MATH204 Differential Equation

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Fourier series

Chapter 7

- Orthogonal Functions
- Fourier Series
- Even and Odd Functions
- Properties of symmetric functions
- Fourier Cosine and Sine Series
- Complex form of a Fourier Series

Orthogonal Functions

Firstly, we will introduce a tool called inner product to define orthogonal functions and sets of orthogonal functions.

Definition

The inner product of two functions f and g on the interval $[\alpha, \beta]$ is the scalar (real number)

$$
(f, g)=\int_{\alpha}^{\beta} f(x) g(x) d x
$$

Definition

We say that The two functions f and g are orthogonal functions on the interval $[\alpha, \beta]$ if

$$
(f, g)=\int_{\alpha}^{\beta} f(x) g(x) d x=0
$$

Example (1) The two functions $f(x)=\cos x$ and $g(x)=\sin x$ are orthogonal on the interval $[-\pi, \pi]$ since

$$
(f, g)=\int_{-\pi}^{\pi} \cos x \cdot \sin x d x=0 .
$$

Example (2) The two functions $f(x)=x$ and $g(x)=e^{|x|}$ are orthogonal on any symmetric interval $[-A, A]$, where A is a positive real constant. By using integration by parts, It can be easily checked that

$$
(f, g)=\int_{-A}^{A} x e^{|x|} d x=0
$$

Definition

We say that The set of functions $\left\{\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{n}(x), \ldots\right\}$ is orthogonal on the interval $[\alpha, \beta]$ if

$$
\left(\varphi_{n}(x), \varphi_{m}(x)\right)=\int_{\alpha}^{\beta} \varphi_{n}(x) \varphi_{m}(x) d x=0, \quad n \neq m
$$

Definition

We define the norm (length) of function f in terms of the inner product as the quantity

$$
\|f\|=\sqrt{\left(\varphi_{n}, \varphi_{n}\right)}=\left(\int_{\alpha}^{\beta} \varphi_{n}^{2}(x) d x\right)^{1 / 2}
$$

Definition

If $\left\{\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{n}(x), \ldots\right\}$ is an orthogonal set of function on the interval $[\alpha, \beta]$ with the property $\left\|\varphi_{n}\right\|=1$ for $n=1,2, \ldots$, then the set $\left\{\varphi_{n}(x)\right\}_{n \geq 1}$ is said to be an orthonormal set on the interval.

$$
\left(\varphi_{n}(x), \varphi_{m}(x)\right)=\int_{\alpha}^{\beta} \varphi_{n}(x) \varphi_{m}(x) d x=0, \quad n \neq m
$$

Definition

A set of real-valued functions $\left\{\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{n}(x), \ldots\right\}$ is said to be orthogonal with respct to weight function $w(x)>0$ on the interval $[\alpha, \beta]$ if We define the norm (length) of function f in terms of the inner product as the quantity

$$
\left(\varphi_{n}, \varphi_{m}\right)_{w(x)}=\int_{\alpha}^{\beta} w(x) \varphi_{n}(x) \varphi_{m}(x) d x=0, \quad n \neq m
$$

Example (3) Show that the set of functions

$\{1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots, \sin m x, \cos m x, .$.$\} is orthogonal on the$ interval $[-\pi, \pi]$. Find the corresponding orthonormal set on $[-\pi, \pi]$. We have to show that

$$
\begin{aligned}
(1, \sin n x) & =0,(1, \cos n x)=0,(\sin n x, \sin m x)=0 \\
(\cos n x, \cos m x) & =0,(\sin n x, \cos m x)=0, \quad \forall n \neq m \\
(1, \sin n x) & =\int_{-\pi}^{\pi} \sin n x d x=-\left.\frac{1}{n} \cos n x\right|_{-\pi} ^{\pi}=0 \\
(1, \cos n x) & =\int_{-\pi}^{\pi} \cos n x d x=\left.\frac{1}{n} \sin n x\right|_{-\pi} ^{\pi}=0 \\
(\sin n x, \sin m x) & =\int_{-\pi}^{\pi} \sin n x \sin m x d x \\
& =\int_{-\pi}^{\pi} \frac{\cos (n-m) x-\cos (n+m) x}{2} d x=0, n \neq m
\end{aligned}
$$

$$
\begin{aligned}
(\cos n x, \cos m x) & =\int_{-\pi}^{\pi} \cos n x \cos m x d x \\
& =\int_{-\pi}^{\pi} \frac{\cos (n-m) x+\cos (n+m) x}{2} d x=0, n \neq m \\
(\sin n x, \cos m x) & =\int_{-\pi}^{\pi} \sin n x \cos m x d x \\
& =\int_{-\pi}^{\pi} \frac{\sin (n-m) x+\sin (n+m) x}{2} d x=0
\end{aligned}
$$

To determine the orthonormal set on $[-\pi, \pi]$, we have to divide each element by its norm.

$$
\begin{gathered}
\|1\|^{2}=\int_{-\pi}^{\pi} d x=2 \pi \\
\|\sin m x\|^{2}=\int_{-\pi}^{\pi}(\sin m x)^{2} d x=\int_{-\pi}^{\pi} \frac{1-\cos 2 m x}{2} d x=\pi \\
\|\cos m x\|^{2}=\int_{-\pi}^{\pi}(\cos m x)^{2} d x=\int_{-\pi}^{\pi} \frac{1+\cos 2 m x}{2} d x=\pi .
\end{gathered}
$$

Hence the orthonormal set on $[-\pi, \pi]$:

$$
\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \ldots, \frac{\sin m x}{\sqrt{\pi}}, \frac{\cos m x}{\sqrt{\pi}}, \ldots\right\}
$$

Example (4) Show that the functions

$$
f(x)=1, g(x)=2 x, h(x)=4 x^{2}-2
$$

are orthogonal with respect to the weight function $w(x)=e^{-x^{2}}$ on the interval $(-\infty, \infty)$.

$$
\begin{aligned}
& (1,2 x)_{w(x)}=\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x=-\int_{-\infty}^{\infty}-2 x e^{-x^{2}} d x=-\left.e^{-x^{2}}\right|_{-\infty} ^{\infty}=0 \\
& \begin{aligned}
\left(1,4 x^{2}-2\right)_{w(x)} & =\int_{-\infty}^{\infty}\left(4 x^{2}-2\right) e^{-x^{2}} d x \\
& =-\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x-2 \int_{-\infty}^{\infty} e^{-x^{2}} d x \\
& =-\left.2 x e^{-x^{2}}\right|_{-\infty} ^{\infty}+2 \int_{-\infty}^{\infty} e^{-x^{2}} d x-2 \int_{-\infty}^{\infty} e^{-x^{2}} d x \\
& =0
\end{aligned}
\end{aligned}
$$

In the same way and by integration by parts, we find that

$$
\left(2 x, 4 x^{2}-2\right)_{w(x)}=0
$$

Fourier Series

Theorem

Suppose that f and f^{\prime} are piecewise continuous on the interval $[-T, T]$. Further, suppose that f is defined outside the interval $[-T, T]$ so that it is periodic with period $2 T$. Then f has a Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{T}+b_{n} \sin \frac{n \pi x}{T}\right)
$$

Whose coefficients are given by

$$
\begin{gathered}
a_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n \pi x}{T} d x, \quad(n=1,2, \ldots), \\
b_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n \pi x}{T} d x, \quad(n=1,2, \ldots), \quad a_{0}=\frac{1}{T} \int_{-T}^{T} f(x) d x .
\end{gathered}
$$

Even and Odd Functions

Recall that if $f(x)$ is an even function then

$$
f(-x)=+f(x) .
$$

Examples: $\quad f(x)=x^{4}-x^{2}, h(x)=\sqrt{2+x^{4}}$ and $f(x)=e^{-|x|}$.
Recall that if $f(x)$ is an odd function then

$$
f(-x)=-f(x)
$$

Examples: $\quad f(x)=x^{3}, f(x)=x$.

Two symmetry properties of functions will be useful in the study of Fourier series. A function $f(x)$ that satisfies $f(-x)=f(x)$ for all x in the domain of f has a graph that is symmetric with respect to the y-axis. This function is said to be even. For example:

$$
\begin{gathered}
f(x)=\sqrt{2+x^{4}}, g(x)=e^{-|x|} \\
h(x)=\cos x+\ln \left(1+x^{2}\right) \\
k(x)=\left\{\begin{array}{c}
|\sin x|, \quad|x| \leq \pi \\
0, \quad|x|>\pi
\end{array}\right.
\end{gathered}
$$

A function f that satisfies $f(-x)=-f(x)$ for all x in the domain of f has a graph that is symmetric with respect to the origin. It is said to be an odd function. For example:

$$
\begin{gathered}
f(x)=e^{|x|} \sin x, \\
h(x)=\sqrt{1+x^{2}} \tan x, \\
k(x)=\frac{\pi}{2}<x<\frac{\pi}{2} . \\
\left\{\begin{array}{cc}
x-1, & 0<x<1, \\
x+1, & -1<x<0, \\
0, & |x|>1
\end{array}\right. \\
M(x)=x^{1 / 3}-\sin x .
\end{gathered}
$$

Properties of symmetric functions

- If $f(x)$ is an even piecewise continuous function on $[-L, L]$, then

$$
\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x
$$

- If $f(x)$ is an odd piecewise continuous function on $[-L, L]$, then

$$
\int_{-L}^{L} f(x) d x=0
$$

- For an even function, we have the Fourier coefficients

$$
\begin{gathered}
a_{n}=\frac{2}{T} \int_{0}^{T} f(x) \cos \frac{n \pi x}{T} d x, \quad(n=1,2, \ldots), \\
a_{0}=\frac{2}{T} \int_{0}^{T} f(x) d x
\end{gathered}
$$

and

$$
b_{n}=0, \quad(n=1,2, \ldots)
$$

- For an odd function, we have the Fourier coefficients

$$
\begin{gathered}
b_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n \pi x}{T} d x, \quad(n=1,2, \ldots) \\
a_{n}=0, \quad(n=0,1,2, \ldots)
\end{gathered}
$$

- When n is an integer

$$
\sin n \pi=0 \quad \text { and } \quad \cos n \pi=(-1)^{n}
$$

Example (1) Assume that there is a Fourier series converging to the function

$$
\begin{aligned}
f(x) & =\left\{\begin{aligned}
-x, & -T \leq x<0 \\
x, & 0 \leq x \leq T ;
\end{aligned}\right. \\
f(x+2 T) & =f(x) .
\end{aligned}
$$

Compute the Fourier series for the given function.
The Fourier series has the form

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{T}+b_{n} \sin \frac{n \pi x}{T}\right)
$$

Since $f(-x)=f(x) \forall x \in[-T, T]$, then f is even on $[-T, T]$, hence $b_{n}=0,(n=1,2, \ldots)$.
We compute to find that

$$
a_{0}=\frac{2}{T} \int_{0}^{T} f(x) d x=T
$$

$$
\begin{aligned}
a_{n} & =\frac{2}{T} \int_{0}^{T} f(x) \cos \frac{n \pi x}{T} d x, \quad(n=1,2, \ldots) \\
& =\frac{2}{T} \int_{0}^{T} x \cos \frac{n \pi x}{T} d x \\
& =\frac{2 T}{(n \pi)^{2}}(\cos n \pi-1), \quad(n=1,2, \ldots)
\end{aligned}
$$

Thus the Fourier series for the function f is given by

$$
f(x)=\frac{T}{2}-\frac{4 T}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{T} .
$$

Observe that from the obtained Fourier series, we can deduce that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

This follows from the fact that the Fourier series converges to $f(0)=0$ at $x=0$.

Example (2) Find a Fourier series to represent the function

$$
f(x)=x-x^{2}
$$

from $x=-\pi$ to $x=\pi$. Deduce that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{6}
$$

We write

$$
x-x^{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

We have

$$
\begin{aligned}
& \quad a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) d x=\frac{-2}{3} \pi^{2} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \cos n x d x=-\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x \\
& =\frac{4}{n^{2}}(-1)^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{n}(-1)^{n+1}
\end{aligned}
$$

Hence

$$
x-x^{2}=\frac{-2}{3} \pi^{2}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x
$$

By setting $x=0$, we obtain

$$
\frac{-2}{3} \pi^{2}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=0 .
$$

From which it follows that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{6}
$$

Fourier Cosine and Sine Series

Sometimes it is possible to represent a function as a Fourier Cosine or Sine Series. To do this we use the properties of even and odd functions as defined previously. To determine a series we usually extend the interval of definition to create a new function that is either even or odd depending on the type of series required. If we require a Fourier cosine series then the new function created is chosen to be an even function. Similarly, If we require a Fourier sine series then the new function created is chosen to be an odd function.

For example, let $f(x)$ be defined on the interval $[0, L]$.

- If we require a Fourier cosine series then we create a new function created, $f_{e}(x)$, which is an even function over the interval $[-L, L]$. That is, we let

$$
\begin{aligned}
f_{e}(x) & =\left\{\begin{aligned}
f(x), & 0<x<L, \\
f(-x), & -L \leq x \leq 0 ;
\end{aligned}\right. \\
\text { with } \quad f_{e}(x+2 L) & =f_{e}(x)
\end{aligned}
$$

- If we require a Fourier sine series then we create a new function created, $f_{o}(x)$, which is an odd function over the interval $[-L, L]$. That is, we let

$$
f_{o}(x)=\left\{\begin{array}{cc}
f(x), & 0<x<L, \\
-f(-x), & -L<x<0,
\end{array}\right.
$$

and extending $f_{o}(x)$ to all x using the $2 L$ periodicity.

Definition

Let $f(x)$ be piecewise continuous function on the interval $[0, L]$.

- The Fourier cosine series of $f(x)$ on $[0, L]$ is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L},
$$

where

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad(n=0,1,2, \ldots) .
$$

Definition

- The Fourier sine series of $f(x)$ on $[0, L]$ is

$$
\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad(n=1,2, \ldots)
$$

Example (1) Compute the Fourier sine series for the function

$$
f(x)=\cos \frac{\pi x}{3}, 0<x<3 .
$$

We extend $f(x)$ as an odd function on $[-3,3]$

$$
f_{o}(x)=\left\{\begin{array}{cc}
\cos \frac{\pi x}{3}, & 0 \leq x<3, \\
-\cos \frac{\pi x}{3} & -3 \leq x<0 .
\end{array}\right.
$$

The Fourier sine series representation of

$$
f(x)=\cos \frac{\pi x}{3}
$$

is

$$
f(x)=\cos \frac{\pi x}{3}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n x \pi}{3}, \quad 0<x<3,
$$

where

$$
\begin{aligned}
b_{n} & =\frac{2}{3} \int_{0}^{3} \cos \frac{\pi x}{3} \sin \frac{n \pi x}{3} d x \\
& =\frac{1}{3} \int_{0}^{3}\left(\sin \frac{(n+1) \pi x}{3}-\sin \frac{(n-1) \pi x}{3}\right) d x \\
& = \begin{cases}0, & n \text { odd } \\
\frac{4 n}{\pi\left(n^{2}-1\right)}, & n \text { even }\end{cases}
\end{aligned}
$$

According to Fourier theorem, equality holds for $0<x<3$, but not at $x=0$ and $x=3$:

$$
\cos \frac{\pi x}{3}=\frac{8}{\pi} \int_{n=1}^{\infty} \frac{n}{\left(4 n^{2}-1\right)} \sin \frac{2 n x \pi}{3}, \quad 0<x<3
$$

At $x=0$ and $x=3$, the Fourier series converges to

$$
\frac{f\left(0^{+}\right)+f\left(0^{-}\right)}{2}=0
$$

and

$$
\frac{f\left(3^{+}\right)+f\left(3^{-}\right)}{2}=0
$$

respectively.

Example (2) Compute the Fourier cosine series for the function

$$
f(x)=e^{2 x}, 0 \leq x \leq 1
$$

and deduce that

$$
\frac{3-e^{2}}{2}=\sum_{n=1}^{\infty} \frac{4}{4+n^{2} \pi^{2}}\left[e^{2}(-1)^{n}-1\right]
$$

We extend $f(x)$ as an even function on $[-1,1]$

$$
f_{e}(x)=\left\{\begin{array}{cc}
e^{2 x}, & 0<x<1 \\
e^{-2 x} & -1<x<0 .
\end{array}\right.
$$

The Fourier cosine series representation of

$$
f(x)=e^{2 x}
$$

is

$$
f(x)=e^{2 x}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \pi x, \quad 0 \leq x \leq 1
$$

where

$$
a_{0}=2 \int_{0}^{1} e^{2 x} d x=e^{2}-1
$$

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} e^{2 x} \cos n \pi x d x \\
& =2\left[\left.\frac{1}{2} e^{2 x} \cos n \pi x\right|_{0} ^{1}+\frac{1}{2} n \pi \int_{0}^{1} e^{2 x} \sin n \pi x d x\right] \\
& =e^{2}(-1)^{n}-1+n \pi\left[\left.\frac{1}{2} n \pi e^{2 x} \sin n \pi x\right|_{0} ^{1}-\frac{1}{2} n \pi \int_{0}^{1} e^{2 x} \cos n \pi x d x\right] \\
& =e^{2}(-1)^{n}-1-\frac{1}{2} n^{2} \pi^{2} \int_{0}^{1} e^{2 x} \cos n \pi x d x
\end{aligned}
$$

Hence

$$
a_{n}=\frac{4}{4+n^{2} \pi^{2}}\left[e^{2}(-1)^{n}-1\right]
$$

The Fourier series is then

$$
e^{2 x}=\frac{e^{2}-1}{2}+\sum_{n=1}^{\infty} \frac{4}{4+n^{2} \pi^{2}}\left[e^{2}(-1)^{n}-1\right] \cos n \pi x, \quad 0 \leq x \leq 1
$$

At $x=0$, we have

$$
\frac{3-e^{2}}{2}=\sum_{n=1}^{\infty} \frac{4}{4+n^{2} \pi^{2}}\left[e^{2}(-1)^{n}-1\right] .
$$

Complex form of a Fourier Series

We have seen that Fourier Series in the interval $(-T, T)$ of a functon $f(x)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{T}+b_{n} \sin \frac{n \pi x}{T}\right)
$$

Thus, from The Euler's formula we have the complex form of Fourier Series of f is given by

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i n \pi x}{T}}
$$

where

$$
c_{n}=\frac{1}{2 T} \int_{-T}^{T} f(x) e^{\frac{i n \pi x}{T}} d x
$$

Example Obtain the complex form of the Fourier series for the function $f(x)=e^{\lambda x}-\pi<x<\pi$ in the form

$$
e^{\lambda x}=\frac{\sinh \lambda \pi}{\pi} \sum_{n=-\infty}^{\infty}(-1)^{n} \frac{\lambda+i n}{\lambda^{2}+n^{2}} e^{i n x}
$$

and deduce that

$$
\frac{\pi}{\lambda \sinh \lambda \pi}=\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{\lambda^{2}+n^{2}}
$$

We look for the coefficients c_{n} in the series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$,

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{\lambda x} e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(\lambda-i n) x} d x \\
& =\frac{1}{2 \pi}\left[\frac{e^{(\lambda-i n) \pi}-e^{-(\lambda-i n) \pi}}{\lambda-i n}\right] \\
& =\frac{1}{2 \pi}\left[\frac{e^{\lambda \pi}(\cos n \pi-i \sin n \pi)-e^{-\lambda \pi}(\cos n \pi+i \sin n \pi)}{\lambda-i n}\right] \\
& =\frac{1}{2 \pi(\lambda-i n)}\left(e^{\lambda \pi}-e^{-\lambda \pi}\right) \cos n \pi \\
& =\frac{1}{2 \pi(\lambda-i n)}\left(e^{\lambda \pi}-e^{-\lambda \pi}\right) \cos n \pi \\
& =\frac{1}{2 \pi(\lambda-i n)}(2 \sinh \lambda \pi) \cos n \pi \\
& =\frac{(-1)^{n} \sinh \lambda \pi}{\pi(\lambda-i n)}=\frac{(-1)^{n}(\lambda+i n) \sinh \lambda \pi}{\pi\left(\lambda^{2}+n^{2}\right)}
\end{aligned}
$$

Substituting this found c_{n} in the series to get

$$
\begin{equation*}
f(x)=e^{\lambda x}=\frac{\sinh \lambda \pi}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}(\lambda+i n)}{\lambda^{2}+n^{2}} e^{i n x} \tag{3}
\end{equation*}
$$

Now by setting $x=0$ in (3), we obtain

$$
\frac{\pi}{\sinh \lambda \pi}=\sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{\lambda}{\lambda^{2}+n^{2}}+i \frac{n}{\lambda^{2}+n^{2}}\right)
$$

By equating the real part, we have

$$
\frac{\pi}{\lambda \sinh \lambda \pi}=\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{\lambda^{2}+n^{2}} .
$$

