

Consider a thin bar of length [ as shown in the figure below.

0 X L

The bar is given an initial temperature distribution f (x) for each x € [0, 1],
then it is insulated everywhere except at the two ends of bar where the initial
temperature is kept fixed. If we let u (z,t) represents the temperature at the
point x meters along the bar at time ¢ (in seconds), then fixing the temperature
at the bar ends is represented by the two equations

w(0,t) =ur, u(l,t)=ugr, t>0

We are interested in how the temperatures along the rod vary with time, that
is, we want to find u (z,t) for all € (0,) and all ¢ € (0, 00) . The second-order
partial differential equation

up = kgy, O<z<l, t>0

is used to model one-dimensional temperature evolution and is called the one-
dimensional heat equation. The positive constant k represents the thermal dif-
fusivity of the bar. It depends on the thermal conductivity of the material
composing the bar, the density of the bar, and the specific heat of the bar.

In our sample problem, we will assume that both ends are kept at 0 degrees
Celsius. Therefore, the boundary conditions are given by

u(0,t) =u(l,t)=0, t>0

To summarize, we want to solve the following boundary-value problem

Uy = kugg, O<zx<l,t>0
w(0,t) = w(l,t)=0, t>0
u(z,0) = f(z), O0<z<l

We assume that the solution to the heat equation can be expressed as a
product of a function of z and a function of ¢, that is

u(z,t) =v(x)w(t)
Substituting in the heat equation gives
v(z)w (t) = kv" (z) w (t)

or
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Therefore, there is a constant —\? such that

Vi) _w(t) e
v(z)  kw(t) A

for all (z,t) € (0,1) x (0,00) . In other words,

v (z) + N (z) = 0,
w' (2) + Nkw (z) = 0.
which have the solutions
v(z) = acosAx+ bsinlz,
w(t) = ce Mkt

where a, b, ¢ are constants. This gives
uy (z,t) = ce™ Nkt (acos Az + bsin \z)
Using the boundary conditions,
0=uy(0,t) = ce Nktg
but ce~ Nkt £ 0, thus
a=0,

Moreover,
2
0 =uy (I,t) = ce™* ¥ (bsin \l)
but ce~*ktp # 0, thus
0 = sin Al,
from which we get
A=—, neN
where for the case n = 0, we have the trivial solution which does not satisfy the
initial condition if f # 0. For n € Z~, we have
sin?:v: —sin (—nl—ﬂx) , —neN

Therefore, the solution that satisfies the two boundary conditions can be
written in the form

Up (x,t) = bye~ (/DR iy n—;rx, neN

Since the heat equation is linear and homogeneous with homogenous bound-
ary conditions, the general solution is given by

u (gj7 t) = Z bne_(nﬂ—/l)th sin nTﬂ-CL’
n=1
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Using the initial condition, that is,

0) = bn )
u (z,0) nz::l sin —-

or -
f(x)znglbnsm T

which gives
2 ! 2 [
by, = 72/ f () sin P de = f/ f (z)sin O da
oz TR T TR
If we assume that f is piecewise smooth on [0,!], then
> nw
0) = bn in — ’
u (z,0) ; sin =~

2 l
by, = f/ f (z)sin I da
A l

is the Fourier series expansion of the odd extension of f to R. Thus, if we
moreover assume that

F@) = [F @) +f@E)], vreR,

then the Fourier series is the solution of the heat equation with the given bound-
ary and initial conditions.

12.2 The One-dimensional Wave Equation

Consider a thin, flexible and weightless string of length [ stretched between two
fixed point. The string is given an initial vertical displacement f (z) for each
x € [0,1], then it is released with an initial velocity g (z), with the string ends
kept fixed. If we let w(z,t) represents the vertical displacement at the point
x meters along the string at time ¢ (in seconds), then fixing the string ends is
represented by the two equations

u(0,t) =u(l,t)=0, t>0

We are interested in how the vertical displacement along the string vary with
time, that is, we want to find u (x,t) for all z € (0,1) and all ¢ € (0,00). The
second-order partial differential equation

utt:czum77 O<zxz<l,t>0

is used to model one-dimensional transverse vibration of the string and is called
the one-dimensional wave equation. The positive constant ¢? is determined
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by the material of the string. It depends on the thermal conductivity of the
material composing the bar, the density of the bar, and the specific heat of the

bar.
To summarize, we want to solve the following boundary-value problem

Uy = CQUM, O<zx<l,t>0
w(0,t) = w(l,t)=0, t>0
u(z,0) = f(z), w(2,0)=g(), 0<z<l

Using the separation of variables, we assume that the solution to the wave
equation can be expressed as a product of a function of z and a function of ¢,

that is
u(z,t) =v(z)w(t)

Substituting into the wave equation gives

v(z)w” (t) = " (x) w(t)

or

Therefore, there is a constant —A? such that

,U// (l’) B w// (t)

= = )2
v(z)  wl(t)
for all (z,t) € (0,1) x (0,00) . In other words,
o (x) + N (z) = 0,
w” (z) + N2ctw(z) = 0
which have the solutions
v(z) = acosAz+ bsinAz,
w(t) = a coscht+ b sincAt

where a,b,a’, ¢ are constants. This gives
uy (z,t) = (acos A\x + bsin Az) (a’ cos cAt + b’ sin cAt)
Using the boundary conditions,
0 = uy (0,t) = a(a’ coscAt + b’ sin cAt)

which gives
a=0,



Moreover,
0=y (I,t) = (bsin Al) (a’ cos cAt + b’ sin cAt)

thus,
0 = sin Al,

from which we get
An = ? neN

Therefore, the solution that satisfies the two boundary conditions can be
written in the form

Unp (x,t) = (an, cos cAt + by, sin cAt) sin nTﬂm, neN

Since the wave equation is linear and homogeneous with homogenous bound-
ary conditions, the general solution is given by

[ee]

u(z,t) = Z (an oS cnl—ﬂ-t + by, sin c?t) sin ?m

n=1

Using the first initial condition
u(z,0)=0, O0<z<l

gives

= nm
= nsin—z, 0 l
f(z) T;a,sm I <z <

If f is piecewise smooth on [0,[], then the above equation is the Fourier
expansion of its odd extension to [—[,{] and therefore, we have

2 l
ap, = f/ f (z)sin P da
U Jo l

The velocity is given by

o0
nmw nmw nmw nm
u (x,t) = Z CT (—an sin CTt 4+ b, cos CTt) sin TIE
n=1

Thus, using second initial condition
u (2,0) =g (z), 0<z<l

gives

Z cnllbn sin nTﬂx =g(z),
n=1
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from which we deduce that

2 l
cn—ﬂbn = 7/ g (x)sin I da
] I ) ]

or l
2 nmw
b, =— [ g(x)sin —axdx
enm o l
Thus, the solution to the wave equation with the given initial and boundary

conditions is given by

u(z,t) = n;l (an cos cnl—ﬂ-t + b, sin cnl—ﬂt) sin ?m
where
2 l
an = f/ f (z)sin @xda:,
U Jo l
9 1
b, = — | g(x)sin PT e,
ent Jo l
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Part V
Orthogonal Polynomials
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13 The Singular SL Problem

We are going to learn

e The types of singular SL problem considered in this course.

e The boundary conditions that must hold for a formally self-adjoint oper-
ator in the singular SL problem to be self-adjoint.

e Extension of Theorem 2.29 to the singular SL problem.

e The Generalized Fourier Series.
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We consider the singular SL problem

Lu+Xpu=0, z€(ab),
d d
L= (v ) +r@

that results from one or both of the following situations:

1. p(x) =0at x =a and/or z = b.
2. The interval (a,b) is infinite.
Remark 107 1
1. Recall that the formally self-adjoint operator becomes self-adjoint if
pp (W'v —uv') |5 =0
for all f,g € L2 (a,b) N C? (a,b).

2. If p(a) = p(b) = 0 and limu at a and b exist, then L is self adjoint. In
this case, the conclusions of Theorem 2.29 hold.

The solution of singular SL problems provide important examples of the so-
called spacial functions of mathematical physics. In this chapter we consider
singular SL problems whose eigenfunctions are polynomials, namely: Legendre
polynomials, Hermit polynomials, Laguerre polynomials.

13.1 The Generalized Fourier Series

Consider the singular SL problem

Lu+Xpu=0, z€(a,b),

L:d% <p(:r)di> +r ()

pp (u'v —u') [ =0

where

is satisfied for any pair of eigenfunctions u and wv.

If {¢,, : n € Ny} is the set of eigenfunction of the above SL problem, then
its orthogonal and complete in £2 (a,b) . Therefore, any function f € £2 (a,b)
can be represented by the formula

Fa) =3 Lo (0

2
n=0 ||90n||p

The series above is called the generalized Fourier series of f, and

_ <f7 SDn>p
2
lenll,

are the generalized Fourier coefficients of f.

n € Ny,

C”L

105



Theorem 108 (Convergence of the generalized Fourier series)

If f is piecewise smooth on (a,b), and

1 b
Ch=—7>% x) ¢, (z)p(z)de,
”%'p/a £ (@) 00 (5) p ()

then the series

S(x) =) cnpy (x)
n=0

converges at every z € (a,b) to 1 [f (z%) + f (z7)].
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14 Legendre Polynomials

We are going to learn

e The Legendre Equation.
e Derivation of Legendre Polynomials and Legendre Functions.

e Properties of Legendre Polynomials.
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The Legendre equation is given by
(1—2*)u” =220 + Au=0, z€(-1,1) ((4.4))

which is a singular SL problem.[Why?]

14.1 Derivation of Legendre Polynomials and Legendre
Functions

Equation (4.4) is equivalent to

2x A
" / _
e gL +q —at 0 ((4.5))

Since the coefficients are rational functions on (—1,1), they are analytic func-
tions. Therefore, the solution u (x) of the above differential equation can be
represented by a power series about x = 0, that is,

Z cpx” -1,1) ((4.6))

Substituting into the differential equation (4.4) gives

oo o0 o0
l—x Zk - 1)ckxk’2—2x2kckxk71 +)\ch$"' =0,
k=2 k=1

or

oo oo oo oo
Z ckx Z k(k-1) cpz® —2 Z kepz® + A Z crz® =0,
k=2 k=2

k=1 k=0

or

202+603x+z k(k—-1) cka:’“Q—Z k(k—1) cpzF—2c12—2 Z ke 4+ (co+ c1z)+A Z cpa® =0,
k=4 k=2 k=2 k=2

or

2¢9+46¢32—2c12+A (¢o + 1T +Z (k+2) (k4 1) cppozr— Zk — 1) gz —Qchkx +)\Zc;€x =0,
k=2 k=2

or
2c2+Aco+[6ez — 2¢1 + Aeq ] x—|—z [(k42) (k+ 1) cpy2 — k(k—1) ek — 2keg, + Aep] 2 =0
k=2

or

2ca+Aco+[6cs + (=24 N er]a+ Y [(k+2) (k+1)cupa+ (—k* =k + X) ex] 2 =0
k=2
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or
oo

S lk+2)(E+ 1) erya+ (- =k +A) ] 2" =0
k=0
from which we get
(k+2)(k+ 1) cpro+ (—k* —k+X) e, =0, VkeN
or
S E(k+1)—A .
T k) (kD)
Equation (4.7) is a recursion formula for the coefficients of the power series

(4.6) .
If we choose the eigenvalues as follows

vk € Ny ((4.7))

A=n(n+1), neNy,

then
E(k+1)—n(n+1)
Ch+2 k+2)(k+1) "
(k—n)(k+n+1)
k+2)(k+1) "
from which we get
S n(n+1)
2 = —TCO;
L ehm,
3 3l 1
(n—2)(n+3) (n—2)(n+3) n(n+1) n(n—2)(n+1)(n+3)
(- estleen,_(ogeen)(sem) :
o~ (n—3)(n—1)(n+2)(n+4)c
5 5l 1,

Therefore, the solution of the Legendre equation is given by

oo
u(z) = chmk
k=0

= ¢ +clzx+02:r2 +03x3 +C4x4 +C5x5 + ...
. {1_ n(n+l) , n(n-2) <n+1><n+3)x4+“}

2! 4!
m=1)(n+2) 3 n=-3)(n—1)(n+2)(n+4) 4
IUES WPNUE: VISR ISR

= coug (z) + cruy (z),

“+c1 {x —
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where both g (z) and u; (z) converge in (—1,1) and are linearly independent
because one is in even powers of x and the other is in odd powers of .
We conclude that for each n € Ny, we have two linearly independent solu-

tions, namely

1. For n =0, we have

u (x) = 1,
(z) iy
u (z) = x+-x°+=-2°+ ...
! 37 75
2. For n = 1, we have
2 14
uw(x) = 1—=x — 3% + ..
u (z) = =
3. For n = 2, we have
ug () = 1-— 327
2 1
up(z) = z— gx?’ - 5x5 + ...
4. For n = 3, we have
ug () = 1—6z%+3z" + ...,
5
up () = = — gxg.

Remark 109 1

1. For each n € Ny, one of the two solutions is a polynomial, which can be
proved from the recursion formula

C(k=n)(k+n+1)
HR T T kw2 (k1)

Ck
Note that for any n € Ny, ¢,42 = 0, and consequently

e = Cpt6 = Cpya = 0.

[why?]. That is in one of the two series, all but a finite number of terms
of the series vanish. In other words, one of the two series is a polynomial.

Definition 110 (Legendre polynomial)
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A Legendre polynomial of degree n, denoted by P, (x), is a scalar multiple
of the polynomial solution of the singular SL problem (4.4) with A =n(n+1).
In particular, the coefficient of the highest power in a Legendre polynomial is
given by

|
0 — (2n)! i
27 (n!)

Lower coefficients in P, (x) are therefore determined using the relation

C(k—n)(k+n+1)
T TR ) (kD)

Ck

which gives
(k+2)(kE+1)

CT k) (k+tnt 1)
That is,
" _ n(n—1) u
n2 m—2-n)(n—2+n+1)"
_n(nfl)a
2(2n—1) "
_ ~_n(n—-1) (2n)
2(2n—1)9n (n!)Q
(2n —2)!

27 (n— 1)1 (n —2)!
and so on. In general, we have

(2n — 2k)!

ook = (=1)F n > 2k
a2k = (1) S T 2" 2
Therefore, the Legendre polynomial is given by

[5]

P’n (.CL’) = an—2k$n72k
k=0
B o .
= — (71) LU”_2
2n kl'(n— k) (n — 2k)!

k=0

where [g] is the integral part of 7.
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Py(z)=1, Pizx) =z,
Py(z) = (322 - 1), Py(z) = 3(52® — 3a),
Py(z) = (3521 — 3027 4+ 3),  Py(z) = L(632° — 702% + 15x).

Definition 111 (Legendre Functions)

A Legendre function, denoted by @, (), is the infinite series solution of the
above singular SL problem (4.4) with A = n (n + 1). For example,

1 1 1 1
Qo(ﬂc)—x+3x3+5x5+...—QIn(li_i>,

[why?]. Also,

1 1
Ql(x)—1m23m4+...—1;ln<1i—z),

[see exercise 4.4].

Remark 112 2
1. The Legendre polynomials P, (x) are bounded at x = +1, for all n € Np.
2. The Legendre functions @, (x) are unbounded at = = £1, for all n € Ny.

3. (1) and (2) above shows that the operator L in the singular SL problem
(4.4) is self-adjoint only in the first case, namely, when the Legendre poly-
nomials P, are taken to be solutions of the singular SL problem. In this
case theorem 2.29 holds, that is,

(a) The eigenvalues of L, A\, =n(n+ 1), tend to co.

(b) The set of eigenfunctions of L, {P, (z) : n € Ny}, is orthogonal and
complete in £2(—1,1).
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14.2 Properties of the Legendre Polynomials
1. Rodrigues Formula for Legendre polynomials

1 dn n
Po(z) = 2nn! dzm (332 B 1)

2. Using formula (4.13), one can prove the following identities

/

Poi (@) = Py (@) = (20+1) Py (),
(n+1)Pp1(x) —nPr_1(z) = (2n+1)zP,(z), neN.

3. The Legendre polynomials are orthogonal in £2(—1,1). That is,

(P, Py =0 forallm#mn

4. The norm of a Legendre polynomial tends to 0 as n — oo

2
Pl =+/—— N
1Pall = 5 ™€ Mo,

and therefore, { 1Py (z), \/gpl (), \/§p2 (@), /22ELP, (2), .} is 2
1)

complete orthonormal set in £2 (-1,

5. Legendre polynomials satisfy

P,(1)=1, P,(-1)=(-1)" foralln e Ny.

Example 113 /.1

Consider the function

ro={

0, -1<z<0
1, O0<ze<l1

1. Show that f € £2(-1,1).
2. Give the Legendre series expansion of f.

3. Show that

S0)=z[f%)+f(07)].

N | —

Solution:

1. L L
/ |f(x)\2d:r:/ ldt=1<o00= feL?(~1,1).
—1 0
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2. Since f € L2 (-

1,1), we can write

fF@)=> caPn(x),
n=0
where
Py,
o = AP
[Pl
1 1
= e f(x) Py (2)dx
-1
(Vztn)
on+1 [*
= 2 / P, (z)dx
2 0
on+1 (1 1 dr .
2 /0 2nn! dxm (x ) z
m+1 (Ld , ,
= 2"+1TL!/0 dxm (1‘ _1) dx
Thus,
Lt do 22 0 ! 1
= 5] 70 -1y de=- [ lde=—
Co 2/0 1:0 X /0 T 2’
3 1 dl 3 1 3
@ 22/0 dul (a? " da 4/0 zdx T
5 2 2
co = 29 ( 2)/ dx2 dx =0,
7 2 3 7
= d -
Cc3 24) 6)/ dﬂj3 l‘ X 6’

from which we

but Py (0) = 1.

get

1 3
f(z)= §P0 (z) + ZP1 (z) — TGPS () + ...
§(0)= 3Py (0) + 2P (0) - %Pg 0 + ...

Next, we prove that

Pynt1(0)=0 VneNg

Using the identity

(m+1) Ppy1 (x) + mPp_q (z) =

114
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at ¢ = 0 gives
(m+1)Ppt1 (0)+mPy,_1(0)=0

or
m

7m+1

Now, using m = 2n, n = 1,2, 3... in the above relation gives

Prt1(0) = Prn—1(0)

2n
Py, =——Py,
on+1 (0) 1l 1(0)
Starting from n = 1, we have
2 2
Py(0) = —2P1 (0) = 3 (0) = 0

and consequently,
P2n+1 (0) =0 YneNy

Therefore, ) 5 ; .
§(0)=5 M) +70) =0 +.=3
Now, 1 1 1
S FO)+7(07)] =50+0=3
That is,

§(0) = 5 [ (07) +£(07)]

N | —

as expected.
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15 Hermite Polynomials
Definition 114 (Hermite Polynomial)

For each n € Ny, the Hermite polynomial H,, : R — R is defined by

2 d®
Hy (z) = (—1)"e" T €
Example 115 1

1. Forn =0,

0 42 d° —z? 22 _g?

Hy (z) = (1) 70 =e"e " = =1

2. Forn=1,

1 2 dl 2 2 2

Hy(z)=(-1)"¢€" Fe_m =—e" e ¥ (—2z) = 2.
x

3. For n =2,

xzﬁ —z? _ exzi (—21‘6_‘T2) = ew2 (—2€_m2 + 4.2326_362) = —2+422

H, (z) = (=1)%¢ 3¢ e

15.1 Properties of Hermite Polynomials

1. H, is a polynomial of degree n.
2. The set {H,, : n € Ny} is orthogonal in Li*ﬂ (R).

3. The norm of H, is given by

=

HHn”e—;c? = (2”71'\/%) .

4. For every z € R,
2 = 1
2xt— n
ettt = E —n!Hn(x)t .
n=0

2wt —t>

In other words, e is a generating function for the Hermite polyno-

mials.
Theorem 116 4.2
H,, satisfies the second-order differential equation
v’ —2zu’ +2nu =0, x€R,

which is called the Hermite equation.
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Remark 117 1

1. The other solution of the Hermite equation is an analytical function that
can be represented by a series in z [see exercise 4.21].

2. The differential operator in the Hermite equation is not formally self-
adjoint, but can be transformed to one by multiplying the equation by

p(ﬂf) _ ef —2zdr _ efxz.

In which case, we have the SL problem

e u = 2we "W + 2nu =0, zeR ((4.31))

d [ _.»d

3. The Hermite polynomials {H,, : n € Ny} are the eigenfunctions of the sin-
gular SL problem (4.31) associated with the eigenvalues A, = 2n. There-
fore, the set {H,, : n» € Ng} is complete orthogonal set in Ei*wz (R).

where
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16 Laguerre Polynomials
Definition 118 (Laguerre Polynomial)

For each n € Ny, the Laguerre polynomial H,, : (0,00) — (0,00) is defined
by

L@ =0 @ree).
Example 119 7
1. For n =0,
Lo (¢) = %fj—; (%) = et = = 1
2. Form =1,
Li@) = S @) = e (7 —ae ) = 1—a
3. Forn—2,
Lae) = ST ()
- e; % (2ze™® — 2%e7)
= ;—w! (27" — 2ze™" — 2ze™" + 2% ")
2

= = (2671 —4ze " + xzeﬂ”)

1
1— 2z + 2%
x+2x

16.1 Properties of Laguerre Polynomials
1. L, is a polynomial of degree n.
2. The set {L, : n € Ng} is orthogonal in £2_, (0,00).
3. The norm of L,, is given by

[ Ll = 1.

Theorem 120 4.3
L,, satisfies the second-order differential equation
o+ (1—z)u' +nu=0, ze€(0,00).

which is called the Laguerre equation.
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Remark 121 1

1. The differential operator in the Laguerre equation is not formally self-
adjoint, but can be transformed to one by multiplying the equation by

_1fﬂdz_1fl—1dz_1 Inz _—z\ _ _—=x
p(:c)fwe = e 7.%’(6 e ) =e

In which case, we have the SL problem

ze "u" + (1 —z)e " +ne "u=0, =€ (0,00). ((4.33))

d( _.d

2. The Laguerre polynomials {L,, : n € Ny} are the eigenfunctions of the sin-
gular SL problem (4.33) associated with the eigenvalues A, = n. There-
fore, the set {L, : n € Ng} is complete orthogonal set in £2_, (0, 00) .

where
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Part VI
Bessel Functions

17 The Gamma Function
Definition 122 (Gamma Function)

The gamma function is given by

for z > 0.

17.1 Properties of the Gamma Function
1. T is of class C* on (0, 0).

2. For any x > 0,
IF'(z+1) =2l (z)

3.0(1) =1.

4. For any n € N
'n+1)=n!

That is, the gamma function is an extension of the factorial mapping
f(n+1)=n!from N to (0,00).

5. The domain of the gamma function can be extended from (0, 00) to R —
{0,—1,-2,...} as follows

I'(z+1)
F(xm—O—Q)
z(x+1)
I'(x+3)
z(z+1)(x+2)

'z) =

B I'(x+n)
x4l (zt+n—-1) nel

Note that for any n € N,

lim )I‘(ern):F(—(nfl)Jrn):F(l):l

r——(n—1
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yi

Figure 5.1 The gamma function.

Therefore,
I'(z+n) B
r(x+1)...(z+n-1)

lim

1 o
z——(n—1)*

Note that — (n — 1) is a simple pole of the gamma function.

lim T (z) = oco.

r—00
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18 Bessel Functions of the First Kind

The Bessel’s equation is the second-order differential equation

22y 4oy + (22— 1)y =0, z€(0,00) ((5:3))

where v is a nonnegative parameter.

18.1 Derivation of the Bessel Functions of the First Kind

The Bessel equation is a singular SL problem. If we write the equation in the

form
1 (CC2 — V2)

v+ -y + —y=0,
X

T
then clearly the solution cannot be represented by a power series about z = 0
[why?], but since the numerators 1 and z? — v? are both analytic at z = 0 we
can seek a solution of the from

o0

y(x)::E:(%xk+ﬂ

k=0

where ¢ € C and ¢y # 0.
Substituting the above series in (5.3) gives

2> o (k+t) (k+t—1) 2" 242y ep (k4 1) P 4 (27 = 12) Y et =0
k=0 P P

or

[ee] oo o0 [ee]
Z ek (k+t)(k+t—1) xk+t—|—z ek (k+1) mkH—Q—Z a2 _y2 Z cpxttt =0
k=0

k=0 k=0 k=0
or
o0 o0
S lk+t)(E+t—1)+ (k+1t) =] coa®™ + ) epab T =0
k=0 k=0
or
Z [(k; + t)2 _ VQ} cpztt + ZCkmez —0
k=0 k=0
or

2 — 7] Coxt+{(1 F)? V2} Clx1+t+z [(k: ) 1/2} Ckwk+t+z Cp_oz Tt =0
k=2 k=2

or

2 .2 t 22 1+t = 2 2 k+t _
[t V]ng—b—{(l—b—t) V}clx +k2:2{[(k+t) V]ck—i-ck_g}x 0
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from which we get

[tz — 1/2} co = 0,
[(1 —+ t)2 — I/2i| C1 = 07
[(k +1)? - Vﬂ Gt = 0, ke{23,..}
Since ¢y # 0, we have
22
or
t==v.

Case 1: Let t = v, then

1.
(1+t)2—V2j| C1 :0

leads to
(21/ -+ 1) c1 =0

[why?]. But, 2v + 1 > 1 [why?], and thus ¢; must be zero.

(k+t)2—1/2 cp+ch_o=0

gives
EQuv+k)er+ck—2=0
[why?], which can be written in the form

1

*T TR+ k)2
(a) If k = 2m + 1 where m € N, then

1
C@2m41)(2v+2m+1)

Com+1 = Com—1

and hence copmi1 = 0 [why?].
(b) If k£ = 2m where m € N, then

1 1
= @y @+ 2m) P T T P ()
Therefore,
C: = 7(71)1 Ci
2 = 3 v+ 0
B 1 e 1 1 B (-1)?
4T TR w2 ( 22 (2) (u+z)> ( 22(1/+1)>C0_ 2N+ ) w12
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In general, we have

(1" )
2l v+ 1) (v+2)...(v+m) °

Com =

so if we choose

1
CT 2Ty
then we get
. _ (_1)'"’7.
2m 2mtrmIT (v + 1) (v +1) (v +2) ... (v +m)
(=™

2+l (v +m+ 1)

The solution of the Bessel equation is therefore given by

( l)m 2m
@ Z 2mtrmIT (v +m+ 1)

Definition 123 (Bessel function of the first kind)

The Bessel function of the first kind of order v is denoted by J, (z), and is
given by

T\Y — (=)™ x\ 2m
J, () = _ (= , 0
(z) <2) n;)mlr(u+m+1)(2) v
Remark 124 I
1. J, (x) is defined for all = € (0, 00) because
(a) The series

SENETRE
A=mll (v +m+1) \2

is convergent for all x € R.[why?].

(b) The power z" is defined for all x > 0.
2. The domain of J, (z) can be extended from (0, 00) to [0,00) by defining

1, v=0
0, v>0

J, (0) = lim J, (z) —{

z—0t

Case 2: If t = —v < 0, then following the same steps as above leads to

v (@) = (9;)_”;_:0 m!F(El_/l—i)- m+1) (g)m’ v>0
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Example 125 (The first two Bessel functions of first kind of integral order)
1. Find Bessel function of order 0.

2. Find Bessel function of order 1.

3. Show that )
Jo (x) = —J1 ()

4. Prove that -
/ tJo (z) dt = xJ1 (2)

0
for all z > 0.

Solution:

1.
AL (=™ x\2m

Jo(z) = (5) mX::Om!F(m—i-l) (5)
B oo (_ )7” T 2m
B mzz:o mlm! (5)
B s (_1)m z 2m
B mzzo (m!)? (2)
x? x4

T Ty

2.

N(@) = (;)Z%@)m

m=0
> et )
- m! (m+ 11 \2
A=ml(m+ 1) \2
T QE3 QE5

9 8 T sl T
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Figure 5.2 DBessel functions .Jy and .J;.
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m=0

_ i (=" /w 2mt1 gy

— (m!)2 22m Jo
_ i (71)’”7 < t2m+2 m)
A (m)? 22 \ 2m+ 2],
B io: (_1)m l.2m+2
Ty w2
B SNCTN
B — (m!)2 92m+1 \ m + 1
B e (-nH™ 2\ 2m+1
N xzzom!(m—i-l)!(Z)
= zJi(x)

Theorem 126 5.1

The Bessel functions J, and J_, are linearly independent if and only if v is
not an integer.
Proof:

1. If v = n € Ny, then

[ee]

o (@) = (g)in D i (Szl+)m 1) (g)zm’ z>0

m=0

but since —n +m + 1 € Z, we have
T'(—n+m+1)| =0
if —=n +m + 1 < 0. That is,

1
I ——
F'(—n+m+1)

for all m < n — 1. Therefore, the first n terms of the above series vanish,
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i.e,

Fe = )2t ()
- () ot 6
- ;)nmi:o ml (m +1) (m +(2)-1-)~T(nm+n)r(m+ 1) (g)zm
- () S ey (8
= (=1)"Ju ()

That is, J_, () and J, () are linearly dependent.
. If v ¢ N and v > 0, then let

aJy, (z) +bJ_, (x) = 0. ((5.14))

We Know that for v > 0, lim,_,o+ J,, () = 0, but

L e (-)™ T\ 2m 1
1 = = - R
zgg+lz()m!l‘(fu+m+1)(2) F(*V+].)€ ’

2 A 2\"
lim (7) = lim () = 00,
z—0+ \ 2 z—0t \ T
from which we deduce, lim,,_,¢+ |J_, (z)| = co.

Therefore, equation (5.14) can hold only if b = 0. But, aJ, (z) = 0 for
all z > 0 only if @ = 0. We conclude that J_, (z) and J, (z) are linearly
independent in this case.

Remark 127 2

Theorem 5.1 leads to the conclusion that the general solution of the Bessel
equation with a non-integer parameter v is given by

Yy (f) =cady (-T) +cad (m) s

where z € (0, 00).
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19 Bessel Functions of the Second Kind
Definition 128 (Bessel function of the second kind)

The Bessel function of the second kind of order v is denoted by Y, (z), and
is given by

= sinlwr [JV (I) COS VT — J*l/ (CC)] ) v 7é P , ,
Y, (z) = { Fm o ¥ '

Remark 129 2

1. If v = n € Ny, then Bessel function of the second kind of order v can be
expressed in terms of the Bessel function of the first kind as follows

Y, (z) = % (lng +’7) I (z) ( ) Z S nﬂ:r_"nf)”“”) (g)Qm

LETE R

where
hg = 0,
h = 14 L + L + ...+ !
m - 2 3 s m7
v =~ 0.577215

2. Y, (z) is also a solution of Bessel equation.
3. The Bessel functions J, and Y, are linearly independent for all v > 0.

4. The general solution of Bessel equation with a parameter v > 0 is given
by
y(z) =ald, (z)+ Y, (z),

where z € (0,00) .
Example 130 (Bessel functions of second kind of integral order)

Find the asymptotic behaviour of Y,, (z) as z — 0.
Solution:
We say that a function f is asymptotic to a function g as x — ¢, and write

f~g, if lim,_ .. Eg =1.
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1. For v = 0, we have
2
Yo(@) = (347
s
2 T
= f(lnf—k*y
T
2(1 x+
= — n—
T 2 K

Therefore,

2. For v € N, we have

e = Lage)aw- L) S E0
m=0

S oy

(hm + Pntm) (ac

[ee]

m=0

_ i(lngﬁ)(;)"(r(;m...);

Therefore, ,

1

Y, (x) ~ - (5)_n (n—1!, neN.

Note that for all n € Ny,

hr(r)l+ Y, () = —o0.

r—
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Figure 5.3 Bessel functions Yy and Y7.

20 Orthogonality Properties
Lemma 131 1
The Bessel equation
2,1

2y +ay + (x—v7)y =0,
is equivalent to the equation
2
xu” +u + (;f:c — ) u =0,
T
where p # 0.

Proof:
Dividing equation (5.26) by x gives

2
zy" +y + (m—)y:()
x
Using the change of variables
x = px, y(@) —y(pe) =u(z)
where p # 0, which gives
u'(x) = py (ux),

u' (2) = pPy (uw)
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Equation (5.28) becomes
u’ u' V2
zp—+—+ |pr—— Ju=0
p2 pi
or
L2
xu” +u' + (,uz;z;— ) u=0
x

Theorem 132 1

The eigenvalue problem

au” +u' + <u2x - Zj) uw = 0, z€(0,b), ((5.29))
Bru (D) + Bou’ (b)) = 0,

where b < oo, and n € Ny is a singular SL problem, and its general solution is
given by
w(z) = cpdp (ux) .
Proof:
Problem (5.27) can be written as the eigenvalue problem

Lu+Mp(z)u=0, ze€(0,b)
Bru (b) + Bau’ (b) =0,

where
d? d v?
L=2—5+———
wd:c2 + dv z’
A=,
p(@) = .
Now

)

1. L is a self-adjoint operator because:

(a) px)==z,q(x)=1,r(x) = —’fé are all real functions.
(b) p'(z) =1=q(x).
(¢) For any two solution u, v of the problem, we have

Pl o)} = p®) ®)o (B) — v ()’ 1)) - p(0) () (0) v () (0))
B (‘fu ()0 (b) - ‘B—ﬁ () o (b))
= 0

where we have assumed that 8, # 0. A similar result occurs if 3, # 0.
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2. p(0)=0.

3. Since the differential equation in eigenvalue problem (5.29) is equivalent
to the Bessel equation, its general solution is given by

u(2) = cndn (px) + dp Yo (p)
but,

lim w(z) exists < d,=0

z—0
Therefore, (5.29) is a singular SL problem with the general solution
u () = cpdn (ux) .
Theorem 133 2
If 8, = 0 in problem (5.29), then

1. The eigenvalues of (5.29) are

Er )
=i = (5

where &, are the solution of
I (b)) =0

and the corresponding eigenfunctions are
uk (€) = JIn ()
2. The set {J,, (uzx) : k € N} is orthogonal. That is,
<Jn () 5 I (,ujx)>z =0, k#J

3. The norm of J, (u,x) is given by
b2 9 %
1 el = (72 (et
4. For any f € L£2(0,b)

=S @ T )y o 5 39
f(x) ; 1 )| n (g) ((5.32))

5. If f is smooth on (0,b), then the above equality holds pointwise provided
f is defined by

F@) =3[ @)+ ()]

at the points of discontinuity.
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Proof:
1. If 85 = 0, the boundary condition becomes
u (b) =0,

Thus, we have
0=1u(b) = cpndn (ub),

or
Jn (ub) =0

which leads to
pb = &g,

where k € N [why?] and &,,;, are the zeros of .J,,. Thus,
Hi = f%k,

and the eigenvalues are therefore

2
Ao = pi = <§Zk)

The corresponding eigenfunction are
up (#) = Jn () -

2. Theorem 2.29 holds for a singular SL problem (5.29) (See the subsec-
tion "The singular SL problem"). In particular, the eigenfunctions of the
problem are orthogonal and form a basis for £2 (0,b) . Therefore,

(I () s I (), =0, k#j
3. Multiplying equation (5.27) by 2zu’ gives
2020 + 2z () + 2 (1?2® —n®) w'u =0,
or

((xu/)z)/ + (p?2z® —n?) (u2)/ =0

Integrating the above equation on (0,b) gives
2|’ 2 ’ 2 (,2\/ 2, 21b
(xu')’ +u/x(u)dw—n w?|, =0
0 0

b b
= (xu')2‘ + ,u2x2u2|g — 2u2/ rudr — n? 2‘3 =0
0 0

b b
= 2u2/ rudr = (mu’)Q‘O + u2x2u2|g —n? uzfg
0

b

1
> ol = gz [+ (2 =) 7]
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Using the solution u (x) = J,, (ux) in the above equation gives

b

1 ()2 = 21? [(,uxJ;L )+ (a7 ) 1 W)} 0
= # {(ubJé (ub))2 + (126 = n?) J2 (ub) + nJ2 (o)}
1 , 2
= g2 {(uan (ub)) + (u*0® —n?) J; (ub)}

since n?J2 (0) = 0 ¥n € No.

Now,

|0 (e)l7 = % {(ubﬁl (Nkb))Z + (uib® —n?) J? (ukb)}

= Sl

but using the identity (exercise 5.9)

gives
by, (1) =y (1yb) = b T (p1y)

= Mka;q (b)) = —pgbnra (p10)
= J;L (b)) = —Jnt1 (1xd)

Thus, we have
2

memﬁzg%ﬂww
4. Follows form Theorem 2.29.
5. Generalized version of Theorem 3.9.
Example 134 5.5

Consider the function

, 0 <2
f(’”){ 0, 2<z<4

with
Jo (4p) =0

1. Expand f in a Fourier-Bessel series.
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2. Find the sum of the series at x = 1.

3. Find the sum of the series at x = 2.
Solution:

1. Clearly f € £2(0,4), therefore

i ) s Jo (1)),

£ Jo (i)
k=1 l|Jo :ukw)”

Now,

4
(f (@), Jo (pgx)), = /0 I (x) Jo (pgx) zdx

2

= /Jo(uk:c):rd:x
0
12

= — [ Jo(uz) prprpgde
Hk Jo

1 2,
= — Jo (y) ydy
Hi Jo
but

/ "o () dt = 2y ()
0

hence
1
(f (), Jo (ka)>x = /722/%(]1 (24,)
k
2
= —Ji(2p
o 1 (20,)

(b) y
1o )iz = 1 (dgag) = 8J; (4ps)

So we have

= 21 (24)

f(z) = m% (1)

k=
LS T (2m)
4

2 i)

for 0 <z < 4.
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2. Since f is continuous at z = 1, we have

o

T2 g ) = () = 1
k=1 1
o 1 (2) _
i,;,uktﬂ( 4p) Jo ) =4

3. Since f is discontinuous at x = 2, we have

EZM%@%) =: (f@)+/1(2%) =

(1+0) =
4 1 pJy () 2

w\»—‘

o0

J1 (2)

————Jo (21;,) =2
Pl U0 (4pk)

Theorem 135 3
If 8, = 0 in problem (5.29), then

1. For n = 0, the eigenvalues of (5.29) are

5 2
)\k:ui:<z’“> , keNo

where &, are the zeros of Ji, and the corresponding eigenfunctions are
uy (z) = Jo (1)

2. For n € N, the eigenvalues are

where p;, are the solution of

Ty, (ub) = 0,

The corresponding eigenfunctions are
up (2) = JIn ()
3. The set {J,, (uxz) : k € N} is orthogonal in £2 (0,b). That is,

<Jn (1), JIn ('U‘jx)>x =0, k#J
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4. The norm of J,, (%) is given by

1

190 ol = [ 51 (202 = 02) 22 st
5. For any f € £2(0,b)
f (I) _ Z <f (:E) ) Jn (ﬂkm»x Jn (/%CU) ((532))

= (w2}

6. If f is smooth on (0,b), then the above equality holds pointwise provided
f is defined by

F@) =51 @)+ @)
at the points of discontinuity.
Proof:
1. If 8, = 0, the boundary condition becomes
' (b) =0,
but, )
u' () = pd, (px)
and thus we have the boundary condition,
0= (b) = puJ,, (ub)
(a) Now, or n = 0 we know that
Jo (@) = = (),
which leads to get
0 = pJo (ub) = —pJy (ub) =0
Now, if = 0, then A = 0 and the corresponding eigenvector
ug () = Jo (pz) = Jo (0) =1

Ifu#0

then ¢
_ Slk
Mg = b
where &, are the positive zeros of J; and the eigenvalues are

uo () = Jo (), k€N
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Summarizing, for n = 0, the eigenvalues are given by

5 2
Ak:uzz(;j) ,

and the corresponding eigenfunctions are given by

uk () = Jo (px) ,

where k € Ny.
For n € N, the boundary condition leads to

0= (b) = pJ,, (1ub)

now, If 4 = 0, then A = 2 = 0 is an eigenvalue of J, (uz), and the
corresponding eigenfunction is

In (px) = Jp (0) =0
which cannot be true. Therefore,
Ty (1) = 0
which if solved gives the eigenvalues
Ap = i
and the corresponding eigenfunctions

w (2) = T ().
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Part VII
The Fourier Transformation
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21 The Fourier Transform
We are going to learn
e The space £! ().
e The Fourier transform of a function f € £ (I).

e Properties of the Fourier transform.
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Definition 136 (The Space L£L(I))

For any real interval I, we say that f : I — C is absolutely integrable on I,
and write f € L1(I) if

J 1t @l <.

Remark 137 {1
1. £1(I) is a vector space.
2. If I is bounded, then any integrable function f is in £!([).

3. If I is unbounded, then a function f may be integrable, but not in £(I),

sin x

for example, take f (z) = 2% on (0,00).
Definition 138 6.1

For any f € L' (R) we define the Fourier transform of f as the function
f :R — C defined by the improper integral

fo=| 1@
In the book, the symbol F (f) is used instead of f to denote the Fourier
transform of f.
Example 139 6.2
For a € R, consider the function f, : R — R defined by

1, |z|<a

n@={y s

1. Show that f, € £ (R).

2. Find the Fourier transform f, of f,.

3. Find f (z) = limy o fa (7). Does f € L1 (R)?
4. Does lim,_, o fa (&) exist?

Solution:

1. f. € L' (R) because

/ |fa(m)|dx:/ ldz = z|* | = 2a < co.

— 00 —a

142



2. The Fourier transform is given by

fa (5) = [w fa (Z’)eii fmdx

= /e’ig“:d:v
—a

B et €T a
= i
1 ) .
_ - —iéa _ i &a
= )
B 2 (ei fa _ 671' §a)
= ET
= %sinfa
Yi YA
2a
: 2sinag
y=[(S)
— Ll y=fw LO= =
N AN
a A A VARV %
Figure 6.1

3. f(z) =limg—oo fo (z) =1, for all x € R. Now,
00 o) 0 00
/ |fa(a:)\dx:/ 1dx:/ 1dx+/ ldx
—0o0 —o0 —o0 0

0 0
. . 0 .
/ ldx = lim ldz = lim z|, = lim —r = oo,

NS r——oo [ r——00 r——oo

but

Therefore, ffooo |fa (z)| dz does not converge. In other words, f ¢ £! (R).

p 2 2
lim f, (§) = lim —sina = = lim sinéa
a—0o0 a—00 5 6: a— 00
does not exist, because if we take { = 7 and let a = 2n + 1 — oo where
n € Ny, then

sina& =sin (2n + 1) g
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alternates between —1 and 1 as n — oo. Since fa (%) does not converge
as a — 00, f, (£) does not converge.

Example 140 6.3
Consider the function f : R — R defined by
fz)=elol,
1. Show that f € £ (R).
2. Find the Fourier transform f of f.
Solution:

1. f € L' (R) because

/ |f (z)|dx = / e~ 1l dg

- 70 0o

/ emdx—b—/ e Ydx
—00 0

0 s
= lim edx + lim e “dx

—— —
T oo r S [e.°] 0

. 0 . —_plS
= lim €"[) + lim —e "
r §— 00 0

r——o00
= lim (1—¢€")+ lim (—e™®+1)
r——00 s—00
= 14+1=2<0

2. The Fourier transform is given by

fo = [ r@etea

= / e lrlemi &2y
/ ee ™t Egcclac—i-/ e T 8y
— 00 0

0 s
= lim =18z g0 4 lim e~ (1+i Oz g,

] By
C g ST O
r——oco 1—14§ | = s—ooo 1+4§ |,
) 1 e(1—i Or ) e~ (14i &)s 1
- rkmoo(l_ig 1_1-5)*313.1@( 1+ i€ +1+z‘£>
1 1
To1—if 14
_ 2
- oo
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Figure 6.2

21.1 Properties of the Fourier Transform

1. The Fourier transformation F : f — f is a linear function, that is

F(erfi +cafe) = aiF (fi) + c2F (f2)

for any c1,co € C and any fi, f2 € £ (R) because for any ¢ € R we have

F(erfr +cafa) (§)

/oo (c1fi + cof2) (z) e " da

& / fi (@) e Sda + o3 / fo (2) e

carF (f1) (€) + caF (f2) (€)
(arF (f1) + c2F (f2)) (€)

2. f is a bounded function on R because

i@ < [ lr@erel

—00

| @i <o

—00

[why?] .
Lemma 141 6.4

Let (fn,:n €N) be a sequence of functions in £ (I), where I is a real
interval, and suppose that f,, — f pointwise on I. If there is a positive function
g € LY (I) such that

|fn(@)] <g(z) forallzel, mneN

then f € £!(I) and
lim fn x)dr = /f(x) dz
n—o0 I
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Theorem 142 6.6

For any f € L' (R), the Fourier transform

fo=[ @t
is a bounded continuous function on R and

lim f (&) =0.

€] —o0

Proof:

We will only prove the first part of the theorem, namely that the Fourier
transform is continuous.

Let & be any real number and let (£,,) be a sequence such that

lim £, =¢,

n—oo

To prove that f is continuous, we must prove that
Tim f(g,) = F ().

Now,

fen-fe] = |[ r@eterao- [ rwet e (©3)

o0 . .
< / 1F (@) | &% — e €2 da
—00

If we take the sequence

gn (@) = | (2) (7" 5% — 7" &)
then, (g, : n € N) satisfies:

1. g, € LY (R) for all n € N since

/ lgn ()| dz :/ 1 (@)] e 6 — e €| dg

— 00 —00

= 2/ |f (z)] dz < o0
2. | |
lim g, (33) = lim |f (;1:)| |€_1 £am _ ot éx|
[why?] .
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|f (@)] |7 n® —eTr e

2[f (=)

|gn ()]

IN

for all z € R and n € N.

Taking the limit of both sides in equation (6.8) and using lemma 6.4 gives

nlglgo f&) - f(g)’ < nler;o i I (2)] |e—i - £z|d,’£
- /_OO Tim [1f (@) e &% — &[] da

That is,
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22 The Fourier Integral

We are going to learn

e The Fourier Integral of a function f € £ (I).
e The Fundamental Theorem of Fourier integral.

e The Integral in Trigonometric Form.
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Recall that any function f € £2 (—m,7) can be represented by the Fourier
series

fla)= Y ene™,
where ) .
Cn = 5- f(z)e ™dz, ncZ.

Analogous to the Fourier series representation, a function f € £! (R) can be
represented by the integral

5 | Fea

where f is the Fourier transform of f and is given by

= /_Z f(z)e "5%dx

Let f be a piecewise smooth function in £! (R). If

Theorem 143 6.10

f(g):[ flx)e " ®de, €eR

then

[f (@) + £ (7)),

M\H

lim — ) e tdg =
g o [ detas -
for all x € R.

Remark 144 6.11

If f is defined by

F@) =51 @)+ )],

at every point of discontinuity x, then

lim / £ () e

L—oo 27

is called the Fourier integral of f or the inverse Fourier transform of f and we
therefore write

fla)= Jim o / f (@ etae = 7 (f) (@)
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22.1 Fourier Integral in Trigonometric Form

Let f € L' (R) be a real, piecewise smooth function satisfying

F@) =51 @)+ )],

at each point of discontinuity, then the Fourier integral representation of f can
be written in the form

f(x)= 1/000 [A(&)cosxl + B (&)sinzf]df, ze€R

™

where
A9 = [ r@eosceds,
B = /OC f(z)sinéxdz, &€R.

1. If f is an even function, then B (£) = 0, and the integral form becomes

f@) = 1 [ a@eosats
a9 = 2f " f (@) cos ads,
2. Tf f is an odd function, then A (€) = 0, and the integral form becomes
fo) = = [ B@smags
B - 2 " f (z)sinzd,

Example 145 6.12
Consider the function f, : R — R defined by

1, |z|<a

f“(x):{ 0, |z]>a

where a € R. Use the Fourier integral theorem to find the value of % fooo % sin a€ cos x€d§
at every x € R

Solution:

We already know from example 6.2 that f, € £! (R). Moreover, f is clearly
a piecewise smooth function. Thus, Theorem 6.10 holds, that is,

L
fim o [ h@esta =L 11 1)+ 5 00
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From example 6.2, the Fourier transform of f is given by

fa ¢ = %sin a

and thus we have,

lim / ’ fa(©)e™éde = lim S / ’ 2 s (a&) e™Ede
L—oo 27 _L @ L—oo 27 L 5
1t -
= lim — —sin af [cos x€ + isin x&] d
L—oo T L 5

2 (1
= lim — / — sin a& cos x€d€
0

L—oo T f
2 (1
= 7/ — sin a& cos x€d§
TJo §
[why?].
Therefore,

2 /OC lsima§cosas§d§ % [fa (5‘+) + fa (x_)}
0

™ €
0, T < —a
%, rT=a
= 1, —a<zxz<a
%, rT=a
0, T>a

Example 146 6.13

Find Fourier integral representation of the function f: R — R defined by

) = { sigf:, lz| <7

|z] > m

Solution:
Note that

[ i@l [ et < o0

— 00 —T

that is f € £! (R). Theorem 6.10 holds because f is clearly a piecewise smooth
function. Moreover, since f is an odd continuous function, we have

@) =1 /0 B (€) sinatd
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where

B(¢)

I
N\

/ f (z)sin€xdx

0

= 2 / sin x sin Exdx
0
/0

; [cos (1 — &)z —cos (1 + &) x] dx

sin(1—¢)z sin(l1+¢&=

1—5 1+ e |,
_osin(l=¢)7m  sin(1+&)m
- 1—¢  1+¢
. (1+Ysin(1-)m—(1—-¢sin(1+&)7
= -
(14 ¢ [sinmcosém —sinémcos 7| — (1 — &) [sin7 cos {7 + sin &7 cos 7]
1-¢°
(4§ fsingr] + (1— &) fsingn]
1-¢2
~ 2sinémw
= e

} A

}/“<T) B(©)

m\k// I "3\ -1 Jo 1 273 E
-1+
—Tk

Figure 6.4 [ and its sine transform.

Example 147 6.14
Consider the function f : R — R defined by

f(z)=el!
1. Fine the Fourier integral representation of f.
2. Deduce that o 1

/0 [
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Solution:

1. We already know from example 6.3 that f € £! (R). Moreover, f is clearly
a piecewise smooth function. Thus, Theorem 6.10 holds, that is,

[/ (@%) + £ (=7)]

N =

L
Jim L [ ey eas =

From example 6.3, the Fourier transform of f is given by

and thus we have

D S RPN 1t -
fimnge [ J @ = Jim 2] g leosat +isinag]de
L
= mg/ %coszfdf
L—oo T 1+§
2 [ 1
= f/ ———5 cos z€d§
T™Jo 1+¢

but f is continuous, that is for all z € R,
1
F@)= 1) + 1 ()]

Therefore, we have

2/00 1
T)=— ——5cosxzédf, x€R
f) == | e coswede
2. Using the above equation at = 0, we get
2 [ 1
f(0)= / — cos 0d¢
© mJo 1+¢

but f (0) = e = 1, and hence we have

2 [ 1
1:7/ _de
mJo 14+¢

>~ 1 T
/0 1+¢ dg*i

or
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23 Properties and Applications

We are going to learn about the properties of the Fourier transformations under
differentiation.

Theorem 148 6.15
Let f € L1 (R)
1. f/€ £'(R) and f is continuous on R, then
FN(E©=iF (&), EeR
2. If of (x) € L' (R), then F (f) is differentiable and its derivative

ZF DO =F(-ish©, ¢cr
is continuous on R.
Corollary 149 6.16
Suppose f € L' (R) and n € N, then

1. f(k) € L1 (R) for 1 <k <n, and f("_l) is continuous on R, then
F(F)(© =" F(©, €er

2. If 2" f (x) € L1 (R), then F (f) is differentiable and its derivative

FFOO=F (i)' N©, ¢er
Example 150 6.17
Consider the function
flxy=e*, =zelkR
1. Show that f € £} (R) and zf (z) € L (R).
2. Find the derivative of the Fourier transform f of f.

3. Find a closed form of the Fourier transform f

Solution:
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/ e~ dr = Vi < oo

—0o0

o0 2 0 2 o° 2
/ |x| e™ dx / —ze ¥ dx—i—/ xe ¥ dx
—o0o —o0o 0

0 T
. p— 2 . — 2
= lim —ze ¥ dx + lim ze ' dx

r——o0 r—o0 Jq

r
0

"
—z2 2

r——00

. 1 .
+ lim —oe

= i —
m 2@ .

1 1
= — lim {1 - eiTQ} + —= lim [efrz - 1}

= 1<

2. From 1, we see that both f and xf are in £! (R), and therefore we have
=€) = F(=izf)(©
= / —izf (x)e " dx

— 00

e 2
= —i/ ze ¥ e Ty
— 00

i [ 2 e
= 7/ —2ze™% e 8%y

2 —00
= 2/00 % (6_12) e €%y
= 3 [Tlirgoe +z§/ e Tet gmdac]
— g/oo e T et Py
_ &
- —f©
3. We have ¢
ZHo+iie-

Multiplying the above equation by the integrating factor exp (%) gives

- (eff (5)) 0

e f(6) =

which have the solution
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where ¢ is a constant. In other words, we have

~ g2
T4

f(&) =ce
but -
o= [t

— 00

Therefore, at £ = 0, we have
\f:/ e dr=f(0)=c

Using the value of ¢, we have the following closed form of f &)

F(&) = Ve 5.
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24 Heat Transfer in an Infinite Bar

Consider an infinite thin bar with an initial temperature distribution
u(z,0)=f(z), =zeR

where f is a piecewise smooth function in £ (R). We are interested in finding
the temperature distribution w (x,t) along the bar at time ¢ > 0.
To find the temperature function u (x,t) , we need to solve the heat equation

U = kg, T€R, t>0,
subject to the initial condition
u(z,0)=f(z), zeR.
Using the method of separation of variables, we assume that
u(z,t) =v(z)w(t),
which if substituted in the heat equation gives
1

v 1w

v kw
and hence we have a constant —\? such that
v+ X0 = 0,
w' + N kw 0.
The solution to the above equations are given by
v(z) = A(N\)cosAz+ B(\)sin Az,
w(t) = CO\)e Nk,

where A, B, C are the constants of integration and are function of \.
The solution of the heat equation corresponding to A € R thus becomes

uy (z,t) = [A(X) cos Az + B () sin Az 67A2kt’

where we have assumed that C'(\) = 1.
The general solution of the heat equation results from taking the integral of
uy (z,t) with respect to A over R, which gives

1 o
u(z,t) = o uy (z,t) dA
1 [ 2
= 5 [A(N) cos Az + B (\) sin Az] e *d)\
™ — 00
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Using the initial condition, we have

1 (o)
f(z)=u(z,0)= o / [A (N) cos Az + B () sin Az] dA
™ — 00

that is, A (A\) and B (\) are the Fourier cosine and sine transform of f, and are
therefore given by

AN = /_Z f (y) cos Aydy,
B(A) = /: [ (y) sin Aydy.
Substituting in the solution of the heat equation gives
u(z,t) = % j:o [A (X) cos Az + B (A) sin Az e NN
= % _Z [/_O; f (y) cos A\ydy cos Az + /_O:C f (y) sin A\ydy sin Az e NN

1 oo oo
= %/ﬁ /7 I (y) [cos Ay cos Az 4 sin Ay sin Ax] 6_)‘2ktdyd)\
— QL/ / I (y)cos[A(z —y)] e‘Azktdyd)\

7))o
B Zi/ / F(y) cos [\ (z — y)] e Fdyd

) )

1 oo

= 5 - ) /OO cos [A (z — y)] ef)‘zktd)\dy

1 [ & 2
= 2 1w [ s ple ¥ Hdry

T J—co 0
but

e 1

/ cos \ze~ N d\ = -1/ Te=2"/e forallz e R, ¢>0,
0 2V c

therefore,

wewt) = 1[0 [ eoshhie-ple

1 o 1 s 2
- - N —(z—y)*/4kt
Lo (5 )i

1 2
_ —(z—y) /4ktd
= (&
2V rkt /,oo ) 4
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25 Heat Transfer in an a Semi-Infinite Bar

Consider a semi-infinite bar that is insulated at one end, and suppose that the
initial temperature distribution along the bar length is known. To find the
temperature distribution v (z,t) along the bar at time ¢ > 0, we need to solve
the boundary-value problem

Ut = kgy, € (0,00), t >0,
subject to the conditions

w(z,0) = f(x), x€(0,00),
UI(CE’,O) = 0, t > 0.

We already know that the solution to the heat equation is given by
uy (z,t) = [A(N) cos Az + B (\) sin \z] eVt

where A € R. We can assume, without loss of generality, that A > 0 [why?].
Using the boundary condition, we have

- 8u,\
0 = Z2(0.)

= [-A(\)sinA(0) + B () cos A(0)] Ne— Nkt
= AB()) o ATkt

So, we have two cases:
1. if A =0, then the solution is
ug (x,t) = A(0)
i.e. constant.

2. If A#0, then B (\) =0 and
uy (z,t) = A(X) cos Ape Kt
Integrating the above solution over all A > 0 gives the general solution,
I —X%kt
u(z,t) = — A ()N) cos Aze dA
T Jo

Applying the initial condition gives

f(z) = u(z0)
1 oo
= 7/0 A (X) cos AzdA

™
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which is the cosine Fourier transform of the even extension of the piecewise
smooth function f € £ (0,00) to (—oc, 00). That is,

AN = 2/000 f (y) cos Aydy.

Substituting in the solution gives

1 [e ) [e )
u (z,t) p /0 2/0 f (y) cos Aydy cos PYTRELI Y

2 oo oo ,
— / / f (y) cos Ay cos )\a:e_Azktdyd/\
™ Jo 0

1 [ & 2
= f/ f (y)/ 2 cos Ay cos Aze ™ Flddy
0 0

™

but
2cos Adycos Az = cos A (y + x) + cos A (y — x)

and hence we have

1 [ e .
u(z,t) = - /0 I /0 [cos A (y + z) + cos A (y — z)] e‘vktd)\dy

1 oo oo 1 o0 oo
= */ f (y)/ cos A (y + z) e*Azktd)\dy + f/ f (y)/ cos A (y — x) e*>‘2ktd)\dy

T Jo 0 7 Jo 0

1 o0 2 1 o0 2
= - —(z+y)°/4kt 4 / —(y—w)?/4kt g
e + e
il W oy TV v
1 o0 2 2

_ —(z+y)*/4kt —(y—x)*/4kt
= — e +e d

sy T J v

If we take,
. 1, O<y<a
f (y) - { 07 Yy >a
for some a > 0, then we have
1 > 2 2
u(x,t) = —— e~ (@) /akt | —(y—a)?/4kt| 4
@) = 5= [ | dy
1 @ 2 2
— —(x4y)=/4kt —(y—z)*/4kt
= e +e d
2\/7rkt/o [ ] y

Since the error function is given by

2 * 2
erf (z) = ﬁ/o e P dp

we write

/ " gy / ) e(yzwmdy]
0 0

u(x,t):wl%[
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and use the substitutions

p = r+y
2kt
y—x

T Gk

in the first and second integrals, respectively which gives

—

1
dp = ——=dy,
P N Y
1
dg = ——=dy,
or
dy = 2Vktdp = 2Vktdq
and hence
z+a a—zx
1 VEE 2Vkt
u(z,t) = [/2 " e’p22\/Hdp+/2 " eq22\/ﬁdq]
2Vmkt | s T
r z+a a—zx b
= 1 /2‘/H efp2dp+/2\_/ﬁ equdq
1 22 2 2
= — / e *dz+ e *dz
1 /;j% _sz +/2a\/% _ZQd fwhy?]
= — e 2z e z why?
VT | Jo 0 |
1
N3

(550) o (57
(52) b 3)

Summarizing, when the initial temperature along a semi-infinite bar that is
insulated at one end is given

1, O<y<a
f(y)_{o7 y>a

€

N =
e

for some point a along the bar, then the temperature at at a point z along the
bar at time ¢ > 0 is given by the function

1 a+x 1 a—x
u(x,t)Qerf<2m> —|—2erf<2m>.

Questions:
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1. What is the temperature far from the point a at any time ¢ > 0.
2. What is the temperature at the insulated side at any time ¢ > 0.

3. What is the temperature distribution along the bar as ¢t — oco.

1.0T1

0.8 T

Mo L

The error function y = erf (z)
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Lopp (-t )

Figure 6.5 Temperature distribution on a semi-infinite rod.

163



