MATH204 Differential Equation

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Chapter 2

- Initial-Value Problems (IVP)
- Existence of a Unique Solution
- Separable Equations
- Exact Differential Equations
- Integrating Factor
- The General Solution of a Linear Differential Equations
- Bernoulliâs Equation.

First Order Differential Equation

Here we will start to study some methods which might use to solve first order differential equations.
Consider the equation of order one

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

We suppose that the equation (1) can be written as the form

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=f(x, y) . \tag{2}
\end{equation*}
$$

The equation (2) can be written as follows

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{3}
\end{equation*}
$$

where M and N are two functions of x and y.

Initial Value Problem (IVP)

We are interested in problems in which we seek a solution $y(x)$ of differential equation which satisfies some conditions imposed on the unknown $y(x)$ or its derivatives. On some interval I containing x_{0}, the problem

$$
\begin{aligned}
\text { Solve: } & \frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \\
\text { Subject to: } & y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{aligned}
$$

where $y_{0}, y_{1}, \ldots, y_{n-1}$ are arbitrary specified real constants, is clled an initial-values problem (IVP) and its $n-1$ derivatives at a single point x_{0} : $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$ are called initial conditions.

Special cases:

First and second-order IVPs

$$
\begin{aligned}
\text { Solve: } & \frac{d y}{d x}=f(x, y) \\
\text { Subject to: } & y\left(x_{0}\right)=y_{0} .
\end{aligned}
$$

Solve: $\quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)$
Subject to: $\quad y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$.

Examples

Solve the initial value problem:
1- $y^{\prime}=10-x, \quad y(0)=-1$.
2- $y^{\prime}=9 x^{2}-4 x+5, \quad y(-1)=0$.
3- $\frac{d s}{d t}=\cos t+\sin t, \quad s(t)=1$.
4- $y^{\prime \prime}=2-6 x, \quad y^{\prime}(0)=4, y(0)=1$.
5- $y^{\prime \prime}=x, \quad y(0)=1, y^{\prime}(0)=-1$.
6- $y^{\prime}+2 x y^{2}=0, \quad y(0)=-1$.

Existence of a Unique Solution

Theorem: Consider a first order differential equation

$$
\frac{d y}{d x}=f(x, y), \text { with the initial value } y\left(x_{0}\right)=y_{0},
$$

there exists a unique solution if

- $f(x, y)$ and $\frac{\partial f(x, y)}{\partial y}$ are continuous with in the region \mathbb{R}^{2} of $x y$-plane.
- $\left(x_{0}, y_{0}\right)$ be a point in the region \mathbb{R}^{2}

Examples:

Find the largest region of the $x y$-plane for which the following initial value problems have unique solutions:

$$
\text { (a) } \sqrt{x^{2}-4} y^{\prime}=1+\sin (x) \ln (y) \text {, with initial condition } y(3)=4 \text {. }
$$

Solution

$$
\begin{gathered}
y^{\prime}=\frac{1+\sin (x) \ln y}{\sqrt{x^{2}-4}}=f(x, y) \\
y^{\prime}=\frac{1}{\sqrt{x^{2}-4}}+\frac{\sin (x)}{\sqrt{x^{2}-4}} \ln y ; \quad y>0 \text { and }|x|>2 \\
\frac{\partial f}{\partial y}=\frac{\sin x}{\sqrt{x^{2}-4}} \frac{1}{y} .
\end{gathered}
$$

Then f and $\frac{\partial f}{\partial y}$ are continuous on

$$
\begin{gathered}
R=\left\{(x, y) \in \mathbb{R}^{2} ;|x|>2, y>0\right\} \\
R_{1}=\left\{(x, y) \in \mathbb{R}^{2} ; x>2, y>0\right\} \cup R_{2}=\left\{(x, y) \in \mathbb{R}^{2} ; x<-2, y>0\right\}
\end{gathered}
$$

As we see the point $(3,4) \in R_{1}=\{(x, y) ; x>2, y>0\}$, so the largest region in $x y$-plane for which the IVP has a unique solution is R_{1}.

$$
\text { (b) } \ln (x-2) \frac{d y}{d x}=\sqrt{y-2} \text {, with initial condition } y\left(\frac{5}{2}\right)=4
$$

(c) $\sqrt{x / y} y^{\prime}=\cos (x+y) ; y \neq 0$, with initial condition $y(1)=1$.

Exercise Determine the largest region of the $x y$-plane for which the following initial value problem has a unique solution:

$$
\frac{\partial y}{\partial x}=\frac{y+2 x}{y-2 x}, \text { with initial condition } y(1)=0
$$

Separable Equations:

We begin to study the methods for solving the first-ordre differential equations. Consider a first-order differential equation of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{4}
\end{equation*}
$$

where M and N are two functions of x and y. Sometimes we can write the equation (4) as

$$
\begin{equation*}
F(x) d x+G(y) d y=0 \tag{5}
\end{equation*}
$$

which is said to be variables separable equation. We solve a variables separable equation by separating the variables and integrating.

$$
\begin{gathered}
\frac{d y}{G(y)}=f(x) d x \\
\int \frac{d y}{G(y)}=\int f(x) d x+c
\end{gathered}
$$

Since we have one arbitrary constant in the solution, we have found the general solution of the variables separable equation.

Examples

Solve the following differential equations:
1- $\frac{d y}{d x}=2 x$
2- $\frac{d y}{d x}=2 x y$
3- $e^{x} \cos y d x+\left(1+e^{x}\right) \sin y d y$
4- $2 x\left(y^{2}+y\right) d x+\left(x^{2}-1\right) y d y, \quad y \neq 0$
5- $(x y+x) d x=\left(x^{2} y^{2}+x^{2}+y^{2}+1\right) d y$

