MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Independent of path

Theorem 1

If $F(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ is continuous on an open connected region D, then the line integral $\int_{C} \mathbf{F} \cdot d r$ is independent of path if and only if \mathbf{F} is conservative that is $\mathbf{F}(x, y)=\nabla f(x, y)$ for some scalar function.

Theorem 2: Fundamental theorem of line integrals

Let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be continuous on an open connected region D, and let C be a piecewise smooth curve in D with endpoint $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$. If $\mathbf{F}(x, y)=\nabla f(x, y)$, then

$$
\int_{C} M(x, y) d x+N(x, y) d y=\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} \mathbf{F} \cdot d r=[f(x, y)]_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)}
$$

Independent of path

Theorem 3

If $M(x, y)$ and $N(x, y)$ have continuous first partial derivatives on a simply connected region D, then the line integral $\int_{C} M(x, y) d x+N(x, y) d y$ is independent of path in D if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

Example 1: Let $\mathbf{F}(x, y)=\left(2 x+y^{3}\right) \mathbf{i}+\left(3 x y^{2}+4\right) \mathbf{j}$
(a) Show that $\int_{C} \mathbf{F} \cdot d r$ is independent of path.
(b) $\int_{(0,1)}^{(2,3)} \mathbf{F} \cdot d r$.

Independent of path

Example 2: Show that $\int_{C}\left(e^{3 y}+y^{2} \sin x\right) d x+\left(3 x e^{3 y}+2 y \cos x\right) d y$ is independent of path in a simply connected region.
Example 3: Determine whether $\int_{C} x^{2} y d x+3 x y^{2} d y$ is independent of path.
Example 4: Let $\mathbf{F}(x, y, z)=y^{2} \cos x \mathbf{i}+\left(2 y \sin x+e^{2 z}\right) \mathbf{j}+2 y e^{2 z} \mathbf{k}$ (a) Show that $\int_{C} \mathbf{F} \cdot d r$ is independent of path, and find a potential function f of \mathbf{F}.
(b) If \mathbf{F} is a force field, find work done by \mathbf{F} along any curve C from $\left(0,1, \frac{1}{2}\right)$ to $\left(\frac{\pi}{2}, 3,2\right)$.

Green's Theorem

Green's theorem

Let C be a piecewise-smooth simple closed curve, and let R be the region consisting of C and its interior. If M and N are continuous functions that have continuous first partial derivatives throughout an open region D containing R, then

$$
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A .
$$

Green's Theorem

Note: Note the line integral is independent of path and hence is zero $\int_{C} \mathbf{F} \cdot d r=0$ for every simple closed curve C.
Examples: (1) Use Green's theorem to evaluate $\oint_{C} 5 x y d x+x^{3} d y$, where C is the closed curve consisting of the graphs of $y=x^{2}$ and $y=2 x$ between the points $(0,0)$ and $(2,4)$.
(2) Use Green's theorem to evaluate $\oint_{C} 2 x y d x+\left(x^{2}+y^{2}\right) d y$, if C is the ellipse $4 x^{2}+9 y^{2}=36$.
(3) Evaluate $\oint_{C}\left(4+e^{\cos x}\right) d x+\left(\sin y+3 x^{2}\right) d y$, if C the boundary of the region R between quarter-circles of radius a and b and segment on the x - and y-axes, as shown in Figure.

Green's Theorem

Theorem

If a region R in the $x y$-plane is bounded by a piecewise-smooth simple closed curve C, then the area A of R is

$$
\begin{array}{rlc}
\iint_{R} d A & = & \oint_{C} x d y \\
& = & -\oint_{C} y d x \\
& = & \frac{1}{2} \oint_{C} x d y-y d x \tag{iii}
\end{array}
$$

Examples: (1) Find the area of the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$.
(2) Find the area of the region bounded by the graphs of $y=4 x^{2}$ and $y=16 x$.

