MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Outline

- Theorem 2.
- Theorem 3.
- Theorem 4.
- Theorem 5.
- Theorem 6 (Properties of infinite series).
- Theorem 7.
- Examples.
- Positive term series.
- Theorem 1.
- Theorem 2 (Integral Test).
- Theorem 3 (*p*-Series Test).

Theorem 2

If a series
$$\sum_{n=1}^{\infty} a_n$$
 is c'gt, then $\lim_{n\to\infty} a_n = 0$.

Theorem 3 (nth-term test)

If
$$\lim_{n\to\infty}a_n\neq 0$$
, then the series $\sum_{n=1}^\infty a_n$ is d'gt.

Theorem 4

If two series $\sum^{\infty}a_n$ and $\sum^{\infty}b_n$ are such that $a_i=b_i$ for every i>k, where k is a positive interger, then both series converge or diverge together.

Theorem 5

If we delete first k terms of a series

$$\sum_{n=1}^{\infty}a_n=a_1+a_2+\cdots+a_k+\cdots+a_n+\dots \text{ then its behaviour does not change}.$$

Theorem 6 (properties)

Let $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$ and C is a real number, then

$$\bullet \sum_{n=1}^{\infty} Ca_n = C \sum_{n=1}^{\infty} a_n$$

$$\bullet \sum_{n=1}^{\infty} (a_n \pm b_n) = A \pm B.$$

Theorem 7

If
$$\sum_{n=1}^\infty a_n$$
 is convergent, and $\sum_{n=1}^\infty b_n$ is divergent, then $\sum_{n=1}^\infty (a_n+b_n)$ is divergent.

Examples

In page (26) (i):
$$3 + \frac{3}{4} + \dots + \frac{3}{(4)^{n-1}} + \dots$$
 (ii): $\sum_{i=0}^{\infty} (\sqrt{2})^{n-1}$

Solution:

In page (27) Q25:
$$\sum_{n=1}^{\infty} a_n = \frac{1}{4*5} + \frac{1}{5*6} + \dots + \frac{1}{(n+3)(n+4)} + \dots$$
Q28:
$$\sum_{n=1}^{\infty} a_n = \frac{-1}{1*2} + \frac{-1}{2*3} + \dots + \frac{-1}{n(n+1)} + \dots$$

Solution:

In page (28) Q1:
$$\sum_{n=1}^{\infty} \frac{3n}{(5n-1)}$$
 Q2:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{e}}$$
 Q4:
$$\sum_{n=1}^{\infty} \frac{n}{\ln(n+1)}$$
 Solution:

The Ratio Test

Def of Positive Term Series

a series $\sum a_n$ such that $a_n > 0$ for every n

Theorem 1

If $\sum a_n$ is a positive term series and if there exists a number M such n=1that $S_n = a_1 + a_2 + \cdots + a_n < M$ for every n, then the series is c'gt and has sum $S \leq M$. If no such M exists, then the series is d'gt.

Series

Theorem 2 (Integral Test)

Let $\sum a_n$ be a positive term series. Suppose also

- f is a positive continuous function for $x \ge 1$ such that
- $f(n) = a_n$, for n = 1, 2, 3, ...
- f is a decreasing function of interval $[1, \infty)$

then, $\sum a_n$ is c'gt if $\int_1^\infty f(x)dx$ is c'gt

and $\sum a_n$ is d'gt if $\int_1^\infty f(x)dx$ is d'gt

Theorem 3 (p-Series Test)

The p-series is given by $\sum_{1}^{\infty}\frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\ldots$, where p>0 by definition.

- If p > 1, then the series converges.
- If 0 , then the series diverges.

Theorem 4 (Basic Comparison Test)

Let $\sum a_n$ and $\sum b_n$ be two positive term series. If $0\leqslant a_n\leqslant b_n$ for all n. then the following rules apply:

- ullet If $\sum b_n$ converges, then $\sum a_n$ an converges.
- If $\sum_{n=0}^{\infty} a_n$ diverges, then $\sum_{n=0}^{\infty} b_n$ an diverges.

The Ratio Test

Theorem 5 (Limit Comparison Test)

Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two positive term series. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where c>0 , then both series converge or diverge together.

Solution:

In page (34) Q2:
$$\sum_{n=1}^{\infty} \frac{n^2}{e^{n^3}}$$
 Q3:
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
 Q4:
$$\sum_{n=1}^{\infty} \frac{arc \tan n}{1+n^2}$$

In page (38) (i):
$$\sum_{n=1}^{\infty} \frac{1}{5+6^n}$$
 (hint: using direct CT)

(ii):
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}+1}$$
 (hint: using direct CT)

In page (39) (i):
$$\sum_{n=1}^{\infty} \frac{1}{1+e^{2n}}$$
 (hint: using Limit CT)

(ii):
$$\sum_{i=0}^{n-1} \frac{n^2 + \sqrt{n}}{6 + n^2 + n^{7/2}}$$
 (hint: using Limit CT)

Solution:

The Root Test

The Ratio Test

Let $\sum_{n \to \infty} a_n$ be a positive term series and suppose that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$, then

- If L < 1 the series $\sum_{n=0}^{\infty} a_n$ converges.
- If L>1 the series $\sum a_n$ diverges.
- If L=1 (fails), the series may converge or diverge.

Examples:

(1)
$$\sum_{n=0}^{\infty} n!$$

(1)
$$\sum_{n=1}^{\infty} n!$$
 (2) $\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$ (3) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ (4) $\sum_{n=1}^{\infty} \frac{3^n}{n^2}$.

$$(3) \sum_{1}^{\infty} \frac{3^r}{n!}$$

$$(4) \sum_{n=1}^{\infty} \frac{3^n}{n^2}$$

The Root Test

Let $\sum a_n$ be a positive term series and suppose that $\lim_{n \to \infty} \sqrt[n]{a_n} = L$, then

- the series $\sum a_n$ converges if L < 1.
- the series $\sum_{n=0}^{\infty} a_n$ diverges if L > 1.
- If L=1 (fails), the series may converge or diverge.

Examples:

$$(1) \sum_{n=1}^{\infty} \frac{5^n}{n^n}$$

(1)
$$\sum_{n=1}^{\infty} \frac{5^n}{n^n}$$
 (2) $\sum_{n=1}^{\infty} \left(\frac{8n^2 - 7}{n+1}\right)^n$ (3) $\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$

(3)
$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$$