
Part I

Inner Product Space
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1 Vector Space

We are going to learn

� Vector space.

� Linearly independent vectors, Linearly dependent vectors.

� Spanning set of a vector space

� Basis of a vector space.

� Subspace of a vector space.

� Dimension of a vector space.
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De�nition 1

A vector space over F is a set X on which two operations

+ : X �X ! X;

� : F�X ! X;

are de�ned such that:

1. X is commutative group under addition.

2. Scalar multiplication between the elements of F and X satis�es two con-
ditions.

3. The two distributive properties hold.

The elements of X are called vectors and those of F are called scalars.

Remark 2 (Real and complex vector space)

1. F = R =) X is a real vector space.

2. F = C =) X is a complex vector space.

3. We often write ax instead of a � x:

Example 3 (Vector spaces or not! Addition? scalar multiplication?)

1. The set of n�tuples of real numbers, i.e.

Rn = f(x1; x2; :::; xn) : xi 2 Rg:

2. The set of n�tuples of complex numbers, i.e.

Cn = f(x1; x2; :::; xn) : xi 2 Cg

3. The set Cn over R.

4. The set Rn over C.

5. The set Pm (I) of polynomials on an interval I with real coe¢cients and
degree � m, i.e.

Pm (I) = fanxn + :::+ a1x+ a0; ai 2 R; n � mg;

over R: When I = R; we write Pm (R) = Pm:

6. The set P (I) of polynomials on an interval I with real coe¢cients, i.e.

P (I) = fanxn + :::+ a1x+ a0; ai 2 R; n 2 N0g;

where N0 = N [ f0g. When I = R; we write P (R) = P:
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7. The set Cm (I) of real functions on an interval I with whose �rst m deriv-
atives are continuous, i.e.

Cm (I) = ff : f (n) 2 C (I) : n 2 f0; 1; :::;mgg

where C (I) is C(0) (I). When I = R; we write Cm (R) = Cm:

8. The set C1 (I) of real functions on an interval I with whose all derivatives
are continuous, i.e.

C1 (I) = \1i=1Ci (I)
When I = R; we write C1 (R) = C1:

De�nition 4

Let fx1; :::; xng be any �nite set of vectors in a vector space X: The sum

a1x1 + :::+ anxn; ai 2 F

or in a short notation
nX

i=1

aixi

is called a linear combination of the vectors in the set and the scalars ai are
called coe¢cients.

De�nition 5

1. A �nite set of vectors fx1; :::; xng is said to be linearly independent if
nX

i=1

aixi = 0) ai = 0 8i 2 f1; :::; ng:

2. A in�nite set of vectors fx1; x2; :::g is said to be linearly independent if
every subset of it is linearly independent.

De�nition 6

The set fx1; :::; xng is said to be linearly dependent if it is not linearly inde-
pendent. A �nite set of vectors is linearly dependent i¤ one of the vectors can
be represented as a linear combination of the others.

De�nition 7

A set A of vectors in a vector space X is said to span X if every vector in
X can be written as a linear combination of the vectors in A.

De�nition 8
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If a set A spans a vector space A and is linearly independent, then it is called
a basis of X:

De�nition 9

1. If a vector space X has a �nite basis, then every other basis of X is �nite
with the same number of vectors. This number is called the dimension of
X; and is denoted by dimX:

2. If a vector space X has a in�nite basis, then we write dimX =1:

De�nition 10

A subset Y of a vector space X is called a subspace of X if every linear
combination of vectors in Y lies in Y: In other words, the set Y is closed under
addition and scalar multiplication.

Example 11 (Basis and dimension)

1. The real vector space Rn:

2. The complex vector space Cn:

3. The real vector space Cn:

4. The real vector space Pm (I) :

Exercise 12 (Homework)

1. Prove that Cm is a vector space for each m 2 N0:

2. Prove that C1; P is a vector space (Hint: use the concept of subspace).

3. Find a basis for P.

4. What is the dimension of P?

5. What is the dimension of C1? (use the relation between P and C1).
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2 Inner Product Space

We are going to learn

� Inner product space.

� Norm of a vector.

� Chauchy-Bunyakowsky-Schwarz Inequality.

� Triangle Inequality.

� Orthogonality of vectors.

� Orthogonal and orthonormal set.

� Relation between linear independence and orthogonality.
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De�nition 13

Let X be a vector space over F: A function from X � X to F is called an
inner product in X if, for any pair of vectors x; y 2 X, the inner product

(x; y)! hx; yi 2 F

satis�es the following conditions:

1. hx; yi = hy; xi for all x; y 2 X.

2. hax+ by; zi = a hx; zi+ b hy; zi for all a; b 2 F;x; y; z 2 X.

3. hx; xi � 0 for all x 2 X:

4. hx; xi = 0, x = 0:

A vector space on which an inner product is de�ned is called an inner product
space.

Example 14 (Inner product space)

1. The n�dimensional Euclidean space is the vector space Rn together with
the inner product of the vectors x = (x1; :::; xn) and y = (y1; :::; yn) de�ned
by

hx; yi = x1y1 + :::+ xnyn;

2. The n�dimensional Euclidean space is the vector space Rn together with
the inner product of the vectors x = (x1; :::; xn) and y = (y1; :::; yn) de�ned
by

hx; yi = cx1y1 + :::+ cxnyn;

where c > 0:

3. In Cn we de�ne the inner product of z = (z1; :::; zn) and w = (w1; :::; wn)
by

hz; wi = z1w1 + :::+ znwn;

4. For f; g 2 C ([a; b]) we de�ne their inner product by

hf; gi =
Z b

a

f (x) g (x)dx;

Theorem 15

If X is an inner product space, then

jhx; yij2 � hx; xi hy; yi for all x; y 2 X: (CBS)

Proof:
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� CASE 1: If x = 0 or y = 0; the CBS inequality clearly holds.

� CASE 2: If x 6= 0 and y 6= 0; If hx; yi 2 C, then we can write

hx; yi = jhx; yij ei�

)
e�i� hx; yi = e�i� jhx; yij ei�

) 

e�i�x; y

�
= jhx; yij 2 R

and ��
e�i�x; y
���2 = jhx; yij2

So, by taking


e�i�x; y

�
2 R instead of hx; yi 2 C; the CBS inequality

remain the same. Therefore, we assume without loss of generality that
hx; yi 2 R:
For any t 2 R; the real quadratic expression

0 � hx+ ty; x+ tyi = hx; xi+ 2 hx; yi t+ hy; yi t2 (1.1)

have a minimum at t = �hx;yi
hy;yi .

Substituting t = �hx;yi
hy;yi in (1:1) gives

0 � hx; xi � hx; yi
2

hy; yi ;

or
hx; yi2 � hx; xi hy; yi

which is the desired inequality.

De�nition 16

Let X be an inner product space over F. We de�ne the norm on X

kk : X ! [0;1)

by
kxk =

p
hx; xi:

Example 17 (norm of an inner product space)

1. The n�dimensional Euclidean space is the vector space Rn together with
the inner product of the vectors x = (x1; :::; xn) and y = (y1; :::; yn) de�ned
by

hx; yi = x1y1 + :::+ xnyn;

This gives

kxk =
q
x21 + :::+ x

2
n:
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2. The n�dimensional Euclidean space is the vector space Rn together with
the inner product of the vectors x = (x1; :::; xn) and y = (y1; :::; yn) de�ned
by

hx; yi = cx1y1 + :::+ cxnyn;

where c > 0: This gives

kxk =
q
cx21 + :::+ cx

2
n:

3. In Cn we de�ne the inner product of z = (z1; :::; zn) and w = (w1; :::; wn)
by

hz; wi = z1w1 + :::+ znwn

This gives

kzk =
q
jz1j2 + :::+ jznj2:

4. For f; g 2 C ([a; b]) we de�ne their inner product by

hf; gi =
Z b

a

f (x) g (x)dx

This gives

kfk =
"Z b

a

jf (x)j2 dx
# 1
2

Properties of the norm (Homework: prove properties 1, 2, 3)

1. kxk � 0 8x 2 X:
2. kxk = 0, x = 0:

3. kaxk = jaj kxk 8a 2 F;8x 2 X:
4. kx+ yk � kxk+ kyk 8x; y 2 X: [Triangle inequality].

Remark 18 (Another form of the CBS inequality)

If X is an inner product space, then

jhx; yij � kxk kyk for all x; y 2 X:
Proof. (of triangle inequality)

kx+ yk2 = hx+ y; x+ yi
= hx; xi+ hx; yi+ hy; xi+ hy; yi
= kxk2 + hx; yi+ hx; yi+ kyk2

= kxk2 + 2Re hx; yi+ kyk2

� kxk2 + 2 jhx; yij+ kyk2

� kxk2 + 2 kxk kyk+ kyk2 = (kxk+ kyk)2

Taking the square root of both sides gives the triangle inequality.
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De�nition 19

Let X be an inner product space. The distance between the vectors x 2 X
and y 2 X is given by kx� yk :

Remark 20 Geometrical interpretation of the triangle inequality

Consider a triangle with vertices x; y; z, then

kx� yk = kx� z + z � yk
� kx� zk+ kz � yk :

Remark 21 (Derivation of CBS and Triangle inequality in Rn)

See book p(10).
Concept of orthogonality in Rn

In Rn; the angle � 2 [0; �] between the vectors x and y is de�ned by

hx; yi = kxk kyk cos �

In R2 and R3; the vectors x and y are orthogonal if

� = 90� , cos � = 0, hx; yi = 0

In general, two nonzero vectors in Rn are said to be orthogonal if

cos � = 0, hx; yi = 0

De�nition 22 (Orthogonal vectors in an inner product space)

1. A pair of nonzero vectors x and y in the inner product space X is said to
be orthogonal if hx; yi = 0; symbolically written as x?y:

2. A set of nonzero vectors V in X is orthogonal if every pair in V is orthog-
onal.

3. An orthogonal set V � X is said to be orthonormal if kxk = 1 for all
x 2 V:

Example 23 (An orthonormal set)

In the Euclidean space Rn; the set fe1; :::; eng is orthonormal.
Relation between linear independence and orthogonality

1. Let fx1; x2; :::; xng be an orthogonal set of vectors in the inner product
space X, then they are necessarily linearly independent.

2. Let fx1; x2; :::; xng be a linearly independent set of vectors in the inner
product space X, then we can always form an orthogonal set of vectors
from it. [Give an example of a linearly independent set that is not orthog-
onal!].
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To show that 1 is true, let

a1x1 + a2x2 + :::+ anxn = 0;

then by taking the inner product of both sides in the above equation with
xk; k 2 f1; :::; ng we have

ha1x1 + a2x2 + :::+ anxn; xki = h0; xki
or

nX

i=1

ai hxi; xki = 0

but hxi; xki = 0 8i 6= k; hence

ak kxkk2 = 0
which gives

ak = 0

This is true for all k 2 f1; :::; ng .
The second part is established using the Gram-Schmidt method. We need

the following de�nition:

De�nition 24

If x and y 6= 0 are any vectors in the inner product space X; then the
projection of x on y is given by

�
x;

y

kyk

�

and the projection vector of x along y is given by
�
x;

y

kyk

�
y

kyk
or

hx; yi
kyk2

y

Gram-Schmidt method
Let fx1; x2; :::; xng be a linearly independent set of vectors. Construct

fy1; y2; :::; yng as follows
y1 = x1;

y2 = x2 �
hx2; y1i
ky1k2

y1;

y3 = x3 �
hx3; y1i
ky1k2

y1 �
hx3; y2i
ky2k2

y2;

:::

yn = xn �
hxn; y1i
ky1k2

y1 � :::�
hxn; yn�1i
kyn�1k2

yn�1;

then the set fy1; y2; :::; yng is orthogonal [Homework: Justify!].
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3 The Space L2

We are going to learn

� Why the L2 space?

� What is the L2 space?

� Properties of the L2 space.

� Inner product with respect to a weight function.
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Recall that we de�ned an inner product on the vector space C ([a; b]) by

hf; gi =
Z b

a

f (x) g (x)dx

The associated norm is given by

kfk =
"Z b

a

jf (x)j2 dx
# 1
2

1. In the vector space C ([a; b]) ; a sequence of function might converges (in
a sense to be de�ned latter) to a limit that is not C ([a; b]) : This is prob-
lematic and thus we need to enlarge the space to avoid this problem.

2. The larger space, which we will denote by X ([a; b]) ; must be chosen such
that the inner product

hf; gi =
Z b

a

f (x) g (x)dx

is de�ned for all f; g 2 X ([a; b]) : That is, we need to make sure that for
all f; g 2 X ([a; b]) ; �����

Z b

a

f (x) g (x)dx

����� <1;

Using the CBS inequality we have
�����

Z b

a

f (x) g (x)dx

����� = jhf; gij

� kfk kgk =
"Z b

a

jf (x)j2 dx
# 1
2
"Z b

a

jg (x)j2 dx
# 1
2

Therefore, hf; gi is de�ned if jf j2 and jgj2 are both integrable.

3. De�ne L2(a; b) to be the set of function f : [a; b] ! C such that jf j2 is
integrable, i.e. Z b

a

jf (x)j2 dx <1

then

(a) L2(a; b) is a vector space. For all f; g 2 L2(a; b) we have

k�f + �gk � k�fk+ k�gk
= j�j kfk+ j�j kgk

i.e., �f + �g 2 L2(a; b):
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(b) C ([a; b]) is a proper subset of L2(a; b):For example, take

h(x) =

�
1; x = 1
0; x 2 (1; 2] :

(c) In L2(a; b);
f = 0, kfk = 0

which is not equivalent to f(x) = 0 8x 2 [a; b]: Note that f = 0 in
L2(a; b) if it is zero on all but a �nite number of points in I:

(d) We say that f and g are equal in L2(a; b) if kf � gk = 0:
(e) In L2(a; b) the integral is not a¤ected by the end points of the interval

(a; b): Therefore, L2(a; b); L2 ([a; b)) ; L2 ((a; b]) ; L2 ([a; b]) are all the
same. Also, the interval can be unbounded and we have L2(�1; b);
L2 (a;1) ; L2 (�1;1) :

Example 25 1.10

Determine which of the following functions belong to L2 and compute its
norm.

(i) f (x) =

�
1; 0 � x � 1

2
0; 1

2 � x � 1:

�
:

(ii) f (x) = 1p
x
; 0 � x � 1:

(iii) f (x) = 1
3
p
x
; 0 � x � 1:

(iv) f (x) = 1
x ; 1 � x � 1:

Solution

(i)

kfk2 =
Z 1

0

f2 (x) dx =

Z 1
2

0

1dx =
1

2
;

Hence f 2 L2 (0; 1) and kfk = 1p
2
:

(ii)

kfk2 =
Z 1

0

1

x
dx = lim

r!0+

Z 1

r

1

x
dx = lim

r!0+
lnxj1r = � lim

r!0+
ln r =1;

Hence f =2 L2 (0; 1) :

(iii)

kfk2 =
Z 1

0

1

x
2
3

dx = lim
r!0+

Z 1

r

1

x
2
3

dx = lim
r!0+

3x
1
3

���
1

r
= lim
r!0+

3
�
1� r 13

�
= 3

Hence f 2 L2 (0; 1) and kfk =
p
3:
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(iv)

kfk2 =
Z 1

1

1

x2
dx = lim

r!1

Z r

1

1

x2
dx = lim

r!1
�x�1

��r
1
= � lim

r!1

�
1

r
� 1
�
= 1

Hence f 2 L2 (1;1) and kfk = 1:
Example 26 1.11

Consider the in�nite set of functions V = f1; cosx; sinx; cos 2x; sin 2x; :::g :
(i) Prove that V is orthogonal in the real inner product space L2 (��; �) :
(ii) Construct an orthonormal set using V.
Solution
First note that V � L2 (��; �)

(i) We need to show that each pair of vectors in V is orthogonal, i.e.
hf; gi = 0 8f; g 2 V; f 6= g.

1. For all n 2 N;

h1; cosnxi =
Z �

��
cosnxdx =

sinnx

n

����
�

��
= 0:

2. For all n 2 N;

h1; sinnxi =
Z �

��
sinnxdx =

� cosnx
n

����
�

��
= 0:

3. For all n;m 2 N; n 6= m

hcosnx; cosmxi =

Z �

��
cosnx cosmxdx

=
1

2

Z �

��
[cos (n�m)x+ cos (n+m)x] dx

=
1

2

�
1

n�m sin (n�m)x+ 1

n+m
sin (n+m)x

�����
�

��
dx

= 0;

4. For all n;m 2 N; n 6= m

hsinnx; sinmxi =

Z �

��
sinnx sinmxdx

=
1

2

Z �

��
[cos (n�m)x� cos (n+m)x] dx

=
1

2

�
1

n�m sin (n�m)x� 1

n+m
sin (n+m)x

�����
�

��
dx

= 0;
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5. For all n;m 2 N;

hcosnx; sinmxi =
Z �

��
cosnx sinmxdx = 0:

(ii) We normalize all the vector in V by dividing each vector by its norm.

k1k =

sZ �

��
dx =

p
2�;

kcosnxk =

sZ �

��
cos2 nxdx =

sZ �

��

1 + cos 2nx

2
dx =

p
�;

ksinnxk =

sZ �

��
sin2 nxdx =

sZ �

��

1� cos 2nx
2

dx =
p
�:

Therefore, we have the orthonormal set

�
1p
2�
;
cosxp
�
;
sinxp
�
;
cos 2xp

�
;
sin 2xp

�
; :::

�
:

Example 27 1.12

Show that the set of functions

�
einx : n 2 z

	
=
�
:::; e�i2x; e�ix; 1; eix; ei2x; :::

	
;

is orthogonal in the complex space L2 (��; �) :
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For n 6= m we have

D
einx; eimx

E
=

Z �

��
einxeimxdx

=

Z �

��
einxe�imxdx

=

Z �

��
ei(n�m)xdx

=
1

i (n�m)e
i(n�m)x

����
�

��

=
1

i (n�m) [cos (n�m)x+ i sin (n�m)x]
����
�

��
= 0

We can construct an orthonormal set by de�ning each function by its norm



einx


 =

sZ �

��
einxeinxdx

=

sZ �

��
einxe�inxdx

=

sZ �

��
1dx

=
p
2�; n 2 Z

The orthonormal set is thus given by,

�
einxp
2�

: n 2 z
�

De�nition 28 Inner product with respect to a weight function

Let � 2 C (a; b) and � (x) > 0 8x 2 (a; b), then for f; g 2 C (a; b) we de�ne
the inner product with respect to the weight function � by

hf; gi� =
Z b

a

f (x) g (x) � (x) dx

[verify that the above de�nition satis�es the inner product conditions].
The norm is therefore de�ned by

kfk� =

sZ b

a

jf (x)j2 � (x) dx
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The set of functions
f : (a; b)! C

that satisfy
kfk� <1

is denoted by L2� (a; b) : Note that for � = 1; this set is nothing but L2 (a; b) :
If hf; gi� = 0;then f is said to be orthogonal to g with respect to the weight

function �:
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4 Sequences of Functions

We are going to learn

� Pointwise convergence of sequences of functions.

� Uniform convergence of sequences of functions.

� Pointwise convergence of series of functions.

� Absolute convergence of series of functions.

� Uniform convergence of series of functions.
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De�nition 29

A sequence of functions (real or complex)

fn : I ! F

is said to converge pointwise to a function

f : I ! F

i.e.,
lim
n!1

fn = f; lim fn = f; or fn ! f;

if for every x 2 I;
limn!1fn (x) = f (x) :

That is, 8� > 0; 9N(�; x) such that

n � N ) jfn (x)� f (x)j < �: (1.15)

Example 30 1.14

Find the pointwise limit of the following functions

(i) fn (x) =
1
n sinnx; x 2 R:

(ii) fn (x) = xn; x 2 [0; 1] :

(iii) fn (x) =
nx
1+nx ; x 2 [0;1):

Solution

(i) Let fn (x) =
1
n sinnx; x 2 R:

lim
n!1

fn (x) = lim
n!1

1

n
sinnx = 0:

Hence, fn ! f where f(x) = 0 8x 2 R:

(ii) Let fn (x) = xn; x 2 [0; 1] :

lim
n!1

xn =

�
0; 0 � x < 1
1; x = 1

Thus, fn ! f where

f (x) =

�
0; 0 � x < 1
1; x = 1
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(iii) Let fn (x) =
nx
1+nx ; x 2 [0;1):

lim
n!1

nx

1 + nx
=

�
0; x = 0
1; x > 0

Example 31 1.15

For each n 2 N; de�ne the sequence fn : [0; 1]! R by

fn (x) =

8
<
:

0; x = 0
n; 0 < x � 1

n
0; 1

n < x � 1

Find the pointwise limit of fn:
Solution
First note that

fn(0)! 0:

For x > 0; we will show that there is always an N 2 N such that fn(x) = 0
8n � N: Now, since x > 0 and 1

n ! 0 then 9N(x) 2 N such that

n � N ) 1

n
� 1

N
< x

Therefore,
lim
n!1

fn (x) = 0:

De�nition 32

A sequence of functions (real or complex)

fn : I ! F

is said to converge uniformly to a function

f : I ! F

21



i.e.,
fn

u! f;

if 8� > 0, 9N(�) such that
n � N ) jfn (x)� f (x)j < � 8x 2 R:

Remark 33 (Relation between pointwise and uniform convergence)

Uniform convergence)Pointwise convergence.
Example 34 1.14 (revisited)

Which of the following sequences converges uniformly to its pointwise limit

(i) fn (x) =
1
n sinnx; x 2 R:

(ii) fn (x) = xn; x 2 [0; 1] :
(iii) fn (x) =

nx
1+nx ; x 2 [0;1):

Solution

(i) Let � > 0; then for n � N > 1
� and for all x 2 R

jfn (x)� f (x)j =
����
1

n
sinnx� 0

���� =
����
1

n
sinnx

���� �
1

n
� 1

N
< �

i.e. fn
u! f

(ii) Let 0 < � < 1
jfn (x)� f (x)j = jxn � 0j = xn

So for any N 2 N;
xN < �, x < N

p
�

that is for all x 2 [ Np�; 1),
��xN � 0

�� > �

i.e. fn
u
9 f

(iii) Let 0 < � < 1

jfn (x)� f (x)j =
����

nx

1 + nx
� 1
���� =

1

1 + nx

So for any N 2 N;
1

1 +Nx
< �, x >

1� �
N�

that is for all x 2
�
0; 1��N�

�
,
����

Nx

1 +Nx
� 1
���� > �

i.e. fn
u
9 f
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Remark 35 1.16

1. In the de�nition of pointwise and uniform convergence, we can replace the
"<" relation by "�" and the "�" by "c�", where c > 0.

2. The statement
jfn (x)� f(x)j � � 8x 2 I

is equivalent to
sup
x2I

jfn (x)� f(x)j � �:

Therefore, fn
u! f , 8� > 0;9N 2 N such that

n � N ) sup
x2I

jfn (x)� f(x)j � �

De�nition 36

A sequence of functions (real or complex)

fn : I ! F

is said to converge uniformly to a function

f : I ! F

i.e.,
fn

u! f;

if
lim
n!1

sup
x2I

jfn (x)� f(x)j = 0

Example 37 1.14 (revisited)

Use the above criteria to decide which of the following sequences converges
uniformly to its pointwise limit

(i) fn (x) =
1
n sinnx; x 2 R:

(ii) fn (x) = xn; x 2 [0; 1] :

(iii) fn (x) =
nx
1+nx ; x 2 [0;1):

Solution

(i)

jfn (x)� f (x)j =
����
1

n
sinnx� 0

���� =
����
1

n
sinnx

����
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but

0 �
����
1

n
sinnx

���� �
1

n
; 8x 2 R

) 0 � sup
x2R

����
1

n
sinnx

���� �
1

n

) lim
n!1

sup
x2R

����
1

n
sinnx

���� = 0 [Why?]

Thus, fn
u! f .

(ii)

jfn (x)� f (x)j =
�
xn; x 2 [0; 1)
0; x = 1

Hence
sup
x2[0;1]

jfn (x)� f (x)j = sup
x2[0;1)

xn = 1

Therefore,
lim
n!1

sup
x2[0;1]

jfn (x)� f (x)j = 1 6= 0

i.e., fn
u
9 f .

(iii)

jfn (x)� f (x)j =
�

0; x = 0
1

1+nx ; x > 0

and hence

sup
x2[0;1)

jfn (x)� f (x)j = sup
x2(0;1)

jfn (x)� f (x)j = 1

Therefore,
lim
n!1

sup
x2[0;1)

jfn (x)� f (x)j = 1 6= 0

i.e., fn
u
9 f .

Theorem 38 1.17

Let (fn) be a sequence of functions de�ned on the interval I, then

1. If fn is continuous on I 8n and fn u! f; then f is continuous on I:

2. If fn is integrable on I 8n, fn u! f and I is bounded, then f is integrable
on I and Z

I

f (x) dx = lim

Z

I

fn (x) dx
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3. If fn is di¤erentiable on I 8n, fn ! f; f
0
n

u! g and I is bounded, then

fn
u! f , f is di¤erentiable and

g = f 0

Remark 39 1.18

In part 3, the pointwise convergence fn ! f can be replaced by a weaker
condition in part 3, namely the convergence fn (x0) ! f (x0) for some point
x0 2 I:

Example 40 1.14 (revisited)

Check if the conditions of theorem 1.17 are satis�ed for the following se-
quences

(i) fn (x) =
1
n sinnx; x 2 I � R:

(ii) fn (x) = xn; x 2 [0; 1] :

(iii) fn (x) =
nx
1+nx ; x 2 I � [0;1):[Homework!]

Example 41 1.15 (revisited)

For each n 2 N; de�ne the sequence fn : [0; 1]! R by

fn (x) =

8
<
:

0; x = 0
n; 0 < x � 1

n
0; 1

n < x � 1
We know that fn ! 0:

1. limn!1 fn is a continuous function.

2.

lim
n!1

Z 1

0

fn (x) dx = lim
n!1

Z 1
n

0

ndx = 1 6= 0 =
Z 1

0

lim
n!1

fn (x) dx

which implies that limn!1 fn is not uniform.

3. fn is not di¤erentiable but limn!1 fn = 0 is di¤erentiable.

De�nition 42

Given a sequence of (real or complex) functions (fn) de�ned on a real interval
I; we de�ne its nth partial sum by

Sn (x) = f1 (x) + :::+ fn (x) =
nX

k=1

fk (x) ; x 2 I:

The sequence of functions (Sn) is called an in�nite series of functions and
is denoted

P
fk:
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De�nition 43

The series
P
fk is said to converge pointwise (or simply, converge) on I if

the sequence (Sn) converges pointwise on I. The sum of the series is given by
the limit 1X

k=1

fk (x) = lim
n!1

Sn (x) :

If the series
P1
k=1 fk (x) does not converge, then it is said to diverge at the

point x:

De�nition 44

The series
P
fk is said to be absolutely convergent on I if the positive seriesP jfkj is pointwise convergent on I:

De�nition 45

The series
P
fk is said to converge uniformly on I if the sequence (Sn)

converges uniformly on I.

Corollary 46 1.19

Suppose the series
P
fn converges pointwise on the interval I:

1. If fn is continuous on I 8n and
P
fn converges uniformly on I, then its

sum
P1
n=1 fn is continuous.

2. If fn is integrable on I 8n, I is bounded, and
P
fn converges uniformly

on I, then
P1
n=1 fn is integrable on I and

Z

I

1X

n=1

fn (x) dx =

1X

n=1

Z

I

fn (x) dx

3. If fn is di¤erentiable on I 8n, I is bounded, and
P
f
0
n converges uniformly

on I, then
P1
n=1 fn converges uniformly on I and its limit is di¤erentiable

on I and satis�es  1X

n=1

fn

!0
=

1X

n=1

f
0
n

The de�nition of pointwise, uniform and absolute convergence of a series
require that we test the convergence of the sequence of partial sums. The
following test provides an easier way to do that!

Theorem 47 1.20 (Weierstrass M-Test)
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Let (fn) be a sequence of functions on I; and suppose that there is a sequence
of nonnegative numbers Mn such that

jfn (x)j �Mn for all x 2 I; n 2 N:

If
X

Mn converges, then
X

fn converges uniformly and absolutely on I:

Proof
We want to prove that 8� > 0, 9N(�) 2 N such that

n � N ) jS (x)� Sn (x)j < �; 8x 2 I
or equivalently

n � N )
�����

1X

k=1

fk (x)�
nX

k=1

fk (x)

����� < �; 8x 2 I

But for all x 2 I
�����

1X

k=1

fk (x)�
nX

k=1

fk (x)

�����

=

�����

1X

k=n+1

fk (x)

�����

�
1X

k=n+1

jfk (x)j

�
1X

k=n+1

Mk

Now, if
P1
k=1Mk is convergent, then so is

P1
k=n+1Mk: Therefore, for a chosen

� > 0, 9N(�) 2 N such that

n � N )
1X

k=n+1

Mk =

�����

1X

k=1

Mk �
nX

k=1

Mk

����� < �

Thus, we have

n � N )
�����

1X

k=1

fk (x)�
nX

k=1

fk (x)

����� < � 8x 2 I

which proves that
P1
k=1 fk (x) is uniformly convergent.

To prove that
P1
k=1 fk (x) is absolutely convergent we need to prove thatP1

k=1 jfk (x)j is pointwise convergent.
Now, for each x 2 I; bothP1

k=1 jfk (x)j and
P1
k=1Mk is a series of nonneg-

ative numbers that satisfy

jfk (x)j �Mk 8k 2 N
Therefore, since

P1
k=1Mk is convergent, then so is

P1
k=1 jfk (x)j according to

the comparison test.
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Example 48 1.21

In the following, determine if the series is uniformly convergent and check
the properties listed in Corollary 1.19:

(i)
P

1
n2 sinnx; x 2 R:

(ii)
P

1
n3 sinnx; x 2 R:

Solution:

(i) Since ����
1

n2
sinnx

���� �
1

n2
8x 2 R; n 2 N

and the nonnegative series of numbers
P

1
n2 is convergent, we can use the

M-Test to conclude that
P

1
n2 sinnx is uniformly convergent on R:

1. Since (a) 1
n2 sinnx is continuous on R for all n and (b)

P
1
n2 sinnx is

uniformly convergent on R, then
P

1
n2 sinnx is continuous on R.

2. Since (a) 1
n2 sinnx is integrable on [a; b] � R and (b)

P
1
n2 sinnx is uniformly

convergent on [a; b] � R; then P 1
n2 sinnx is integrable on [a; b] � R and

Z b

a

 1X

n=1

1

n2
sinnx

!
dx =

1X

n=1

1

n2

Z b

a

sinnxdx

=

1X

n=1

1

n3
(cosna� cosnb)

� 2

1X

n=1

1

n3

which is a convergent p�series.

3. fn =
1
n2 sinnx is di¤erentiable on R for all n with f

0
n =

1
n cosnx, butX

1
n cosnx is not convergent at some points of x 2 R. Therefore, we

cannot deduce that

d

dx

1X

n=1

�
1

n2
sinnx

�
=

1X

n=1

1

n
cosnx

(ii) Since ����
1

n3
sinnx

���� �
1

n3
8x 2 R; n 2 N

and the nonnegative series of numbers
P

1
n3 is convergent, we can use the

M-Test to conclude that
P

1
n3 sinnx is uniformly convergent on R:
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1. Since (a) 1
n3 sinnx is continuous on R for all n and (b)

P
1
n3 sinnx is

uniformly convergent on R, then
P

1
n3 sinnx is continuous on R.

2. Since (a) 1
n3 sinnx is integrable on [a; b] � R and (b)

P
1
n3 sinnx is uniformly

convergent on [a; b] � R; then
P

1
n3 sinnx is integrable on [a; b] � R and

Z b

a

1X

n=1

�
1

n3
sinnx

�
dx =

1X

n=1

Z b

a

�
1

n3
sinnx

�
dx

3. fn =
1
n3 sinnx is di¤erentiable on [a; b] � R for all n with f

0
n =

1
n2 cosnx.

Here,
X

1
n2 cosnx is uniformly convergent on [a; b] � R. Therefore, we

deduce that
X

1
n3 sinnx is uniformly convergent on R and

d

dx

1X

n=1

1

n3
sinnx =

1X

n=1

1

n2
cosnx

holds for all x 2 [a; b] :
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5 Convergence in L2

We are going to learn

� Convergence of sequences of functions in L2.

� Relation between pointwise convergence and convergence in L2.

� Relation between uniform convergence and convergence in L2.

� The Cauchy sequence and its relation to convergence.

� Completeness of L2:

� Density of C in L2:
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De�nition 49 1.22

A sequence of functions (fn) in L2 (a; b) is said to converge in L2 if there is
a function f 2 L2 (a; b) such that

lim
n!1

kfn � fk = 0; ((1.19))

that is, if for every � > 0 there is an integer N such that

n � N ) kfn � fk < �:

Equation (1:19) is equivalent to writing

fn
L2! f;

and f is called the limit in L2 of the sequence (fn) :

Example 50 1.23

In the following determine if the sequence converge in L2

(i) fn (x) = xn; x 2 [0; 1] :

(ii) fn (x) =

8
<
:

0; if x = 0
n; if 0 < x � 1

n
0; if 1

n < x � 1

Solution:

(i) We already know that the pointwise limit of xn on [0; 1] is given by

f (x) =

�
0; if 0 � x < 1
1; if x = 1

;

Note that L2 ([0; 1]) = L2 ([0; 1)) and f = 0 in L2. Moreover,

kxn � 0k =

�Z 1

0

(xn)
2
dx

� 1
2

=

"
x2n+1

2n+ 1

����
1

0

# 1
2

=

�
1

2n+ 1

� 1
2

i.e.,

lim
n!1

kxn � 0k = lim
n!1

�
1

2n+ 1

� 1
2

= 0

Therefore,

xn
L2! 0
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(ii) We know that the pointwise limit of

fn (x) =

8
<
:

0; if x = 0
n; if 0 < x � 1

n
0; if 1

n < x � 1

is
f (x) = 0; x 2 [0; 1] :

Now,

kfn (x)� 0k =

"Z 1
n

0

(n)
2
dx

# 1
2

=
h
n2x

�� 1n
0

i 1
2

= n
1
2

i.e.,
lim
n!1

kfn (x)� 0k = lim
n!1

n
1
2 =1

Therefore, fn does not converge in L2.

Remark

1. pointwise convergence 9 convergence in L2:

2. If a sequence converges both pointwise and in L2; then the limit functions
are equal in L2:

Lemma 51 (Exercise 1.41, page 29 )

If fn
u! f on [a; b] ; then jfn � f j u! 0 on [a; b] and hence jfn � f j2 u! 0 on

[a; b] :
Proof:
If fn

u! f on [a; b] ; then

lim
n!1

sup
x2[a;b]

jfn � f j = 0;

which is equivalent to

lim
n!1

sup
x2[a;b]

jjfn � f j � 0j = 0

That is, jfn � f j u! 0 on [a; b] :

Next, we prove that jfn � f j2 u! 0 on [a; b]. Let � > 0 and take �1 =

min (�; 1) ; then since jfn � f j u! 0; 9N (�) 2 N such that

n � N ) sup
x2[a;b]

jfn � f j � �1 � �
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That is,
n � N ) jfn � f j � �1 8x 2 [a; b]

or
n � N ) jfn � f j2 � �21 < �1 � � 8x 2 [a; b]

Hence,
n � N ) sup

x2[a;b]
jfn � f j2 � �

or in other words

lim
n!1

sup
x2[a;b]

���jfn � f j2 � 0
��� = 0

i.e., jfn � f j2 u! 0:

Theorem 52 (Relation between uniform convergence and convergence in L2)

Let fn be a sequence of functions in L2 (I) where I is bounded. If fn u!
f;where f 2 L2 (I) ; then fn L2! f:
Proof:
We want to prove that

lim
n!1

kfn � fk = 0

Now,

lim
n!1

kfn � fk2 = lim
n!1

Z

I

jfn � f j2 dx

But fn
u! f . Hence, using the above lemma we have jfn � f j2 u! 0. Moreover,

using Theorem 1.17 gives

lim
n!1

Z

I

jfn � f j2 dx =
Z

I

lim
n!1

jfn � f j2 dx = 0

from which we get
lim
n!1

kfn � fk2 = 0

which gives
lim
n!1

kfn � fk = 0:

Example 53 1.24

Show that the series
P1
k=1

1
k2 sin kx is convergent in L2 (��; �).

Solution:
We say that

P1
k=1

1
k2 sin kx is convergent in L2 (��; �) if the sequence of

partial sums Sn =
Pn
k=1

1
k2 sin kx is convergent in L2 (��; �) : Using the above

theorem it is su¢cient to prove that the sequence (Sn) is in L2 (��; �) and
Sn

u! S in [��; �] for some S 2 L2 (��; �) :
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We know from example 1.21 that Sn
u! S in [��; �] ; where S =P1

k=1
1
k2 sin kx.

Now, since 1
k2 sin kx is continuous 8k on [��; �] ; then so is Sn, which proves

that (Sn) is in L2 (��; �) : Next, since Sn u! S, then S is also continuous on
[��; �] : Thus, S 2 L2 (��; �) :

Remark 54 (Testing the convergence of
P1
k=1

1
k cos kx)

We cannot use the above argument to prove the convergence of the seriesP1
k=1

1
k cos kx in [��; �] : In fact, the series

P1
k=1

1
k cos kx is divergent at all

x = 2z�; z 2 Z:

De�nition 55 1.25 ()

A sequence in L2 (��; �) is called a Cauchy sequence if, 8 � > 0; 9N 2 N
such that

n;m � N ) kfn � fmk < �

Theorem 56 1.26 (Convergence and Cauchy sequence)

1. Every convergent sequence (fn) in L2 is a Cauchy sequence [Homework!].

2. For every Cauchy sequence (fn) in L2 there is a function f 2 L2 such that
fn

L2! f . That is to say L2 is "complete".

Example 57 1.28

Show that the series
P1
k=1

1
k cos kx is convergent in L2 (��; �) :

Solution:
Clearly, the sequence (Sn), where Sn =

Pn
k=1

1
k cos kx, is in L2 (��; �) : So,

we only need to prove that (Sn) is a Cauchy sequence.
Let � > 0;

kSn (x)� Sm (x)k2 =







nX

k=m+1

1

k
cos kx








2

;m < n;

Since the set fcos kx : k 2 Ng is orthogonal in L2 (��; �) (Example 1.11),
we have








nX

k=m+1

1

k
cos kx








2

=
nX

k=m+1

1

k2
kcos kxk2 = �

nX

k=m+1

1

k2

but
P1
k=1

1
k2 is a convergent series, therefore the sequence of partial sums�Pn

k=1
1
k2

�
is a Cauchy sequence in [��; �]. In other words for the given � > 0;

9N 2 N such that

n;m � N )
�����

nX

k=1

1

k2
�

mX

k=1

1

k2

����� <
�2

�

34



or

n;m � N )
nX

k=m+1

1

k2
<
�2

�

Form which we get

n;m � N )







nX

k=m+1

1

k
cos kx








2

= �
nX

k=m+1

1

k2
< �2

Taking the square root, we get

n;m � N )







nX

k=m+1

1

k
cos kx






 < �

Remark 58 convergence in L2 9pointwise convergence.

Remark 59 (A series that is divergent pointwise but is convergent in L2 (��; �))

Using the above steps, we can prove that the series
P1
k=1

1
k cos kx is conver-

gent in L2 (��; �) : The series P1
k=1

1
k cos kx is divergent at all x = 2z�; z 2 Z:

Thus, convergence in L2 9pointwise convergence.

Theorem 60 1.27 (Density of C in L2)

For any f 2 L2 (a; b) and any � > 0; there is a continuous function g on [a; b]
such that kf � gk < �:
The above theorem shows that the set of continuous function on [a; b] is

dense in L2 (a; b) in the same way the rational numbers Q are dense in R: In
fact, for every f 2 L2 (a; b) ; there is a sequence of continuous functions (fn)
such that fn

L2! f:

Example 61 (Density of C in L2)

Show that the following sequence of functions in C [�1; 1]

fn (x) =

8
<
:

0; �1 � x � �1
n

nx+ 1; �1
n < x < 0

1; 0 � x � 1

converges to the function

f (x) =

�
0; �1 � x < 0
1; 0 � x � 1

in L2 (�1; 1) :
Solution:
We need to show that

lim
n!1

kfn � fk = 0
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Now

lim
n!1

kfn � fk = lim
n!1

�Z 1

�1
jfn � f j2 dx

� 1
2

= lim
n!1

"Z 0

� 1
n

(nx+ 1)
2
dx

# 1
2

= lim
n!1

2
4 (nx+ 1)

3

3n

�����

0

x=�1
n

3
5

1
2

= lim
n!1

1p
3n
= 0
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6 Orthogonal Functions

We are going to learn

� Given an orthogonal set S in L2 and a function f 2 L2, we answer the
following questions:

� If f is a linear combination of a �nite number of elements in S; what
are the coe¢cients in this linear combination?

� How to �nd the linear combination in S that best approximates f?

� Completeness of an orthogonal set.

� Bessel�s inequality.

� Parseval�s relation.
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Consider an orthogonal set of functions S = f'1; '2; '3; :::g in the complex
space L2:
Question 1

Let f 2 L2 be a �nite linear combination of the functions in S; that is,

f =
nX

i=1

�i'i; �i 2 C:

Find the coe¢cients "�i�s"!
Answer
If we take the inner product of f with 'k, k = 1; 2; :::; n:

hf; 'ki =
nX

i=1

h�i'i; 'ki

) hf; 'ki =
nX

i=1

�i h'i; 'ki

) hf; 'ki = �k k'kk2

) �k =
hf; 'ki
k'kk2

:

Therefore, we have

f =

nX

k=1

hf; 'ki
k'kk2

'k;

Remark 62 1

1. f is the sum of the projection vectors of f along 'k;namely
hf;'ki
k'kk2

'k;

k = 1; 2; :::; n:

2. In terms of the orthonormal set f k = 'k
k'kk

g; we have

f =
nX

k=1

hf; 'ki
k'kk2

'k

=

nX

k=1

�
f;

'k
k'kk

�
'k
k'kk

=
nX

k=1

hf;  ki k

=

nX

k=1

�k k

In this case, the coe¢cient "�k" is equal to
hf; ki
k kk

; which is the projection

of f on  k:
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Question 2

Let f be any function in L2. Find the �nite linear combination of the
functions in S that best approximates f !
Answer
The best approximation of f is the function

Pn
k=1 �k'k that minimizes the

quantity 




f �
nX

k=1

�k'k








but





f �

nX

k=1

�k'k








2

=

*
f �

nX

k=1

�k'k; f �
nX

k=1

�k'k

+

=

*
f; f �

nX

k=1

�k'k

+
�
*

nX

k=1

�k'k; f �
nX

k=1

�k'k

+

= kfk2 �
nX

k=1

�k hf; 'ki �
nX

k=1

�k h'k; fi+
*

nX

k=1

�k'k;

nX

j=1

�j'j

+

= kfk2 �
nX

k=1

�k hf; 'ki �
nX

k=1

�khf; 'ki+
nX

k=1

nX

j=1

�k�j


'k; 'j

�

= kfk2 �
nX

k=1

�k hf; 'ki �
nX

k=1

�k hf; 'ki+
nX

k=1

�k�k h'k; 'ki

= kfk2 �
nX

k=1

h
�k hf; 'ki+ �k hf; 'ki

i
+

nX

k=1

j�kj2 k'kk2

= kfk2 � 2
nX

k=1

Re�k hf; 'ki+
nX

k=1

j�kj2 k'kk2

= kfk2 �
nX

k=1

jhf; 'kij2

k'kk2

+
nX

k=1

k'kk2
"
j�kj2 � 2Re�k

hf; 'ki
k'kk2

+
jhf; 'kij2

k'kk4

#

= kfk2 �
nX

k=1

jhf; 'kij2

k'kk2

+

nX

k=1

k'kk2
" 

�k �
hf; 'ki
k'kk2

! 
�k �

hf; 'ki
k'kk2

!#

= kfk2 �
nX

k=1

jhf; 'kij2

k'kk2
+

nX

k=1

k'kk2
������k �

hf; 'ki
k'kk2

�����

2

Note that only the last term involves �k and this term is always � 0: By
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choosing

�k =
hf; 'ki
k'kk2

; k = 1; 2; :::n:

the term attains its minimum, namely 0:As a result, the best approximation of
f is given by

nX

k=1

hf; 'ki
k'kk2

'k

and the minimum of the quantity kf �
Pn
k=1 �k'kk

2
is given by






f �
nX

k=1

�k'k








2

= kfk2 �
nX

k=1

jhf; 'kij2

k'kk2
:

Remark 63 2

1. Since 




f �
nX

k=1

�k'k








2

� 0

we have,
nX

k=1

jhf; 'kij2

k'kk2
� kfk2

for all n:Therefore, it is also true as n ! 1; which gives the Bessel�s
inequality, namely

1X

k=1

jhf; 'kij2

k'kk2
� kfk2

for any orthogonal set f'k : k 2 Ng and f 2 L2:

2. Bessel�s inequality becomes equality if and only if






f �
1X

k=1

hf; 'ki
k'kk2

'k








2

= 0

[why? Homework]. That is,

f =
1X

k=1

hf; 'ki
k'kk2

'k

are equal in L2.

De�nition 64 1.29
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An orthogonal set f'n : n 2 Ng in L2 is said to be complete if, for any
f 2 L2;

nX

k=1

hf; 'ki
k'kk2

'k
L2! f

Remark 65 3

The above de�nition states that an orthogonal set f'n : n 2 Ng in L2 is
complete if for each f 2 L2, we have

f =

1X

k=1

hf; 'ki
k'kk2

'k

in L2: In other words, f'n : n 2 Ng is a basis for L2:

Theorem 66 1.30

An orthogonal set f'n : n 2 Ng in L2 is complete if and only if
1X

k=1

jhf; 'kij2

k'kk2
= kfk2

Remark 67 1.31

1. The equality in theorem 1.31 is called Parseval�s relation or the Complete-
ness relation.

2. We have shown that for any orthogonal set f'n : n 2 Ng in L2; the best
approximation for f 2 L2 is

Pn
k=1

hf;'ki
k'kk2

'k, and this choice is independent

of n: Moreover, if the orthogonal set f'n : n 2 Ng is complete, then

f =
1X

k=1

hf; 'ki
k'kk2

'k

in L2:

3. When the orthogonal set f'n : n 2 Ng is normalized to f n : n 2 Ng;
then

(a) The Bessel�s inequality becomes

1X

k=1

jhf;  kij2 � kfk2

(b) The Parseval�s equality becomes

1X

k=1

jhf;  kij2 = kfk2
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4. Since kfk <1 for all f 2 L2; Bessel�s inequality implies that hf;  ni ! 0
whether the set f n : n 2 Ng is complete or not.

5. Parseval�s relation can be seen as a generalization of the Pythagoras the-
orem from Rn to L2, where

kfk2 � the square of the length of the vector
1X

k=1

jhf;  kij2 � the sum of the squares of the projections of f

on the orthonormal basis.
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Part II

The Sturm-Liouville Theory
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7 Linear Second-Order Equations

We are going to learn

� Some Terminology related to second-order ordinary di¤erential equations.

� Properties of the solution of a second-order ordinary di¤erential equation.

� Initial and boundary conditions.

� The Wronskian and its relation to the solution of a second-order ordinary
di¤erential equation.
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Consider the second-order ordinary di¤erential equation on the real interval
I

a0 (x) y
00
+ a1 (x) y

0
+ a2 (x) y = f (x) ; (2.1)

where a0; a1a2 and f are given complex functions on I:

1. If f = 0 on I; the equation is called homogeneous, otherwise it is nonho-
mogeneous.

2. A function ' 2 C2 (I) is a solution of the above equation if the substituting
y = ' gives an identity, i.e.

a0 (x)'
00
+ a1 (x)'

0
+ a2 (x)' = f (x) 8x 2 I:

3. Let

L = a0 (x)
d2

dx2
+ a1 (x)

d

dx
+ a2 (x) ;

then in terms of the di¤erential operator L; we can write

Ly = f (x)

(a) Note that for any functions '; 2 C2 (I) and any constants c1; c2 2
C; we have

L (c1'+ c2 ) = c1L'+ c2L 

thus, L is a linear di¤erential operator.

(b) If ' and  are solutions of a linear homogeneous equation, then

L' = 0; L = 0

and thus
L (c1'+ c2 ) = c1L'+ c2L = 0

This property of linear homogeneous equations is the superposition
principle. That is, if ' and  are solutions of a linear homogeneous
equation, then so is any linear combination "c1'+ c2 " of them.

4. If a0 (x) 6= 0 8x 2 I; then equation (2:1) is said to be regular on I; and can
be written in the equivalent form (i.e. the two equations have the same
set of solutions)

y00 + q (x) y0 + r (x) y = g (x)

where

q =
a1
a0
; r =

a2
a0
; g =

f

a0
:

5. If a0 (x0) = 0 at some x0 2 I; then equation (2:1) is said to be singular
and x0 is called a singular point of the equation.
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Consider the second-order ordinary di¤erential equation on the real interval
I

y00 + q (x) y0 + r (x) y = g (x) (2.2)

1. If q; r and g are continuous functions on I and x0 is any point in I;then
for any numbers � and �; there is a unique solution ' of equation (2:2) on
I such that

' (x0) = �; '0 (x0) = � (2.3)

Equation (2:2) with the initial conditions (2:3) is called an initial-value
problem.

2. If g (x) = 0 8x 2 I; then (2:2) becomes the homogeneous equation

y00 + q (x) �y0 + r (x) y = 0 (2.4)

and

(a) Equation (2:2) has two linearly independent solutions y1 (x) and
y2 (x) on I:

(b) Any solution of (2:2) can be written in the form

c1y1 + c2y2 (2.5)

for some constants c1 and c2: Thus, (2:5) is called the general solution
of (2:4) :

(c) Using c1 = c2 = 0 in (2:5) shows that 0 is always a solution of (2:4) :
This solution is called the trivial solution.

(d) According to the existence and uniqueness theorem, the trivial solu-
tion is the only solution of (2:4) if � = � = 0 in the initial conditions
(2:3) :

(e) If the coe¢cients q and r are constants, the general solution of (2:4)
is found by solving the second degree equation

m2 + qm+ r = 0

i. If the roots are distinct, then the general solution is given by

c1e
m1x + c2e

m2x

ii. If m1 = m2 = m; then the general solution is given by

c1e
mx + c2xe

mx

3. If the coe¢cients q and r are analytical functions at some point x0 in the
interior of I; i.e. each of them can be represented in an open interval
centered at x0 by a power series in (x� x0) ; then
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(a) the general solution of (2:4) is also analytic at x0 and is given by

1X

n=0

cn (x� x0)n

The above series converges in the intersection of I and the two inter-
vals of convergence of q and r.

(b) The coe¢cients cn, n = 2; 3; 4::: in the above power series can be
written in terms of c0 and c1 by substituting the series into equation
(2:4) :

4. If g (x0) 6= 0 for some x0 2 I; then (2:2) is nonhomogeneous and

(a) If yp (x) is a particular solution of equation (2:2), then the general
solution is given by

yp + c1y1 + c2y2

(b) A unique solution is obtained by using the initial conditions (2:3) to
determine the values of c1 and c2:

5. The special case of equation (2:1)

x2y00 + axy0 + by = 0;

where a and b are constants is called the Cauchy-Euler equation. The
general solution is found by solving the second degree equation

m2 + (a� 1)m+ b = 0

(a) i. If the roots are distinct, then the general solution is given by

c1x
m1 + c2x

m2

ii. If m1 = m2 = m; then the general solution is given by

c1x
m + c2x

mx log x

In the existence and uniqueness theorem of equation (2:2), we mentioned
initial conditions at a point x0 in I: In most physical application, the di¤erential
equation is subject to boundary conditions. That is, if we let I = [a; b] then the
conditions are imposed at the end points of the interval, namely a and b:
The general form of the boundary conditions is given by

�1y (a) + �2y
0 (a) + �3y (b) + �4y

0 (b) = �;

�1y (b) + �2y
0 (b) + �3y (a) + �4y

0 (a) = �

where �i and �i are constants and satisfy

4X

i=1

j�ij > 0 and
4X

i=1

j�ij > 0:

Equation (2:1) with the boundary conditions is called a boundary-value problem.
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1. If � = � = 0; then we have homogenous boundary conditions

2. If �3 = �4 = �3 = �4 = 0; then we have separated boundary conditions.

3. Unseparated boundary conditions are called coupled boundary conditions.

4. If y (a) = y (b) and y0 (a) = y0 (b) ; then we have periodic boundary condi-
tions.

De�nition 68 2.1

For any two functions f; g 2 C1 the determinant

W (f; g) (x) =

����
f (x) g (x)
f 0 (x) g0 (x)

���� = f (x) g0 (x)� g (x) f 0 (x)

is called the Wronskian of f and g: The symbol W (f; g) (x) is sometimes ab-
breviated to W (x).

Lemma 69 2.2

If y1 and y2 are solutions of the homogeneous equation

y00 + q (x) y0 + r (x) y = 0; x 2 I

where q 2 C (I) ; then either W (y1; y2) = 0 for all x 2 I; or W (y1; y2) (x) 6= 0
for any x 2 I:
Proof:
Using the de�nition of the Wronskian, we have

W (x) = y1y
0
2 � y01y2

Therefore,

W 0 (x) = y01y
0
2 + y1y

00
2 � y001 y2 � y01y02

= y1y
00
2 � y001 y2

But since y1 and y2 are solution of the di¤erential equation, we have

y001 + qy
0
1 + ry1 = 0;

y002 + qy
0
2 + ry2 = 0

Multiplying the �rst equation by �y2 and the second by y1 gives

�y001 y2 � qy01y2 � ry1y2 = 0;

y002 y1 + qy
0
2y1 + ry2y1 = 0

Adding the above equations gives

y002 y1 � y001 y2 + q (y02y1 � y01y2) = 0
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or
W 0 + qW = 0

This is a linear �rst order ordinary di¤erential equation. Thus, multiplying
the above equation by the integrating factor

e
R
q(x)dx

gives
e
R
q(x)dxW 0 + qe

R
q(x)dxW = 0

or
d

dx

h
e
R
q(x)dxW

i
= 0

or
e
R
q(x)dxW = c

or
W (x) = ce�

R
q(x)dx

where c is a constant. If c = 0; then W (x) = 0 for all x: Otherwise, W (x) 6= 0
for all x:

Lemma 70 2.4

Any two solutions y1 and y2 of equation (2:10) are linearly independent if,
and only if, W (y1; y2) (x) 6= 0 on I:
Proof:
We will prove that: any two solutions y1 and y2 of (2:10) are linearly depen-

dent ,W (y1; y2) = 0 for some point x0 in I:
()) If y1 and y2 are linearly dependent, then 9 k constant such that y1 = ky2:

Therefore,

W = y1y
0
2 � y01y2

= ky2y
0
2 � ky02y2

= 0:

(() LetW (y1; y2) = 0 for some point x0 in I; then by Lemma 2.2W (y1; y2) =
0 for all x 2 I: This implies that

����
y1 y2
y01 y02

���� = 0

Which means that the system

k1 (y1; y
0
1) + k2 (y2; y

0
2) = (0; 0)

has a nontrivial solution. Consequently

k1y1 + k2y2 = 0

has a nontrivial solution, i.e. y1 and y2 are linearly dependent functions.
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Remark 71 2.5

Note that we used the fact that y1 and y2 are solutions of (2:10) only to
prove that if the Wronskian vanishes on some point in I; then these solutions
are linearly dependent. This means we can �nd two linearly independent func-
tions with a Wronskian that vanishes at some points of their domain. Take for
example x; x2on [�1; 1] :

Example 72 2.6

Find the solution of the equation

y00 + y = 0 (2.12)

on the interval [0; �] ; with the following set of conditions

1.
y (0) = 0; y0 (0) = 1:

2.
y (0) = 0; y0 (0) = 0:

3.
y (0) = 0; y (�) = 0:

then show that any choice of the initial conditions

y (x0) = �; y0 (x0) = �; x0 2 [0; �]

with (2:12) gives a unique solution.

Solution
The general solution of (2.12) is

y (x) = c1 cosx+ c2 sinx

1. The derivative of the solution

y0 (x) = �c1 sinx+ c2 cosx

Using the �rst choice of initial condition gives

0 = y (0) = c1 cos 0 + c2 sin 0 = c1;

1 = y0 (0) = �c1 sin 0 + c2 cos 0 = c2:

That is, these initial conditions gives the solution

y (x) = sinx
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2. Using the second choice of initial condition gives

0 = y (0) = c1 cos 0 + c2 sin 0 = c1;

0 = y0 (0) = �c1 sin 0 + c2 cos 0 = c2:

That is, these initial conditions gives the trivial solution.

3. Using the third choice of boundary condition gives

0 = y (0) = c1 cos 0 + c2 sin 0 = c1;

0 = y (�) = c1 cos� + c2 sin� = c1:

which gives the solution
y (x) = c2 sinx;

where c2 is any constant. That is, this choice of boundary conditions does
not give a unique solution for the problem.

Using the general initial conditions

y (x0) = �; y0 (x0) = �

we have

� = y (0) = c1 cosx0 + c2 sinx0;

� = y0 (0) = �c1 sinx0 + c2 cosx0:

which gives a unique solution for [c1; c2]
t
if and only if

����
cosx0 sinx0
� sinx0 cosx0

���� 6= 0

or equivalently
cos2 x0 + sin

2 x0 6= 0
which is always true.
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8 Self-Adjoint Di¤erential Operator

We are going to learn

� The adjoint of a linear operator in a �nite-dimensional inner product space.

� Properties of the eigenvalue problem Lu+�u = 0 for a self-adjoint operator
L in a �nite-dimensional inner product space.

� The extension of the above concepts to a in�nite-dimensional inner prod-
uct space, namely L2:
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A linear operator in a vector space X is a mapping

A : X ! X

which satis�es
A (ax+ by) = aAx+ bAy

for all a; b 2 F and all x; y 2 X:
The adjoint of a linear operator A; if it exists, is the mapping

A0 : X ! X

that satis�es
hAx; yi = hx;A0yi

for all x; y 2 X: If A0 = A, then A is said to self-adjoint.

Example 73 (Adjoint of a linear operator in a �nite-dimensional inner product
space)

Consider a �nite-dimensional inner product space X (e.g. Cn over C). If
B = fei : 1 � i � ng is an orthonormal basis for X, then any linear operator T
can be represented by a matrix

A =

2
64
a11 � � � a1n
... :

...
an1 � � � ann

3
75

that is,
A [x]B = [T (x)]B

for all x 2 X: Here, [y]B is the coordinate vector of y with respect to the basis
B:
The columns of A are given by

[T (ei)]B =
�
a1i � � � ani

�t
; i = 1; 2; :::; n:

In this case, the adjoint of A is given by

A0 =

2
64
a11 � � � an1
... :

...
a1n � � � ann

3
75 = A

T

De�nition 74 (Eigenvalues and eigenvectors)

Consider a linear operator A on a inner product space X. If there exists an
nonzero vector x in X such that

Ax = ax

for a 2 C; then x is called an eigenvector of A corresponding to the eigenvalue
a:
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Remark 75 (Properties of a self-adjoint matrix)

If A is a self-adjoint (Hermitian) matrix, then

1. The eigenvalues of A are all real numbers.

2. The eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

3. The eigenvectors of A form a basis of X:

Adjoints of operators generalize conjugate transposes of square matrices to
in�nite-dimensional situations.

8.1 Generalization to The Space L2

Consider the second-order homogenous di¤erential equation

p (x) y00 + q (x) y0 + r (x) y = 0;

which can be written in terms in of the linear operator

L : L2 (I) \ C2 (I)! L2 (I) ;

L = p (x)
d2

dx2
+ q (x)

d

dx
+ r (x)

as follows
Ly = 0:

Remark 76 1

1. We have assumed that p; q; r are all in C2 (I) :

2. If I is a closed bounded interval, then

C2 (I) � C (I) � L2 (I)

and thus
L2 (I) \ C2 (I) = C2 (I)

[Give an example for a function in f 2 C2 (I) ; but f =2 L2 (I) ]

By de�nition, the adjoint of L, denoted by L0, must satisfy

hLf; gi = hf; L0gi

for all f; g 2 L2 (I) \ C2 (I) :
Let I = (a; b) where I can be in�nite. Now,
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hLf; gi =

Z b

a

�
pf

00
+ qf

0
+ rf

�
gdx

=

Z b

a

pf
00
gdx+

Z b

a

qf
0
gdx+

Z b

a

rfgdx

=

Z b

a

pf
00
gdx+

 Z b

a

f
0
(pg)

0
dx�

Z b

a

f
0
(pg)

0
dx

!
+

Z b

a

qf
0
gdx+

 Z b

a

f (qg)
0
dx�

Z b

a

f (qg)
0
dx

!
+

Z b

a

rfgdx

=

Z b

a

�
f
0
(pg)

�0
dx�

Z b

a

f
0
(pg)

0
dx+

+

Z b

a

(f (qg))
0
dx�

Z b

a

f (qg)
0
dx+

Z b

a

rfgdx

= f
0
pg
���
b

a
�
Z b

a

f
0
(pg)

0
dx+

 
�
Z b

a

f (pg)
00
dx+

Z b

a

f (pg)
00
dx

!

+ fqgjba �
Z b

a

f (qg)
0
dx+

Z b

a

rfgdx

= f
0
pg
���
b

a
�
Z b

a

�
f (pg)

0�0
dx+

Z b

a

f (pg)
00
dx

+ fqgjba �
Z b

a

f (qg)
0
dx+

Z b

a

rfgdx

= f
0
pg
���
b

a
� f (pg)

0 ���
b

a
+ fqgjba

+

Z b

a

f (pg)
00
dx�

Z b

a

f (qg)
0
dx+

Z b

a

rfgdx

= f
0
pg � fp0g � fpg0 + fqg

���
b

a

+

Z b

a

f
h
(pg)

00 � (qg)0 + rg
i
dx

= p
�
f
0
g � fg0

�
+
�
q � p0

�
fg
���
b

a
+
D
f; (pg)

00
� (qg)

0
+ rg

E

Thus,

hLf; gi = p
�
f
0
g � fg0

�
+
�
q � p0

�
fg
���
b

a
+
D
f; (pg)

00
� (qg)

0
+ rg

E

Remark 77 2

1. If (a; b) is in�nite or the any of integrands are unbounded at a or b; then
the integrals are improper.
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2. The right hand side is well de�ned if p 2 C2 (a; b) ; q 2 C1 (a; b) and
r 2 C (a; b) :

We can write

hLf; gi = p
�
f
0
g � fg0

�
+
�
q � p0

�
fg
���
b

a
+ hf; L�gi (2.24)

where

L�g = (pg)
00
� (qg)

0
+ rg

= (p0g + pg0)
0 �
�
q
0
g + qg

0
�
+ rg

= p
00
g + 2p0g0 + pg

00 � q0g � qg0 + rg
= pg

00
+ (2p0 � q) g0 +

�
p
00 � q0 + r

�
g

The operator

L� = p
d2

dx2
+ (2p0 � q) d

dx
+
�
p
00 � q0 + r

�

is called the formal adjoint of L.
L is said to be formally self-adjoint if

L = L�

Theorem 78 2.14

Let
L : L2 (a; b) \ C2 (a; b)! L2 (a; b)

be a linear di¤erential operator of second order de�ned by

Lu = p (x)u00 + q (x)u0 + r (x)u; x 2 (a; b) ;

where p 2 C2 (a; b) ; q 2 C1 (a; b) ; and r 2 C (a; b) :Then

1. L is formally self-adjoint, that is, L� = L; if the coe¢cients p; q and r are
real and p0 = q:

2. L is self-adjoint, that is, L0 = L; if L is formally self-adjoint and

p
�
f
0
g � fg0

����
b

a
= 0

for all f; g 2 L2 (a; b) \ C2 (a; b) :

3. If L is self adjoint, then the eigenvalues of the equation

Lu+ �u = 0

are all real and any pair of eigenfunctions associated with distinct eigen-
values are orthogonal in L2 (a; b) :
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Proof

1. The formal adjoint of L is given by

L� = p
d2

dx2
+ (2p0 � q) d

dx
+
�
p
00 � q0 + r

�

L is formally self-adjoint if
L = L�

That is,

p = p;

2p0 � q = q;

p
00 � q0 + r = r:

which are satis�ed if and only if p, q and r are real functions and p0 = q.

2. If L is formally self-adjoint, then

Lg = pg
00
+ p

0
g
0
+ rg

= (pg0)
0
+ rg

That is,

L =
d

dx

�
p
d

dx

�
+ r

and (2:24) becomes

hLf; gi = p
�
f
0
g � fg0

����
b

a
+ hf; Lgi

Hence, L is self-adjoint if

p
�
f
0
g � fg0

����
b

a
= 0

for all f; g 2 L2 (a; b) \ C2 (a; b) :

3. Suppose � 2 C is an eigenvalue of �L; then 9f 2 L2 (a; b) \ C2 (a; b) ;
f 6= 0 such that

�Lf = �f

Thus,
�hLf; fi = h�Lf; fi = h�f; fi = � kfk2

But L is self-adjoint implies that

�hLf; fi = �hf; Lfi = hf;�Lfi = hf; �fi = � kfk2

Thus,
� kfk2 = � kfk2
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Since f 6= 0; then we can divide the above equation by kfk2 ; which gives

� = �

That is, � 2 R.
Second, we want to prove that if f and g are eigenfunctions of �L associ-
ated with the eigenvalues � and �, respectively where � 6= �; then f and
g are orthogonal.

� hf; gi = h�f; gi
= h�Lf; gi
= �hLf; gi
= �hf; Lgi
= �hf;��gi
= � hf; gi

Thus,
� hf; gi � � hf; gi = 0

or
(�� �) hf; gi = 0

but �� � 6= 0; hence hf; gi = 0:

Remark 79 2.15

If p0 = q; then the continuity of p00 and q0 are no longer required. That is,
the above theorem is valid under the weaker condition that p0 is continuous.

Example 80 2.16

Determine the eigenvalues and eigenfunctions of

u00 + �u = 0

on (0; �) subject to the homogenous boundary conditions

u (0) = 0;

u (�) = 0:

In the di¤erential operator �L = � d2

dx2 , we have p = �1; q = 0; r = 0 all are
real and p0 = 0 = q: Thus, �L is formally self-adjoint.
The auxiliary equation is given by

m2 + � = 0

) m = �
p
��
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CASE1: If � > 0, then m = �
p
�i and the general solution is given by

u (x) = c1 cos
p
�x+ c2 sin

p
�x

Using the boundary conditions

0 = u (0) = c1

0 = u (�) = c2 sin
p
��

)
p
�� = n�

) � = n2; n 2 N

The eigenvalues are

fn2 : n 2 Ng = f1; 4; 9; :::g � R

and the corresponding eigenvectors are

fsinn� : n 2 Ng = fsinx; sin 2x; sin 3x; :::g

where we have chosen c2 = 1:[Verify that the eigenfunctions are orthogonal!]
CASE2: If � < 0;then m = �

p
�� and the general solution is given by

u (x) = c1 cosh
p
��x+ c2 sinh

p
��x

Using the boundary conditions

0 = u (0) = c1

0 = u (�) = c2 sinh
p
���

) c2 = 0

But the eigenfunction cannot be zero. Hence, there is no negative eigenvalues.
CASE3: If � = 0; then m = 0 the general solution is given by

u (x) = c1 + c2x

Using the boundary conditions

0 = u (0) = c1

0 = u (�) = c2�

) c2 = 0

Again the eigenfunction cannot be zero. So we have no eigenvalues on (�1; 0]:

Example 81 2.17
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Determine the eigenvalue and eigenfunctions of

u00 + �u = 0

on (0; l) subject to the separated boundary conditions

u (0) = 0;

hu (l) + u0 (l) = 0

where h > 0:
As done in the previous example

m2 + � = 0

) m = �
p
��

CASE1: If � > 0, then m = �
p
�i and the general solution is given by

u (x) = c1 cos
p
�x+ c2 sin

p
�x

Using the boundary conditions

0 = u (0) = c1

0 = hu (l) + u0 (l)

= hc2 sin
p
�l + c2

p
� cos

p
�l

hc2 sin
p
�l = �c2

p
� cos

p
�l

or

tan
p
�l = �

p
�l

hl

where we have divided by c2 cos
p
�l 6= 0 [Why?].

If we write � =
p
�l; then the solution of the above equation is the intersec-

tions of the graphs of y = tan� with y = � �
hl as shown in the �gure below.

The eigenvalues are �n that satis�es

�n =
p
�nl

that is,

f�n =
��n
l

�2
; n 2 Ng

and the corresponding eigenvectors are

fsin
��n
l
x
�
: n 2 Ng

There are no eigenvalue on (�1; 0].
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8.2 Transforming a second-order di¤erential operator to
a formally self-adjoint operator

Recall that in the di¤erential equation

Lu = 0;

where
L : L2 (a; b) \ C2 (a; b)! L2 (a; b)

L = p (x)
d2

dx2
+ q (x)

d

dx
+ r (x)

the operator L is a formally self-adjoint operator i¤ p; q and r are all real and
p0 = q, but what if last condition is not satis�ed!

Theorem 82 (Transforming the operator L to a formally self-adjoint operator)

Let
L : L2 (a; b) \ C2 (a; b)! L2 (a; b)

be a linear di¤erential operator of second order de�ned by

Lu = p (x)u00 + q (x)u0 + r (x)u; x 2 (a; b) ;

where p 2 C2 (a; b) ; q 2 C1 (a; b) ; r 2 C (a; b) and p; q and r are all real func-
tions, but p0 6= q on (a; b). Then,

1. There exists a strictly positive function � (x) 2 C2 (a; b) such that

eL = �L;

is formally self-adjoint.
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2. eL is self-adjoint if eL is formally self-adjoint and

�p
�
f
0
g � fg0

����
b

a
= 0

for all f; g 2 L2 (a; b) \ C2 (a; b) :

3. If eL = �L is self-adjoint, then the eigenvalues of the operator L are all
real and any pair of eigenfunctions associated with distinct eigenvalues are
orthogonal in L2� (a; b) :

Proof

1. Redoing the algebraic manipulation that was done to �nd the adjoint
operator of L; with L replaced by eL; we get

D
eLf; g

E
= �p

�
f
0
g � fg0

�
+
�
�q � (�p)

0�
fg
���
b

a
+
D
f; eL�g

E

where

eL� = �p
d2

dx2
+
�
2 (�p)

0 � �q
� d

dx
+
�
(�p)

00
� �q0 + �r

�

where we have used the fact that �; p; q and r are all real functions.

Note that eL is formally self-adjoint, i.e. eL = eL� if

�p = �p;

2 (�p)
0 � �q = �q;

(�p)
00
� �q0 + �r = �r;

which is true if
(�p)

0
= �q

which gives
�0p+ �p0 = �q

or

�0 +
p0 � q
p

� = 0

This is a �rst-order homogenous di¤erential equation, with integrating
factor

exp

Z �
p0 � q
p

�
dx

Hence,

exp

�Z
p0 � q
p

dx

�
�0 + exp

�Z
p0 � q
p

dx

��
p0 � q
p

�
� = 0
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or
d

dx

�
exp

�Z
p0 � q
p

dx

�
�

�
= 0

or

exp

�Z
p0 � q
p

dx

�
� = c

Assuming without loss of generality that p (x) > 0 on (a; b) ; we have

� = c exp

�Z
q � p0
p

dx

�

= c exp

�Z
q

p
dx

�
exp

�
�
Z
p0

p
dx

�

= c exp

�Z
q

p
dx

�
exp (� ln p)

= c exp

�Z
q

p
dx

�
exp

�
ln p�1

�

=
c

p
exp

�Z
q

p
dx

�

where c is a constant. Note that � is a strictly positive function and
� (x) 2 C2 (a; b).

2. [This part is homework!]. Hint: use the relation

D
eLf; g

E
= �p

�
f
0
g � fg0

�
+
�
�q � (�p)

0�
fg
���
b

a
+
D
f; eL�g

E

3. Let u 2 L2� (a; b) be an eigenfunction of the operator L corresponding to
the eigenvalue �; that is

Lu+ �u = 0

The above equation is equivalent to

eLu+ ��u = 0

where eL = �L is a self-adjoint operator. Now,

� kuk2� = � h�u; ui
= h��u; ui
=

D
�eLu; u

E

=
D
u;�eLu

E

= hu; ��ui
= � hu; �ui
= � kuk2�
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Since kuk2� 6= 0; � must be a real number.
Now, if v 2 L2� (a; b) is an other eigenfunction of the operator L corre-
sponding to a di¤erent eigenvalue �; then we have

(�� �) hu; vi� = � hu; vi� � � hu; vi�
=

D
�eLu; v

E
�
D
u;�eLv

E

=
D
u;�eLv

E
�
D
u;�eLv

E

= 0:

i.e. u and v are orthogonal in L2� (a; b) :
Corollary 83 2.19

If L : L2 (a; b)\C2 (a; b)! L2 (a; b) is a self-adjoint linear operator and � is
a positive and continuous function on [a; b] ; then the eigenvalues of the equation

Lu+ ��u = 0

are all real and any pair of the eigenfunctions associated with distinct eigenvalues
are orthogonal in L2� (a; b).
Remark 84 2.20

1. The eigenvalue problem equivalent to the problem

Lu+ ��u = 0

(where L here is a self-adjoint operator) is

1

�
Lu+ �u = 0

Therefore, the eigenvalues and eigenfunctions obtained by solving the for-
mer equation are actually the eigenvalues and eigenfunctions of the oper-
ator � 1

�L:

2. If (a; b) is a �nite interval, then continuos positive function � (x) attains
its minimum and maximum on [a; b] ; that is,

0 < � � � (x) � � <1

)
0 <

Z b

a

� juj2 dx �
Z b

a

� (x) juj2 dx �
Z b

a

� juj2 dx <1

)
0 <

p
� kuk � kuk� �

p
� kuk <1

from which we get
kuk <1, kuk� <1

i.e. L2 (a; b) and L2� (a; b) are the same, but have di¤erent inner product
spaces.
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3. The operator L in the above theory can be any self-adjoint linear operator
on an inner product space.

Example 85 2.21

1. Find the eigenfunctions and eigenvalues of the boundary value problem
on [1; b]

x2y00 + xy0 + �y = 0;

y (1) = y (b) = 0:

2. Is the above di¤erential operator self-adjoint? If not transform it to a
formally self-adjoint operator.

Solution
1. The above equation is a Cauchy-Euler equation, with a = 1; b = �:Thus,

the auxiliary equation is given by

m2 + (1� 1)m+ � = 0
) m2 + � = 0

) m = �i
p
�

where we have assumed that � > 0 [show that there are no eigenvalues in
(�1; 0]].
The general solution is given by

y (x) = d1x
i
p
� + d2x

�i
p
�

= d1e
ln xi

p
�

+ d2e
ln x�i

p
�

= d1e
i
p
� ln x + d2e

�i
p
� ln x

= d1

h
cos
�p

� lnx
�
+ i sin

�p
� lnx

�i

+d2

h
cos
�p

� lnx
�
� i sin

�p
� lnx

�i

= (d1 + d2) cos
�p

� lnx
�

+(d1 � d2) i sin
�p

� lnx
�

= c1 cos
�p

� lnx
�
+ c2 sin

�p
� lnx

�

Using the boundary conditions

0 = y (1) = c1;

0 = y (b) = c2 sin
�p

� ln b
�
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but c2 6= 0 (otherwise, the eigenfunction will be zero!). Thus,

sin
�p

� ln b
�
= 0

)
p
� ln b = n�; n 2 N;

) �n =
� n�
ln b

�2
; n 2 N

and the eigenfunction corresponding to these eigenvalues are

yn (x) = sin
� n�
ln b

lnx
�

2. In this example,

L = x2
d2

dx2
+ x

d

dx

that is,

p (x) = x2;

q (x) = x;

r (x) = 0;

all are real, but
p0 (x) = 2x 6= x = q (x)

Thus, L is not a formally self-adjoint operator. If we take

� (x) =
1

p (x)
exp

�Z
q (x)

p (x)
dx

�

=
1

x2
exp

�Z
1

x
dx

�

=
1

x

then,

1

x
L =

1

x

�
x2

d2

dx2
+ x

d

dx

�

= x
d2

dx2
+

d

dx

=
d

dx

�
x
d

dx

�

is formally self-adjoint. [Verify!]
According to theory developed above, the eigenfunctions

yn (x) = sin
� n�
ln b

lnx
�
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are orthogonal in L2� (a; b) : That is for n 6= m,

hyn; ymi� =
Z b

1

1

x
sin
� n�
ln b

lnx
�
sin
�m�
ln b

lnx
�
dx = 0

[Verify!]
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Part III

The Sturm-Liouville Theory
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9 The Sturm-Liouville Problem

We are going to learn

� De�ne The Sturm-Liouville problem.

� Generalize the third part of the eigenvalue theory to an in�nite-dimensional
space.
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De�nition 86

Let L be a formally self-adjoint operator of the form

L =
d

dx

�
p (x)

d

dx

�
+ r (x) ; ((2.33))

The eigenvalue equation

Lu+ �� (x)u = 0; x 2 (a; b) ((2.34))

subject to the separated homogenous boundary conditions

�1u (a) + �2u
0 (a) = 0; j�1j+ j�2j > 0 ((2.35))

�1u (b) + �2u
0 (b) = 0; j�1j+ j�2j > 0

where �i and �i are real constants, is called a Sturm-Liouville eigenvalue prob-
lem, or SL problem for short.

De�nition 87

The SL problem is called regular if the interval (a; b) is bounded and p 6= 0
on (a; b). Otherwise, the SL problem is called singular.

Remark 88 1

1. The solution of the SL problem (2.34) with boundary conditions (2.35)
are the eigenfunctions of the operator � 1

�L.

2. Under the above boundary conditions, L is a self-adjoint operator [ver-
ify!]. Therefore, the eigenvalues in (2.34), if they exist, are real and the
corresponding eigenvectors are orthogonal in L2� (a; b) :

3. In a regular SL problem, we assume that p (x) > 0:

The following theorem generalize the third part of the eigenvalue theory,
namely "that eigenvectors of a self-adjoint matrix in a �nite-dimensional space
X form a basis for that space", to an in�nite-dimensional inner product space.

Theorem 89 2.29

Assuming that p0; r; � 2 C ([a; b]) ; and p; � > 0 on [a; b] ; the SL eigenvalue
problem de�ned by Equations (2:34) and (2:35) has an in�nite sequence of real
eigenvalues

�0 < �1 < �2 < :::

such that �n ! 1: To each eigenvalue �n corresponds a single eigenfunction
'n; and the sequence of eigenfunctions f'n : n 2 Ng forms an orthogonal basis
of L2� (a; b) :
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Remark 90 2.30

1. For all �;
� � �maxfjr (x)j : a � x � bg:

2. If the SL problem (2:34) is considered under the periodic boundary con-
ditions

u (a) = u (b) ;

u0 (a) = u0 (b) ;

then,

(a) The operator L de�ned by (2:33) will be self-adjoint if p (a) = p (b)
[verify!].

(b) Theorem (2:29) holds in this case, except that the uniqueness of the
eigenfunctions for each eigenvalues is not guaranteed.

Example 91 2.31

Find the eigenvalues and eigenfunctions of the equation

u00 + �u = 0; 0 � x � l

subject to the boundary condition

u0 (0) = 0;

u0 (l) = 0;

1. Find the eigenvalues and eigenfunctions of the above problem.

2. Let f 2 L2 (0; l) ; write f as a linear combination of the computed eigen-
functions.

3. Write f (x) = 1 as a linear combination of the computed eigenfunctions.

4. Do the above problem using the boundary conditions

u (0) = 0;

u (l) = 0;

and compare the series representation for f (x) = 1 in the current case
with that in the previous case.

Solution
The above eigenvalue problem can be written as

Lu+ �u = 0
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with

L =
d

dx

�
d

dx

�
;

� (x) = 1

and under separated homogenous boundary conditions. Thus, we have an SL
problem and Theorem 2.29 holds.

1. From example 2.16, we know that the roots of the auxiliary equation are
m = �

p
��.

(a) According to remark 2.30, the eigenvalues must satisfy

� � maxfjr (x)j : 0 � x � lg = 0

hence, there are no negative eigenvalues.

(b) For � = 0; the general solution is given by

u (x) = c1x+ c2

and
u0 (x) = c1

using the boundary conditions

0 = u0 (0) = c1;

0 = u0 (l) = c1:

Thus, the eigenfunction corresponding to �0 = 0 is u0 (x) = 1:

(c) For � > 0; we have the general solution

u (x) = c1 cos
p
�x+ c2 sin

p
�x

from which we get

u0 (x) = �c1
p
� sin

p
�x+ c2

p
� cos

p
�x

using the boundary conditions

0 = u0 (0) = c2
p
�

and since
p
� 6= 0; we have c2 = 0:

0 = u0 (l) = �c1
p
� sin

p
�l

and since �c1
p
� 6= 0; we have

0 = sin
p
�l

)
p
�l = n�; n 2 N0

) �n =
n2�2

l2
; n 2 N0
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Note that we have an in�nite sequence of eigenvalues fn2�2l2 : n 2 N0g
with

lim
n!1

�n = lim
n!1

n2�2

l2
=1;

as stated in the theorem.

The eigenfunction un corresponding to �n =
n2�2

l2 is given by

un (x) = cos
�n�
l
x
�
;

where we have used c2 = 1:

2. According the theorem 2.29, the set of eigenfunctions fcos
�
n�
l x
�
: n 2 N0g

is orthogonal in L2 (0; l) [verify!]. Moreover, the set fcos
�
n�
l x
�
: n 2 N0g

form a basis for L2 (0; l) :
That is, we can write any function f 2 L2 (0; l) in the form

f (x) =

1X

n=0

an cos
�n�
l
x
�

where

an =



f; cos

�
n�
l x
��



cos
�
n�
l x
�

2

but

D
f; cos

�n�
l
x
�E

=

Z l

0

f (x) cos
�n�
l
x
�
dx;




cos
�n�
l
x
�




2

=

Z l

0

cos2
�n�
l
x
�
dx =

�
l n = 0
l
2 n 2 N

Therefore, For f 2 L2 (0; l), we have

f (x) =
1X

n=0

an cos
�n�
l
x
�

where

a0 =
1

l

Z l

0

f (x) dx

an =
2

l

Z l

0

f (x) cos
�n�
l
x
�
dx
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3. Let f (x) = 1; then

a0 =
1

l

Z l

0

1dx = 1

an =
2

l

Z l

0

cos
�n�
l
x
�
dx = 0

Hence, the function f (x) = 1 is represented by a single term, namely, the
�rst eigenfunction u0 (x) :

4. For the second pair of boundary conditions, we have

�n =
n2�2

l2

un (x) = sin
�n�
l
x
�

where n 2 N. Any f 2 L2 (0; l) can be written in the form

f (x) =
1X

n=1

bn sin
�n�
l
x
�

where

bn =
2

l

Z l

0

f (x) sin
�n�
l
x
�
dx

In this case, if we consider f (x) = 1; we get

bn =
2

l

Z l

0

sin
�n�
l
x
�
dx

=
2

n�
(1� cosn�)

=
2

n�
(1� (�1)n)

=

�
4
n� if n is odd
0 if n is even

Therefore,

1 =
2

�

1X

n=1

(1� (�1)n)
n

sin
�n�
l
x
�

=
4

�

1X

n=0

1

2n+ 1
sin

�
(2n+ 1)�

l
x

�

=
2

�

�
sin

�

l
x+

1

3
sin

3�

l
x+

1

5
sin

5�

l
x+ :::

�
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Remember that the above equality hold in L2 (0; l) ; i.e. in the sense that





1�

4

�

1X

n=0

1

2n+ 1
sin

�
(2n+ 1)�

l
x

�




 = 0

or
4

�

1X

n=0

1

2n+ 1
sin

�
(2n+ 1)�

l
x

�
L2! 1 as k !1:
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Part IV

Fourier Series

76



10 Fourier Series in L2

We are going to learn

� Using "The Sturm-Liouville Theory" to derive "The Fundamental Theo-
rem of Fourier Series".
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Theorem 92 3.2 (Fundamental Theorem of Fourier Series)

The orthogonal set of functions
n
1; cos

n�

l
x; sin

n�

l
x : n 2 N

o

is complete in L2 (�l; l) ; in the sense that any function f 2 L2 (�l; l) can be
represented by the series

f (x) = a0 +
1X

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�
; � l � x � l; ((3.7))

where

a0 =
hf; 1i
k1k2

=
1

2l

Z l

�l
f (x) dx;

an =



f; cos n�l x

�


cos n�l x



2 =
1

l

Z l

�l
f (x) cos

n�

l
xdx; n 2 N;

bn =



f; sin n�l x

�


sin n�l x



2 =
1

l

Z l

�l
f (x) sin

n�

l
xdx; n 2 N;

The right-hand side of Equation (3:7) is called the Fourier series expansion
of f; and the coe¢cients an and bn in the expansion are the Fourier coe¢cients
of f:
Proof:
Consider the eigenvalue problem

u00 + �u = 0; � l � x � l

with the periodic boundary conditions

u (�l) = u (l) ;

u0 (�l) = u0 (l)

1. The above problem is an SL problem because L = �d2
dx2 is formally self-

adjoint. In fact, L = �d2
dx2 is self-adjoint under the above periodic boundary

conditions [verify!].

2. The results of Theorem 2.29 therefore hold (except for the uniqueness of
the eigenfunctions as previously mentioned in Remark 2.30). In particular,
the eigenfunctions of L are orthogonal and complete in L2 (�l; l).

3. There are no negative eigenvalues of L since

� � �maxfjr (x) j : �l � x � lg = 0

(see Remark 2.30).
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4. For � = 0; the general solution is given by

u (x) = c1x+ c2

Using the boundary condition, we have

�c1l + c2 = u (�l) = u (l) = c1l + c2

or
c1 = 0

and
0 = u0 (�l) = u0 (l) = 0

Therefore, the eigenfunction corresponding to �0 = 0 is u0 (x) = 1:

5. For � > 0; the general solution is given by

u (x) = c1 cos
p
�x+ c2 sin

p
�x

Using the boundary conditions gives

c1 cos
p
�l � c2 sin

p
�l = u (�l) = u (l) = c1 cos

p
�l + c2 sin

p
�l

)
c2 sin

p
�l = 0

and

c1 sin
p
�
p
�l+c2

p
� cos

p
�l = u0 (�l) = u0 (l) = �c1

p
� sin

p
�l+c2

p
� cos

p
�l

)
c1
p
� sin

p
�l = 0

Now, since � > 0 and c1 and c2 cannot both be zero, we have

sin
p
�l = 0

)
p
�nl = n�

) �n =
n2�2

l2
; n 2 N

Note that for each eigenvalue �n =
n2�2

l2 , we have two eigenfunctions,
namely,

(a) If we choose c1 = 0, we get the eigenfunction

un (x) = sin
n�

l
x

(b) If we choose c2 = 0, we get the eigenfunction

un (x) = cos
n�

l
x

79



That is, the eigenfunction corresponding to a particular eigenvalue is not
unique, which is due to using a non separated boundary conditions (see
Theorem 2.29).

6. The last part of Theorem 2.29 states that the set of eigenfunctions

f1; cos n�
l
x; sin

n�

l
x : n 2 Ng

are orthogonal and complete in L2 (�l; l) : Therefore, for each f 2 L2 (�l; l),
f is represented by the series

f (x) = a0 +
1X

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�
; � l � x � l

where

a0 =
hf; 1i
k1k2

=
1

R l
�l 1dx

Z l

�l
f (x) dx

=
1

2l

Z l

�l
f (x) dx

and

an =



f; cos

�
n�
l x
��



cos
�
n�
l x
�

2

=
1

R l
�l cos

2
�
n�
l x
�
dx

Z l

�l
f (x) cos

�n�
l
x
�
dx

=
1

l

Z l

�l
f (x) cos

�n�
l
x
�
dx

and

bn =



f; sin

�
n�
l x
��



sin
�
n�
l x
�

2

=
1

R l
�l sin

2
�
n�
l x
�
dx

Z l

�l
f (x) sin

�n�
l
x
�
dx

=
1

l

Z l

�l
f (x) sin

�n�
l
x
�
dx

Remark 93 3.3
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1. If f 2 L2 (�l; l) is an even function, i.e. f satisfy

f (�x) = f (x) 8x 2 [�l; l]

then, bn = 0 for all n 2 N and f is represented on [�l; l] by a cosine series

f (x) = a0 +
1X

n=1

an cos
n�

l
x;

where

a0 =
1

2l

Z l

�l
f (x) dx =

1

l

Z l

0

f (x) dx;

an =
1

l

Z l

�l
f (x) cos

�n�
l
x
�
dx =

2

l

Z l

0

f (x) cos
�n�
l
x
�
dx; n 2 N:

2. If f 2 L2 (�l; l) is an odd function, i.e. f satisfy

f (�x) = �f (x) 8x 2 [�l; l]

then, an = 0 for all n 2 N0 and f is represented on [�l; l] by a sine series

f (x) =

1X

n=1

bn sin
n�

l
x;

where

bn =
1

l

Z l

�l
f (x) sin

�n�
l
x
�
dx =

2

l

Z l

0

f (x) sin
�n�
l
x
�
dx; n 2 N:

3. The equality between f and the Fourier series in Theorem 3.2 is in L2 (�l; l)
and not pointwise. Namely, we have






f (x)�
"
a0 +

1X

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�#






2

= 0

or






f (x)�
"
a0 +

NX

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�#






2

! 0 as N !1
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But






f (x)�
"
a0 +

NX

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�#






2

=

Z l

�l

�����f (x)�
"
a0 +

NX

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�#�����

2

dx

=

Z l

�l
jf (x)j2 dx� 2Re

 Z l

�l
f (x)

"
a0 +

NX

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�#!

dx

+

Z l

�l

�����a0 +
NX

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
������

2

dx

= kfk2 � 2Re
 
a0

Z l

�l
f (x) dx+

NX

n=1

 
an

Z l

�l
f (x) cos

n�

l
xdx+ bn

Z l

�l
f (x) sin

n�

l
xdx

!!

+






a0 +
NX

n=1

�
an cos

n�

l
x+ bn sin

n�

l
x
�






2

= kfk2 � 2Re
 
a0 (2l) a0 +

NX

n=1

�
anlan + bnlbn

�
!

+ ja0j2 k1k2 +
NX

n=1

�
janj




cos
n�

l
x




2

+ jbnj2



sin

n�

l
x




2
�

= kfk2 � 2Re
 
2l ja0j2 +

NX

n=1

�
l janj2 + l jbnj2

�!

+2l ja0j2 +
NX

n=1

�
l janj2 + l jbnj2

�

= kfk2 � 2
 
2l ja0j2 +

NX

n=1

�
l janj2 + l jbnj2

�!
+ 2l ja0j2 +

NX

n=1

�
l janj2 + l jbnj2

�

= kfk2 � l
 
2 ja0j2 +

NX

n=1

�
janj2 + jbnj2

�!

Since f 2 L2 (�l; l)

kfk2 � l
 
2 ja0j2 +

NX

n=1

�
janj2 + jbnj2

�!
! 0 as N !1

implies that
P1
n=1

�
janj2 + jbnj2

�
is convergent and therefore both

P1
n=1 janj

2
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and
P1
n=1 jbnj

2
is convergent. Consequently,

lim
n!1

an = 0;

lim
n!1

bn = 0:

4. If f 2 L2 (�l; l) is continuous on [�l; l] and the Fourier series of f converges
uniformly to f; then the equality between f and the Fourier series in
Theorem 3.2 is pointwise.

Example 94 3.4

Find the Fourier series expansion of the function

f (x) =

8
<
:

�1; � � < x < �
0; x = 0
1; 0 < x � �

Note that,

1. f 2 L2 (��; �) [verify!]

2. f is an odd function [verify!]

Therefore, the Fourier series expansion of f is given by

f (x) =
1X

n=1

bn sinnx;
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where

bn =
2

�

Z �

0

f (x) sin (nx) dx

=
2

�

Z �

0

sin (nx) dx

= � 2

n�
cos (nx) j�0

=
2

n�
(1� (�1)n)

=

�
0; if n is even
4
n� ; if n is odd

Note that limn!1 bn = 0:
The Fourier series can therefore be written in the form

f (x) =

1X

n=1

bn sinnx

=
4

�

1X

n=0

1

(2n+ 1)
sin (2n+ 1)x

Figure 3.2 below shows the �rst three terms in the sequence of partial sums
of the Fourier series, i.e.

SN (x) =
4

�

NX

n=0

1

(2n+ 1)
sin (2n+ 1)x

for N = 0; 1; 2:

Note that the larger the N , the better the approximation. Also note that

SN (��) = SN (�) = 0 for N = 0; 1; 2:
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In fact, the Fourier series of f at �� equals to 0 while f (�) = 1 and f (��) is
not de�ned, which shows that the equality

f (x) =
4

�

1X

n=0

1

(2n+ 1)
sin (2n+ 1)x

does not hold at every point in [��; �] :

Corollary 95 3.5

Any function f 2 L2 (�l; l) can be represented by the Fourier series

f (x) =
1X

n=�1
cne

in�x=l;

where

cn =



f; ein�x=l

�


ein�x=l



2 =
1

2l

Z l

�l
f (x) e�in�x=ldx; n 2 Z:

Proof: [Assignment!]
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11 Convergence of Fourier Series

We are going to learn about

� Periodic functions and their properties.

� Piecewise continuous and Piecewise smooth functions.

� Pointwise convergence of a Fourier series.

� Uniform and absolute convergence of a Fourier series.
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A function f : R! C is periodic in p; where p > 0 if

f (x+ p) = f (x) for all x 2 R;

and p is then called a period of f:
Properties of periodic functions

1. If f is periodic in p, then f is also periodic in np where n 2 Z [Why?]

2. If a periodic function f in p is integrable on [0; p] ; then f is integrable over
any �nite interval, and its integral have the same value over all intervals
of length p; that is

Z x+p

x

f (t) dt =

Z p

0

f (t) dt for all x 2 R:

[Justify?]

Example 96 (Periodic functions)

Determine the period of the following periodic functions:

1. cosx; sinx:

2. cos(ax); sin (ax), where a > 0:

3. A constant function.

De�nition 97 3.6

1. A function f de�ned on a bounded interval I; where (a; b) � I � [a; b] ; is
said to be piecewise continuous if

(a) f is continuous on (a; b) except for a �nite number of points fx1; x2; :::; xng :
(b) The right-hand and left-hand limits

lim
x!x+

i

f (x) = f
�
x+i
�
; lim

x!x�
i

f (x) = f
�
x�i
�

for all i 2 f1; 2; :::ng:
(c) The limits at the endpoints exist, that is

lim
x!a+

f (x) = f
�
a+
�
; lim

x!b�
f (x) = f

�
b�
�

2. f is said to be piecewise smooth if f and f 0 are both piecewise continuous.

3. If the interval I is unbounded, then f is piecewise continuous (smooth) if
it is piecewise continuous (smooth) on every bounded subinterval of I:

Remark 98 (piecewise continuous and piecewise smooth functions)
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1. The discontinuities in the graph of a piecewise continuous functions results
from jumps in its values and occur at a �nite number of points.

2. The non-smoothness in the graph of a piecewise smooth function results
from jumps in its values and/or sharp corners at some points, which occur

at a �nite number of points.

3. A continuous function is always piecewise continuous, but may not be
piecewise smooth. [Example?]

4. A di¤erentiable function may not be piecewise smooth. [Example?] . Note
that the right-hand (left-hand) limit of a derivative f 0 is not the same as
the right-hand (left-hand) derivative of f: In other words,

f is di¤erentiable at a point x0 )
right- and left-hand derivatives exits at that point

(or one of them if its an endpoint)) �

lim
h!0+

f (x0 + h)� f (x0)
h

; lim
h!0+

f (x0)� f (x0 � h)
h

exist.

but

right- and left hand limit of f 0 exist at a point x0 �

lim
x!x+

0

f 0 (x) = lim
h!0+

f (x0 + h)� f
�
x+0
�

h
= f 0

�
x+0
�
;

lim
x!x�

0

f 0 (x) = lim
h!0+

f
�
x�0
�
� f (x0 � h)
h

= f 0 (x
_
0 ) ;

We already know that any f 2 L2 (��; �) can be represented by a Fourier
series

f (x) = a0 +
1X

n=1

(an cosnx+ bn sinnx) ; � � � x � �;
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where a0; an; bn are the Fourier coe¢cients. We also know that the above equal-
ity holds in L2 (��; �) ; but not necessarily pointwise. In the following, we study
the pointwise and uniform convergence of Fourier series.

11.1 Pointwise Convergence of Fourier Series

The following theorem discusses the pointwise convergence of the Fourier series
to the periodic function de�ned by extending a function f from [��; �] to R
using the equation

f (x+ 2�) = f (x) ; 8x 2 R:

Theorem 99 3.9

Let f be a piecewise smooth function on [��; �] which is periodic in 2�: If

a0 =
1

2�

Z �

��
f (x) dx;

an =
1

�

Z �

��
f (x) cosnxdx;

bn =
1

�

Z �

��
f (x) sinnxdx; n 2 N

then the Fourier series

S (x) = a0 +
1X

n=1

(an cosnx+ bn sinnx)

converges at every x in R to 1
2 [f (x

+) + f (x�)] :

Remark 100 3.10

1. If f is continuous on [��; �] ; then the Fourier series converges pointwise
to f on R:[Why?]

2. If f is discontinuous at a point x, then the Fourier series converges to the
average of the "jump" at x, namely

S (x) =
1

2

�
f
�
x+
�
+ f

�
x�
��

regardless of the value of f (x) :

3. We can rede�ne the function f at the points of discontinuities to achieve
a pointwise convergence of the Fourier series to f on R: [How?]

4. The conditions on f in Theorem 3.9 are su¢cient but not necessary. For
example, f (x) = x

1
3 is not piecewise smooth on [��; �] ; but its Fourier

series expansion converges to f on [��; �] :[Exercise 3.26].
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5. Theorem 3.9 holds if the interval [��; �] is replaced by any other interval
[�l; l]. Namely, if f is a piecewise smooth function on [�l; l] which is
periodic in 2l; then the Fourier series

a0 +

1X

n=1

�
an cos

�n�
l
x
�
+ bn sin

�n�
l
x
��

;

where

a0 =
1

2l

Z l

�l
f (x) dx;

an =
1

l

Z l

�l
f (x) cos

�n�
l
x
�
dx;

bn =
1

l

Z l

�l
f (x) sin

�n�
l
x
�
dx; n 2 N

converges at every x 2 R to 1
2 [f (x

+) + f (x�)] :

Exercise 101 3.4 (revisited)

Consider the function

f (x) =

8
<
:

�1; � � < x < 0
0; x = 0
1; 0 < x � �

1. Sketch the periodic function that results from extending f from (��; �]
to R: Is the extension of f piecewise smooth on [��; �]?

2. Determine the Fourier series expansion of the extension of f . Does it
converge to f (x) at every x 2 R?

3. Rede�ne the function f so that the Fourier series converges to f on R:
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4. Find a series representation for �:

Solution:

1.

2. We already know that the Fourier series expansion of f is given by

S (x) =
4

�

1X

n=0

1

(2n+ 1)
sin (2n+ 1)x

The graph of the extension of f is clearly piecewise continuous. Also, f has
a zero derivative at all points x 2 (��; �)� f0g; and limx!x�

0

f 0 (x) = 0;

where x0 is a point at which f is discontinuous. Therefore, f is piecewise
smooth on [��; �]. Therefore, Theorem 3.9 holds. That is,

S (x) =
4

�

1X

n=0

1

(2n+ 1)
sin (2n+ 1)x =

1

2

�
f
�
x+
�
+ f

�
x�
��

(a) At x = 0;

S (0) =
1

2

�
f
�
0+
�
+ f

�
0�
��
=
1

2
[1 + (�1)] = 0 = f (0)

By periodicity of f , the Fourier series converges to f at all points
x = 0 + n (2�) = 2n�; where n 2 Z.

(b) At x = �;

S (�) =
1

2

�
f
�
�+
�
+ f

�
��
��
=
1

2
[�1 + 1] = 0 6= 1 = f (�)

By periodicity of f , the Fourier series does not converge to f at all
points x = � + n (2�) = (2n+ 1)�; where n 2 Z.
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3. If we rede�ne f at all points x = (2n+ 1)�; n 2 Z as

f (x) =
1

2

�
f
�
x+
�
+ f

�
x�
��
=
1

2
[�1 + 1] = 0

then the Fourier series becomes convergent to f on R:

4. If we take the point x = �
2 ; then we know that the Fourier series does

converge to f at this point since f is continuous there. Therefore,

4

�

1X

n=0

1

(2n+ 1)
sin (2n+ 1)

�

2
= f

��
2

�
;

or
4

�

1X

n=0

1

(2n+ 1)
(�1)n = 1;

or

� = 4

�
1� 1

3
+
1

5
� :::

�
:

11.2 Uniform Convergence of Fourier Series

Lemma 102 3.13

If f is a continuous function on the interval [��; �] such that f (��) = f (�)

and f 0 is piecewise continuous on (��; �) ; then the series

1X

n=1

q
janj2 + jbnj2

is convergent, where an and bn are the Fourier coe¢cients of f de�ned by

an =
1

�

Z �

��
f (x) cosnxdx;

bn =
1

�

Z �

��
f (x) sinnxdx:

Proof:
If f 0 is piecewise continuous on [��; �], then f 0 2 L2 (��; �) : [Why?]. The

Fourier coe¢cients of f 0 is therefore given by

a
0
0 =

1

2�

Z �

��
f
0
(x) dx;

a
0
n =

1

�

Z �

��
f
0
(x) cosnxdx;

b
0
n =

1

�

Z �

��
f
0
(x) sinnxdx:
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Since f (��) = f (�), we have

a
0
0 =

1

2�

Z �

��
f
0
(x) dx =

1

2�
[f (�)� f (��)] = 0;

Integrating by parts,

u = cosnx dv = f
0
(x) dx

du = �n sinnxdx v = f (x)
;

u = sinnx dv = f
0
(x) dx

du = n cosnxdx v = f (x)

we have

a
0
n =

1

�

�
f (x) cosnxj��� + n

Z �

��
f (x) sinnxdx

�
= nbn;

b
0
n =

1

�

�
f (x) sinnxj��� � n

Z �

��
f (x) cosnxdx

�
= �nan:

from which we get

an = �
1

n
b
0
n; bn =

1

n
a
0
n

Therefore, the nth partial sum

SN =
NX

n=1

q
janj2 + jbnj2

=
NX

n=1

1

n

q
ja0nj

2
+ jb0nj

2

Recall that the CBS inequality states that

jhx; yij � kxk kyk

Thus, by taking x =
�
1; :::; 1N

�
; y =

�q��a01
��2 +

��b01
��2; :::;

q��a0N
��2 +

��b0N
��2
�

we have

NX

n=1

1

n

q
ja0nj

2
+ jb0nj

2 �
 

NX

n=1

1

n2

! 1
2
 

NX

n=1

����a
0
n

���
2

+
���b

0
n

���
2
�! 1

2

But
PN
n=1

1
n2 is a convergent p�series and is therefore bounded above by its

sum. Next we use Bessel�s inequality, namely

1X

n=1

jhg; 'nij2

k'nk2
� kgk2
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for any orthogonal set f'n : n 2 Ng in L2 and any g 2 L2; to show that
PN
n=1

����a0n
���
2

+
���b0n
���
2
�
is bounded for every N 2 N:

NX

n=1

����a
0
n

���
2

+
���b

0
n

���
2
�

=
NX

n=1

���
D
f
0
; cosnx

E���
2

kcosnxk4
+

NX

n=1

���
D
f
0
; sinnx

E���
2

ksinnxk4

=
1

�

NX

n=1

���
D
f
0
; cosnx

E���
2

kcosnxk2
+
1

�

NX

n=1

���
D
f
0
; sinnx

E���
2

ksinnxk2

� 1

�




f
0




2

+
1

�




f
0




2

=
2

�




f
0




2

<1

because f
0 2 L2 (��; �). We conclude that the sequence of partial sums SN =

PN
n=1

q
janj2 + jbnj2 is bounded for every N and is therefore convergent.

Theorem 103 3.14

If f is a continuous function on the interval [��; �] such that f (��) = f (�)

and f 0 is piecewise continuous on (��; �), then the Fourier series

a0 +
1X

n=1

(an cosnx+ bn sinnx)

converges uniformly and absolutely to f on [��; �] :
Proof:
Consider the extension of f from [��; �] to R by the relation

f (x+ 2�) = f (x) for all x 2 R;

then since f is continuous on [��; �] and f (��) = f (�) ; the extension of f is
a continuous function on R:Therefore, the Fourier series

a0 +
1X

n=1

(an cosnx+ bn sinnx)

converges to f (x) for all x 2 R:
To prove that the convergence is uniform and absolute, we use the M-Test

jan cosnx+ bn sinnxj � janj+ jbnj �
p
2

q
janj2 + jbnj2

[why?] , but
P1
n=1

q
janj2 + jbnj2 converges by Lemma 3.13. Therefore, the

Fourier series converges uniformly and absolutely.

Remark 104 (Comparing su¢cient conditions for pointwise and uniform con-
vergence of a Fourier series)
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The conditions imposed on f in the above theorem are the same as those of
Theorem 3.9 with piecewise continuity replaced by continuity on [��; �] :

Corollary 105 3.15

If f is piecewise smooth on [��; �] and periodic in 2�; its Fourier series is
uniformly convergent if, and only if, f is continuous.

Remark 106 3.16

Corollary 3.15 holds if the interval [��; �] is replaced by any other interval
[�l; l].
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12 Boundary-Value Problems

We are going to learn

� Applications of Fourier series to real physical problems:

� The One-dimensional Heat Equation.

� The One-dimensional Wave Equation.
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12.1 The One-dimensional Heat Equation

Consider a thin bar of length l as shown in the �gure below.

The bar is given an initial temperature distribution f (x) for each x 2 [0; l],
then it is insulated everywhere except at the two ends of bar where the initial
temperature is kept �xed. If we let u (x; t) represents the temperature at the
point x meters along the bar at time t (in seconds), then �xing the temperature
at the bar ends is represented by the two equations

u (0; t) = uL; u (l; t) = uR; t > 0

We are interested in how the temperatures along the rod vary with time, that
is, we want to �nd u (x; t) for all x 2 (0; l) and all t 2 (0;1) : The second-order
partial di¤erential equation

ut = kuxx; ; 0 < x < l; t > 0

is used to model one-dimensional temperature evolution and is called the one-
dimensional heat equation. The positive constant k represents the thermal dif-
fusivity of the bar. It depends on the thermal conductivity of the material
composing the bar, the density of the bar, and the speci�c heat of the bar.
In our sample problem, we will assume that both ends are kept at 0 degrees

Celsius. Therefore, the boundary conditions are given by

u (0; t) = u (l; t) = 0; t > 0

To summarize, we want to solve the following boundary-value problem

ut = kuxx; 0 < x < l; t > 0

u (0; t) = u (l; t) = 0; t > 0

u (x; 0) = f (x) ; 0 < x < l:

We assume that the solution to the heat equation can be expressed as a
product of a function of x and a function of t; that is

u (x; t) = v (x)w (t)

Substituting in the heat equation gives

v (x)w0 (t) = kv00 (x)w (t)

or
v00 (x)

v (x)
=

w0 (t)

kw (t)
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Therefore, there is a constant ��2 such that
v00 (x)

v (x)
=

w0 (t)

kw (t)
= ��2

for all (x; t) 2 (0; l)� (0;1) . In other words,

v00 (x) + �2v (x) = 0;

w0 (x) + �2kw (x) = 0:

which have the solutions

v (x) = a cos�x+ b sin�x;

w (t) = ce��
2kt

where a; b; c are constants. This gives

u� (x; t) = ce��
2kt (a cos�x+ b sin�x)

Using the boundary conditions,

0 = u� (0; t) = ce��
2kta

but ce��
2kt 6= 0, thus

a = 0;

Moreover,

0 = u� (l; t) = ce��
2kt (b sin�l)

but ce��
2ktb 6= 0; thus

0 = sin�l;

from which we get

�n =
n�

l
; n 2 N

where for the case n = 0; we have the trivial solution which does not satisfy the
initial condition if f 6= 0. For n 2 Z�; we have

sin
n�

l
x = � sin

�
�n�

l
x
�
; � n 2 N

Therefore, the solution that satis�es the two boundary conditions can be
written in the form

un (x; t) = bne
�(n�=l)2kt sin

n�

l
x; n 2 N

Since the heat equation is linear and homogeneous with homogenous bound-
ary conditions, the general solution is given by

u (x; t) =
1X

n=1

bne
�(n�=l)2kt sin

n�

l
x:
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Using the initial condition, that is,

u (x; 0) =
1X

n=1

bn sin
n�

l
x;

or

f (x) =

1X

n=1

bn sin
n�

l
x;

which gives

bn =
2



sin n�l


2
Z l

0

f (x) sin
n�

l
xdx =

2

l

Z l

0

f (x) sin
n�

l
xdx

If we assume that f is piecewise smooth on [0; l] ; then

u (x; 0) =

1X

n=1

bn sin
n�

l
x;

bn =
2

l

Z l

0

f (x) sin
n�

l
xdx

is the Fourier series expansion of the odd extension of f to R: Thus, if we
moreover assume that

f (x) =
1

2

�
f
�
x+
�
+ f

�
x�
��
; 8x 2 R;

then the Fourier series is the solution of the heat equation with the given bound-
ary and initial conditions.

12.2 The One-dimensional Wave Equation

Consider a thin, �exible and weightless string of length l stretched between two
�xed point. The string is given an initial vertical displacement f (x) for each
x 2 [0; l], then it is released with an initial velocity g (x) ; with the string ends
kept �xed. If we let u (x; t) represents the vertical displacement at the point
x meters along the string at time t (in seconds), then �xing the string ends is
represented by the two equations

u (0; t) = u (l; t) = 0; t > 0

We are interested in how the vertical displacement along the string vary with
time, that is, we want to �nd u (x; t) for all x 2 (0; l) and all t 2 (0;1) : The
second-order partial di¤erential equation

utt = c2uxx; ; 0 < x < l; t > 0

is used to model one-dimensional transverse vibration of the string and is called
the one-dimensional wave equation. The positive constant c2 is determined
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by the material of the string. It depends on the thermal conductivity of the
material composing the bar, the density of the bar, and the speci�c heat of the
bar.
To summarize, we want to solve the following boundary-value problem

utt = c2uxx; 0 < x < l; t > 0

u (0; t) = u (l; t) = 0; t > 0

u (x; 0) = f (x) ; ut (x; 0) = g (x) ; 0 < x < l:

Using the separation of variables, we assume that the solution to the wave
equation can be expressed as a product of a function of x and a function of t;
that is

u (x; t) = v (x)w (t)

Substituting into the wave equation gives

v (x)w00 (t) = c2v00 (x)w (t)

or
v00 (x)

v (x)
=

w00 (t)

c2w (t)

Therefore, there is a constant ��2 such that

v00 (x)

v (x)
=

w00 (t)

c2w (t)
= ��2

for all (x; t) 2 (0; l)� (0;1) . In other words,

v00 (x) + �2v (x) = 0;

w00 (x) + �2c2w (x) = 0:

which have the solutions

v (x) = a cos�x+ b sin�x;

w (t) = a0 cos c�t+ b0 sin c�t

where a; b; a0; c0 are constants. This gives

u� (x; t) = (a cos�x+ b sin�x) (a
0 cos c�t+ b0 sin c�t)

Using the boundary conditions,

0 = u� (0; t) = a (a0 cos c�t+ b0 sin c�t)

which gives
a = 0;
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Moreover,

0 = u� (l; t) = (b sin�l) (a
0 cos c�t+ b0 sin c�t)

thus,
0 = sin�l;

from which we get

�n =
n�

l
; n 2 N

Therefore, the solution that satis�es the two boundary conditions can be
written in the form

un (x; t) = (an cos c�t+ bn sin c�t) sin
n�

l
x; n 2 N

Since the wave equation is linear and homogeneous with homogenous bound-
ary conditions, the general solution is given by

u (x; t) =
1X

n=1

�
an cos c

n�

l
t+ bn sin c

n�

l
t
�
sin

n�

l
x:

Using the �rst initial condition

u (x; 0) = 0; 0 < x < l

gives

f (x) =

1X

n=1

an sin
n�

l
x; 0 < x < l

If f is piecewise smooth on [0; l] ; then the above equation is the Fourier
expansion of its odd extension to [�l; l] and therefore, we have

an =
2

l

Z l

0

f (x) sin
n�

l
xdx

The velocity is given by

ut (x; t) =
1X

n=1

c
n�

l

�
�an sin c

n�

l
t+ bn cos c

n�

l
t
�
sin

n�

l
x

Thus, using second initial condition

ut (x; 0) = g (x) ; 0 < x < l

gives
1X

n=1

c
n�

l
bn sin

n�

l
x = g (x) ;
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from which we deduce that

c
n�

l
bn =

2

l

Z l

0

g (x) sin
n�

l
xdx

or

bn =
2

cn�

Z l

0

g (x) sin
n�

l
xdx

Thus, the solution to the wave equation with the given initial and boundary
conditions is given by

u (x; t) =
1X

n=1

�
an cos c

n�

l
t+ bn sin c

n�

l
t
�
sin

n�

l
x:

where

an =
2

l

Z l

0

f (x) sin
n�

l
xdx;

bn =
2

cn�

Z l

0

g (x) sin
n�

l
xdx:
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Part V

Orthogonal Polynomials
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13 The Singular SL Problem

We are going to learn

� The types of singular SL problem considered in this course.

� The boundary conditions that must hold for a formally self-adjoint oper-
ator in the singular SL problem to be self-adjoint.

� Extension of Theorem 2.29 to the singular SL problem.

� The Generalized Fourier Series.
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We consider the singular SL problem

Lu+ ��u = 0; x 2 (a; b) ;

L =
d

dx

�
p (x)

d

dx

�
+ r (x)

that results from one or both of the following situations:

1. p (x) = 0 at x = a and/or x = b:

2. The interval (a; b) is in�nite.

Remark 107 1

1. Recall that the formally self-adjoint operator becomes self-adjoint if

�p (u0v � uv0) jba = 0
for all f; g 2 L2 (a; b) \ C2 (a; b) :

2. If p (a) = p (b) = 0 and limu at a and b exist, then L is self adjoint. In
this case, the conclusions of Theorem 2.29 hold.

The solution of singular SL problems provide important examples of the so-
called spacial functions of mathematical physics. In this chapter we consider
singular SL problems whose eigenfunctions are polynomials, namely: Legendre
polynomials, Hermit polynomials, Laguerre polynomials.

13.1 The Generalized Fourier Series

Consider the singular SL problem

Lu+ ��u = 0; x 2 (a; b) ;

L =
d

dx

�
p (x)

d

dx

�
+ r (x)

where
�p (u0v � uv0) jba = 0

is satis�ed for any pair of eigenfunctions u and v:
If f'n : n 2 N0g is the set of eigenfunction of the above SL problem, then

its orthogonal and complete in L2� (a; b) : Therefore, any function f 2 L2� (a; b)
can be represented by the formula

f (x) =

1X

n=0

hf; 'ni�
k'nk2�

'n (x)

The series above is called the generalized Fourier series of f; and

cn =
hf; 'ni�
k'nk2�

; n 2 N0;

are the generalized Fourier coe¢cients of f:

105



Theorem 108 (Convergence of the generalized Fourier series)

If f is piecewise smooth on (a; b) ; and

cn =
1

k'nk2�

Z b

a

f (x)'n (x) � (x) dx;

then the series

S (x) =

1X

n=0

cn'n (x)

converges at every x 2 (a; b) to 1
2 [f (x

+) + f (x�)] :
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14 Legendre Polynomials

We are going to learn

� The Legendre Equation.

� Derivation of Legendre Polynomials and Legendre Functions.

� Properties of Legendre Polynomials.
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The Legendre equation is given by

�
1� x2

�
u00 � 2xu0 + �u = 0; x 2 (�1; 1) ((4.4))

which is a singular SL problem.[Why?]

14.1 Derivation of Legendre Polynomials and Legendre
Functions

Equation (4:4) is equivalent to

u00 � 2x

1� x2u
0 +

�

1� x2u = 0 ((4.5))

Since the coe¢cients are rational functions on (�1; 1) ; they are analytic func-
tions. Therefore, the solution u (x) of the above di¤erential equation can be
represented by a power series about x = 0; that is,

u (x) =

1X

k=0

ckx
k; k 2 (�1; 1) ((4.6))

Substituting into the di¤erential equation (4:4) gives

�
1� x2

� 1X

k=2

k (k � 1) ckxk�2 � 2x
1X

k=1

kckx
k�1 + �

1X

k=0

ckx
k = 0;

or

1X

k=2

k (k � 1) ckxk�2 �
1X

k=2

k (k � 1) ckxk � 2
1X

k=1

kckx
k + �

1X

k=0

ckx
k = 0;

or

2c2+6c3x+
1X

k=4

k (k � 1) ckxk�2�
1X

k=2

k (k � 1) ckxk�2c1x�2
1X

k=2

kckx
k+� (c0 + c1x)+�

1X

k=2

ckx
k = 0;

or

2c2+6c3x�2c1x+� (c0 + c1x)+
1X

k=2

(k + 2) (k + 1) ck+2x
k�

1X

k=2

k (k � 1) ckxk�2
1X

k=2

kckx
k+�

1X

k=2

ckx
k = 0;

or

2c2+�c0+[6c3 � 2c1 + �c1]x+
1X

k=2

[(k + 2) (k + 1) ck+2 � k (k � 1) ck � 2kck + �ck]xk = 0

or

2c2+�c0+[6c3 + (�2 + �) c1]x+
1X

k=2

�
(k + 2) (k + 1) ck+2 +

�
�k2 � k + �

�
ck
�
xk = 0
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or 1X

k=0

�
(k + 2) (k + 1) ck+2 +

�
�k2 � k + �

�
ck
�
xk = 0

from which we get

(k + 2) (k + 1) ck+2 +
�
�k2 � k + �

�
ck = 0; 8k 2 N0

or

ck+2 =
k (k + 1)� �
(k + 2) (k + 1)

ck; 8k 2 N0 ((4.7))

Equation (4:7) is a recursion formula for the coe¢cients of the power series
(4:6) :
If we choose the eigenvalues as follows

� = n (n+ 1) ; n 2 N0;

then

ck+2 =
k (k + 1)� n (n+ 1)
(k + 2) (k + 1)

ck

=
(k � n) (k + n+ 1)
(k + 2) (k + 1)

ck

from which we get

c2 = �n (n+ 1)
2!

c0;

c3 = � (n� 1) (n+ 2)
3!

c1

c4 = � (n� 2) (n+ 3)
12

c2 =

�
� (n� 2) (n+ 3)

12

��
�n (n+ 1)

2!
c0

�
=
n (n� 2) (n+ 1) (n+ 3)

4!
c0;

c5 =
(n� 3) (n� 1) (n+ 2) (n+ 4)

5!
c1;

...

Therefore, the solution of the Legendre equation is given by

u (x) =

1X

k=0

ckx
k

= c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + :::

= c0

�
1� n (n+ 1)

2!
x2 +

n (n� 2) (n+ 1) (n+ 3)
4!

x4 + :::

�

+c1

�
x� (n� 1) (n+ 2)

3!
x3 +

(n� 3) (n� 1) (n+ 2) (n+ 4)
5!

x5 + :::

�

= c0u0 (x) + c1u1 (x) ;
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where both u0 (x) and u1 (x) converge in (�1; 1) and are linearly independent
because one is in even powers of x and the other is in odd powers of x:
We conclude that for each n 2 N0; we have two linearly independent solu-

tions, namely

1. For n = 0; we have

u0 (x) = 1;

u1 (x) = x+
1

3
x3 +

1

5
x5 + :::

2. For n = 1; we have

u0 (x) = 1� x2 � 1
3
x4 + :::;

u1 (x) = x:

3. For n = 2; we have

u0 (x) = 1� 3x2;

u1 (x) = x� 2
3
x3 � 1

5
x5 + :::

4. For n = 3; we have

u0 (x) = 1� 6x2 + 3x4 + :::;

u1 (x) = x� 5
3
x3:

Remark 109 1

1. For each n 2 N0; one of the two solutions is a polynomial, which can be
proved from the recursion formula

ck+2 =
(k � n) (k + n+ 1)
(k + 2) (k + 1)

ck

Note that for any n 2 N0; cn+2 = 0; and consequently

::: = cn+6 = cn+4 = 0:

[why?]. That is in one of the two series, all but a �nite number of terms
of the series vanish. In other words, one of the two series is a polynomial.

De�nition 110 (Legendre polynomial)

110



A Legendre polynomial of degree n; denoted by Pn (x), is a scalar multiple
of the polynomial solution of the singular SL problem (4:4) with � = n (n+ 1) :
In particular, the coe¢cient of the highest power in a Legendre polynomial is
given by

an =
(2n)!

2n (n!)
2

Lower coe¢cients in Pn (x) are therefore determined using the relation

ck+2 =
(k � n) (k + n+ 1)
(k + 2) (k + 1)

ck

which gives

ck =
(k + 2) (k + 1)

(k � n) (k + n+ 1)ck+2

That is,

an�2 =
n (n� 1)

(n� 2� n) (n� 2 + n+ 1)an

= � n (n� 1)
2 (2n� 1)an

= � n (n� 1)
2 (2n� 1)

(2n)!

2n (n!)
2

=
(2n� 2)!

2n (n� 1)! (n� 2)!

and so on. In general, we have

an�2k = (�1)k
(2n� 2k)!

2nk! (n� k)! (n� 2k)! ; n � 2k

Therefore, the Legendre polynomial is given by

Pn (x) =

[n2 ]X

k=0

an�2kx
n�2k

=
1

2n

[n2 ]X

k=0

(�1)k (2n� 2k)!
k! (n� k)! (n� 2k)!x

n�2k

where
�
n
2

�
is the integral part of n2 :
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De�nition 111 (Legendre Functions)

A Legendre function, denoted by Qn (x), is the in�nite series solution of the
above singular SL problem (4:4) with � = n (n+ 1) : For example,

Q0 (x) = x+
1

3
x3 +

1

5
x5 + ::: =

1

2
ln

�
1 + x

1� x

�
;

[why?]. Also,

Q1 (x) = 1� x2 �
1

3
x4 + ::: = 1� x

2
ln

�
1 + x

1� x

�
;

[see exercise 4.4].

Remark 112 2

1. The Legendre polynomials Pn (x) are bounded at x = �1; for all n 2 N0:
2. The Legendre functions Qn (x) are unbounded at x = �1; for all n 2 N0:
3. (1) and (2) above shows that the operator L in the singular SL problem
(4:4) is self-adjoint only in the �rst case, namely, when the Legendre poly-
nomials Pn are taken to be solutions of the singular SL problem. In this
case theorem 2.29 holds, that is,

(a) The eigenvalues of L, �n = n (n+ 1) ; tend to 1:
(b) The set of eigenfunctions of L; fPn (x) : n 2 N0g, is orthogonal and

complete in L2 (�1; 1) :
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14.2 Properties of the Legendre Polynomials

1. Rodrigues Formula for Legendre polynomials

Pn (x) =
1

2nn!

dn

dxn
�
x2 � 1

�n

2. Using formula (4:13) ; one can prove the following identities

P
0
n+1 (x)� P

0
n�1 (x) = (2n+ 1)Pn (x) ;

(n+ 1)Pn+1 (x)� nPn�1 (x) = (2n+ 1)xPn (x) ; n 2 N:

3. The Legendre polynomials are orthogonal in L2 (�1; 1). That is,

hPn; Pmi = 0 for all m 6= n

4. The norm of a Legendre polynomial tends to 0 as n!1

kPnk =
r

2

2n+ 1
; n 2 N0;

and therefore, f 1p
2
P0 (x) ;

q
3
2P1 (x) ;

q
5
2P2 (x) ; :::;

q
2n+1
2 Pn (x) ; :::g is a

complete orthonormal set in L2 (�1; 1).

5. Legendre polynomials satisfy

Pn (1) = 1; Pn (�1) = (�1)n for all n 2 N0:

Example 113 4.1

Consider the function

f (x) =

�
0; �1 < x < 0
1; 0 < x < 1

1. Show that f 2 L2 (�1; 1) :

2. Give the Legendre series expansion of f:

3. Show that

S (0) =
1

2

�
f
�
0+
�
+ f

�
0�
��
:

Solution:

1. Z 1

�1
jf (x)j2 dx =

Z 1

0

1dx = 1 <1) f 2 L2 (�1; 1) :
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2. Since f 2 L2 (�1; 1) ; we can write

f (x) =
1X

n=0

cnPn (x) ;

where

cn =
hf; Pni
kPnk2

=
1

�q
2

2n+1

�2
Z 1

�1
f (x)Pn (x) dx

=
2n+ 1

2

Z 1

0

Pn (x) dx

=
2n+ 1

2

Z 1

0

1

2nn!

dn

dxn
�
x2 � 1

�n
dx

=
2n+ 1

2n+1n!

Z 1

0

dn

dxn
�
x2 � 1

�n
dx

Thus,

c0 =
1

2

Z 1

0

d0

dx0
�
x2 � 1

�0
dx =

1

2

Z 1

0

1dx =
1

2
;

c1 =
3

22

Z 1

0

d1

dx1
�
x2 � 1

�1
dx =

3

4

Z 1

0

2xdx =
3

4
;

c2 =
5

(23) (2)

Z 1

0

d2

dx2
�
x2 � 1

�2
dx = 0;

c3 =
7

(24) (6)

Z 1

0

d3

dx3
�
x2 � 1

�3
dx = � 7

16
;

...

from which we get

f (x) =
1

2
P0 (x) +

3

4
P1 (x)�

7

16
P3 (x) + :::

3.

S (0) =
1

2
P0 (0) +

3

4
P1 (0)�

7

16
P3 (0) + :::

but P0 (0) = 1. Next, we prove that

P2n+1 (0) = 0 8n 2 N0

Using the identity

(m+ 1)Pm+1 (x) +mPm�1 (x) = (2m+ 1)xPm (x) ; m 2 N
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at x = 0 gives
(m+ 1)Pm+1 (0) +mPm�1 (0) = 0

or
Pm+1 (0) = �

m

m+ 1
Pm�1 (0)

Now, using m = 2n; n = 1; 2; 3::: in the above relation gives

P2n+1 (0) = �
2n

2n+ 1
P2n�1 (0)

Starting from n = 1; we have

P3 (0) = �
2

3
P1 (0) = �

2

3
(0) = 0

and consequently,
P2n+1 (0) = 0 8n 2 N0

Therefore,

S (0) =
1

2
(1) +

3

4
(0)� 7

16
(0) + :: =

1

2

Now,
1

2

�
f
�
0+
�
+ f

�
0�
��
=
1

2
[1 + 0] =

1

2

That is,

S (0) =
1

2

�
f
�
0+
�
+ f

�
0�
��

as expected.
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15 Hermite Polynomials

De�nition 114 (Hermite Polynomial)

For each n 2 N0; the Hermite polynomial Hn : R! R is de�ned by

Hn (x) = (�1)n ex
2 dn

dxn
e�x

2

:

Example 115 1

1. For n = 0;

H0 (x) = (�1)0 ex
2 d0

dx0
e�x

2

= ex
2

e�x
2

= e0 = 1:

2. For n = 1;

H1 (x) = (�1)1 ex
2 d1

dx1
e�x

2

= �ex2e�x2 (�2x) = 2x:

3. For n = 2;

H2 (x) = (�1)2 ex
2 d2

dx2
e�x

2

= ex
2 d

dx

�
�2xe�x2

�
= ex

2
�
�2e�x2 + 4x2e�x2

�
= �2+4x2:

15.1 Properties of Hermite Polynomials

1. Hn is a polynomial of degree n:

2. The set fHn : n 2 N0g is orthogonal in L2e�x2 (R) :

3. The norm of Hn is given by

kHnke�x2 =
�
2nn!

p
�
� 1
2 :

4. For every x 2 R;

e2xt�t
2

=
1X

n=0

1

n!
Hn (x) t

n:

In other words, e2xt�t
2

is a generating function for the Hermite polyno-
mials.

Theorem 116 4.2

Hn satis�es the second-order di¤erential equation

u00 � 2xu0 + 2nu = 0; x 2 R;

which is called the Hermite equation.
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Remark 117 1

1. The other solution of the Hermite equation is an analytical function that
can be represented by a series in x [see exercise 4.21].

2. The di¤erential operator in the Hermite equation is not formally self-
adjoint, but can be transformed to one by multiplying the equation by

� (x) = e
R
�2xdx = e�x

2

:

In which case, we have the SL problem

e�x
2

u00 � 2xe�x2u0 + 2nu = 0; x 2 R ((4.31))

where

L =
d

dx

�
e�x

2 d

dx

�

3. The Hermite polynomials fHn : n 2 N0g are the eigenfunctions of the sin-
gular SL problem (4:31) associated with the eigenvalues �n = 2n. There-
fore, the set fHn : n 2 N0g is complete orthogonal set in L2e�x2 (R) :
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16 Laguerre Polynomials

De�nition 118 (Laguerre Polynomial)

For each n 2 N0; the Laguerre polynomial Hn : (0;1) ! (0;1) is de�ned
by

Ln (x) =
ex

n!

dn

dxn
�
xne�x

�
:

Example 119 1

1. For n = 0;

L0 (x) =
ex

0!

d0

dx0
�
x0e�x

�
= exe�x = e0 = 1:

2. For n = 1;

L1 (x) =
ex

1!

d1

dx1
�
x1e�x

�
= ex

�
e�x � xe�x

�
= 1� x:

3. For n = 2;

L2 (x) =
ex

2!

d2

dx2
�
x2e�x

�

=
ex

2!

d

dx

�
2xe�x � x2e�x

�

=
ex

2!

�
2e�x � 2xe�x � 2xe�x + x2e�x

�

=
ex

2

�
2e�x � 4xe�x + x2e�x

�

= 1� 2x+ 1
2
x2:

16.1 Properties of Laguerre Polynomials

1. Ln is a polynomial of degree n:

2. The set fLn : n 2 N0g is orthogonal in L2e�x (0;1) :

3. The norm of Ln is given by

kLnk = 1:

Theorem 120 4.3

Ln satis�es the second-order di¤erential equation

xu00 + (1� x)u0 + nu = 0; x 2 (0;1) :

which is called the Laguerre equation.
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Remark 121 1

1. The di¤erential operator in the Laguerre equation is not formally self-
adjoint, but can be transformed to one by multiplying the equation by

� (x) =
1

x
e
R

1�x
x
dx =

1

x
e
R

1
x
�1dx =

1

x

�
eln xe�x

�
= e�x

In which case, we have the SL problem

xe�xu00 + (1� x) e�xu0 + ne�xu = 0; x 2 (0;1) : ((4.33))

where

L =
d

dx

�
xe�x

d

dx

�

2. The Laguerre polynomials fLn : n 2 N0g are the eigenfunctions of the sin-
gular SL problem (4:33) associated with the eigenvalues �n = n. There-
fore, the set fLn : n 2 N0g is complete orthogonal set in L2e�x (0;1) :
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Part VI

Bessel Functions

17 The Gamma Function

De�nition 122 (Gamma Function)

The gamma function is given by

� (x) =

Z 1

0

e�ttx�1dt;

for x > 0:

17.1 Properties of the Gamma Function

1. � is of class C1 on (0;1) :

2. For any x > 0;
� (x+ 1) = x� (x)

3. � (1) = 1:

4. For any n 2 N
� (n+ 1) = n!

That is, the gamma function is an extension of the factorial mapping
f (n+ 1) = n! from N to (0;1) :

5. The domain of the gamma function can be extended from (0;1) to R �
f0;�1;�2; :::g as follows

� (x) =
� (x+ 1)

x

=
� (x+ 2)

x (x+ 1)

=
� (x+ 3)

x (x+ 1) (x+ 2)

...

=
� (x+ n)

x (x+ 1) : : : (x+ n� 1) ; n 2 N

Note that for any n 2 N;

lim
x!�(n�1)

� (x+ n) = � (� (n� 1) + n) = � (1) = 1
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Therefore,

lim
x!�(n�1)�

����
� (x+ n)

x (x+ 1) : : : (x+ n� 1)

���� =1

Note that � (n� 1) is a simple pole of the gamma function.

6.
lim
x!1

� (x) =1:
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18 Bessel Functions of the First Kind

The Bessel�s equation is the second-order di¤erential equation

x2y00 + xy0 +
�
x2 � �2

�
y = 0; x 2 (0;1) ((5.3))

where � is a nonnegative parameter.

18.1 Derivation of the Bessel Functions of the First Kind

The Bessel equation is a singular SL problem. If we write the equation in the
form

y00 +
1

x
y0 +

�
x2 � �2

�

x2
y = 0;

then clearly the solution cannot be represented by a power series about x = 0
[why?], but since the numerators 1 and x2 � �2 are both analytic at x = 0 we
can seek a solution of the from

y (x) =

1X

k=0

ckx
k+t;

where t 2 C and c0 6= 0:
Substituting the above series in (5:3) gives

x2
1X

k=0

ck (k + t) (k + t� 1)xk+t�2+x
1X

k=0

ck (k + t)x
k+t�1+

�
x2 � �2

� 1X

k=0

ckx
k+t = 0

or

1X

k=0

ck (k + t) (k + t� 1)xk+t+
1X

k=0

ck (k + t)x
k+t+

1X

k=0

ckx
k+t+2��2

1X

k=0

ckx
k+t = 0

or 1X

k=0

�
(k + t) (k + t� 1) + (k + t)� �2

�
ckx

k+t +
1X

k=0

ckx
k+t+2 = 0

or

1X

k=0

h
(k + t)

2 � �2
i
ckx

k+t +
1X

k=0

ckx
k+t+2 = 0

or

�
t2 � �2

�
c0x

t+
h
(1 + t)

2 � �2
i
c1x

1+t+
1X

k=2

h
(k + t)

2 � �2
i
ckx

k+t+
1X

k=2

ck�2x
k+t = 0

or

�
t2 � �2

�
c0x

t+
h
(1 + t)

2 � �2
i
c1x

1+t+

1X

k=2

nh
(k + t)

2 � �2
i
ck + ck�2

o
xk+t = 0
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from which we get

�
t2 � �2

�
c0 = 0;

h
(1 + t)

2 � �2
i
c1 = 0;

h
(k + t)

2 � �2
i
ck + ck�2 = 0; k 2 f2; 3; :::g

Since c0 6= 0, we have
t2 � �2 = 0

or
t = ��:

Case 1: Let t = �; then

1. h
(1 + t)

2 � �2
i
c1 = 0

leads to
(2� + 1) c1 = 0

[why?]. But, 2� + 1 � 1 [why?], and thus c1 must be zero.

2. h
(k + t)

2 � �2
i
ck + ck�2 = 0

gives
k (2� + k) ck + ck�2 = 0

[why?], which can be written in the form

ck = �
1

k (2� + k)
ck�2

(a) If k = 2m+ 1 where m 2 N; then

c2m+1 = �
1

(2m+ 1) (2� + 2m+ 1)
c2m�1

and hence c2m+1 = 0 [why?].

(b) If k = 2m where m 2 N; then

c2m = �
1

(2m) (2� + 2m)
c2m�2 = �

1

22m (� +m)
c2m�2

Therefore,

c2 =
(�1)1

22 (� + 1)
c0;

c4 = � 1

22 (2) (� + 2)
c2 =

�
� 1

22 (2) (� + 2)

��
� 1

22 (� + 1)

�
c0 =

(�1)2
242! (� + 1) (� + 2)

c0;
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In general, we have

c2m =
(�1)m

22mm! (� + 1) (� + 2) : : : (� +m)
c0

so if we choose

c0 =
1

2�� (� + 1)
;

then we get

c2m =
(�1)m

22m+�m!� (� + 1) (� + 1) (� + 2) : : : (� +m)

=
(�1)m

22m+�m!� (� +m+ 1)
:

The solution of the Bessel equation is therefore given by

x�
1X

m=0

(�1)m
22m+�m!� (� +m+ 1)

x2m

De�nition 123 (Bessel function of the �rst kind)

The Bessel function of the �rst kind of order � is denoted by J� (x) ; and is
given by

J� (x) =
�x
2

�� 1X

m=0

(�1)m
m!� (� +m+ 1)

�x
2

�2m
; x > 0

Remark 124 1

1. J� (x) is de�ned for all x 2 (0;1) because

(a) The series
1X

m=0

(�1)m
m!� (� +m+ 1)

�x
2

�2m

is convergent for all x 2 R:[why?].
(b) The power x� is de�ned for all x > 0:

2. The domain of J� (x) can be extended from (0;1) to [0;1) by de�ning

Jv (0) = lim
x!0+

J� (x) =

�
1; � = 0
0; � > 0

Case 2: If t = �� < 0; then following the same steps as above leads to

J�� (x) =
�x
2

��� 1X

m=0

(�1)m
m!� (�� +m+ 1)

�x
2

�2m
; x > 0
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Example 125 (The �rst two Bessel functions of �rst kind of integral order)

1. Find Bessel function of order 0:

2. Find Bessel function of order 1:

3. Show that
J
0
0 (x) = �J1 (x)

4. Prove that Z x

0

tJ0 (x) dt = xJ1 (x)

for all x > 0:

Solution:

1.

J0 (x) =
�x
2

�0 1X

m=0

(�1)m
m!� (m+ 1)

�x
2

�2m

=

1X

m=0

(�1)m
m!m!

�x
2

�2m

=
1X

m=0

(�1)m

(m!)
2

�x
2

�2m

= 1� x2

22
+

x4

24 (2!)
2 � :::

2.

J1 (x) =
�x
2

� 1X

m=0

(�1)m
m!� (m+ 2)

�x
2

�2m

=
1X

m=0

(�1)m
m! (m+ 1)!

�x
2

�2m+1

=
x

2
� x3

232!
+

x5

252!3!
� :::
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3.

J
0
0 (x) =

d

dx

 1X

m=0

(�1)m

(m!)
2

�x
2

�2m
!

= �
1X

m=1

(�1)m�1

2 (m!)
2 (2m)

�x
2

�2m�1

= �
1X

m=1

(�1)m�1
m! (m� 1)!

�x
2

�2m�1

= �
1X

m=0

(�1)m
(m+ 1)! (m)!

�x
2

�2m+1

= �J1 (x)
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4.

Z x

0

tJ0 (t) dt =

Z x

0

t

1X

m=0

(�1)m

(m!)
2

�
t

2

�2m
dt

=

1X

m=0

(�1)m

(m!)
2
22m

Z x

0

t2m+1dt

=
1X

m=0

(�1)m

(m!)
2
22m

�
t2m+2

2m+ 2

����
x

0

�

=
1X

m=0

(�1)m

(m!)
2
22m

�
x2m+2

2m+ 2

�

=

1X

m=0

(�1)m

(m!)
2
22m+1

�
x2m+2

m+ 1

�

= x

1X

m=0

(�1)m
m! (m+ 1)!

�x
2

�2m+1

= xJ1 (x)

Theorem 126 5.1

The Bessel functions J� and J�� are linearly independent if and only if � is
not an integer.
Proof:

1. If � = n 2 N0; then

J�n (x) =
�x
2

��n 1X

m=0

(�1)m
m!� (�n+m+ 1)

�x
2

�2m
; x > 0

but since �n+m+ 1 2 Z; we have

j� (�n+m+ 1)j =1

if �n+m+ 1 � 0: That is,

1

� (�n+m+ 1)
= 0

for all m � n� 1: Therefore, the �rst n terms of the above series vanish,
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i.e,

J�n (x) =
�x
2

��n 1X

m=n

(�1)m
m!� (�n+m+ 1)

�x
2

�2m

=
�x
2

��n 1X

m=0

(�1)m+n
(m+ n)!� (m+ 1)

�x
2

�2m+2n

= (�1)n
�x
2

�n 1X

m=0

(�1)m
m! (m+ 1) (m+ 2) ::: (m+ n) � (m+ 1)

�x
2

�2m

= (�1)n
�x
2

�n 1X

m=0

(�1)m
m!� (m+ n+ 1)

�x
2

�2m

= (�1)n Jn (x)

That is, J�n (x) and Jn (x) are linearly dependent.

2. If � =2 N and � > 0; then let

aJ� (x) + bJ�� (x) = 0: ((5.14))

We Know that for � > 0; limx!0+ J� (x) = 0; but

lim
x!0+

1X

m=0

(�1)m
m!� (�� +m+ 1)

�x
2

�2m
=

1

� (�� + 1) 2 R;

lim
x!0+

�x
2

���
= lim
x!0+

�
2

x

��
=1;

from which we deduce, limx!0+ jJ�� (x)j =1:
Therefore, equation (5:14) can hold only if b = 0. But, aJ� (x) = 0 for
all x > 0 only if a = 0: We conclude that J�� (x) and J� (x) are linearly
independent in this case.

Remark 127 2

Theorem 5.1 leads to the conclusion that the general solution of the Bessel
equation with a non-integer parameter � is given by

y (x) = c1J� (x) + c2J�� (x) ;

where x 2 (0;1) :
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19 Bessel Functions of the Second Kind

De�nition 128 (Bessel function of the second kind)

The Bessel function of the second kind of order � is denoted by Y� (x) ; and
is given by

Y� (x) =

�
1

sin �� [J� (x) cos �� � J�� (x)] ; � 6= 0; 1; 2; :::
lim�!n Yn n = 0; 1; 2; :::

Remark 129 2

1. If � = n 2 N0; then Bessel function of the second kind of order � can be
expressed in terms of the Bessel function of the �rst kind as follows

Yn (x) =
2

�

�
ln
x

2
+ 

�
Jn (x)�

1

�

�x
2

�n 1X

m=0

(�1)m (hm + hn+m)
m! (n+m)!

�x
2

�2m

� 1
�

�x
2

��n n�1X

m=0

(n�m� 1)!
m!

�x
2

�2m
; x > 0

where

h0 = 0;

hm = 1 +
1

2
+
1

3
+ :::+

1

m
;


 ' 0:577215

2. Yn (x) is also a solution of Bessel equation.

3. The Bessel functions J� and Y� are linearly independent for all � � 0:

4. The general solution of Bessel equation with a parameter � � 0 is given
by

y (x) = c1J� (x) + c2Yn (x) ;

where x 2 (0;1) :

Example 130 (Bessel functions of second kind of integral order)

Find the asymptotic behaviour of Yn (x) as x! 0:
Solution:
We say that a function f is asymptotic to a function g as x! c, and write

f � g; if limx!c
f(x)
g(x) = 1:
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1. For � = 0; we have

Y0 (x) =
2

�

�
ln
x

2
+ 

�
J0 (x)�

1

�

1X

m=0

(�1)m (2hm)
(m!)

2

�x
2

�2m

=
2

�

�
ln
x

2
+ 

� 1X

m=0

(�1)m

(m!)
2

�x
2

�2m
� 1

�

1X

m=0

(�1)m (2hm)
(m!)

2

�x
2

�2m

=
2

�

�
ln
x

2
+ 

��
1� x2

22
+ :::

�
� 1

�

�
�x

2

22
+ :::

�

Therefore,

Y0 (x) �
2

�
ln
x

2

2. For � 2 N; we have

Yn (x) =
2

�

�
ln
x

2
+ 

�
Jn (x)�

1

�

�x
2

�n 1X

m=0

(�1)m (hm + hn+m)
m! (n+m)!

�x
2

�2m

� 1
�

�x
2

��n n�1X

m=0

(n�m� 1)!
m!

�x
2

�2m

=
2

�

�
ln
x

2
+ 

��x

2

�n 1X

m=0

(�1)m
m!� (n+m+ 1)

�x
2

�2m
� 1

�

�x
2

�n�1 + 1
2 + :::+

1
n

n!
+ :::

�

� 1
�

�x
2

��n
((n� 1)! + :::)

=
2

�

�
ln
x

2
+ 

��x

2

�n� 1

� (n+ 1)
� :::

�
� 1

�

�x
2

�n�1 + 1
2 + :::+

1
n

n!
+ :::

�

� 1
�

�x
2

��n
((n� 1)! + :::)

Therefore, ,

Yn (x) � �
1

�

�x
2

��n
(n� 1)!; n 2 N:

Note that for all n 2 N0;

lim
x!0+

Yn (x) = �1:
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20 Orthogonality Properties

Lemma 131 1

The Bessel equation

x2y00 + xy0 +
�
x� �2

�
y = 0; ((5.26))

is equivalent to the equation

xu00 + u0 +

�
�2x� �2

x

�
u = 0; ((5.27))

where � 6= 0:
Proof:
Dividing equation (5:26) by x gives

xy00 + y0 +

�
x� �2

x

�
y = 0 ((5.28))

Using the change of variables

x! �x; y (x)! y (�x) = u (x)

where � 6= 0, which gives

u0 (x) = �y0 (�x) ;

u
00
(x) = �2y

00
(�x)
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Equation (5.28) becomes

x�
u00

�2
+
u0

�
+

�
�x� �2

�x

�
u = 0

or

xu00 + u0 +

�
�2x� �2

x

�
u = 0

Theorem 132 1

The eigenvalue problem

xu00 + u0 +

�
�2x� n2

x

�
u = 0; x 2 (0; b) ; ((5.29))

�1u (b) + �2u
0 (b) = 0;

where b < 1; and n 2 N0 is a singular SL problem, and its general solution is
given by

u (x) = cnJn (�x) :

Proof:
Problem (5:27) can be written as the eigenvalue problem

Lu+ �� (x)u = 0; x 2 (0; b)
�1u (b) + �2u

0 (b) = 0;

where

L = x
d2

dx2
+

d

dx
� �2

x
;

� = �2;

� (x) = x:

Now,

1. L is a self-adjoint operator because:

(a) p (x) = x; q (x) = 1; r (x) = ��2

x are all real functions.

(b) p0 (x) = 1 = q (x).

(c) For any two solution u; v of the problem, we have

p (uv0 � vu0)jb0 = p (b) (u (b) v0 (b)� v (b)u0 (b))� p (0) (u (0) v0 (0)� v (0)u0 (0))

= p (b)

���2
�1

u0 (b) v0 (b)� ��2
�1

v0 (b)u0 (b)

�

= 0

where we have assumed that �1 6= 0: A similar result occurs if �2 6= 0:
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2. p (0) = 0:

3. Since the di¤erential equation in eigenvalue problem (5:29) is equivalent
to the Bessel equation, its general solution is given by

u (x) = cnJn (�x) + dnYn (�x)

but,
lim
x!0+

u (x) exists , dn = 0

Therefore, (5:29) is a singular SL problem with the general solution

u (x) = cnJn (�x) :

Theorem 133 2

If �2 = 0 in problem (5:29) ; then

1. The eigenvalues of (5:29) are

�k = �2k =

�
�nk
b

�2

where �nk are the solution of

Jn (�kb) = 0

and the corresponding eigenfunctions are

uk (x) = Jn (�kx)

2. The set fJn (�kx) : k 2 Ng is orthogonal. That is,


Jn (�kx) ; Jn

�
�jx

��
x
= 0; k 6= j

3. The norm of Jn (�kx) is given by

kJn (�kx)kx =
�
b2

2
J2n+1 (�kb)

� 1
2

4. For any f 2 L2x (0; b)

f (x) =
1X

k=1

hf (x) ; Jn (�kx)ix
kJn (�kx)k2x

Jn (�kx) ((5.32))

5. If f is smooth on (0; b) ; then the above equality holds pointwise provided
f is de�ned by

f (x) =
1

2

�
f
�
x�
�
+ f

�
x+
��

at the points of discontinuity.
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Proof:

1. If �2 = 0; the boundary condition becomes

u (b) = 0;

Thus, we have
0 = u (b) = cnJn (�b) ;

or
Jn (�b) = 0

which leads to
�kb = �nk;

where k 2 N [why?] and �nk are the zeros of Jn: Thus,

�k =
�nk
b
;

and the eigenvalues are therefore

�k = �2k =

�
�nk
b

�2

The corresponding eigenfunction are

uk (x) = Jn (�kx) :

2. Theorem 2.29 holds for a singular SL problem (5:29) (See the subsec-
tion "The singular SL problem"). In particular, the eigenfunctions of the
problem are orthogonal and form a basis for L2x (0; b) : Therefore,



Jn (�kx) ; Jn

�
�jx

��
x
= 0; k 6= j

3. Multiplying equation (5.27) by 2xu0 gives

2x2u00u0 + 2x (u0)
2
+ 2

�
�2x2 � n2

�
u0u = 0;

or �
(xu0)

2
�0
+
�
�2x2 � n2

� �
u2
�0
= 0

Integrating the above equation on (0; b) gives

(xu0)
2
���
b

0
+ �2

Z b

0

x2
�
u2
�0
dx� n2 u2

��b
0
= 0

) (xu0)
2
���
b

0
+ �2x2u2

��b
0
� 2�2

Z b

0

xu2dx� n2 u2
��b
0
= 0

) 2�2
Z b

0

xu2dx = (xu0)
2
���
b

0
+ �2x2u2

��b
0
� n2 u2

��b
0

) kuk2x =
1

2�2

h
(xu0)

2
+
�
�2x2 � n2

�
u2
i���
b

0
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Using the solution u (x) = Jn (�x) in the above equation gives

kJn (�x)k2x =
1

2�2

��
�xJ

0
n (�x)

�2
+
�
�2x2 � n2

�
J2n (�x)

�����
b

0

=
1

2�2

��
�bJ

0
n (�b)

�2
+
�
�2b2 � n2

�
J2n (�b) + n

2J2n (0)

�

=
1

2�2

��
�bJ

0
n (�b)

�2
+
�
�2b2 � n2

�
J2n (�b)

�

since n2J2n (0) = 0 8n 2 N0:
Now,

kJn (�kx)k2x =
1

2�2k

��
�bJ

0
n (�kb)

�2
+
�
�2kb

2 � n2
�
J2n (�kb)

�

=
b2

2

h
J
0
n (�kb)

i2

but using the identity (exercise 5.9)

xJ
0
� (x) = �J� (x)� xJ�+1 (x)

gives

�kbJ
0
n (�kb) = nJn (�kb)� �kbJn+1 (�kb)
) �kbJ

0
n (�kb) = ��kbJn+1 (�kb)

) J
0
n (�kb) = �Jn+1 (�kb)

Thus, we have

kJn (�kx)k2x =
b2

2
J
2

n+1 (�kb)

4. Follows form Theorem 2.29.

5. Generalized version of Theorem 3.9.

Example 134 5.5

Consider the function

f (x) =

�
1; 0 � x < 2
0; 2 < x � 4

with
J0 (4�) = 0

1. Expand f in a Fourier-Bessel series.
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2. Find the sum of the series at x = 1.

3. Find the sum of the series at x = 2.

Solution:

1. Clearly f 2 L2x (0; 4) ; therefore

f (x) =
1X

k=1

hf (x) ; J0 (�kx)ix
kJ0 (�kx)k2x

J0 (�kx)

Now,

(a)

hf (x) ; J0 (�kx)ix =

Z 4

0

f (x) J0 (�kx)xdx

=

Z 2

0

J0 (�kx)xdx

=
1

�2k

Z 2

0

J0 (�kx)�kx�kdx

=
1

�2k

Z 2�k

0

J0 (y) ydy

but Z x

0

tJ0 (t) dt = xJ1 (x)

hence

hf (x) ; J0 (�kx)ix =
1

�2k
2�kJ1 (2�k)

=
2

�k
J1 (2�k)

(b)

kJ0 (�kx)k2x =
16

2
J
2

1 (4�k) = 8J
2

1 (4�k)

So we have

f (x) =
1X

k=1

2
�k
J1 (2�k)

8J
2

1 (4�k)
J0 (�kx)

=
1

4

1X

k=1

J1 (2�k)

�kJ
2

1 (4�k)
J0 (�kx)

for 0 < x < 4:
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2. Since f is continuous at x = 1; we have

1

4

1X

k=1

J1 (2�k)

�kJ
2

1 (4�k)
J0 (�k) = f (1) = 1:

)
1X

k=1

J1 (2�k)

�kJ
2

1 (4�k)
J0 (�k) = 4

3. Since f is discontinuous at x = 2; we have

1

4

1X

k=1

J1 (2�k)

�kJ
2

1 (4�k)
J0 (2�k) =

1

2

�
f
�
2�
�
+ f

�
2+
��
=
1

2
(1 + 0) =

1

2

)
1X

k=1

J1 (2�k)

�kJ
2

1 (4�k)
J0 (2�k) = 2

Theorem 135 3

If �1 = 0 in problem (5:29) ; then

1. For n = 0; the eigenvalues of (5:29) are

�k = �2k =

�
�1k
b

�2
; k 2 N0

where �1k are the zeros of J1; and the corresponding eigenfunctions are

uk (x) = J0 (�kx)

2. For n 2 N; the eigenvalues are

�k = �2k =

�
�nk
b

�2
; k 2 N

where �k are the solution of

J
0
n (�b) = 0;

The corresponding eigenfunctions are

uk (x) = Jn (�kx)

3. The set fJn (�kx) : k 2 Ng is orthogonal in L2x (0; b). That is,


Jn (�kx) ; Jn

�
�jx

��
x
= 0; k 6= j
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4. The norm of Jn (�kx) is given by

kJn (�kx)kx =
�
1

2�2k

�
�2kb

2 � n2
�
J2n (�kb)

� 1
2

5. For any f 2 L2x (0; b)

f (x) =

1X

k=1

hf (x) ; Jn (�kx)ix
kJn (�kx)k2x

Jn (�kx) ((5.32))

6. If f is smooth on (0; b) ; then the above equality holds pointwise provided
f is de�ned by

f (x) =
1

2

�
f
�
x�
�
+ f

�
x+
��

at the points of discontinuity.

Proof:

1. If �1 = 0; the boundary condition becomes

u0 (b) = 0;

but,
u0 (x) = �J

0
n (�x)

and thus we have the boundary condition,

0 = u0 (b) = �J
0
n (�b)

(a) Now, or n = 0 we know that

J
0
0 (x) = �J1 (x) ;

which leads to get

0 = �J
0
0 (�b)) ��J1 (�b) = 0

Now, if � = 0; then � = 0 and the corresponding eigenvector

u0 (x) = J0 (�x) = J0 (0) = 1

If � 6= 0
J1 (�b) = 0

then

�k =
�1k
b

where �1k are the positive zeros of J1 and the eigenvalues are

u0 (x) = J0 (�kx) ; k 2 N
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Summarizing, for n = 0; the eigenvalues are given by

�k = �2k =

�
�1k
b

�2
;

and the corresponding eigenfunctions are given by

uk (x) = J0 (�kx) ;

where k 2 N0:
(b) For n 2 N; the boundary condition leads to

0 = u0 (b) = �J
0
n (�b)

now, If � = 0; then � = �2 = 0 is an eigenvalue of Jn (�x), and the
corresponding eigenfunction is

Jn (�x) = Jn (0) = 0

which cannot be true. Therefore,

J
0
n (�b) = 0

which if solved gives the eigenvalues

�k = �2k

and the corresponding eigenfunctions

uk (x) = Jn (�kx) :
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Part VII

The Fourier Transformation
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21 The Fourier Transform

We are going to learn

� The space L1 (I) :

� The Fourier transform of a function f 2 L1 (I) :

� Properties of the Fourier transform.
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De�nition 136 (The Space L1(I))

For any real interval I; we say that f : I ! C is absolutely integrable on I,
and write f 2 L1(I) if Z

I

jf (x)j dx <1:

Remark 137 1

1. L1(I) is a vector space.

2. If I is bounded, then any integrable function f is in L1(I):

3. If I is unbounded, then a function f may be integrable, but not in L1(I);
for example, take f (x) = sin x

x on (0;1) :

De�nition 138 6.1

For any f 2 L1 (R) we de�ne the Fourier transform of f as the function

f̂ : R! C de�ned by the improper integral

f̂ (�) =

Z 1

�1
f (x) e�i �xdx;

In the book, the symbol F (f) is used instead of f̂ to denote the Fourier
transform of f:

Example 139 6.2

For a 2 R; consider the function fa : R! R de�ned by

fa (x) =

�
1; jxj � a
0; jxj > a

:

1. Show that fa 2 L1 (R) :

2. Find the Fourier transform f̂a of fa:

3. Find f (x) = lima!1 fa (x) : Does f 2 L1 (R)?

4. Does lima!1 f̂a (�) exist?

Solution:

1. fa 2 L1 (R) because
Z 1

�1
jfa (x)j dx =

Z a

�a
1dx = xja�a = 2a <1:
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2. The Fourier transform is given by

f̂a (�) =

Z 1

�1
fa (x) e

�i �xdx

=

Z a

�a
e�i �xdx

=
e�i �x

�i�

����
a

�a

=
1

�i�
�
e�i �a � ei �a

�

=
2

�

�
ei �a � e�i �a

�

2i

=
2

�
sin �a

3. f (x) = lima!1 fa (x) = 1; for all x 2 R: Now,
Z 1

�1
jfa (x)j dx =

Z 1

�1
1dx =

Z 0

�1
1dx+

Z 1

0

1dx

but Z 0

�1
1dx = lim

r!�1

Z 0

r

1dx = lim
r!�1

xj0r = lim
r!�1

�r =1;

Therefore,
R1
�1 jfa (x)j dx does not converge. In other words, f =2 L1 (R) :

4.

lim
a!1

f̂a (�) = lim
a!1

2

�
sin �a =

2

�
lim
a!1

sin �a

does not exist, because if we take � = �
2 and let a = 2n + 1 ! 1 where

n 2 N0; then
sin a� = sin (2n+ 1)

�

2
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alternates between �1 and 1 as n ! 1: Since f̂a
�
�
2

�
does not converge

as a!1; f̂a (�) does not converge.
Example 140 6.3

Consider the function f : R! R de�ned by

f (x) = e�jxj:

1. Show that f 2 L1 (R) :

2. Find the Fourier transform f̂ of f:

Solution:

1. f 2 L1 (R) because
Z 1

�1
jf (x)j dx =

Z 1

�1
e�jxjdx

=

Z 0

�1
exdx+

Z 1

0

e�xdx

= lim
r!�1

Z 0

r

exdx+ lim
s!1

Z s

0

e�xdx

= lim
r!�1

exj0r + lim
s!1

�e�x
��s
0

= lim
r!�1

(1� er) + lim
s!1

�
�e�s + 1

�

= 1 + 1 = 2 <1

2. The Fourier transform is given by

f̂ (�) =

Z 1

�1
f (x) e�i �xdx

=

Z 1

�1
e�jxje�i �xdx

=

Z 0

�1
exe�i �xdx+

Z 1

0

e�xe�i �xdx

= lim
r!�1

Z 0

r

e(1�i �)xdx+ lim
s!1

Z s

0

e�(1+i �)xdx

= lim
r!�1

e(1�i �)x

1� i�

����
0

r

+ lim
s!1

�e
�(1+i �)x

1 + i�

����
s

0

= lim
r!�1

�
1

1� i� �
e(1�i �)r

1� i�

�
+ lim
s!1

�
�e

�(1+i �)s

1 + i�
+

1

1 + i�

�

=
1

1� i� +
1

1 + i�

=
2

1 + �2
:
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21.1 Properties of the Fourier Transform

1. The Fourier transformation F : f ! f̂ is a linear function, that is

F (c1f1 + c2f2) = c1F (f1) + c2F (f2)

for any c1; c2 2 C and any f1; f2 2 L1 (R) because for any � 2 R we have

F (c1f1 + c2f2) (�) =

Z 1

�1
(c1f1 + c2f2) (x) e

��xidx

= c1

Z 1

�1
f1 (x) e

��xidx+ c2

Z 1

�1
f2 (x) e

��xidx

= c1F (f1) (�) + c2F (f2) (�)
= (c1F (f1) + c2F (f2)) (�)

2. f̂ is a bounded function on R because

���f̂ (�)
��� �

Z 1

�1

��f (x) e�i �x
�� dx

=

Z 1

�1
jf (x)j dx <1

[why?] .

Lemma 141 6.4

Let (fn : n 2 N) be a sequence of functions in L1 (I) ; where I is a real
interval, and suppose that fn ! f pointwise on I: If there is a positive function
g 2 L1 (I) such that

jfn (x)j � g (x) for all x 2 I; n 2 N

then f 2 L1 (I) and

lim
n!1

Z

I

fn (x) dx =

Z

I

f (x) dx:
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Theorem 142 6.6

For any f 2 L1 (R) ; the Fourier transform

f̂ (�) =

Z 1

�1
f (x) e�i �xdx

is a bounded continuous function on R and

lim
j�j!1

f̂ (�) = 0:

Proof:
We will only prove the �rst part of the theorem, namely that the Fourier

transform is continuous.
Let � be any real number and let (�n) be a sequence such that

lim
n!1

�n = �;

To prove that f̂ is continuous, we must prove that

lim
n!1

f̂ (�n) = f̂ (�) :

Now,

���f̂ (�n)� f̂ (�)
��� =

����
Z 1

�1
f (x) e�i �nxdx�

Z 1

�1
f (x) e�i �xdx

���� ((6.8))

=

����
Z 1

�1
f (x)

�
e�i �nx � e�i �x

�
dx

����

�
Z 1

�1
jf (x)j

��e�i �nx � e�i �x
�� dx

If we take the sequence

gn (x) =
��f (x)

�
e�i �nx � e�i �x

���

then, (gn : n 2 N) satis�es:

1. gn 2 L1 (R) for all n 2 N since
Z 1

�1
jgn (x)j dx =

Z 1

�1
jf (x)j

��e�i �nx � e�i �x
�� dx

� 2

Z 1

�1
jf (x)j dx <1

2.
lim
n!1

gn (x) = lim
n!1

jf (x)j
��e�i �nx � e�i �x

�� = 0

[why?] .
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3.

jgn (x)j = jf (x)j
��e�i �nx � e�i �x

��
� 2 jf (x)j

for all x 2 R and n 2 N:

Taking the limit of both sides in equation (6:8) and using lemma 6.4 gives

lim
n!1

���f̂ (�n)� f̂ (�)
��� � lim

n!1

Z 1

�1
jf (x)j

��e�i �nx � e�i �x
�� dx

=

Z 1

�1
lim
n!1

�
jf (x)j

��e�i �nx � e�i �x
��� dx

= 0

That is,

lim
n!1

f̂ (�n) = f̂ (�) :
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22 The Fourier Integral

We are going to learn

� The Fourier Integral of a function f 2 L1 (I).

� The Fundamental Theorem of Fourier integral.

� The Integral in Trigonometric Form.
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Recall that any function f 2 L2 (��; �) can be represented by the Fourier
series

f (x) =
1X

n=�1
cne

inx;

where

cn =
1

2�

Z �

��
f (x) e�inxdx; n 2 Z:

Analogous to the Fourier series representation, a function f 2 L1 (R) can be
represented by the integral

1

2�

Z 1

�1
f̂ (�) eix�d�;

where f̂ is the Fourier transform of f and is given by

f̂ (�) =

Z 1

�1
f (x) e�i �xdx

Theorem 143 6.10

Let f be a piecewise smooth function in L1 (R). If

f̂ (�) =

Z 1

�1
f (x) e�i �xdx; � 2 R

then

lim
L!1

1

2�

Z L

�L
f̂ (�) eix�d� =

1

2

�
f
�
x+
�
+ f

�
x�
��
;

for all x 2 R:

Remark 144 6.11

If f is de�ned by

f (x) =
1

2

�
f
�
x+
�
+ f

�
x�
��
;

at every point of discontinuity x; then

lim
L!1

1

2�

Z L

�L
f̂ (�) eix�d�

is called the Fourier integral of f or the inverse Fourier transform of f̂ and we
therefore write

f (x) = lim
L!1

1

2�

Z L

�L
f̂ (�) eix�d� = F�1

�
f̂
�
(x) :
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22.1 Fourier Integral in Trigonometric Form

Let f 2 L1 (R) be a real, piecewise smooth function satisfying

f (x) =
1

2

�
f
�
x+
�
+ f

�
x�
��
;

at each point of discontinuity, then the Fourier integral representation of f can
be written in the form

f (x) =
1

�

Z 1

0

[A (�) cosx� +B (�) sinx�] d�; x 2 R

where

A (�) =

Z 1

�1
f (x) cos �xdx;

B (�) =

Z 1

�1
f (x) sin �xdx; � 2 R:

1. If f is an even function, then B (�) = 0; and the integral form becomes

f (x) =
1

�

Z 1

0

A (�) cosx�d�;

A (�) = 2

Z 1

0

f (x) cos �xdx;

2. If f is an odd function, then A (�) = 0; and the integral form becomes

f (x) =
1

�

Z 1

0

B (�) sinx�d�;

B (�) = 2

Z 1

0

f (x) sin �xdx;

Example 145 6.12

Consider the function fa : R! R de�ned by

fa (x) =

�
1; jxj � a
0; jxj > a

:

where a 2 R:Use the Fourier integral theorem to �nd the value of 2�
R1
0

1
� sin a� cosx�d�

at every x 2 R
Solution:
We already know from example 6.2 that fa 2 L1 (R) : Moreover, f is clearly

a piecewise smooth function. Thus, Theorem 6.10 holds, that is,

lim
L!1

1

2�

Z L

�L
f̂a (�) e

ix�d� =
1

2

�
fa
�
x+
�
+ fa

�
x�
��
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From example 6.2, the Fourier transform of f is given by

f̂a (�) =
2

�
sin a�

and thus we have,

lim
L!1

1

2�

Z L

�L
f̂a (�) e

ix�d� = lim
L!1

1

2�

Z L

�L

2

�
sin (a�) eix�d�

= lim
L!1

1

�

Z L

�L

1

�
sin a� [cosx� + i sinx�] d�

= lim
L!1

2

�

Z L

0

1

�
sin a� cosx�d�

=
2

�

Z 1

0

1

�
sin a� cosx�d�

[why?].
Therefore,

2

�

Z 1

0

1

�
sin a� cosx�d� =

1

2

�
fa
�
x+
�
+ fa

�
x�
��

=

8
>>>><
>>>>:

0; x < �a
1
2 ; x = a
1; �a < x < a
1
2 ; x = a
0; x > a

:

Example 146 6.13

Find Fourier integral representation of the function f : R! R de�ned by

f (x) =

�
sinx; jxj < �
0; jxj > �

Solution:
Note that Z 1

�1
jf (x)j dx =

Z �

��
jsinxj dx <1

that is f 2 L1 (R) : Theorem 6.10 holds because f is clearly a piecewise smooth
function. Moreover, since f is an odd continuous function, we have

f (x) =
1

�

Z 1

0

B (�) sinx�d�

151



where

B (�) = 2

Z 1

0

f (x) sin �xdx

= 2

Z �

0

sinx sin �xdx

= 2

Z �

0

1

2
[cos (1� �)x� cos (1 + �)x] dx

=
sin (1� �)x
1� � � sin (1 + �)x

1 + �

����
�

0

=
sin (1� �)�
1� � � sin (1 + �)�

1 + �

=
(1 + �) sin (1� �)� � (1� �) sin (1 + �)�

1� �2

=
(1 + �) [sin� cos �� � sin �� cos�]� (1� �) [sin� cos �� + sin �� cos�]

1� �2

=
(1 + �) [sin ��] + (1� �) [sin ��]

1� �2

=
2 sin ��

1� �2

Example 147 6.14

Consider the function f : R! R de�ned by

f (x) = e�jxj

1. Fine the Fourier integral representation of f:

2. Deduce that Z 1

0

1

1 + �2
d� =

�

2
:
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Solution:

1. We already know from example 6.3 that f 2 L1 (R) :Moreover, f is clearly
a piecewise smooth function. Thus, Theorem 6.10 holds, that is,

lim
L!1

1

2�

Z L

�L
f̂ (�) eix�d� =

1

2

�
f
�
x+
�
+ f

�
x�
��

From example 6.3, the Fourier transform of f is given by

f̂ (�) =
2

1 + �2

and thus we have

lim
L!1

1

2�

Z L

�L
f̂ (�) eix�d� = lim

L!1

1

�

Z L

�L

1

1 + �2
[cosx� + i sinx�] d�

= lim
L!1

2

�

Z L

0

1

1 + �2
cosx�d�

=
2

�

Z 1

0

1

1 + �2
cosx�d�

but f is continuous, that is for all x 2 R;

f (x) =
1

2

�
f
�
x+
�
+ f

�
x�
��

Therefore, we have

f (x) =
2

�

Z 1

0

1

1 + �2
cosx�d�; x 2 R

2. Using the above equation at x = 0; we get

f (0) =
2

�

Z 1

0

1

1 + �2
cos 0d�

but f (0) = e0 = 1; and hence we have

1 =
2

�

Z 1

0

1

1 + �2
d�

or Z 1

0

1

1 + �2
d� =

�

2
:

153



23 Properties and Applications

We are going to learn about the properties of the Fourier transformations under
di¤erentiation.

Theorem 148 6.15

Let f 2 L1 (R)

1. f 0 2 L1 (R) and f is continuous on R; then

F (f 0) (�) = i�F (f) (�) ; � 2 R

2. If xf (x) 2 L1 (R) ; then F (f) is di¤erentiable and its derivative

d

d�
F (f) (�) = F (�ixf) (�) ; � 2 R

is continuous on R:

Corollary 149 6.16

Suppose f 2 L1 (R) and n 2 N; then

1. f (k) 2 L1 (R) for 1 � k � n; and f (n�1) is continuous on R; then

F
�
f (n)

�
(�) = (i�)

n F (f) (�) ; � 2 R

2. If xnf (x) 2 L1 (R) ; then F (f) is di¤erentiable and its derivative

dn

d�n
F (f) (�) = F ((�ix)n f) (�) ; � 2 R

Example 150 6.17

Consider the function

f (x) = e�x
2

; x 2 R:

1. Show that f 2 L1 (R) and xf (x) 2 L1 (R) :

2. Find the derivative of the Fourier transform f̂ of f:

3. Find a closed form of the Fourier transform f̂ :

Solution:

154



1. Z 1

�1
e�x

2

dx =
p
� <1

Z 1

�1
jxj e�x2dx =

Z 0

�1
�xe�x2dx+

Z 1

0

xe�x
2

dx

= lim
r!�1

Z 0

r

�xe�x2dx+ lim
r!1

Z r

0

xe�x
2

dx

= lim
r!�1

1

2
e�x

2

����
0

r

+ lim
r!1

�1
2
e�x

2

����
r

0

=
1

2
lim

r!�1

h
1� e�r2

i
+�1

2
lim
r!1

h
e�r

2 � 1
i

= 1 <1

2. From 1, we see that both f and xf are in L1 (R) ; and therefore we have
d

d�
f̂ (�) = F (�ixf) (�)

=

Z 1

�1
�ixf (x) e�i �xdx

= �i
Z 1

�1
xe�x

2

e�i �xdx

=
i

2

Z 1

�1
�2xe�x2e�i �xdx

=
i

2

Z 1

�1

d

dx

�
e�x

2
�
e�i �xdx

=
i

2

�
lim
r!1

e�x(x+i �)
���
r

�r
+ i�

Z 1

�1
e�x

2

e�i �xdx

�

= ��
2

Z 1

�1
e�x

2

e�i �xdx

= ��
2
f̂ (�)

3. We have
d

d�
f̂ (�) +

�

2
f̂ (�) = 0

Multiplying the above equation by the integrating factor exp
�
�2

4

�
gives

d

d�

�
e
�2

4 f̂ (�)

�
= 0

which have the solution

e
�2

4 f̂ (�) = c

155



where c is a constant. In other words, we have

f̂ (�) = ce�
�2

4

but

f̂ (�) =

Z 1

�1
e�x

2

e�i �xdx

Therefore, at � = 0; we have

p
� =

Z 1

�1
e�x

2

dx = f̂ (0) = c

Using the value of c; we have the following closed form of f̂ (�)

f̂ (�) =
p
�e�

�2

4 :
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24 Heat Transfer in an In�nite Bar

Consider an in�nite thin bar with an initial temperature distribution

u (x; 0) = f (x) ; x 2 R

where f is a piecewise smooth function in L1 (R) : We are interested in �nding
the temperature distribution u (x; t) along the bar at time t > 0:
To �nd the temperature function u (x; t) ; we need to solve the heat equation

ut = kuxx; x 2 R; t > 0;

subject to the initial condition

u (x; 0) = f (x) ; x 2 R:

Using the method of separation of variables, we assume that

u (x; t) = v (x)w (t) ;

which if substituted in the heat equation gives

v00

v
=
1

k

w0

w

and hence we have a constant ��2 such that

v00 + �2v = 0;

w0 + �2kw = 0:

The solution to the above equations are given by

v (x) = A (�) cos�x+B (�) sin�x;

w (t) = C (�) e��
2kt;

where A; B; C are the constants of integration and are function of �:
The solution of the heat equation corresponding to � 2 R thus becomes

u� (x; t) = [A (�) cos�x+B (�) sin�x] e
��2kt;

where we have assumed that C (�) = 1:
The general solution of the heat equation results from taking the integral of

u� (x; t) with respect to � over R; which gives

u (x; t) =
1

2�

Z 1

�1
u� (x; t) d�

=
1

2�

Z 1

�1
[A (�) cos�x+B (�) sin�x] e��

2ktd�
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Using the initial condition, we have

f (x) = u (x; 0) =
1

2�

Z 1

�1
[A (�) cos�x+B (�) sin�x] d�

that is, A (�) and B (�) are the Fourier cosine and sine transform of f; and are
therefore given by

A (�) =

Z 1

�1
f (y) cos�ydy;

B (�) =

Z 1

�1
f (y) sin�ydy:

Substituting in the solution of the heat equation gives

u (x; t) =
1

2�

Z 1

�1
[A (�) cos�x+B (�) sin�x] e��

2ktd�

=
1

2�

Z 1

�1

�Z 1

�1
f (y) cos�ydy cos�x+

Z 1

�1
f (y) sin�ydy sin�x

�
e��

2ktd�

=
1

2�

Z 1

�1

Z 1

�1
f (y) [cos�y cos�x+ sin�y sin�x] e��

2ktdyd�

=
1

2�

Z 1

�1

Z 1

�1
f (y) cos [� (x� y)] e��2ktdyd�

=
1

2�

Z 1

�1

Z 1

�1
f (y) cos [� (x� y)] e��2ktdyd�

=
1

2�

Z 1

�1
f (y)

Z 1

�1
cos [� (x� y)] e��2ktd�dy

=
1

�

Z 1

�1
f (y)

Z 1

0

cos [� (x� y)] e��2ktd�dy

but Z 1

0

cos�ze�c�
2

d� =
1

2

r
�

c
e�z

2=4c for all x 2 R; c > 0;

therefore,

u (x; t) =
1

�

Z 1

�1
f (y)

Z 1

0

cos [� (x� y)] e��2ktd�dy

=
1

�

Z 1

�1
f (y)

�
1

2

r
�

kt
e�(x�y)

2=4kt

�
dy

=
1

2
p
�kt

Z 1

�1
f (y) e�(x�y)

2=4ktdy
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25 Heat Transfer in an a Semi-In�nite Bar

Consider a semi-in�nite bar that is insulated at one end, and suppose that the
initial temperature distribution along the bar length is known. To �nd the
temperature distribution u (x; t) along the bar at time t > 0; we need to solve
the boundary-value problem

ut = kuxx; x 2 (0;1) ; t > 0;

subject to the conditions

u (x; 0) = f (x) ; x 2 (0;1) ;
ux (x; 0) = 0; t > 0:

We already know that the solution to the heat equation is given by

u� (x; t) = [A (�) cos�x+B (�) sin�x] e
��2kt;

where � 2 R: We can assume, without loss of generality, that � � 0 [why?].
Using the boundary condition, we have

0 =
@u�
@x

(0; t)

= [�A (�) sin� (0) +B (�) cos� (0)]�e��2kt

= �B (�) e��
2kt

So, we have two cases:

1. if � = 0; then the solution is

u0 (x; t) = A (0)

i.e. constant.

2. If � 6= 0; then B (�) = 0 and

u� (x; t) = A (�) cos�xe��
2kt

Integrating the above solution over all � > 0 gives the general solution,

u (x; t) =
1

�

Z 1

0

A (�) cos�xe��
2ktd�

Applying the initial condition gives

f (x) = u (x; 0)

=
1

�

Z 1

0

A (�) cos�xd�
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which is the cosine Fourier transform of the even extension of the piecewise
smooth function f 2 L1 (0;1) to (�1;1). That is,

A (�) = 2

Z 1

0

f (y) cos�ydy:

Substituting in the solution gives

u (x; t) =
1

�

Z 1

0

2

Z 1

0

f (y) cos�ydy cos�xe��
2ktd�

=
2

�

Z 1

0

Z 1

0

f (y) cos�y cos�xe��
2ktdyd�

=
1

�

Z 1

0

f (y)

Z 1

0

2 cos�y cos�xe��
2ktd�dy

but
2 cos�y cos�x = cos� (y + x) + cos� (y � x)

and hence we have

u (x; t) =
1

�

Z 1

0

f (y)

Z 1

0

[cos� (y + x) + cos� (y � x)] e��2ktd�dy

=
1

�

Z 1

0

f (y)

Z 1

0

cos� (y + x) e��
2ktd�dy +

1

�

Z 1

0

f (y)

Z 1

0

cos� (y � x) e��2ktd�dy

=
1

2
p
�kt

Z 1

0

f (y) e�(x+y)
2=4ktdy +

1

2
p
�kt

Z 1

0

f (y) e�(y�x)
2=4ktdy

=
1

2
p
�kt

Z 1

0

f (y)
h
e�(x+y)

2=4kt + e�(y�x)
2=4kt

i
dy

If we take,

f (y) =

�
1; 0 < y < a
0; y > a

for some a > 0; then we have

u (x; t) =
1

2
p
�kt

Z 1

0

f (y)
h
e�(x+y)

2=4kt + e�(y�x)
2=4kt

i
dy

=
1

2
p
�kt

Z a

0

h
e�(x+y)

2=4kt + e�(y�x)
2=4kt

i
dy

Since the error function is given by

erf (x) =
2p
�

Z x

0

e�p
2

dp

we write

u (x; t) =
1

2
p
�kt

�Z a

0

e�(x+y)
2=4ktdy +

Z a

0

e�(y�x)
2=4ktdy

�
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and use the substitutions

p =
x+ y

2
p
kt
;

q =
y � x
2
p
kt

in the �rst and second integrals, respectively which gives

dp =
1

2
p
kt
dy;

dq =
1

2
p
kt
dy;

or
dy = 2

p
ktdp = 2

p
ktdq

and hence

u (x; t) =
1

2
p
�kt

"Z x+a

2
p
kt

x

2
p
kt

e�p
2

2
p
ktdp+

Z a�x
2
p
kt

�x
2
p
kt

e�q
2

2
p
ktdq

#

=
1p
�

"Z x+a

2
p
kt

x

2
p
kt

e�p
2

dp+

Z a�x
2
p
kt

�x
2
p
kt

e�q
2

dq

#

=
1p
�

"Z x+a

2
p
kt

x

2
p
kt

e�z
2

dz +

Z a�x
2
p
kt

�x
2
p
kt

e�z
2

dz

#

=
1p
�

"Z x+a

2
p
kt

0

e�z
2

dz +

Z a�x
2
p
kt

0

e�z
2

dz

#
[why?]

=
1p
�

�p
�

2
erf

�
x+ a

2
p
kt

�
+

p
�

2
erf

�
a� x
2
p
kt

��

=
1

2
erf

�
a+ x

2
p
kt

�
+
1

2
erf

�
a� x
2
p
kt

�
:

Summarizing, when the initial temperature along a semi-in�nite bar that is
insulated at one end is given

f (y) =

�
1; 0 < y < a
0; y > a

for some point a along the bar, then the temperature at at a point x along the
bar at time t > 0 is given by the function

u (x; t) =
1

2
erf

�
a+ x

2
p
kt

�
+
1

2
erf

�
a� x
2
p
kt

�
:

Questions:
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1. What is the temperature far from the point a at any time t > 0:

2. What is the temperature at the insulated side at any time t > 0:

3. What is the temperature distribution along the bar as t!1:

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­1.0

­0.8

­0.6

­0.4

­0.2

0.2

0.4

0.6

0.8

1.0

x

y

The error function y = erf (x)
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